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Resumo

O trabalho desenvolvido nesta tese tem como foco o desenvolvimento de uma plataforma que possa

ser empregue a bordo de um UAV e lhe forneça as capacidades necessárias para que um consiga

deslocar-se da partida até ao destino final sem ser perturbado por obstáculos estáticos e/ou dinâmicos

que apareçam no seu percurso.

A abordagem seguida é composta por um algoritmo de planeamento de uma trajectória em tempo

real que se encontra dividido em duas componentes: uma fase de planeamento Offline/Pré-voo e uma

fase de replaneamento Online(em tempo real).

Na primeira fase, as trajectórias são geradas num ambiente conhecido a priori através de uma

combinação de um algoritmo de amostragem (RRT-COnnect e Informed RRT* são utilizados) que

gera um caminho que é posteriormente convertido numa trajectória suave por meio de um método

de otimização baseado na minimização da quarta derivada da posição (”snap”).

Na segunda fase, a trajectória inicial é corrigida em tempo real perante situações de potencial colisão

com obstáculos dinâmicos. A correção é baseada numa trajectória de transição que segue o método

utilizado na fase offline com os ajustes necessários para poder ser realizada em tempo real.

Os ambientes onde os algoritmos atuam foram modelados como ”Octomaps”.

De modo a testar os algoritmos densolvidos, foram feitas simulações não-fı́sicas e fı́sicas ( ditas

simulações ”Software-in.the-loop”).

Keywords: a bordo, replaneamento, RRT-Connect, Informed RRT*, suave, Snap, Octomap,

Software-in-the-Loop
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Abstract

The work done in this thesis is focused on the development of a framework that empowers an UAV with

the capability of going from a start to a destination while simultaneously avoiding static and dynamic

obstacles during its course. The framework was developed with the intention of running onboard of an

UAV the associated computational limitations.

The framework is composed of a real-time trajectory planning algorithm that is split into a two-step

approach: an Offline/Pre-Flight Path Planning and an Online/Real Time Path Replanning.

In the first step techniques are implemented to generate trajectories in a known static environment.

The proposed solution makes use of sampling-based motion planning algorithms (both the RRT-Connect

and the Informed RRT* are used) to find an initial feasible path that’s then feed into an optimization

method which turns it into a feasible trajectory. This optimization method seeks to find smooth trajecto-

ries by minimizing the 4th derivative of position (Snap).

The second step consists of a real time avoidance module which allows the UAV to avoid dynamic

obstacles in its course by means of a local generation of a transitioning trajectory around them. A

pragmatic approach is used to tackle this problem that leverages the quick generation of trajectories

provided by the aforementioned optimization method.

The algorithm was developed under the assumption that the UAV surroundings are modeled in the

form of an Octomap.

To test and validate the capabilities of the developed framework, simple simulations were designed

and Software-in-the-loop tests were carried out using PX4 and Gazebo as simulation tools.

Keywords: onboard, RRT-Connect, Informed RRT*, Replanning, smooth, Snap, Octomap,

Software-in-the-Loop, PX4, Gazebo
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Glossary
UAV, Unmanned Aerial Vehicle (commonly known as drone) is defined as ”an aircraft without a

human pilot on board”.

S&A, Sense and Avoid consists of the systems necessary for sense, detect and avoidance of obsta-

cles in autonomous navigation.

PRM, Probabilistic Roadmap Methods use randomly sample nodes from the search space and try

to find the shortest sequence of collision free configurations between the start and goal states using

Dijkstra algorithm.

RRT, Rapid Exploring Random Trees are an example of sampling based algorithms by building a

tree from samples drawn randomly from the search space. The search in the space is inherently biased

towards the goal state.

PF, Potential fields model the world by a force field with obstacles acting as repulsive poles and

defined goals as attractive poles therefore there is an attractive force that increases towards the goal

and repulsive forces that increase towards obstacles.

MDP, Markov decision process is a discrete-time dynamic stochastic control process where the

outcome of a system depends on the current state and an action.

MA, Manoeuvre Automata are a collection of maneuver generation techniques that work by creating

a continuous trajectory over predefined waypoints.

DC, Dubins Curve are a set of lines that satisfy motion constraints by a combining curvature arcs

and/or straight line.

VO, Velocity Obstacle based methods are a common approach to dynamic obstacle avoidance and

are based on the concept of the possible velocities of a robot that would put it in collision with an obstacle

(static or dynamic) at a future point in time.

MPC, Model predictive control is an example of an optimization-based algorithm using a nonlinear

control technique that uses a dynamic model of a plant and past control history to optimize future states

over a defined time period and subject to a cost function, therefore the trajectory optimization problem

is solved through feedback control.

MILP, Mixed Integer Linear Programming is a type of optimization problem in which all formulated

constraints and objective function are linear and some design variables are restricted to discrete/integer

values.

FCL, Flexible Collision Library is a library for performing collision checking and distance computation

between geometric models.

OMPL, Open Motion Planning Library is an open source library containing many state-of-the-art

sampling-based motion planning algorithms.

SITL Software-In-The-Loop simulates mathematical models and provides engineers with virtual sim-

ulation environments for developing and testing the control of systems without the need of hardware.

ROS, Robot Operating System is an open-source software framework for robotic and drone devel-

opment.
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Chapter 1

Introduction

Figure 1.1: Artists rendition of air mobility in a metropolitan area in the future. Taken directly from [1].

An Unmanned Aerial Vehicle (UAV or commonly known as drone) is defined as ”an aircraft without

a human pilot on board”. According to International Civil Aviation Organization (ICAO) an UAV can be

classified according to its degree of automation, meaning it can be non-autonomous if remotely piloted

or autonomous otherwise. In reality, non-autonomous UAVs might have some autonomous capability

such as a return-to-base functionality for example. Nevertheless, the recent ascension of UAV hardware

as a mean of fulfilling the requirements of civilian, commercial, military and aerospace applications (due

to the versatility they offer), along with its projected growth in the next decade [2] means these aircraft’s

are increasingly becoming more robust, reliable and above all more affordable.

On pair with this, we have also experienced recently a fast growth in smaller and powerful computational

processors, the advent of more precise and accurate sensors which paired with the development of

efficient and powerful Artificial Intelligence (AI) algorithms [3] have opened an entire world of possibilities

within multiple fields of technology, specifically the latter which aims to solve complex problems whose

solutions would simply not be able to be achieved otherwise. Autonomous navigation stands out as an

example of a field which has seen significant research and advancements.

Companies like Amazon [4] have begun taking advantage of incorporating autonomous capabilities in

drones by offering autonomous delivery service using drones. Worldwide, governments are starting to
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take advantage of autonomous drones in military operations [5]. Agriculture is a field which can greatly

benefited from these autonomous capabilities [6] due to the simplistic nature of the operations performed

which go from for example a fly-by above a field with the objective to collect images or even disseminate

seeds.

1.1 Context and Motivation

Most current UAVs employed in other activities require at all times a pilot that is responsible for ensuring

its safe navigation and compliance with the rules of the air. The shift from having a Human operator to a

complete independent, reliable and robust autonomous framework represents the final leap in harness-

ing the full potential that UAVs could offer. However, this is not yet possible to achieve but progressively

empowering UAVs with more autonomous capabilities would lead to a decrease in both operational cost

and operator workload while potentially improving its safety in the event of loss of communications. It

is also true that if the autonomous system fails to meet rigorous operational standards, this would have

the exact opposite effect and susceptibility to failure would increase. One area of particular interest in

the future for this consists in tackling the arising problem of Urban Air Mobility (an artist depiction can be

seen in figure 1.1), that pertains to aerial urban transportation systems. It is estimated that in 2030, 60%

of the world’s population will live in cities [7] which will pose an immense problem regarding personal and

commercial ground transportation within these urban environments due to infrastructure congestion. To

achieve this, there is an immediate basic need of having guidelines which rule UAV urban navigation.

While this is a topic that still requires immense development, there are already entities which have tried

to tackle this such as the European Union through the European Aviation Safety Agency (EASA) that

recently released a set of regulations for different UAV operations according to its perceived level of risk:

Figure 1.2: UAV regulations. Taken directly from [8].
.

In parallel, classifying an UAV as fully autonomous or not is inaccurate since as mentioned before

there are examples of non-autonomous UAVs that posses some autonomous capabilities.
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Six levels have recently been defined by JARUS (Joint Authorities For Rulemaking Of Unmanned

Systems) to characterise the levels of autonomy of these operations:

Figure 1.3: Automation Levels. Taken directly from [8].

Nonetheless, to navigate autonomously in a certain environment, any system, whether a car or in

this instance an UAV, requires among other competences:

• Self-Localization , capability of determining its own position and orientation within a certain frame

of reference which is achieved through equipped sensors such as Inertial Measurements Units

(IMUs) and the Global Positioning System (GPS). In indoor spaces where GPS based navigation

is not possible, motion based localization is used, where the Vicon Capture System that consists of

a set of cameras stands out as a method of obtaining a reliable [9] estimation of the UAVs position

within the environment. Other approaches to GPS denied operations have been made such as the

use of phone sensors onboard small UAVs as a localization method has been explored in [10].

Figure 1.4: 3D voxel model of a chair. Taken directly from [11]

• Map-Building, capability of representing the map of the environment through information acquired

by vision based and motion sensors such as depth cameras. A common approach is to use a

grid of cubic volumes of equal size (voxels) to discretize the mapped area or using point clouds

to model the occupied space obtained from range sensors. An upgrade to the first approach was

realized in 2010 with the introduction of Octomaps [12], a probabilistic, flexible and compact 3D

map representation based on octrees;

• Path Planning, for creating the necessary path configurations that allow hypothetical movement

from a start point to a goal destination. It is common to try to attain the most optimum path in

terms of fuel consumption, smoothness of the trajectory or mission-based specific goals such as
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scanning an area during a surveillance operation. It is a multi-layered subject where many vari-

ables are at play such as planning in environments where the obstacles are static or in dynamic

environments where their position can change at any moment. Related to this there is also the

question posed of having full access to the environment when planning in a known space but it

is possible that the UAV must plan its navigation considering the lack of full information about the

environment meaning it might need to create alternative paths if new information about the environ-

ment renders the current flying configurations unfeasible, which can happen in partially known or

even unknow environments. There has been extensive work done in this field ranging from the de-

velopment of lightweight algorithms capable of running onboard UAVs on low powered processors

such as in [13], where an algorithm based on ant colony optimization (ACO) and artificial potential

field was applied to a dynamic path planning problem with experimental results showing that a

smoother path could be obtained compared to other similar algorithms and [14], where a hybrid

genetic algorithm was developed and tested on literature benchmark maps with positive results

to more complex algorithms whose effectiveness can only be achieved when running on ground

stations such as in [15], a real-time path planning method was proposed by combing the improved

Lyapunov Guidance Vector Field (LGVF), the Interfered Fluid Dynamical System (IFDS) and the

strategy of varying receding-horizon optimization from Model Predictive Control (MPC) and [16] ,

where a real-time motion planning framework for kinodynamic robots was developed and tested

on a quadrotor in an indoor environment;

Figure 1.5: General Ilustration of Sense and Avoid Systems. Taken directly from [17]

• Sense and Avoid (S&A) technology, necessary for preventing collisions with dynamic obstacles.

There is a need for automatically sense, detect and avoid obstacles in autonomous navigation,

in particular in highly congested environments. This SAA systems must be reliable, robust and

affordable for mass implementation. There are several components involved in these systems

but they can be narrowed down to sensors, responsible for collecting information of the environ-

ment along the flying path, detection algorithms needed to process that information and avoidance

protocols that can harness that information and avoid collisions along the course. A popular ap-

proach to to SAA is the use of electro optical sensors combined with radar/infrared sensor/thermal

imaging/motion detector due to its smaller size, high refresh scan rate and high image resolution.

However they can not estimate obstacle range and sometimes generate false detections. The re-

cent integration of the LIDAR (Light detection and ranging), whose detection of objects is based on

the calculation of the time necessary from light to travel to and from the obstacle has proven to be

capable of achieving high precision and resolution in the measurement of distances and in particu-

lar when combining the information acquired through several onboard sensors in a process known

as sensor fusion ilustrates the effectiveness of the LIDAR. There are several examples in Literature
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as in [18], [19] and [20] where 3D LIDAR was combined with a vision camera for detecting and

identifying objects.

One additional major factor that cannot be overlooked when moving in outdoor environments is

weather uncertainty which can act as a major bottleneck for a non-robust UAVs or operations which

do not consider these conditions. Both rain and wind state can strongly determine the solution strategy

for the UAV mission planning since they impact not only fuel consumption but also UAV control by caus-

ing it to drift in a certain direction. Work tailored to this constraints as been done in [21], where path

planning of a fleet of delivery UAVs is adaptable to weather forecast changes, wind aware path planning

of a quadcopter was developed in [22] and also [23] where it was tested in real UAV hardware at a wind

speed of 5m/s and achieved significantly better results when compared to a non-constrained approach.

Figure 1.6: Multi-UAV Optimal Path Planning scenario. Taken directly from [24]

Until now, autonomous navigation was only mentioned in the context of a single UAV but depending

on the need of the mission, we may want have autonomous navigation of a fleet of UAVs. This adds

even more complexity to an already extense topic with the rise of challenging problems such as fleet

formation control and now considering the problem of obstacle avoidance amongst the multiple fleet

”individuals”. There is already some work that tries to find solutions to this problem such as in [25]

where a distributed trajectory generation strategy is proposed to control a group of UAVs, in [26] where

a framework for multi-UAV path planning in GPS enabled areas showing that the developed method is

effective and computational time is small for a large number of UAVs.

In summation, to move from one point to another without external Human intervention, an UAV must

know its location as well as sense the environment around whether that would be static or dynamic

objects and be empowered with methods of generating collision-free feasible trajectories.

As we can see there are several variables at play in achieving the aforementioned objective of having

a fully autonomous UAV. It requires a global effort in the many fields of science and technology as well

as synergy between the many companies, institutions and governments.
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1.2 Objectives and Contributions

The complex nature of this problem is why the work that was carried out throughout this thesis was

targeted not considering the full scope of the problem but reduced to target some integral parts of it.

In this thesis a focus was placed on path planning and dynamic obstacle avoidance but it also touches

briefly on the need of an accurate estimation of the world around. What is aimed to be accomplished

here is the development of a framework that empowers an UAV with the capability of going from a start

to a destination while simultaneously avoiding static and dynamic obstacles during its course.

To that effect there was the intended goal was divided in 3 major sub-goals:

• Develop a path planning algorithm capable of generating feasible trajectories for a generic quadro-

tor;

• Develop a collision avoidance method that allows safe avoidance of dynamic obstacles;

• Evaluate the performance and Validate the algorithms use through appropriate literature simulation

environments;

The main contribution of this thesis is the special emphasis placed on developing a real-time path

planning framework capable of running in real-time on less powerful computers that can fit onboard of a

smaller UAV where payload weight is a severe bottleneck.

1.3 Thesis Outline

The thesis structure is organized as follows:

• Chapter 1 consists of the topic that was studied, the context and motivation behind the choice and

the objectives it aims to fulfill;

• Chapter 2 goes further into the theoretical requirements of the proposed work and presents an

overview of current state of the art implementations;

• Chapter 3 outlines the Path Planning problem and presents a clear overview of the developed

framework in the thesis. Several simulations related to the performance of the algorithms are

shown;

• Chapter 4 reveals the performance of the framework in physics simulations;

• Chapter 5 presents overall conclusions on the developed framework and possible future work to

be done;
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Chapter 2

Background

Previously the several underlying topics involved in autonomous navigation were presented in a general

way and the topics concerning the subject of this thesis were highlighted. This chapter contains a deeper

overview of the relevant topics as well as literature review on state of the art works related to the subject

of real-time path planning. Since the path planning is applied to a quadrotor, this chapter starts with

a general overview on quadrotor dynamics and its importance in the overall autonoumous navigation

problem. Next, the relevant topics of map building, path planning and dynamic obstacle avoidance will

be covered in the context of the proposed work, identifying the several existing methods, associated

drawbacks and advantages as well as providing literature review on state of the art work done using

these methods.

2.1 Quadrotor Dynamics and Control

Figure 2.1: Quadcopter DJI Mavic Mini. Taken directly from [27]

Definition 2.1.1 (Quadrotor). A type of UAV that consists of two pairs of counter-rotating rotors and

propellers, located at the vertex of a square frame. It is capable to perform vertical take-off and landings

(VTOL), similar to the typical helicopters. As shown in the figure above.

Understanding quadrotor dynamics plays a huge role in many steps of achieving autonomous nav-

igation. These dynamics include several characteristics like nonlinearities, underactuation, parametric
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and non parametric uncertainties, measurement noise, among others which make the task of trajectory

tracking more difficult.

Definition 2.1.2 (Underactuated Mechanical System - UMS). A system is said to be an UMS if has

more degrees of freedom (DOF) to be controlled than the number of independently controlled actuators

exerting force or torque onto the system.

This property is of particular importance since it means that an UMS cannot follow an arbitrary

trajectory.

The equations of motion and energy of a mechanical system are given by the Euler-Lagrange formu-

lation by the following equations:
d

dt
(
∂L

∂q̇
)− ∂L

∂q
= F (q)u (2.1)

L = T − V (2.2)

where T and V represent the kinetic and potential energy of the system, respectively, q ∈ Rn is the

configuration vector, u ∈ Rm is the actuator input vector and F (q) ∈ Rn×m is a non-square matrix of

external input on the system.

Which can be rewritten as:

D(q)q + C(q, q̇)q̇ +G(q) = F (q)u (2.3)

where D(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn represents both the centrifugal and coriolis terms,

and G(q) denotes the gravity. If the rank of the input matrix, rankF (q), is lower than the dimension of

the configuration vector, dim(q), the system is said to be underactuated.

Figure 2.2: Quadrotor model body frame (subscript B) and earth fixed frame (subscript W). Taken directly
from [28]

To describe the motion of a quadrotor we define two reference frames: earth inertial reference de-

noted by (W-frame) and body frame of reference denoted by (B-frame). The W-frame is an inertial

right-hand reference symbolized by three axis (xW , yW , zW ). The Body frame with axis (xB , yB , zB) is

attached to the body of the quadrotor and has its origin at the center of gravity of the quadrotor. r is

the position vector (x,y,z) and Θ the 3 Euler or roll, pitch and yaw angles (φ, θ, ψ) that correspond to the

orientation of the body frame with respect to the earth fixed frame. The only external force applied to

the quadrotor is the force of gravity, g, which is not represented but it is orientation is the reverse to the

orientation of the zW axis.

Using the previous notions, the rigid body equations as shown in [28] can be written as:
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Where (m) is the quadrotor mass, (J) is the quadrotor inertia matrix with respect to B-frame, ω is the

angular velocity with respect to the B-frame, (e3) = [0, 0, 1]
T is the third vector of the canonical basis

of R3, [Tz, Tφ, Tθ, Tψ] are the inputs of the quadrotor representing the collective force, roll torque, pitch

torque, yaw torque, respectively, (ωi) is the speed of the ith motor, (k) is the thrust factor, (d) is the drag

factor, (l) is the distance between the center of the quadrotor and the center of a propeller, (R) is the

rotation matrix needed to map the orientation of a vector from B-frame to W-frame.

Since the rank of the input matrix (rankF (q) = 4) is lower than the dimension of the configuration vector

(dim(q) = 6) the system is said to be underactuated and cannot follow an arbitrary trajectory.

However, in [28] the authors prove that a quadrotor is a differential flat system and the inputs of the

system can be written as functions of the derivatives of the position.

This property can be defined as:

Definition 2.1.3 (Diferentially Flat System). A system in which we can find a set of outputs (equal in

number to the number of inputs) such that we can express all states and inputs in terms of those outputs

and their derivatives.

In a formal way this means that in a non-linear system such as the quadrotor system:

q̇ = f(q, u) (2.4)

j = h(q) (2.5)

where q represents the configuration vector and u, the control input, is differentially flat if it is possible to

find outputs k:

k = ζ(q, u, u̇, ...., zl) (2.6)

such that,

q = q(k, k̇, ...., kl) (2.7)

u = u(k, k̇, ...., kl) (2.8)
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q are the tracking outputs and k the flat outputs.

The authors of [28] choose as flat outputs:

q = (x, y, z, ψ) (2.9)

and proved they could be written as q and it is derivatives. This result is of particular importance since

the method utilized in computing feasible trajectories in this work makes use of it as it will be detailed

ahead.

2.2 Map Building

In order to navigate between different parts of the environment, mobile robots need a map of the envi-

ronment, either being able to construct it during flight or using an already built map. Map building is the

branch of autonomous navigation concerned with providing methods to achieve this.

UAVs in particular require a 3D model of their surroundings since unlike other ground robots they are

able to move in the air. This computational representation of the environment is of particular importance

in dense and cluttered environments where this is an immediate need for a high degree of precision in

UAV maneuverability. There is also the problem concerning how to acquire and process the information

of the environment to build these high fidelity models. Both problems are deeply interlinked and there

has been extensive research made in the past.

Robots can acquire information for map building in two ways:

• idiothetic which correlates to internal kinesthetic information such as tracking the velocity evolution

throughout the path;

• allothetic that translate to external visual information acquired through robot’s sensors such as

camera, Lidar or depth sensors.

The most used representation methods are direct, topological and grid-based or metric.

In the direct representation measurements from the environment are directly used to build a repre-

sentation of it by aggregating them (similar to a cloud of points) without considering its characteristics.

This direct use of point cloud is used in [29] but presents some downsides such as the inability to model

free space and unknown areas, account for sensor noise (there is a need for high precision sensors),

model dynamic objects as well as complex and irregular shaped objects also cannot be dealt with. It

computationally costly since the increase in the number of measurements from the environment severely

acts as a bottleneck.

Topological representation uses a graph-like structure, where nodes usually correspond to places

and edges correspond to paths between the places. This representation can be used efficiently for path

planning and localization in large-scale environments.

Grid-based representation stores the geometric properties of the environment allowing for accurate

and more refined descriptions. They can be derived from grid-based approximations or geometric prim-
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itives. Occupancy grid model is an example in which maps are discretized in a grid composed of cells

that contain an occupancy probability value. This allows the environment to be fully classified, whether

occupied by an obstacle, free of obstacle, or not mapped. As examples we have 2.5D maps or Elevation

maps similar to a basic 2D occupancy grid but now each cell stores the measured height instead of the

occupancy probability. They are used to map non-flat surfaces. Multi-level surface maps [30] allows to

store multiple surfaces in each cell of the grid overcoming the disadvantages of elevation maps of not

being able to represent vertical structures or multiple levels. A natural evolution is a 3D representation

of the surrounding space that in which the space is partitioned into a 3D matrix of cubic voxels. How-

ever to efficiently store this multi-resolution maps there was a need for a specific data structure to be

developed. Octrees [31] provided the solution for this problem. In this hierarchical data structure, each

node stores the information of a cubic voxel in the occupancy grid. Each voxel is subdivided into eight

smaller voxels until a given minimum voxel size is reached and this minimum voxel size determines the

resolution of the octree. In this method if a certain measured volume within an environment is occupied

then the node corresponding to that volume is set to occupied. Free volumes can be represented as free

nodes and any uninitialized volume or subvolume is set as unknown. This allows for a reduction in the

number of subvolumes of the environment that actually need to be explicitly represented in the octree

since for example if all the children of a node are occupied they can be pruned. However, octree based

approaches pose additional problems such as map update, overconfidence and compression.

Figure 2.3: Example of an octree storing free (shaded white) and occupied (black) cells (a), the corre-
sponding tree representation (b), and the corresponding bitstream for compact storage in a file (c). The
complete octree structure can be stored using only six bytes, 2 bits per child of a node.

Octomaps [12] implement a 3D occupancy grid mapping approach based on octrees. It performs

a probabilistic occupancy estimation to keep the map updatable and capable of dealing with sensor

noise. A lossless compression method is applied to keep the maps compact in memory. Due to its

adaptive nature and reliability they have been widely featured in several literature works as the chosen

environment modelling tool such as in [32] and [33] with results corroborating the effectiveness of the

proposed method.
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2.3 Path Planning

In this section we present a more extensive overview on the path planning problem, highlighting the

advantages and drawbacks of the several existing methods, in particular of those employed on this

work.

Path planning can be defined as the collection of techniques through which it possible to generate a

collision-free path between a start and goal state. In a formal manner, it can be viewed as a search in a

configuration space, C, in which each q ∈ C represents the position and/or orientation of a robot in the

environment. Free space, Cfree , contains all possible configurations that avoid collisions with obstacles.

In [34] path planning is classified in terms of it overall reachability as global or local.

In Global Planning we use a priori information about the environment to find the best collision-free

path that contains the start and goal states.

In Local Planning we recalculate the initial plan to avoid possible collisions if there is new information

about the environment (whether that is a new static obstacle or a dynamic one). This type of planning is

also known as trajectory or manoeuvre generation.

Figure 2.4: Local path (green) generated to correct collision in tracking of global path (red). Taken
directly from [35].

These two techniques are commonly applied together as is an example the work in [36], where in the

first stage the objective is to find a collision free feasible path from start to goal that respects kinematic

constraints such as velocity and acceleration, while in the local planning step path smoothing is applied

to deal with dynamic constrains. This idea of cooperation between these two methods is of particular

importance to the work carried out here as it will be clear ahead.
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2.3.1 Global Planning

There are two main global path planning techniques which are Graph Search and Biologically inspired al-

gorithms. In Graph Search algorithms the search space is represented by a set of nodes on a weighted

graph. The robots configuration are the graph nodes with the edges between each node being the cost

of moving between the nodes (occupied space can be represented by nodes with higher cost).

One widely used example of this are Probabilistic Roadmaps (PRMs) in which the first stage is

randomly sampling nodes from the search space and tries to find the shortest sequence of collision-free

configurations between the start and goal states using Dijkstra algorithm (the process is illustrated in the

figure below). This algorithm divides the nodes in the weighted graph into two groups, the first contain

the nodes with the shortest path determined and the second contains nodes not explored which are

gradually added to the first according to the order of increasing length of the path until all are added

and the algorithm stops. During the sampling stage, the algorithm identifies in a heuristic approach

difficult regions in the free space and adds more configurations around those areas, increasing the

density in that region which helps particularly in cluttered environments. This method performs well in

high-dimensional state spaces but fall short planning when the environment is not known a priori. It a

probabilisticaly complete algorithm when considering that failure rate is zero if the number of sampled

nodes in the graph is infinite. There are several versions of this method such as the Lazy PRM [37]

where the validity of an edge is only checked if it part of a candidate solution.

Figure 2.5: After a few iterations a sequence of feasible nodes is found. Collision checking reveals it
unfeasible and it removed from the graph. Eventually a collision free path is found. Taken directly from
[38].

Another algorithm used is the A* algorithm [39] which is based on the Dijkstra’s algorithm but the cost

of moving between nodes is now given not only by the motion cost of reaching its position but also by an

heuristic cost which is a cost estimation of reaching the goal node from that node. The process chooses

the node with the minimum added cost reducing the number of processed cells in an environment as

long as the chosen heuristic is admissible. The major disadvantage of this method is that it might require

a lot of memory usage and large computation times for larger maps where thousands of states have to

be stored. Dynamic A* [40] allows for application in dynamic environments by allowing the edges cost

to be dynamically increased or decreased.
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Rapid Exploring Random Tree (RRT) [41] is one of the most used methods in literature which

works in a similar way to PRM. Unlike PRM where a collision-free graph is computed beforehand, here

a graph is initialized only with the initial state as a node and at each step a random sample from the

search space is attempted to be connected to the nearest node on the graph. If the connection is

successful, meaning that the path between nodes is collision free and the sampled node was part of

the free space then the node is added to the graph and the process repeats itself until the goal state

is added to the graph. There is a distance limit which is called a growth factor in the step of adding a

sampled node to the graph. Aside from this, the search in the space is biased towards the goal state, the

more biased the greedier the algorithm becomes. Just like PRM it probabilistically complete and does

not guarantee asymptotic optimality of the generated path. The notion of optimality is with respect to a

specified optimization objective which commonly is path length. Since its development, many extensions

of this algorithm have been proposed in order to improve upon it. One of the first approaches was the

RRT-Connect [42], which expands on the basic RRT by initializing two graphs, one beginning at the start

node and the other at the goal node and it grows both graphs until it possible to connect them. The main

advantage behind this method is a faster computation time when compared to the basic RRT. RRT* [43]

was developed in 2010 and while it shares most basic principles of operation with basic RRT but unlike

it, strives for asymptotic optimally (visible in the figure below) by applying two different concepts which

are called near neighbor search and rewiring tree operations. The first finds the best parent node for

the new node to be added to the graph, while the second feature locally optimizes every node in the

graph allowing the algorithm to converge asymptotically (provided the number of iterations is sufficient).

However, despite allowing for a minimum-cost path when compared to the basic RRT, there is a bigger

cost of execution time especially in large environments.

Figure 2.6: Comparison between the length of paths generated by RRT and RRT*. Taken directly from
[44].

To improve the convergence rate of this method, in [45] a new version was proposed called Informed

RRT* where an heuristic informed search strategy is implemented in RRT* in order to shrink the plan-

ning problem to subsets after finding an initial solution. This process is detailed in figure 2.7. Compared

to RRT*, it shows a significant better convergence rate. This sampling based method has been applied

successfully in a UAV path planning system for dynamic obstacle avoidance in a cluttered 3D environ-

ment [46], where the authors took advantage of the fast convergence of this method (relative to the basic
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RRT*) coupled with real-time feedback of the UAV and obstacles poses obtained from motion tracking

cameras and showed the ability to handle multiple obstacles in real-time.

Figure 2.7: Informed RRT* converging to within machine zero of the optimum in the absence of obsta-
cles, from left to right the number of iterations is increased showing the reduction in size of the sampling
domain. Taken directly from [47].

Another advancement has been made upon the RRT* to turn this method fully capable of being

directly applied to dynamic environments. The Real-Time RRT* (RT-RRT*) [48] was developed in 2015

with that in mind and allows this functionality by an online rewiring of the path which can be summarized

in the figure below.

Figure 2.8: Blue circles denote dynamic obstacles, green circle is the autonomous robot, red line rep-
resents the path to the goal point which is corresponds to the red circle. The black lines denote the
paths store in the tree. (a) a path to the goal point is found. (b) and (c) the goal point is changed during
movement. In both cases since the tree root moves with the agent and the tree covers most of the
environment, the paths to the changed goals are returned quickly. In (d) the agent has reached the goal
point and rewiring of the nodes based on the current location of the tree root has generated the minimum
length paths to others nodes of the tree. The crossed points denote the Rewiring Circle. Taken directly
from [48].

Despite the added benefits, it requires a high computational capacity since it is required that the tree

is stored fully at each instance in time and it only works in bounded environments and the rewiring is

only efficient in smaller environments.

Biologically inspired algorithms that mimic biological behaviour have been applied to path planning

problems. They can be divided in evolutionary algorithms and application of neural networks algo-

rithms. The first tries to mimic genetic systems by specifying an initial population of vehicle paths and

applying evolutionary processes (i.e mutation, propagation among others) to them. A cost function is

used to evaluate against vehicle goals and constraints. According to their performance, paths can be

kept or discarded from the population which leads to paths who are more compliant to the objectives.
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Ant Colony Optimization (ACO) [49] is one example of an evolutionary algorithm that based on the

behaviour of ants when trying to find a path between the colony and food sources. The basis behind

ACO algorithm is illustrated in the figure below.

Figure 2.9: Natural behaviour of an ant colony. In (a) ants follow a path from nest to the food source; (b)
An obstacle is placed on the path and ants choose with equal probability to turn left or right; (c) more
pheromones are placed on the short path; (d) most ants have chosen the shortest path. Taken directly
from [50].

These algorithms have been tested in uav path planning in [51] where the method was applied to a

minimum time search for a target involving a fleet of UAVs and in [52] where one of the main drawbacks

of the method related to premature sub-optimal convergence was targeted by expanding the algorithm

to deal with cooperation between multiple colonies trying to find an optimal solution. This approach

wields better convergence and reduces the probability of an UAV being trapped in the local minima

when compared to the single ACO method. However, the time to converge is still an uncertainty as well

as computation time has shown itself prohibitive making unsuitable for online applications.

A Neural Network (NN) can be summarized in the following figure:

Figure 2.10: Basic Neural Network structure. Taken directly from [53].

The most basic neural network contains three layers of interconnected nodes (input, hidden and

output layer) where each node is called a perceptron and receives an input similar to a multiple linear

regression and maps it into a certain value through an activation function. The idea behind this is to use

this network to find underlying relationships between data in a similar way to which our brain operates.

An example could be we have a set of images each containing a dog of a certain race and we want to

identify in each image which race is present, in this case we feed the image to the neural network that

has to be able to pick the certain race while ignoring all the remaining. This is a simple example but

this is the basic logic behind neural networks. Recently due to advancements in deep learning, neural
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networks have been applied to path planning problems such as in [54] where a method called Deep-

Sarsa was used to tackle the problem. The proposed algorithm (Deep-Sarsa) is based on a combination

between the Depth-First Search (a graph searching algorithm) and Sarsa (a delayed reinforcement

learning algorithm). This method gains information and rewards from the environment and helps UAV

to avoid dynamic obstacles as well as finds a path to a target based on a deep neural network. Tested

in a ROS-Gazebo environment and it showed impressive results when compared to other algorithms,

presenting itself as the first time autonomous navigation was achieved using this neural network based

method.

A state of the art Convolutional Neural Network (CNN) model was employed to solve the autonomous

navigation of an UAV, equiped with a monocular camera, in a previously unknown indoor environment

[55]. The neural network uses the video feed from the camera as an input in order to decide the ap-

propriate maneuver. The training of the neural network is done over a dataset of various images from

indoor corridor environments and the authors achieved efficient results in indoor corridor scenarios.

The topic of neural networks applied to autonomous navigation is still at the early stages of develop-

ment but it has shown great promise for the future.

2.3.2 Local Planning

It was mentioned earlier in this chapter that local planning could be seen effectively as a complement

to global planning since it deals with dynamic obstacle avoidance and also planning in changing envi-

ronments whether that is because the robot is learning about it as it moves or due to changes in the

environment itself. We also alluded to the possibility where local planning was employed to correct lo-

cally previously global paths to account for dynamic constraints. Due to the nature of the methodology

employed in this work, we will mostly refer to local path planning in the context of the first application

of this type of planning since a large majority of obstacle avoidance methods already take into account

other feasibility constraints.

Potential field (PF) based algorithms have been applied in local planning as part of reactive obstacle

avoidance. These algorithms are called Artificial Potential Field (APF) [56]. Potential fields model the

world by a force field with obstacles acting as repulsive poles and defined goals as attractive poles

therefore there is an attractive force that increases towards the goal and repulsive forces that increase

towards obstacles. In APF the robot is modeled as a charged particle moving through this world where

these potential fields can ”drive” the robot away from static and dynamic obstacles. These algorithms are

low in computational requirements and provide smooth paths while not offering guarantees of optimality

or completeness since one of the main drawbacks is that they tend to become trapped in local minima,

preventing the robot from reaching its goal.

Nonetheless they have been widely used for obstacle avoidance problems involving UAVs such as

in [58] and [59]. Many works have tried to improve upon the initial concept of APF. One example is

[60] where an improved APF algorithm was proposed for autonomous obstacle avoidance planning of a

quadrotor. The novelty introduced in this approach is that the algorithm can now calculate in real-time
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Figure 2.11: APF environment model. The arrows pointing towards the goal simulate an attractive force
while the arrows starting inside the obstacle simulate a repulsive force. Taken directly from [57]

the different potential field at each instance. The authors showed through simulation results that the

mitigated many of the shortcomings of the basic APF such as the local minima issue.

A Markov decision process (MDP) is a discrete-time dynamic stochastic control process where the

outcome of a system depends on the current state and an action. Formally it can be defined by a 4 tuple

(S,A, Pa, Ra):

• S is the state space;

• A is the action space (set of actions available from state s);

• Pa(s, s′) is the probability of transitioning from state s at time t to state s′ at time t+1 having taken

action a;

• Ra(s, s′) is the expected immediate reward due to transitioning from state s at time t to state s′ at

time t+1 having taken action a;

In a MDP, the objective is to select the policy π (a function that specifies the action π(s) that the

decision maker will choose when in state s), also known as optimal policy, that maximizes a function of

the cumulative rewards over a potentially infinite horizon.

In a formal way, this can be written as:

E[

+∞∑
t=0

γtRat(st, st+1)] (2.10)

γ is the discount factor and its value is defined between 0 and 1. The lower the value the more it benefits

the taking of earlier actions. A MDP might gave multiple optimal policies.

This method can be applied to dynamic obstacle avoidance problem since it can be formulated as a

MDP by including in the state s the positions and velocities of dynamic obstacles (and obviously the

UAV itself) in order to find the optimal policy which could be in this particular problem aerial maneuvers

to avoid the obstacles or a feasible collision-free trajectory. It depends entirely on how the problem would

be formulated in a MDP environment. MDPs are solved computationally through dynamic programming

algorithms which makes the real-time application of these techniques an issue when dealing with large
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state spaces. MDP has been employed in the dynamic obstacle avoidance problem in [61] where it was

used for optimal decision making when faced with a possible dynamic intruder during periods of com-

munication latency between a remote operator and the UAV. The dynamic avoidance problem was also

modeled as a MDP in [62] in which this method coupled with a deep reinforcement learning technique

allowed for optimal decision strategies.

Figure 2.12: Diagram of a MDP. Taken directly from [63]

Maneuvre Automata (MA) are a collection of maneuver generation techniques that work by creating

a continuous trajectory over predefined waypoints. They are generated offline and can be either trim

primitives, if the maneuver is of constant velocity and turn rates comply with dynamic constraints, or

motion primitives when the maneuver is feasible within UAV kinodynamic constraints. the main benefit

behind this primitives is that they can be combined through a trim primitive of finite length [] whose own

length can be null. This means that its possible to generate a smooth trajectory around an incoming

object by concatenating this primitives through a collision-free set of waypoints. While not prevalent

in current literature, maneuver based approaches to obstacle avoidance were explored in [64], where

primitive maneuvers were integrated with flight controllers to produce dynamically feasible trajectories in

low dimensional search space with the intent of being applicable to cluttered environments.

Figure 2.13: Types of Dubins Curves. Taken directly from [65]

Similarly to MA, Dubins Curves (DC) are another method to generate smooth trajectories. Unlike

MA, this technique generates optimal geometric paths between two points (where at each we assume

tangents) under a curvature constraint. The constructed paths resut of a combination of curves of max-

imum curvature and/or straight lines tangential to the curves. This also works under the assumption

that the robot can transition between these curves and straight lines effectively using external guidance

or some sort of control method. However, Dubins Curves do not account for obstacles and might pro-

duce paths with abrupt curvature discontinuities and direction turns. Nonetheless they can be used in

conjunction with other methodologies to solve the collision avoidance problem. Furthermore, they are

computationally inexpensive and relaxing the steering constraint might mitigate the problem associated
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with discontinuities. In [66], RRT was combined with 3D Dubins Curve for path planning, where at each

step the branch of the tree is generated along Dubins Curve. Collision is checked in real-time and the

tree is updated accordingly until the goal is reached. The authors say the algorithm was able to be

employed in real time to generate reliable paths.

Figure 2.14: The velocity obstacle VOA|B for robot A relative to dynamic obstacle B. The cone of veloc-
ities that would lead to a collision in the static case is translated by VB . Since the velocity vA is inside
the velocity obstacle it leads to a collision. Taken directly from [67]

Velocity Obstacle (VO) based methods are a common approach to dynamic obstacle avoidance

and are based on the concept of the possible velocities of a robot that would put it in collision with an

obstacle (static or dynamic) at a future point in time. Although, initially developed for legged robots, they

have been applied to UAVs due to being a ”light” method in terms of computation which means it is able

to be employed for real-time avoidance. In [67], VO is defined geometrically for two moving disk-shaped

robots A and B (of radius ra and rb, respectively) as V OA|B , the velocity of A induced by B for which A

would be in collision with B at some point in the future. The Minkowsky sum β can be defined as the

disk centered at B with radius equal to the sum of ra and rb. A collision cone C can be defined if B is

static as the set of rays shot from A that intersect the boundary of β, that represents the velocities for A

that lead to a collision with B. To obtain the actual VO we translate C by the velocity of B, Vb.

Formally this can be written as:

V OA|B = {v|∃t > 0 :: pa + t(V − Vb) ∈ β} (2.11)

pa denotes the center of disk A.

From this it would result in a set of possible velocities that would put the robot out of collision. However,

not all of the possible velocities may be dynamically feasible so they must be checked with the admissible

velocities of the robot that respect the kinematic and dynamic constraints. Since it is a very straightfor-

ward approach, it has been employed to deal with dynamic obstacle avoidance in several works such as

in [68] where the conflict situation with obstacles is represented by avoidance planes to aid the maneu-

ver decision, in [69] the standard procedure of Sense, Detect and Avoid (SDA) is replaced by Sense and

Avoid with VO by substituting the detection part with a probability of collision map based on obstacle’s

position and velocity (proving itself effective in emulating SDA methodology) and [70], VO is applied
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to UAVs with limited sensing capability (VO requires knowledge of obstacles shape, size, position and

velocity) by deriving the necessary obstacle parameters from sensor readings.

The obstacle avoidance problem can be formulated as an optimization problem. In a formal way

an optimization problem can be defined as:

minimize
x∈Rn

f(x)

subject to
m≥0,p≥0

gi(x) ≤ 0, i = 1, . . . ,m and hj(x) = 0, j = 1, . . . , p
(2.12)

where f is the objective function to be minimized, gi(x) inequality constraints and hj(x) equality con-

straints. For m = p = 0 it is called an unconstrained optimization problem. The solution to this problem

is the n-variable vector xsolution, part of the domain of the n-variable design vector x, that minimizes

the f and respects all imposed constraints. This solution can be global if its it leads to the absolute

minimum value of f for all domain of x or local if this minimum value is relative only to a certain neigh-

borhood of the solution xsolution. This characteristic that depends upon the convexity of the constraints,

more specifically it is entirely dependent on how the constraints are formulated. In case of convex op-

timization, there is only one optimal solution which is global or there is no feasible solution. Otherwise,

in non-convex optimization, we might have several local optimal solutions and determining if there is a

single global solution (or no solution) among the multiple solutions is computationally expensive.

In a general form, the UAV obstacle avoidance problem can be formulated as a constraint in an

optimization problem such as the idea of ensuring at all times a minimum distance from an obstacle

(static or dynamic). This constraint could be posed as pUAV − pobstacle ≥ d where each term represents

the position of the UAV, the position of an obstacle and the minimum defined distance (this constraint

would have to be scaled for all possible obstacles and for all time instants). A commonly used method

associated with the previous formulation is the use of signed distance which is defined as the distance

between a given point in space and the boundary of an obstacle (only applicable for convex obstacles).

Its value is negative if the point is inside the obstacle, null if it lays on the surface or positive it is outside.

Generally, the avoidance problem is only a part of the construction of an optimization problem since

UAV model dynamics and kinematics (maximum velocity, acceleration, attitude rate among others) are

also constraints to have into account when generating trajectories. Therefore, this is a type of planning

that can be applied as an overall solution to the path planning problem. We can still make a distinc-

tion between global planning and local planning within the method but the generated path is a solution

simultaneously to both levels of planning. With this being said whenever we talk about a different ap-

plication of this method we will be more focused on the formulation of the obstacle avoidance, without

disregarding the full scope of the method.

Model predictive control (MPC) is an example of an optimization-based algorithm. It consists of a

nonlinear control technique that uses a dynamic model of a plant and past control history to optimize

future states (which correspond to all the variables like position, velocity, acceleration and attitude that

are used to describe the robot system) over a defined time period and subject to a cost function, therefore

the trajectory optimization problem is solved through feedback control. Although initially developed for
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chemical processes with slow dynamics, in robotic systems, this method allows for the use of system

dynamics and kinematics to generate feasible trajectories. For an UAV, the dynamic model corresponds

to the UAV and the response to external and internal forces, while the cost function is generally a

combination of constraints like distance, velocity or acceleration to be minimized. A recent use of this

method have been made in [71], where the dynamics of multiple obstacles are anticipated through the

use of active set algorithms that only consider obstacles that affect the UAV, reducing the computational

burden of the algorithm. The authors also employed orientable ellipsoids to model the obstacles in

order to improve the smoothness of avoidance maneuvers. Results in two real-time implementations

showed the algorithms capability to avoid dynamic obstacles. In a similar way in [72], the authors

also employ a method to predict future trajectories of obstacles and these are fed into the MPC as an

additional constraint. The developed framework showed efficient results in tests, delivering fast and

computationally stable solutions in dynamic environments.

Figure 2.15: Model Predictive Control illustration. Taken directly from [63]

The main challenge of optimization based planning deals with the formulation of the collision avoid-

ance constraints. Moreover, these constraints are known to be non-convex and therefore a heavy burden

in computational efficiency. One approach uses a formulation based on integer values. It is called Mixed

Integer Linear Programming (MILP) in which all formulated constraints and objective function are lin-

ear and some design variables are restricted to discrete/integer values. This reasoning falls behind the

idea of taking the path planning problem as a linear optimal control problem.

In [73], the path planning problem is modelled as a MILP and the collision avoidance is incorporated

as a constraint, specifically a minimum distance constraint and also to ensure additional safety it was

also defined a safety margin around the obstacles. It has to be said however an approximation through

linear constraints is flawed since it is difficult to establish the approximation error.

Due to this drawback, there have been attempts to develop techniques to allow for improving effiency

in solving non-linear non-convex optimization problems of UAVs while adequately representing the con-

text which UAV dynamics pose.

In [74], path planning is modeled as a non-linear non-convex optimization problem. Non-convex con-

straints are then approximated by convex parts in a series of sequential convex programming problems

in order to have quicker convergence and stability. This proposed algorithm achieves global conver-

gence to a Karush-Kuhn-Tucker (KKT) point of the original non-convex problem. A different approach

is taken in [75] by implementing a lossless convexification method into the non-convex programming
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problem. By doing so, the authors are able to improve efficiency in finding an optimal solution to the

problem without having the implicit need of solving the non-convex programming problem directly. A

recent method developed in [76] turned non-differentiable collision avoidance constraints into smooth

nonlinear constraints. This formulation is applicable to general obstacles (static or dynamic) that can

be represented as the union of convex sets. By doing so the authors avoid introducing approximations.

The authors show trough numerical experiments that the developed formulation allowed for real-time

optimization-based planning.

2.4 Remarks

In this section, we presented an overarching analysis on the subjects deeply connected to autonomous

navigation. As stated previously, it is a challenging task that requires nonetheless a path planning

strategy and a collision avoidance method. A distinction was between global and local planning with the

latter being more closely associated to the collision avoidance necessity. Several techniques within each

path planning component were illustrated as well as the benefits and drawbacks associated. Due to the

scope of this thesis, the research on each topic was kept concise. With this being said, the focus was

put on RRT derived algorithms and optimization-based methods to solve the real-time implementation of

autonomous capabilities on a quadrotor. The next chapter contains an overview of the proposed solution

to the initially outlined problem.
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Chapter 3

Implementation

This chapter starts with an overall description of the proposed framework to solve the path planning

problem and it is followed by the actual implementation of each of the framework’s components as

well as the interactions between them that allow the framework to function as a whole system. There

will be a clear reasoning behind each choice made. As stated in the thesis objectives, the developed

framework must be capable of running onboard an UAV (particularly a generic quadrotor) and empower

this system to navigate autonomously in a dynamic environment where collisions with both static and

dynamic obstacles must be avoided. The generated path must be feasible in the context of quadrotor

dynamics (it is a necessity to have a good tracking of the trajectory using low-level controllers) and strive

when possible for global optimality (evaluated in terms of distance). For that the agent (quadrotor) needs

to find the optimal sequence of actions to take in order to travel from a source to a given destination.

The framework and accompanied simulations were built from open source material and software

available (code implemented in C++ and tested on the Linux environment).
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3.1 Proposed Solution

Figure 3.1: Simplified architecture of proposed implementation

This sequence of adequate actions comprises the developed framework. It consists of a two-phased

planning approach in accordance to the division presented in the previous chapter. To that effect we

have:

• Offline/Pre-Flight Path Planning In the first phase, from the start position and with full knowledge

of the current state of the environment, a global path planning strategy is employed to generate

a feasible collision-free trajectory to lead the UAV to the chosen destination. This trajectory is

generated under an optimality guarantee of distance.

• Online/Real-time Path Replanning From the instance in which the UAV starts tracking the desired

trajectory, the dynamic environment is checked periodically for possible collisions with moving

obstacles. In case of a collision, replanning protocols are activated in order to generate a new

collision-free trajectory towards the destination. At this point the optimality guarantee is sacrificed

to ensure collision avoidance.

The offline path planning is not time constrained since it is executed before the mission starts and

the UAV takes off. This effectively means that the first generated trajectory should try to come as close

as possible to an optimal solution. To that effect a combination of a sampling based method with an

optimization technique based on the work done in [77] that seeks to minimize the fourth derivative of

position (snap) is employed. The used sampler is the Informed RRT* and generates an optimal collision-

free path in terms of length from start to goal. This path is then converted into a trajectory by feeding

the path waypoints to an algorithm based on the above mentioned technique. The generated polynomial

trajectories are smooth and show continuous motion between the different UAV poses. The algorithm

uses an unconstrained quadratic program to solve the optimization problem and allows for efficient real-

time solutions.
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So far, path and trajectory have been used interchangeably but an important distinction has to be

made. Path planning is related to the techniques that allow the generation of a geometric path from

start to goal states while Trajectory planning are the collection of algorithms that allow the conversion

of this geometric path by providing the additional information on how to transverse it with respect to

time. This is generally done by associating a velocity and/or acceleration to each of the waypoints in

the path. The first part is where the sampling based methods work while the optimization deals with

the actual trajectory generation, which contains the information (position, velocity, acceleration, time,

among others) that the UAV effectively requires to navigate the environment. We will provide a more

formal description of these elements in this chapter.

Regarding the online path replanning, as mentioned due to the need of a quick response to dynamic

changes in the environment, the optimality guarantee is sacrificed. The previous trajectory is discarded

since with the avoidance maneuvers render the initial trajectory’s optimality invalid. This is a routine

whose job is check at all times for current trajectory feasibility and implement the necessary adjustments

to maintain the UAV safety in flight. This component of the framework is only applicable locally within a

certain distance of the UAV as to simulate the range of the equipped sensors. As to respect the mission

defined requirements and to harness the benefits of the previously mentioned optimization method, this

method is based on a reactive approach that replaces the previous optimal sampler with a much faster

sampling approach based on the RRT Connect and keeps the optimization method while employing the

changes necessary to achieve real-time avoidance. It must be added that at each instance in time the

moving obstacle is viewed effectively by the framework as a static obstacle, which requires the active

replanning to be as time efficient as possible to account for the need of multiple instances of trajectory

generation.

To better illustrate the proposed framework a simple example was drawn up representing an au-

tonomous mission of an UAV from a start to a goal destination. Two major situations are brought up

when dealing with moving obstacles.

Figure 3.2: The UAV at the start position, a static obstacle and a cross circled mark representing the
goal destination.

In figure 3.2, the UAV (bounded by a green cube) is at its start position and the goal destination is

represented by the cross circled mark.

From that position, a collision-free trajectory is generated for the first time and the UAV starts flying

across the intended path (figure 3.3). This is where the offline planning takes place, providing an initial

trajectory for the UAV to follow.

At this point, the UAV detects an intruder in its surroundings (it is in line of sight of its equipped

sensors). For simplicity, the intruder is also an UAV (bounded by a purple cube). The intruder is not

perceived as an immediate threat by the UAV and so continues its course. Two distinct situations may
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(a) Trajectory Generation (b) Trajectory tracking

Figure 3.3: In (a), a first global trajectory is generated which is then followed by the UAV as shown in (b).

Figure 3.4: Detection of an Intruder represented by an UAV bounded by a purple cube

arise:

• the intruder stays out of collision course with the UAV and remains an inactive threat;

• the intruder enters in collision course with the UAV and becomes an active threat;

In the first case, the UAV continues to monitor the location of the intruder as long as its in line of

sight. If at any point the intruder enters in collision course with the UAV, we are presented with the

second case. Collision Avoidance protocols are activated and a new trajectory is generated from a point

prior to the predicted collision in the original trajectory. This encompasses the online replanning which

provides alternatives trajectories during flight to ensure UAV safety.

(a) The intruder keeps out of the UAV’s
planned trajectory

(b) The intruder enters collision in collision
course with the UAV’s planned trajectory

Figure 3.5: Possible situations when dealing with moving obstacles

When the avoidance protocols are activated, ideally a new collision-free trajectory is generated within

a time frame that allows for safe avoidance.

It is possible, however, that this reaction to dynamic changes in the environment may not be feasible

to avoid critical situations. An example is the turning around corners of static obstacles and suddenly

encountering a moving obstacle immediately in its way. To prevent these situations, the concept of maxi-

mizing clearance around obstacles is explored. Another limitating factor regarding collision avoidance is
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(a) A new collision-free trajectory is gener-
ated around the intruder

(b) The UAV continues on its way onto the
goal destination

Figure 3.6: Collision Avoidance maneuver

the computation time of the solution in the optimization problem. While the decision on the optimization

technique was based on the efficient results it wields, it is possible that this computation time might

exceed time thresholds that make impossible to generate a trajectory in the necessary window of time

to avoid an incoming obstacle. This problem is mitigated by applying a computation time threshold.

In a case of an imminent collision, a strategy is explored in situations where there is enough space

clearance to safely apply repulsion forces to the UAV in order to replace the current avoidance protocol.

Figure 3.7: Illustration of an imminent fatal collision

From this overall description of the envisioned implementation, the several components of the frame-

work will be thoroughly detailed sequentially. Before entering the inner workings of the implementation,

a formal description of the problem will be presented to allow for an easier understanding of how the

components fit together in the overall system.

3.2 Problem Formulation

Lets recover what was written about configuration space in the previous chapter and expand upon it.

The location of a robot with n-links constitutes its configuration q which is part of the set of all possible

configurations C or q ∈ C. In the case of a quadrotor and particularly in the context of the developed

framework, its a rigid object moving on a three dimensional space which follows the rules of Euclidean

geometry. Therefore, q is a tuple of three cartesian coordinates (x, y, z), representing the position of the

center of mass of the quadrotor. The configuration space C can be formally written as:

C = {x, y, z} = R3 (3.1)
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Lets now define the workspace W as the subset of R3 where the quadrotor navigates. In this particular

instance, the configuration space is identical to the workspace and consists as previously mentioned

of a three dimensional cartesian space. Obstacles might be present in the workspace or oi ∈ W . As

opposed, Wfree consists of the free space and illustrates the navigable regions of the discrete space

and can be written as:

Wfree = {W \ oi,∀i} (3.2)

The subset of W occupied by the quadrotor is defined by A = A(q). The subset of C occupied by

obstacles is written as:

Coccupied = {q ∈ C : A(q) ∩ oi 6= ∅,∀i} (3.3)

With the previous information, we can define the collision-free configurations of the quadrotor as:

Cfree := {C \ Coccupied} (3.4)

The path planning problem can be defined within the configuration space as finding the collision-

free path connecting the initial configuration (qstart) and goal configuration (qgoal). This can be written

formally as a continuous function f where :

f : [0, 1]→ Cfree (3.5)

subject to f(0) = qstart, f(1) = qgoal.

In the context of this thesis, this definition is related to the sampling based methods employed, both

the Informed RRT* and the RRT Connect. In the context each methodology used we should make a

distinction between optimal and non-optimal path planning. Optimal Path Planning can be defined by

modifying the previous definition to include a cost function c :
∑
→ R≥0 to minimize (in this case the

cost is the length of the path). Formally we have:

σ : [0, 1]→ Cfree , c(σ∗) = min{c(σ) : σ is feasible} (3.6)

On the other hand, the trajectory planning problem can be defined within the configuration space as

finding the collision-free path connecting the initial configuration (qstart) and goal configuration (qgoal)

with explicit parametrization of time. This can be written formally as a continuous function g where :

g : [0, 1]→ Cfree (3.7)

[Tstart, Tgoal] 3 t→ τ ∈ [0, 1] : q(t) = γ(τ) ∈ Cfree (3.8)

The time parametrization (t) implies that one or more considerations need to be made such as:

• Velocity of a motion, d
dtq(t);

• Acceleration of a motion, d2

dt2 q(t);
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• Jerk of a motion, d3

dt3 q(t);

• Snap of a motion, d4

dt4 q(t);

There are higher derivatives that determine the motion of a robot but due to the scope of the methodology

followed here, we will focus only on the derivates up to and including snap. In a similar way to the path

planning problem, this is where the optimization method inserts itself into by picking up the previous

collision-free path and imbuing it with the necessary kinematic characteristics mentioned above to turn

it into a flyable trajectory. There are constraints inherent to the kinematics that must be respected and to

that effect the chosen methodology had that into account. The formal definition of the problems to tackle

allows us to move on to the first integral part of the framework which deals with the representation in a

computational manner of the physical environments.

3.3 Map Representation

As stated before map representation is a necessary component to be defined in the problem of au-

tonomous navigation. We want to translate the physical world (ground, static and moving obstacles) into

our configuration space so that the algorithms responsible for safely guiding the UAV between locations

all operate under the same data structures. In the second chapter, we presented several representa-

tions of configuration spaces and the octomap representation was outlined as a reliable method which

paired with the fact that it was available as an open-source project made the choice fall behind this

representation.

3.3.1 Octomap

Figure 3.8: Multiple resolutions of the same map from a higher resolution on the left to a progressively
lesser one on the right. Taken directly from [12]

An Octomap is an occupancy grid mapping approach to build 3D environments by dividing the space

in cubic volumes of equal size called voxels. Octrees are used as the representation of space and

allow each voxel to be recursively subdivided into eight voxels of smaller size therefore increasing the

resolution of the grid by a factor of two with each subdivision. The compactness offered by octrees is

leveraged by this approach by applying probabilistic modelling. Given a sensor measurement z1:t, the

probability of a leaf node n (corresponding to the smallest defined voxel subdivision) being occupied is
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estimated as:

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]−1
(3.9)

where P (n|zt) is specific to the sensor used.

The previous equation can be simplified assuming a uniform prior P (n) = 0.5 and by using the logOdds

(L) notation (which allow for faster updates by reducing computation time),

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (3.10)

To keep the updatability of this framework a clamping update policy (citar) is enforced:

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt), lmax), lmin) (3.11)

with lmax and lmin representing the upper and lower bounds. The chosen values determine a tradeoff

between compactness and map confidence. Choosing lower values of both parameters leads to a

stronger compression while the opposite makes for finer grained map.

Besides updating leaf nodes, there is also the need to update the inner nodes. Two strategies can

be used to determine the occupancy probability of these nodes based on the occupancy probability of

each of its eight child nodes ni, either by using the mean occupancy:

l̄(n) =
1

8

8∑
i=1

L(ni) (3.12)

or use a more conservative approach in the maximum occupancy:

l̂(n) = max
i
L(ni) (3.13)

By taking the maximum value that a child node exhibits it leads to a higher probability of taking an ob-

served part of the environment as occupied thus being more suitable for robot navigation safety and

computation efficiency. Tree compression is done when a node becomes stable (if its value L(ni) sur-

passes either threshold lmax or lmin) and can be assumed as free or occupied. If all the child nodes of a

given parent node exhibit this stable state then they can be pruned leading to a reduction in the overall

computational burden of this method. However, new measurements can lead to the reversion of pruned

child nodes by regenerating them. One additional implementation to reduce the size of the octree in

memory is the use of only one pointer per node (pointing to an array of eight pointers) instead of eight

individual pointers per node, meaning that the array only is allocated when children of this node need to

be initialized. Maps generated using this method can be store for posterior use.

The advantages of this method can be summarized by the following properties:

• Full 3D modelling - The map is able to model arbitrary environments (free, occupied and unknown

areas) without prior assumptions about it.

• Adaptability - It is possible to update the map with new information or sensor readings due to the
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use of a probabilistic occupancy estimation which accounts for sensor noise and/or changes in the

environment.

• Flexibility - The octree implementation allows for multi-resolution which means it can serve au-

tonomous navigation missions where high precision is a lesser requirement and to that effect

coarse maps would be used or the opposite for example navigating in cluttered environments

which requires fine resolution maps.

• Compactness - The map is stored efficiently, both in memory and on disk and can be compressed

for later usage.

The Octomap approach presents a reliable solution to the need of a map representation. This com-

bined with the fact that there is an open source C++ library where this method is fully realized as well

as seamlessly integration with the sampling methods employed and the prevalence of this method in

literature were the deciding factors that made this the map representation used throughout the design of

the framework.

3.3.2 Integration

In the scope of this thesis, the application of autonomous navigation is limited to partially known en-

vironments where the static obstacles’ location are known a priori and dynamic obstacles detection

is simulated within the range of hypothetical sensors equipped by the quadrotor. There were several

methods available that allowed to build octomaps from pre-built 3D models such as a tool offered by

a multirotor physics simulator [78]. The idea behind the feature took care of the entire generation of

the octomap by creating a savable octomap file. We would need only to provide the 3D map to convert.

However, due to conflicts that surged from incompatibilities detected between the Operating System and

the provided software rendered this tool useless. Another way to generate an octomap was based on

the implementation of a software simulation in which an UAV equipped with a RGB depth camera would

move around in the environment and progressively construct the octomap through pre-built tools. This

method was partially successful since there were a significant amount of crashes and bugs experienced

when running the simulation that resulted in either the constructed octomap having incoherent levels of

resolution or even total corruption of the generated file. Due to the drawbacks faced and since both of

the previous methods both pull sensorial information from simulations and make use of the octomap pro-

vided library to construct the representations, a decision was made to go straight into the manipulation

of these functions and data structures to construct the octomaps. It is necessary to add that this does

not compromise the integrity of the chosen representation. There are two different situations in which

octomap modelling is employed in the developed framework:

• Static Map contains the a priori knowledge of the environment before the quadrotor takes flight.

Only the static obstacles are modelled;

• Dynamic Map is the designation of the Static Map when the quadrotor is moving. When an

33



intruder is within a defined range of the quadrotor, the octomap is updated periodically according

to the position of the intruder.

The distinction made between the maps is made solely on a theoretical interpretation since we have

effectively only one global map in memory which is updated as mentioned when required.

The obstacles in the environment are described by their boundaries, i.e. they are represented by

defining the following boundaries:

subject to
x1,x2∈R y1,y2∈R z1,z2∈R

x1 ≤ x ≤ x2 y1 ≤ y ≤ y2 z1 ≤ z ≤ z2 (3.14)

The following pseudo code represents the routine that allows the generation of the static map from a file

containing the description of the environment.

Algorithm 1: Pseudo algorithm for building an octomap from a file containing a set of static
obstacles
1 function build-octomap (environment.txt);

Input : A text file containing the description of boundaries of obstacles of an environment
Output: Octree object

2 N ← number of obstacles;
3 bi ← boundaries of an obstacle;
4 octree← octree object;
5 on ← octree node;
6 octree← initializeTree();
7 N ← getNumberofObstacles(environmentF ile);
8 for i = 1...N do
9 bi ← getObstacle(environmentF ile);

10 while bi 6= null do
11 on ← getMeasure(bi);
12 octree← insertNode(on);
13 end
14 end

This is a simple algorithm that as explained takes the boundaries of each obstacle in a description

file, converts them to the appropriate measurements creating for each one the corresponding node and

inserts them in the octree. Once the octree is completed, the map is saved under the corresponding

octomap type and is ready to be used by the trajectory planning algorithms.

Apart from this, we have the dynamic map which must be updated whenever the intruder is at reach

from the sensors in the quadrotor. This update can be translated by the following pseudo code which

shares the same functioning as the previous one.

In this algorithm, the static map is already created and is updated when an intruder is detected. Sev-

eral assumptions are made relative to the detection and tracking of the dynamic obstacle. It is assumed

that the quadrotor is equipped with the necessary sensors to accomplish the detection and is able to

continuously track it as long as it stays within range of the sensors. Moreover, to simplify the detection

process the intruder is chosen as another similar quadrotor. Due to the inherent complexity of detection

and tracking systems, the intruder can not be represented in a dynamic map with all its structural detail

nor it would be beneficial for the planning process since as its going to be explained further on several
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Algorithm 2: Pseudo algorithm for updating an octomap when an intruder is detected
1 function update-octomap (octree);

Input : The octree data structure that contains the current state of the environment
Output: Octree object

2 octree← octree object;
3 on ← octree node;
4 intruderObject.position← intruder position;
5 intruderObject.dimensions← intruder dimensions;
6 bbox← bounded box dimensions;
7 bbox← getDimensions(intruderObject.dimensions);
8 while bbox 6= null do
9 on ← getupdate(bbox+ intruderObject.position);

10 octree← insertNode(on);
11 end

safety margins will be employed to account for possible deviations in real world situations. To that effect,

the intruder is represented using a bounded box around its center of mass. With this in mind the update

process is done in a similar way to the construction of the static map, according to the size of the intruder

a box is created around it with a certain dimension and given the boundaries of that box, we again create

the necessary measurements and nodes, inserting them in the octree. At each time step, the previous

created nodes are removed if the intruder moves to a different position and the process repeats itself

until the quadrotor reaches its goal or the intruder falls out of sight relative to its sensors. This was only

tested successfully for one intruder at a time and if we increase the number of active intruders, besides

overloading the detection and tracking capabilities, updating the octomap with a large number of active

intruders might become unfeasible. There is one additional factor that must be covered when dealing

with octomaps and it pertains to the resolution of said representation. It was mentioned before that one

of the main benefits of using octomaps was in being able to choose the resolution of the map depending

on the nature of the requirements. While on the one hand we want a map as detailed as possible for a

higher degree of certainty in our autonomous navigation, it is also true that increasing the resolution past

a certain point results in a higher computational time for our planning algorithms since the higher the

resolution, more nodes are available and therefore the more instances of collision checking are needed.

It is also worth noting that past a certain resolution we do not have more relevant information for the

planning algorithms. With this being said, the chosen resolution of the octomap was of 10 cm. This

means that the smallest voxel of the octomap is of that size.

Figure 3.9: Voxel resolution
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This decision tries to achieve the best tradeoff between resolution and the computation burden on

the execution of algorithms. It was mentioned before that collision checking is a major bottleneck related

to planning algorithms so a simple simulation in order to study the overall impact of changing resolution.

The pseudo code of the collision checking simulation won’t be detailed since it is going to be featured

ahead when detailing the planning algorithms. For now let’s just present the simulation as a common

obstacle (e.g a box) and a point outside the box and the collision checking method employed is the one

to be featured throughout the algorithm. In the simulation, the point is checked for collision against all of

the nodes in the octree representing the octomap. While this may appear at first glance an unorthodox

approach, it is a good tool to provide an appreciation on the impact of the octomap representation on

the overall framework.

The following graph illustrates the decrease in performance when resolution increases.

Figure 3.10: Collision Checking Simulation Results (averaged over 50 simulations).

The horizontal axis represents resolution of the octomap in cm, while in the vertical axis starting from

the highest resolution tested (0.01 cm), a relative measure of computational effort (time) which is equal

to 1 as expected for this resolution. With the decrease in resolution to 0.1 cm we have approximately

a 25% drop in computational effort. This trend follows as expected with the decrease in resolution. At

10 cm and even 5 cm we have a good compromise between resolution and a substantial reduction in

computational effort compared to the highest resolution. The choice fell on the first since apart from the

slight decrease in computational effort when compared to the later, the scale difference does not carry

significant benefits in transversing the environments. There is one additional reason for this resolution

that while it does not reflect directly on the scope of this work, it affects robotic systems in which the

entire environment is mapped as the robot is moving, having no a priori knowledge. In these situations,

decreasing resolution is of extreme importance to allow a real time navigation.
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3.4 Offline Pre-Flight Path Planning

The decision on the map representation allows us to move on to the first component of the framework

which deals with the generation of a feasible trajectory that is able to guide the quadrotor from start to

goal. This is as mentioned a non time constrained generation that is carried out before the quadrotor

begins the flight. The following scheme illustrates the individual sub-components that make up this part

of the framework and how they are interconnected. Again, each individual part here represented will

be detailed thoroughly as the work unfolds. To avoid unnecessary repetition, let’s assume the map

representation is available from the previous sub-chapter.

Figure 3.11: Offline Pre-Flight Path Planning proposed solution. This represents a rough overall de-
scription with each component being described in detail throughout this chapter

The flowchart represents a solution for the problem formulation described at the beginning of this

chapter. A top down approach is now taken, starting by mentioning the Set Start and Goal as the sim-

ple routine that takes a desired start configuration qstart = (xstart, ystart, zstart) and goal configuration

qgoal = (xgoal, ygoal, zgoal), defining them as mission parameters. There is as expected a validity checker

whose main objective is to determine if both the path and trajectory configurations respect environment

constraints, that is if they are not placed inside static obstacles and if they respect the mission parame-

ters. This is done simply by employing a collision query for each one as well as checking the initial and
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final states. A particular method for collision checking is used and it will be described next when inserted

in the context of valid path sampling.

For now let’s focus on the next component of the proposed solution which deals with Path Genera-

tion.

3.4.1 Path Generation

This step is comprised of the methods that allow the generation of a collision-free path which is done

in this work by a sampling based method based on RRT called Informed RRT*. Before describing the

implementation behind this method, there is an important concept that needs to be explained related to

how collision checking with obstacles is done.

Collision Checking

Sampling based methods work by sampling the configuration space and trying to connect the sampled

configurations until a collision-free path is formed. Therefore, there is a need to have a collision checking

method that is able to tell if a given sampled configuration is inside the free space or if on the other

hand it is in the restricted space of obstacles. The algorithms needed to employ these methods are

as mentioned before one of the most computational intense processes and in the context of this work

there is an additional need of finding a specific collision checking method compatible with the octomap

representation. The choice fell on the Flexible Collision Library (FCL) [79] whose implementation

is available in [80]. This framework allows for accurate and efficient collision checking and proximity

computation between different model data representations among which octrees are included. The

traversal process it employs to achieve these goals is based on a three step approach [79]:

• Object representation : objects are represented in a hierarchical data structure to assure colli-

sion and proximity computation efficiency. From simple basic geometric shapes (such as spheres,

cones, among others) to deformable models and more importantly in the context of this work, oc-

trees. They are represented by a data structure called CollisionObject, consisting of a bounding

volume hierarchy which can be one of four distinct types AABB (axis-aligned bounding boxes),

OBB (Object-oriented bounding boxes), RSS (rectangle swept spheres) or k-DOP (discrete ori-

ented polytope). This bounding volume representation allows for two different operations, overlap

and intersection between bounding volumes of two objects. There are advantages and drawbacks

to each representation, for example performing these operation with AABB is computationally less

expensive when compared to OBB but the latter allows for a finer representation of the objects.

When dealing with continuous collision checking between deformable models, kDOP and AABB

prove to be better than OBB and RSS since the way in which they represent bounding volumes

allows for quicker changes. There are many more examples of these tradeoffs between the four

types but the authors choose to use AABB to model the nodes in octrees, mainly prioritizing effi-

ciency over precision.
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• Traversal node structure that stores all the necessary information to perform the collision or prox-

imity computation between two bounding volume hierarchies and also decides on the appropriate

traversal strategy to take. In the figure below, we can see the full structure of the traversal node.

• Hierarchy traversal begins after traversal node initialization by traversing the bounding volume test

tree (BVTT) generated from the two bouding volumes. The complete traversal hierarchy can also

be visualized in figure D.1 in Appendix D .

(It must be noted however that at the time [79] was developed, octomap inclusion was not yet possible

but has since been added to the available library)

The collision checking module employed can be illustrated by the following pseudo-code and it serves

two different instances of collision: between the quadrotor and the octomap or between the quadrotor

and the intruder. Although different, due to the fact that the octomap is updated periodically with the

information regarding intruders, there is no distinction in the implementation of this module between the

two situations.

Algorithm 3: Pseudo algorithm for performing collision checking
1 function collisionChecking (collisionObject1, collisionObject2);

Input : Two collision objects to perform operations on
Output: True if there is a collision or False otherwise

2 collisionObject1← object 1;
3 collisionObject2← object 2;
4 intruderObject.position← intruder position;
5 intruderObject.dimensions← intruder dimensions;
6 bbox← bounded box dimensions;
7 bbox← getDimensions(intruderObject.dimensions);
8 isCollisionResult← collide(collisionObject1, collisionObject2);
9 if isCollisionResult then

10 return True;
11 else
12 return False;
13 end

The distance computation is also employed and its implementation follows similar logic. However,

this operation is used only to simulate the range detection of sensors when there are intruders nearby

the quadrotor and therefore has no application other than serving this purpose.
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Informed RRT*

The informed RRT* exhibits (regarding general aspects) a similar behaviour to the basic RRT algorithm

which can be summed up by the following pseudo-code:

Algorithm 4: Pseudo algorithm for RRT
1 function RRTGrow (qstart, qgoal);

Input : start configuration and goal configuration
Output: tree structure G = (V,E) containing list of vertex and edges

2 V ← {qstart};
3 E ← φ;
4 for iteration = 1, 2, ...N do
5 qrand ← SampleFree(i);
6 qnearest ← Nearest(G = (V,E), qrand);
7 qnew ← Steer(qnearest, qrand);
8 if CollisionFree(qnearest, qnew) then
9 V ← V ∪ {qnew};

10 E ← E ∪ {(qnearest, qnew)};
11 end
12 end
13 return G = (V,E)

The algorithm starts by sampling SampleFree() a random configuration qrand from the configuration

space. Nearest(G = (V,E), qrand) finds the nearest configuration in V which is the configuration in that

list that is closest to qrand in distance and then Steer(qnearest, qrand) finds a new configuration that is

closer to qrand than to qnearest. We designate this new configuration as qnew and this new configuration

is the same as the initially random sampled configuration qrand only when the new configuration is not

further away than a certain distance threshold d from the nearest configuration qnearest. If the space be-

tween the nearest configuration and the new configuration is collision free (CollisionFree(qnearest, qnew))

then the new configuration is inserted into V and the edge composed by the pair of (qnearest, qnew) is

added to the list of edges formed by E. The algorithm ceases when the goal configuration qgoal is added

to V .

With the basis of the algorithm explained we can now move on to the explanation of the more complex

algorithms derived from it. It is important to first analyse RRT* since the method used [47] represents an

improvement upon it. Therefore, the two methods share most of the same algorithm between themselves

and with the basic RRT which can be summed up for the Informed RRT* by the pseudo-code below.

Since RRT* returns an optimal path, we will refer to the tree structure as T instead of G. The RRT*

implementation corresponds to every line except 4, 7-8 (this second line in particular in the case of

RRT* is the same as in the RRT) and 37-38 that correspond to the additional functionalities provided

by the Informed RRT*. Let’s first interpret the pseudo-code related to the RRT* since the changes

introduced can be explained afterwards in this context without the need of fully explaining two individual

algorithms. In a similar way to the basic RRT, a newly random configuration is sampled and we try to

connect it to the nearest configuration in the graph. If the connection is successful, it is added to the

vertex set V . Contrary to the previous algorithm, we attempt to connect this new vertex qnew to other

vertexes already in V but limited to a defined region in space which corresponds to the space within a
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ball of radius rRRT∗ (line 12). However, not all connections result in new edges being added since this

method avoids adding ”redundant” edges by employing a rewiring of the stored tree. Before doing so, we

must discuss some functions which are new to this algorithm: Parent : V → V is a function that maps a

vertex v ∈ V to the unique vertex u ∈ V such that (u, v) ∈ E. For the root vertex of T, Parent(v0) = v0;

line(q1, q2) : [0, s] → χ denotes the straight-line path from point q1 ∈ Rn to point q2 ∈ Rn; the additive

cost function Cost(v) = Cost(Parent(v)) + c · Line(Parent(v), v) whose value represents the total cost

length of traversing from the root/initial vertex to the current vertex v. For the root vertex we have a null

cost Cost(qstart) = 0.

In line 14 and 15, we first see the additive cost function that takes the value corresponding to the

latest vertex added to the tree. From line 17 to line 24, the minimum-cost path is searched for within

the set of near vertexes Qnear. Only the vertex from this set that results in the lowest possible cost

compared to the others has its edge added to the tree (line 25). The rewiring happens from line 26 to

36, new edges are created from qnear to vertices in Qnear, if and only if the path through qnew has a

lower cost than the path through the current parent. The edge linking the vertex to its current parent

is deleted (line 32), to maintain the tree structure and the new edge is added (line 33). This way this

method is guaranteed to find an optimal solution in terms of path length (the authors prove asymptotic

optimality of the method in [44]).

Informed RRT* maintains the same qualities of this method while improving the convergence rate

and the quality of the solution. To do that, it focuses on the search part of the algorithm, specifically im-

plementing a direct sampling of the ellipsoidal heuristic which can be visualized below and corresponds

among other changes in the RRT* algorithm to the definition of a specific sampling function shown here

as algorithm 6.

Figure 3.12: Heuristic sampling domain represented for a two dimensional space (R2) problem seeking
to minimize path length. Visually corresponds to an ellipse with the initial state, qstart, and the goal
state, qgoal as focal points. The theoretical minimum cost between the two, cmin, and the cost of the
best solution found to date, cbest. The eccentricity of the ellipse is given by the quotient between the two
costs. Taken directly from [47]

When the algorithm runs through lines 7 and 8 for the first time the solution set is empty Qsoln and

as convention we take its cost as infinite. Therefore looking at algorithm 6, sampling is performed as

previously from an uniform distribution U (any other type of distribution is equally valid but the com-

mon choice falls on this type of distribution). When a configuration close to the goal configuration is

sampled, the additional features of this algorithm are put in place. It is common to define this region

as the space within a ball of radius rgoal centred at the goal configuration. In this case, the random

sampled configuration is added to the solution set (lines 37-38) and in the next iteration we have a value

different than infinity for the best current solution cost. This means that the sampling algorithm now
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uses the minimum of this list (different than infinity) and starts sampling within the ellipsoidal domain (as

pictured in figure 3.13), that is the sampling domain is now restricted to a smaller subset of the original

domain. Going through algorithm 6 we can see that line 2 to line 4 can be calculated once at the start

of the problem since they define the minimum cost path from qstart to qgoal corresponding to a straight

line that unites both states, define the qcentre that allows to define the ellipsoidal subspace as well as

RotationToWorldFrame(qstart, qgoal) which returns a rotation matrix from the ellipsoid aligned frame to

the world frame. In line 5, the radius of the N-dimensional ball is defined as the best current cost. This

is done under the requirement of an admissible heuristic of which the Euclidean distance define by the

cost is (the authors provide the necessary mathematical proof for the employment of this). From line 6

to line 10, we have the actual sampling from the ellipsoid subset created. This progressive reduction in

the size of the sampling space greatly benefits the convergence of this method relative to the RRT*. It

is worth noting however that there may be cases where the improvements achieved are incremental but

for the large majority the first conclusion is prevalent.

Algorithm 5: Pseudo algorithm for Informed RRT*
1 function RRTGrow (qstart, qgoal);

Input : start configuration and goal configuration
Output: tree structure T = (V,E) containing list of vertex and edges

2 V ← {qstart};
3 E ← φ;
4 Qsoln ← φ;
5 T← (V,E);
6 for iteration = 1, 2, ...N do
7 cbest ← minqsoln∈Qsoln

{Cost(qsoln};
8 qrand ← Sample(qstart, qgoal, cbest);
9 qnearest ← Nearest(T, qrand);

10 qnew ← Steer(qnearest, qrand);
11 if CollisionFree(qnearest, qnew) then
12 V ← V ∪ {qnew};
13 Qnear ← Near(T, qnew, rRRT*);
14 qmin ← qnew ;
15 cmin ← Cost(qmin) + c · Line(qnearest, qnew);
16 for ∀qnear ∈ Qnear do
17 cnew ← Cost(qnear) + c · Line(qnear, qnew);
18 if cnew < cmin then
19 if CollisionFree(qnear, qnew) then
20 qmin ← qnear ;
21 cmin ← cnew ;
22 end
23 end
24 end
25 E ← E ∪ {(qmin, qnew)};
26 for ∀qnear ∈ Qnear do
27 cnear ← Cost(qnear);
28 cnew ← Cost(qnew) + c · Line(qnew, qnear);
29 if cnewcnear then
30 if CollisionFree(qnew, qnear) then
31 qparent ← Parent(qnear);
32 E ← E \ {(qparent, qnear)};
33 E ← E ∪ {(qnew, qnear)};
34 end
35 end
36 end
37 if InGoalRegion(qnew) then
38 Xsoln ← Xsoln ∪ {qnew};
39 end
40 end
41 end
42 return T
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Algorithm 6: Pseudo algorithm for for Sample function
1 function Sample (qstart, qgoal, cbest);

Input : start configuration , goal configuration and lowest cost so far
Output: random sample

2 if cmax <∞ then
3 cmin ←‖ qgoal − qstart ‖;
4 qcentre ← (qstart + qgoal)/2;
5 C ← RotationToWorldFrame(qstart, qgoal);
6 r1 ← cmax/2;
7 ri ← (

√
c2max − c2min)/2 subject to i = 2, ..., n;

8 L← diag(r1, r2, ..., rn);
9 qball ← SampleUnitNBall;

10 qrand ← (CLqball + qcentre) ∩Q;
11 end
12 else if cmax →∞ then
13 qrand ∼ U(Q);
14 end
15 return qrand

In order to implement this method, the Open Motion Planning Library [81] was used. The library

(written in C++) contains many state-of-the-art sampling-based motion planning algorithms among which

the Informed RRT* and offers unparalleled computational efficiency when it comes to the execution

time of sampling methods as well as a high degree of reliability which is needed to safely implement

autonomous capabilities.

Figure 3.13: Visual hierarchy of high-level components of OMPL

Next, several simulations using the Informed RRT* were designed to test the capabilities of the

method in different 3D environments. The division was made in 3 distinct scenarios: a maze environ-

ment, a constrained object course and a more relaxed object course which can be visualized in the

figures below (the environments are represented here using Gazebo software for better clarity). For

each environment, the results were averaged over 50 simulations. Since both the RRT* and the In-

formed RRT* are methods which converge to an optimal solution with the increase in time, different

thresholds were imposed to test for the pseudo-optimallity achieved. This evaluation metric was defined
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as a measure of how close to an optimal path was achieved in the defined amount of time. Formally

it can be written as the quotient between the length of the path averaged over the tests and the mini-

mum path length obtained from setting an unreasonably high time threshold for the given environment

(greater than 30 minutes) : PathLength
BestPathLength ×100%. It must be noted that while the applied metric can not

be classified as giving an absolute measure of optimality, it comes as close to an optimallity guarantee

as possible. In all simulations, the quadrotor was modeled as a box whose representation can be visual-

ized below. The models dimensions are based on the 3DR Iris+ quadrotor, an autonomous commercial

quadrotor with a compact and durable design.

(a) Framework quadrotor internal representation (b) Gazebo representation of 3DR Iris+

Figure 3.14: On the left, we can see two bounding boxes around the quadrotor. The smaller green
box fits to the quadrotors dimensions but to perform collision checking when sampling points from the
configuration space, the larger red representation with dimensions shown (from left to right length, width
and height) is used to provide safety margins. On the right, the model of the 3DR Iris represented in
Gazebo

Figure 3.15: Maze environment (Pseudo-Optimallity of 15.2 meters)

In the first environment similar to an obstacle maze, although there are a considerable number of

obstacles and overall map area size is small (15m width an 15m length), there is enough space between

them which does not weigh as much both algorithms as if the obstacles were of a larger size. Comparing

both methods along each timeout , we see that as expected the Informed RRT* achieves much better

convergence and solutions.

Timeout 0.1s 0.5s 1s 5s

RRT* 24% 65% 97% 99%
Informed RRT* 54% 94% 99% 99%

Table 3.1: Pseudo-Optimality for each method with timeout variation (maze environment)
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Figure 3.16: Constrained Obstacle Course (Pseudo-Optimallity of 24.8 meters)

The second environment and third environments are similar in the sense that both are corridors with

narrow corners obstacles limiting the passage at certain points. The two major differences between

them are map size, 25m width and 25m length for the second , 40m width and 40 length for the third and

obstacle clearance which is much higher for the third environment (in the second environment obstacles

impose narrow passages while in the third we the quadrotor has a lower degree of difficulty navigating

between the corridors). These differences are reflected in the results for both methods. We can see

that in both environments, RRT* can not converge to a solution in a reasonable amount of time and

when it achieves a solution the degree of pseudo-optimality is very low (under 60%). The Informed

RRT* on the other hand always converges even when the timeout is set to the lowest value tested

(0.1s) at a significant cost for the solution (low pseudo-optimality). Increasing the timeout slightly wields

significantly better results and the method achieves in both instances near perfect pseudo-optimality for

an execution time of just 1s.

Timeout 0.1s 0.5s 1s 5s

RRT* — — 35% 60%
Informed RRT* 35% 61% 99% 99%

Table 3.2: Pseudo-Optimality for each method with timeout variation (Constrained Obstacle course)

Figure 3.17: Relaxed Obstacle Course (Pseudo-Optimallity of 61.15 meters)

Timeout 0.1s 0.5s 1s 5s

RRT* — — — 53%
Informed RRT* 36% 59% 95% 99%

Table 3.3: Pseudo-Optimality for each method with timeout variation (Relaxed Obstacle Course)
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3.4.2 Trajectory Generation

Until now in the path planning solution presented for the offline component of the framework, there was

no mention of the constraints quadrotor dynamics might impose in the curvature of the generated paths

as well as kinematics. If we were to generate a path which can not be physically followed by a quadrotor,

that would render the entire work done here useless. Having this into account, the next step is to go from

the generated path to a flyable trajectory which must have among other requirements a high degree of

smoothness. The optimization strategy followed was based on generating smooth flyable trajectories. In

[28], the authors main objective was to generate smooth trajectories that required as minimum control

effort as possible. This was made possible due to the concept of differential flatness introduced by the

same authors in the work. As mentioned in chapter 2, the control inputs are represented as functions

of some trajectory derivatives. These concepts play a crucial role in the optimization method followed

here which is based on the work done in [77] where the authors develop a method that allows the

generation of high-quality minimum-snap piece-wise polynomial trajectories based on jointly optimizing

polynomial path segments. Through this method the need for computationally expensive kinodynamic

(where kinematics and dynamic constraints restrict the available range of motion during sampling) path

planning is eliminated. In [82], the previous work is further expanded to include non-linear optimization

features. The authors turn the initial linear optimization problem as in [77] into a nonlinear optimization

problem by modifying some optimization variables. The present work makes use of this latter extension

of the method and it will detailed next as well as its integration on the framework.

Optimization

From the path planning component, we obtained a sequence of waypoints representing a path in the

configuration space. Let’s assume the following generic path.

Figure 3.18: Generated path. The blue dotted circles are the vertexes and the black arrows represent
the edges between them.

One of the main problems behind trajectory parametrization arises from considering the straight

line representation from the generated path. In this case, smoothness would not be possible since

there would be discontinuities in the trajectory’s derivatives at each waypoint. To circumvent this, there

are several candidate curves such as cubic polynomials (splines) or other higher order polynomials

(quintic) that can be applied. Polynomials trajectories are computed efficiently as a solution to quadratic

optimization problems where the cost function to minimize features some of the trajectory’s derivatives.

They can be be jointly optimized while maintaining continuity of the derivatives up to arbitrary order,

therefore ensuring motion smoothness by preventing control input oscillations.

The main objective behind the optimization method is to find a smooth piece-wise polynomial trajec-
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tory that is anchored in the path waypoints and fits as close to the straight line between them as possible.

Polynomials are expressions built from addition, multiplication and exponentiation (to non-negative in-

teger power) of constants and symbols called variables. Formally, any polynomial P with n coefficients

can be written as:

P (x) =

n−1∑
k=0

ckx
k = cn−1x

n−1 + ...+ c2x
2 + c1x+ c0 (3.15)

where c0, c1, c2..., cn−1 are constants and x is the indeterminate or variable. The value of n − 1 defines

the order of the polynomial. This can also be written as the product between two vectors:

P (x) = x · c (3.16)

where x = [1, x, x2..., xn−1] and c = [c0, c1, c2..., cn−1]T .

A piece-wise polynomial trajectory consists of M continuous polynomial P (x = t) segments where each

individual polynomial is valid from t = 0 until the segment duration t = Ts,i (i = 1, 2, ...,M denotes

the corresponding segment). Each segment is composed of D polynomials where D is the number

of dimensions of our configuration space. We consider that the quadratic cost function J for each

individual trajectory segment i in a given dimension d can be written as a combination of the polynomial

and associated derivatives:

Ji,d =

∫ Ts,i

0

n−1∑
j=0

(c0)i,dPi,d(t)
2 + (c1)i,dP

′
i,d(t)

2 + (c2)i,dP
′′
i,d(t)

2 + ...+ (cn−1)i,dP
(n−1)
i,d (t)2 dt (3.17)

Depending on the derivative we want to minimize throughout the trajectory, all derivatives coefficients

up to that derivative and with higher order are set to zero. In this work, the authors choose to minimize

the snap. Effectively we are left only with Ji,d =
∫ Ts,i

0
(c4)i,dP

′′′′
i,d (t)2. The result with any other choice of

derivative to minimize is analogous. We can condense this cost by using algebraic notation:

Ji,d = cTi,d ·Q(Ts,i) · ci,d (3.18)

where ci,d is the vector of coefficients of the polynomial valid for segment i in dimension d and Q(Ts,i) is

an Hessian matrix which contains the values derived from differentiation of the square of the polynomial

with respect to each of its coefficients. The values this matrix exhibits are constant over all dimensions

for a given segment, thus eliminating the need to compute this matrix for as many times as there are

dimensions.

The quadratic cost for the whole trajectory can be now written as the sum of the cost for each trajectory

segment in each dimension:

Jtotal =

M∑
i=1

D∑
d=1

Ji,d (3.19)

With the objective function defined we can focus on the imposed constraints (velocity, acceleration, jerk,

snap and higher order derivatives) related to polynomial optimization. For example, we can impose

specific derivative values at certain endpoints to ensure that the system is moving at a certain velocity
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at that point. They can be formulated as follows:

Ai,dci,d = di,d , Ai,d =

 A(t = 0)

A(t = Ts,i)


i,d

, di,d =

 d(t = 0)

d(t = Ts,i)


i,d

(3.20)

Ai,d is a mapping matrix consisting of row vectors t and d
dt t between the coefficients ci,d and derivatives

di,d at the start and endpoints of a polynomial segment. Similarly to Q(Ts,i), the mapping matrix values

only depend on the segment time and are valid across multiple dimensions (from now on we’ll omit the

notation related to the different dimensions due to this).

There is one constraint that is always required even when specific constraints are not enforce. Deriva-

tive continuity between segments must be set through all the trajectory segments since a polynomial is

infinitely derivable on its interval. However, for the sake of feasibility we can only guarantee these con-

straints up to a given order (in this method up to the chosen order of the derivative to minimize). Formally,

this can be written as:

AT,ipi = A0,i+1pi+1 (3.21)

where the left side of the equation represents the constraints at the endpoint of segment ith and the

right side the same constraints at the beginning of the i+ 1th segment.

Given the total quadratic cost function Jtotal and all of the imposed constraints AtotalpM = dM , this is an

example of a constrained quadratic optimization problem. However, the authors in [77] reformulate this

as an unconstrained quadratic optimization problem since obtaining a viable solution in a reasonable

time-frame becomes unachievable due to the computational inefficiency when the number of segments

increases or the chosen polynomial chosen are of higher order. Unlike the original optimization problem

where there are specified constraints that must be enforced to reach a solution, in the reformulated

unconstrained problem, the constraints are incorporated in the objective function as penalization terms.

This compromise allows the problem to remain bounded by constraints (although ”soft” instead of ”hard”)

while reducing the computational time in finding a feasible solution. In this particular problem, polynomial

coefficients are dropped as the decision variables in favor of the endpoint derivatives derived from the

constraints. After obtaining the solution to the unconstrained problem, we still need to find the minimum-

order polynomial that connects the waypoints which is done by inverting the constraints matrix. We start

by replacing the constraints into the cost function:

Jtotal =


d1
...

dM


T 

A1

. . .

AM


−T 

Q1

. . .

QM



A1

. . .

AM


−1 

d1
...

dM

 (3.22)

Since there was a distinction made regarding the two main types of constraints, the endpoint derivatives

are split into two groups: fixed/specified derivatives (dF ) and free/unspecified derivatives (dP ).
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This leads to a reformulation of the previous cost function (C is a matrix assembled of ones and zeros

used to accomplish this):

Jtotal =

dF
dP

T CA−TQA−1CT
dF
dP

 (3.23)

In [82], a first improvement is made by exploiting the structure of the mapping matrix A for each segment

in order to facilitate the inversion process required to solve the problem:

A(t = 0) =
[
d0

dt0 t(0)T . . . dN/2−1

dtN/2−1 t(0)T
]T

(3.24)

A(Ts,i) =
[
d0

dt0 t(Ts,i)
T . . . dN/2−1

dtN/2−1 t(Ts,i)
T
]T

(3.25)

A−1 =

 A(t = 0)

A(t = Ts,i)

 =

∑ 0

Γ ∆

 (3.26)

Stacking the mapping matrices A to form the joint optimization problem leads to
∑

being a diagonal

matrix , Γ an upper diagonal matrix and ∆ is the only non sparse matrix since only the constant parts

of t and its derivatives are non-null as opposed to A(t = 0) where the segment time at the beginning is

zero. The matrix is easily inverted since all the sub-matrices involved either contain fewer high powers

of t like ∆ or do not contain them at all
∑

. Using the Schur-Complement, we obtain:

A =

 ∑−1
0

−∆−1Γ
∑−1

∆−1

 (3.27)

The initial formulation of the objective function attaches the assumption that segment times are known

and fixed, only the endpoint derivatives are unknown variables. It is however important in the context

to reduce as much as possible the total combined cost of the segment times since that is equivalent

to reducing the duration of an autonomous mission. To do this, besides incorporating segment times

(Ts,1, Ts,2, ...Ts,M ) in the cost matrix as unknown variables, the authors of [82] also incorporate a new

quadratic term that measures the cost of segment times in the initial cost function:

Jnew = Jtotal + kT · (
M∑
i=1

Ts,i)
2 (3.28)

This new formulation aims to achieve the ideal trade-off between smoothness and trajectory duration.

kT is a parameter that controls this trade-off (higher values place a deeper importance in minimizing

trajectory duration) and depends on the specific requirements of each individual case (it is always a

good practice to keep a balance between both). One additional change brought by the reformulation

is that unlike before where the optimization problem featured only linear constraints and the objective

function was itself linear, the inclusion of the segment time constraint turns it into a non-linear problem

since the cost matrix involves powers of t.
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One particular constraint explored by the authors is related to imposing global constraints related to

velocity or acceleration since in the real world a quadrotor (as well as any other mechanical system)

is limited by the maximum thrust capacity of its rotors. These inequality constraints raise a problem

since as explained we would have to guarantee that every point in the trajectory would not surpass the

constraints and that would lead to an unfeasible amount of constraints in the problem. To circumvent

this problem, the authors formulate these as soft constraints instead of hard constraints and adding an

additional cost term in the objective function. They justify this change by empirically showing that even

when they are formulated as hard constraints, they tend to not be enforced by the optimization methods

while simultaneously exponentially increasing the required computation time. The soft cost is formulated

as follows for an arbitrary maximum value of a given constraint xmax:

Jsoft = exp(
xmax,actual − xmax

xmax · ε
· ks) (3.29)

ε defines the acceptable deviation from the maximum and ks is a constant that in a similar way to kT

defines the weight of the soft constraint on the overall cost. We can now write the full cost function to

minimize in the approach followed in this work as:

J = Jnew + Jsoft,velocity + Jsoft,acceleration (3.30)

where a maximum velocity v < vmax and maximum acceleration a < amax constraints were imposed.

The use of this method was made possible through an implementation of both works available in [83].

The authors of this implementation are the one’s who introduced the changes above described to the

original optimization method. This implementation makes use of NLopt which is an open-source li-

brary that contains the necessary routines to solve (among others) unconstrained non-linear optimiza-

tion problems. In particular, the algorithm used is adapted from BOBYQA [84] (Bounded Optimization

BY Quadratic Approximation) and allows for derivative-free bound-constrained optimization through iter-

atively approximating quadratically the objective function. For the sake of simplicity the inner workings

of this algorithm won’t be detailed. The overall implementation will be briefly detailed next, coupled

with some alterations made to the source code as well as some remarks to a possible change in the

optimization goal.

Before starting the analysis of the algorithm below, there is need to define clearly the concept of

trajectory presented at the beginning of this chapter, in particular the parametrization that characterizes

it. Each state is our trajectory is composed by si = [q(ti),
dq(ti)
dt , d

2q(ti)
dt2 , d

3q(ti)
dt3 , d

4q(ti)
dt4 ] corresponding

respectively to a position in the configuration space (p), the velocity (v), acceleration (a), jerk (j) and

snap (sn). Of all these elements, only the first three will be used later to provide guidance to the

quadrotor in real-world simulation tests as we will explain. However, the fact the latter components are

not directly used by the system does not invalidate the benefits behind the optimization objective.

The algorithm starts when we have a path generated that is collision-free represented by the tree

structure T (V,E). Several parameters needed for the optimization must be set including the optimization

derivative goal, the configuration space dimension, maximum velocity and acceleration state constraints.
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From the path configuration, a list of ordered waypoints is created to serve as the basis for the joint

polynomial optimization to pass through these. If there are any endpoint derivative constraints required

at any waypoint they are also set during the creation of the list. Finally, before initiating the optimization

algorithm, additional parameters must be set such as: the maximum number of iterations maxiterations

the algorithm has to achieve a solution and to subsequently improve upon it; frel which determines the

stopping criteria of the optimization that is when a new solution represents an improvement in the cost

function lower than a defined threshold relative to the previous solution, the optimization stops and it is

considered that a global optimal solution has been achieved; xrel has a similar effect to the previous

parameter but the threshold is on the values of the optimization variables; timepen the parameter that

controls the penalty associated with the segment time (in equation 3.28 it appears as kT ); initstep value

determines how much of the initial guess is taken as the initial step size; tolerance consists of two values

that measure the acceptable deviation from equality and inequality constraints. There is a timeout that

was created to prevent the optimization from exceeding a defined time threshold. Since the algorithm

used to solve the optimization problem works by iteratively improving a solution, it first needs an initial

guess and for that we have to provide an estimate of the segment times between each waypoint.

Algorithm 7: Pseudo algorithm for generating a trajectory from a path configuration
1 function TrajectoryGeneration (T (V,E));

Input : Path configuration
Output: Trajectory configuration

2 vlist ← list of ordered vertexes for optimization;
3 sampledTrajectory ← list containing trajectory states;
4 opt← optimization object;
5 trajectoryparameters← structure containing necessary trajectory parameters for optimization;
6 numstates ← getStateNumber(T (V,E));
7 trajectoryparameters.dimension← setSpaceDimension();
8 trajectoryparameters.derivativeToOptimize← setDerivative();
9 for numstates do

10 vlist ← getNextVertex(T (V,E));
11 if newconstraint then
12 vlist ← addConstraint(newconstraint);
13 end
14 end
15 trajectoryparameters.maxV elocity ← setMaxVelocity();
16 trajectoryparameters.maxAcceleration← setMaxAcceleration();
17 trajectoryparameters.segmentT imes← estimate(vlist,maxV elocity,maxAcceleration);
18 opt.optimizationparameters← setupOpt(maxiterations, frel, xrel,timepen , initstep, tolerance);
19 opt.trajectoryparameters← setupTraj(vlist, trajectoryparameters);
20 while !solutionNotFound do
21 opt.solution← optimize();
22 end
23 trajectoryparameters.interval← getTimeInterval()
24 while !endofSolution do
25 sampledTrajectory ← sample(opt.solution);
26 end
27 return sampledTrajectory
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To do that the preferred method used in this thesis can be written as:

Ts,i = 2
di
vmax

(
1 + γ

vmax
amax

· e2
di

vmax

)
(3.31)

where di is the straight-line distance between waypoint at time ti and the next waypoint at time ti+1 and

γ is a constant with a defined value of six. This is not the common approach where we would assume

velocity between waypoints to be calculated under the assumption of constant maximum acceleration

and calculate segment times as the straight-line distance between waypoints divided by this velocity.

With this, we can start the optimization algorithm until a solution is found or until a defined timeout is

met (this was added to the original code which did not present this important safety mechanism). The

optimizer returns a theoretical infinite trajectory (containing as many states as we want) and therefore

the last step is to sample consecutive equally time-spaced states to obtain a usable trajectory. The

sampling interval is initially set to a low value to obtain sufficient states to perform periodic safety checks

during flight. This is specially important to avoid sudden collisions with dynamic obstacles.

While in the initial stages of testing this implementation, an incoherence was found on the mes-

saging forum in Github (where the code was pulled from) while searching for a better comprehension

of the implementation. The cost associated with the segment times was chosen as a quadratic term

kT (
∑M
i=1 Ts,i)

2 but it was suggested that such implementation could be improved by considering that

the cost associated with segment times should be kT (
∑M
i=1 Ts,i)

7. To prove this, a path composed of

10 random waypoints was chosen to generate a trajectory from and another experience to corroborate

the previous results was made for another path of 20 waypoints. The derivative chosen to minimize was

switched between acceleration, jerk and snap with no difference in the outcome of the simulations. In

order to see the expected behaviour of the total cost without influence of the segment times cost, pa-

rameter kT was set to zero and the total segment time (
∑M
i=1 Ts,i) was fixed for each simulation. Several

simulations were made and the total cost was plotted against different values of total segment time.

(a) 10 waypoint path (b) 20 waypoint path

Figure 3.19: Both graphs represent the evolution of the total cost with the total segment time. A logarith-
mic scale was applied for better understanding.

From the analysis of both graphs (we applied a logarithmic scale), we can see a clear tendency of

the cost decreasing according to a linear polynomial of slope 7. This suggests that the non-log cost is a

function of kT (
∑M
i=1 Ts,i)

7. This change was made after using the implementation and a small decrease

in computational time as well as an improvement in solution quality was verified.
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Jerk vs Snap

While the implementation used here was developed under the assumption of a minimum snap piecewise

polynomial trajectory, it is also true that it allows for a seamless switch between minimizing the snap or

any other derivative. Until now, despite mentioning that minimizing the total snap in a trajectory is directly

related to the smoothness of the same trajectory (we equate smoothness to minimizing the control effort

necessary for the quadrotor to follow a trajectory), we have not explored existing alternatives which

consider that we could also achieve smooth polynomial trajectories by minimizing the third derivative of

position, the jerk. It is strongly linked to the rotation speed [85] and the oscillations in acceleration of a

quadrotor, both of which we want to keep as low as possible in a trajectory since they are part of the

notion of smoothness. By considering the higher order derivative in the snap, we further add another

level of smoothness to the trajectory by lowering the control input oscillations in a trajectory. This comes

at a cost of additional constraints and variables to optimize, thus increasing the computational time of

convergence to a solution. The impact of the increase in computational time is specially important in

the context of a real-time trajectory generation method and it was important to study it before making

a decision on the order of derivative to minimize. In a similar way to the previous simulations, the

two different optimization goals were defined and for each one the number of waypoints in the path to

optimize was varied.

(a) Jerk

(b) Snap

Figure 3.20: Both graphs represent the evolution in computation time in seconds with the number of
waypoints. The results are averaged over 50 simulations for each.

As expected there is a noticeable difference in computation time between both implementations, with

the snap case averaging computational times around twice as large as the ones for the jerk. We can

also see the exponential jump in both cases when the number of waypoints increase which is additional
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to factor in since for the jerk the prohibitive range in computational time happens later. Nonetheless,

even when the number of waypoints can be reduced in a particular case, this is something that can be

mitigated by incrementally optimizing the path. Here, a decision was made to employ the first method

only when the number of waypoints became prohibitive and using the snap minimization as the pre-

ferred method. (In experimental tests, when dealing with large or cluttered environments the number of

waypoints never exceeded a prohibitive value)

Trajectory Results

With all the associated problems taken care of, we are able to present the full result from the Offline

Pre-Flight Path Planning. The following parameters were set:

Max Iterations 25000
Objective Function Threshold (frel) 5%
Optimization Variables Threshold (xrel) 10%
Time penalty (kT ) 2000
Initial Step Size 10%
Tolerance (ε) 5%
Sampling Interval (∆t) 0.1s

Table 3.4: Optimal parameter values for the optimization

Several optimization parameters were tuned to apply for the large majority of situations such as the

maximum number of iterations which was originally set at 10000 but in order to improve the quality of the

solution it was subsequently increased until reaching 25000, that proved to be the best compromise be-

tween computational time and solution quality. Experimentally it was verified that further increasing the

number of iterations did not wield any significant improvements. The values of the thresholds that define

the stopping criteria of the optimization also contribute to the fact of not further increasing the number of

iterations since at times they indirectly define the maximum number of iterations of the algorithm. The

step size was kept at default value as well as the tolerance since they wield better results. kT is as

expected a major factor in the solution type and again we want a trajectory whose duration is as low as

possible but also smooth, without steep changes in velocity and acceleration. Choosing a value between

lower than 1000 lead to slow trajectories while values higher than 5000 originated the opposite with hard

changes in motion, which is specially concerning in cluttered environments since trajectory tracking in

real-world might be unfeasible in such conditions. A value of 2000 was chosen to prevent these issues.

Despite the fact that the generated trajectory is a continuous function, in practical applications we have

to consider that the changes between trajectory states happen at discrete time steps and therefore from

this continuous function we sample equally time-spaced states with a sampling interval set to 0.1s. This

value was later adjusted when applying the framework in real-world simulation software. The choice of

this parameters resulted in the following simulations where maximum velocity was kept at 10m/s and

maximum acceleration at 8m/s2. To visualize the generated trajectories and environments, an auxiliary

tool was employed. Although there are differences between the environments for the simulations, they
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follow more or less the same basic architecture.

(a) High (b) Snap

Figure 3.21: In both graphs, the path is represented in blue (generated from the Informed RRT*) and the
resulting trajectory (obtained from the optimization method) in green.

In both simulations, a 9th order polynomial that represents the trajectory fits tightly to the original

straight-line segments that form the path. Small offsets can also be observed when turning corners

which is to be expected. State constraints in velocity and acceleration are met. The only difference in

these two simulations comes from the original path generated.

Figure 3.22: Two distinct trajectories resulting from the same path under identical parameters. (The path
generated from the Informed RRT* is omitted)

This simulation serves to demonstrate the unpredictable nature of the optimization. While the pa-

rameters are the same as well as the original path, the resulting trajectories are slightly different.

Figure 3.23: Generated trajectory in blue is in collision with an obstacle. The original path in green.

While the optimization tries to find the polynomial anchored to the waypoints, it might result in a
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trajectory that violates feasibility constraints by having some states of the trajectory placed directly inside

obstacles. This happens particularly in highly congested environments if the number of waypoints of a

path is too low. To prevent this problem from happening the number of segments in a path is processed

after its generation. The length of each segment is checked to determine if its under a threshold (defined

according to the total length of the path) and a waypoint is added to the middle of each segment that

violates the threshold. The authors in [77] explored a solution to this problem based on adding waypoints

to the middle of each segment after a trajectory is in collision with an obstacle but by doing so besides

preemptively not avoiding a problem, by not having a more restrict criteria in adding waypoints to the

path, they are unnecessarily increasing the computational time of the optimization process.

(a) Top view

(b) Isometric view

Figure 3.24: Corrected trajectory in blue is now feasible and shows a closer adherence to the original
path in green.

By applying the previously explained process, the trajectory is now feasible. Another possible method

would be to increase the safety distance to the obstacles in the original path by increasing the size of the

bounding box (seen in figure 3.16) that represents the quadrotor. However, in cluttered environments

that could easily lead to the inability of finding an initial path, though in environments with less obstacles

it could be a viable solution.

56



3.5 Online Real-Time Path Replanning

At this point in the framework the quadrotor has a feasible trajectory that can be used to put it on course

to its goal. As explained, despite having complete information on the location of static obstacles within

the environment, due to the possible presence of dynamic obstacles a correction on the current trajectory

might be needed. The following flowchart illustrates the integration of this in the framework.

Figure 3.25: Online Real-Time Path Replanning proposed solution. This represents a rough overall
description with each component being described in detail throughout this chapter

The replanning component is activated immediately after the quadrotor takes flight. A Collision

Detection routine happens at each time step k when the next state in the trajectory si is given to the

quadrotor. This routine checks for the presence of intruders in the environment and updates in the pro-

cess the configuration space Ci which is now time dependant. The update process is made according

57



to their present and perceived future locations (the method will be detailed in depth). A collision query

results from between the affected states in the trajectory by the changes in the configuration space. The

most imminent collision is treated with the highest priority and avoidance maneuvers in the form of a

check and repair strategy are triggered. It is based on the adaptation of the previous fast trajectory gen-

eration method to deal with sudden changes in the dynamic environment. If the avoidance is successful,

the trajectory is updated and the replanning process is reinitiated at the next time step. The replanning

problem can be adapted from the formulations presented at the beginning of the chapter:

h : [0, 1]→ (Cfree)ti (3.32)

where the free space Cfree must reflect the dynamic changes Cdif = Cti − Cti−1
in the environment up

to a determined time step i.

This replanning routine developed works under the assumption that the intruder is:

• non-adversarial by not actively pursuing the autonomous agent nor engaging in similar separate

avoidance maneuvers as if it were an autonomous agent;

• non-cooperative since their operation does not fall under the same set of rules and therefore we

do not know their future behaviour or state in the future;

• detectable within the detection ranges of equipped onboard sensors;

These characteristics are important to narrow the scope of the work since in the particular case of

active adversarial agents, the avoidance protocols would require a much more robust approach.

Collision Detection

Intruder detection and tracking has to be done in order for the framework to function as a whole despite

being another entire field of study in autonomous navigation. A careful investigation was made to better

outline the real-world capabilities of current detection and tracking systems so as to validate the frame-

work under those conditions. It is shown in [86] that current state of the art algorithms can be employed

onboard UAVs equipped with relatively small sized cameras and achieve accurate real-time detection

and tracking of dynamic obstacles. The paper outlined the specific case of detection and tracking of

bicycles in a cycling race. The authors demonstrate that it is possible to achieve real-time accurate per-

formance as long as the framerate of the camera sensors is kept at a reasonable value. This allows for

real-time collision checking with dynamic obstacles. The results from the several tested algorithms were

obtained using lightweight embedded processing devices (such as the Jetson TX2) capable of being

attached to small quadrotors. With this in mind, the detection and tracking process is simulated in the

framework by a periodic access to the position, velocity and overall dimensions of intruders when they

are within line of sight of the sensing system. This happens at each time step k when the next state in

the trajectory si is given to the quadrotor. As mentioned the dynamic environment update implies that

we have partial knowledge of the state of intruders up to a certain time instance in the future. Obviously,
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since we do not have direct access to this, it is necessary to have a substantiated guess of those param-

eters that can lead to an accurate depiction of the future motion. For that reason, at any given instance

in time ti, the state of each intruder Obsi is defined over the next k time steps by extending the current

motion from the last known location. Formally this can be thought of as:

Obsi+k = [pobs(ti) + k · vobs(ti), vobs(ti)] (3.33)

This prediction implies that the velocity at that time vobs(ti) remains the same for the defined time horizon,

which must be as short as possible for this assumption to remain accurate. In instances where the

relative velocity vrel(ti) = vagent(ti) − vobs(ti) has high values, it might not be possible to detect a

collision in a feasible time frame. Safety margins were presented before in figure 3.16 and similarly to

its use for generating trajectories, they are also employed when checking for potential collisions with

intruders. Due to the high dynamic nature of intruders, the safety margins for this process are increased

by 15% of their previous maximum value to provide further robustness. From this, a collision query is

obtained and ordered according to the highest priority (closest in time) collision. At the point of collision,

the octomap is updated according to algorithm 2 as well as the locations immediately following this point

considering the current course of motion of the intruder.

Figure 3.26: Visual representation of collision detection situation. A state in the agent’s trajectory is in
collision course with the intruder. The internal map representation is updated by extending the motion
of the intruder after the hypothetical collision.

This is done in order to prevent the replanning algorithm from generating trajectories that cross the

future motion of the intruder as it will be seen next.
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Avoidance Maneuvers

In airspace, avoidance maneuvers between aircrafts must follow a set of universal Rules of the Air which

can be visualized below.

(a) Converging (b) Approaching Head-on

(c) Overtaking

Figure 3.27: Rules of the air for collision avoidance distinct scenarios.

There are three distinct cases illustrated:

• In the first case, when converging the aircraft with the other on the right shall give way to the

other;

• The second case is the head-on scenario, where each aircraft should turn to the right;

• The third case consists of an overtaking maneuver by a faster aircraft. This maneuver should be

done by the right side of the slower aircraft.

These rules were designed with the intent to be applicable to cooperative avoidance where the

intruder is a cooperative aircraft. Since we are treating the intruder as non-cooperative, these rules are

not applicable and the autonomous agent must at seek an alternative trajectory in case of collision.

The first step of the check and repair approach was already presented and consists of identifying

the possible collisions and updating the dynamic map already detailed. A similar trajectory generation

method is employed. However, we want to decrease as possible the computation time of the trajectory

while retaining smoothness and a relative short length. The latter was achieved by sampling a short path

from start to goal using the Informed RRT*. The benefits behind this method cannot be harnessed here

as shown in the pseudo-optimality results, where they only happen for sampling periods. Instead, we

use the non-optimal RRT-Connect coupled with a subsequent path shortening recursive method. The

changes to the basic RRT algorithm can be summed up below.

In this algorithm, two trees are initiated, one from the starting configuration qstart and another from

the goal configuration qgoal. At each step, one of the trees is randomly expanded towards a new sampled
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Algorithm 8: Pseudo algorithm for RRT-Connect
1 function RRTGrow (qstart, qgoal);

Input : start configuration and goal configuration
Output: tree structure G = (V,E) containing list of of vertex and edges

2 Va ← {qstart};
3 Vb ← {qgoal};
4 Ea ← φ;
5 Eb ← φ;
6 for iteration = 1, 2, ...N do
7 qrand ← SampleFree(i);
8 if !extend(Va, qrand) = Trapped then
9 if !connect(Vb, qnew) = Reached then

10 return PATH(Va, Vb)
11 end
12 end
13 swap(Va, Vb);
14 end
15 return G = (V,E)

configuration (line 7). The function that takes care of this corresponds to lines 6 trough 11 from algorithm

4. When that is successful, the other tree attempts to connect to the new configuration qnew resulting

from the previous expansion. The connect function in line 8 attempts to join both trees when in line of

sight of each other. Until that is reached, the trees alternate with each others behaviour so they can both

randomly explore the search space. This cycle ends when the connection between them is made and a

continuous path is formed. However, this path may contain unnecessary vertexes which are removed to

make it more direct. This final pruned path is then returned. After obtaining the path, a recursive method

to shorten its length is applied. The method can be summed up by the following pseudo algorithm.

Algorithm 9: Pseudo algorithm for RRT-Connect
1 function ShortcutPath (qstart, qgoal);

Input : Path
Output: Shortened Path

2 pathprev ← G(V,E);
3 pathnow ← φ;
4 while !timeoutReached do
5 pathprev ← pathnow;
6 pathnow ← shortcutPath(pathprev,maxSteps,maxEmptySteps, rangeRatio, snapToV ertex);
7 if length(pathnow) > length(pathprev) · γ then
8 rangeRatio← switch(rangeRatio);
9 end

10 end
11 return pathnow

The shortening algorithm works by iteratively trying to reduce the size of the current path (while

maintaining its validity) by attempting connections between randomly sampled points along path seg-

ments and not only the available vertexes from the original path. This connection is done through the

use of the function shortcutPath, available in the OMPL framework. Besides the path to shorten, this

function has a set of parameters such as maxSteps and maxEmptySteps which together control the

number of attempts to shortcut the path (these are kept at default value). The rangeRatio influences the
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distance between attempted connections and snapToV ertex which determines how close the sampled

points are to the vertexes in a segment. Both these parameters are randomly chosen to prevent bias.

The iterative process consists of multiple applications of this function to the path while randomizing the

rangeRatio value whenever the previous shortening produces a path whose length only represents a

small improvement over the previous path (controlled by γ which is set to 1.1). The cycle ends when a

timeout is reached. The process can be visualized below.

(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Path shortening visualization (a) through (f).
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Using the RRT-Connect coupled with the path shortening method in the same environments pre-

sented for the Informed RRT* we obtained the following results.

Timeout 0.05s 0.1s 0.5s 1s 5s

RRT-Connect 33% 40% 33% 35% 41%
RRT-Connect + Path Shortening 74% 76% 77% 78% 78%
Informed RRT* - % 74% 94% 99% 99%

Table 3.5: Pseudo-Optimality for each method with timeout variation (maze environment)

Timeout 0.05s 0.1s 0.5s 1s 5s

RRT-Connect 29% 36% 33% 34% 31%
RRT-Connect + Path Shortening 75% 76% 76% 77% 77%
Informed RRT* -% 35% 61% 99% 99%

Table 3.6: Pseudo-Optimality for each method with timeout variation (Constrained Obstacle Course)

Timeout 0.05s 0.1s 0.5s 1s 5s

RRT-Connect 40% 38% 46% 37% 39%
RRT-Connect + Path Shortening 78% 78% 79% 80% 80%
Informed RRT* -% 36% 59% 95% 99%

Table 3.7: Pseudo-Optimality for each method with timeout variation (Relaxed Obstacle Course)

In all scenarios, the minimum timeout set allows for a reasonable pseudo-optimality for the joint

method compared with the just the RRT-Connect (Informed RRT* is not able to reach a solution in that

time). Increasing the timeout does not wield significant improvements since the path shortening as

presently constructed has theoretical limitations on improving the path. Nonetheless by applying this, it

shows a good tradeoff between computation time and path length.

(a) (b)

Figure 3.29: (a) path using normal sampling. (b) path using maximum clearance sampling.

There is one additional tool that was employed during path generation to strengthen dynamic obsta-

cle avoidance. Ideally, we want to place the vertexes as far away from the dynamic obstacles as possible

for safety purposes. Besides, the safety margins already mentioned, OMPL offers this as a functionality

called MaximizeMinimumClearance in which the sampling of states is done with a bias towards states

that offer higher clearance towards obstacles. This is employed in both sampling and path shortening.
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Similarly to the offline trajectory generation, this path can now be transformed into a collision-free

trajectory by using the optimization described before.

Figure 3.30: Visual representation of potential collision situation between an autonomous agent and
an intruder (bounded by a red box) both shown as UAVs. States (in red) in the agent’s trajectory are
considered to be in collision course with the intruder, while states near the collision are signaled in
orange. Green states represent exit points and possible re-entrance points. The red rectangular dotted
area represents the region the autonomous agent can not cross and as stated is updated into the
octomap.

Starting from a similar situation as outlined in figure 3.28, there are two distinct avoidance strategies

that can be employed as shown below.

(a) (b)

Figure 3.31: Progression of avoidance maneuver . The transitioning trajectory in green and the feasible
portion of the previous trajectory in black.

The first one consists of reusing part of the original trajectory not affected by the collision. To do

this we first define an exit point and a re-entrance point in the current trajectory and then generate a

collision-free path between these points. These points are chosen within a reasonable range from the

affected states in the collision similarly to the division illustrated in figure 3.32. This division is done to

leverage the combination of the fast continuous update of the environment with the fast reactive trajectory

generation instead of imposing dynamic obstacle constraints in the optimization method.

After the path is found, a trajectory is then generated through the optimization method. In order

to have a smooth trajectory, additional constraints need to be specified on the exit and re-entrance

points according to the values of the derivatives in the original trajectory. At the exit point at we have

to guarantee [v = vexit, a = aexit, j = jexit, sn = snexit] and at re-entrance [v = vre−entrance, a =

are−entrance, j = jre−entrance, sn = snre−entrance]. Besides this change in the optimization method,

adjusting the parameters provided within the implementation such as the number of iterations which is

lowered as well as increasing the time penalty are appropriate steps to take in order to prioritize a faster
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solution. The resulting trajectory consists of the junction between the newly generated trajectory and the

remaining feasible portion of the previous trajectory. This is the preferential method that is first tried in

any collision situation since we only have to readjust a small portion of the trajectory resulting in a very

low computational effort since these transitioning trajectories are usually obtained from small paths.

(a) (b)

Figure 3.32: (a) path using normal sampling. (b) path using maximum clearance sampling.

In the event that the first method fails to provide a solution by exceeding a defined timeout, another

attempt to correct the collision-bound trajectory is made. This time an exit point is chosen the same

way as before but the trajectory from this point on is fully discarded and a new trajectory is generated

originating at the exit point and ending at the same final state as defined in the original mission objective.

As added constraints only the derivatives at the exit point need to be imposed in the newly generated

trajectory. The resulting trajectory consists of this plus the remaining of the previous trajectory. In both

approaches, there is a guarantee of a collision free trajectory for an immediate time horizon. However,

the purely reactive nature of this approach might lead to another instance of collision after the correction

of the trajectory. This is where the method has a clear drawback whose mitigation is made possible by

the fast re-activeness of the method. Subsequent corrections are applied as long as there is a potential

collision in sight. To better illustrate the application of the full framework with the avoidance maneuvers,

several simulations were outlined.

(a) (b)

Figure 3.33: (a) Offline trajectory generated. (b) Detection of intruder.

In the first figure (3.35-a), an offline trajectory is generated and the quadrotor starts tracking it. The

65



next image (3.35-b) shows a detected intruder by the quadrotor at the moment it first falls into line of

sight.

(a) (b)

Figure 3.34: (a) Estimated future motion of intruder. (b) Potential collision detected.

The quadrotor starts tracking the position and velocity of the intruder and based on that estimates (as

explained) the future location of the intruder. At the moment a potential collision is detected avoidance

maneuvers are employed.

(a) (b)

(c) (d)

Figure 3.35: (a) Transitioning trajectory generated. (b)-(c)-(d) Tracking of the new trajectory.

Using the first avoidance maneuver approach a transitioning trajectory is successfully created be-

tween a state in the original trajectory prior to the collision and another state after the collision. The

resulting trajectory allows the quadrotor to avoid the intruder and it continues its new trajectory towards

the destination.
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(a) (b)

(c) (d)

Figure 3.36: (a) New intruder detected. (b)-(c)-(d) New trajectory generated and tracking.

At another instance in the trajectory a new intruder is detected and similarly to before, a collision is

detected. However, now there is no possible states before and after the collision to generate a transi-

tioning trajectory and after failing to apply the first method, the second approach ensues by discarding

the previous trajectory which is located after the chosen exit state. From there, a new trajectory towards

the destination is generated. The figures shown are only one instance of comparable simulations tested

where the relative velocity between the quadrotor and the intruder was kept within a reasonable range.

The maximum velocity of the intruder was of 4m/s and the avoidance success rate hovered at around

80% meaning it was possible to avoid the dynamic obstacle when applying either of the two maneuvers.

When dealing with intruders with higher velocity values than this, the success rate drops significantly

being bottle-necked by the duration of the optimization algorithm despite remaining low. An example is

shown below.

(a) (b)

Figure 3.37: (a) an intruder is approaching at a high perceived velocity resulting in a potential collision.
(b) In the time the intruder reaches the collision point, the quadrotor is not able to generate and escaping
trajectory.
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While the framework is specifically targeted towards application in known environments where dy-

namic obstacles are the only unknown variables, the idea of exploring unknown environments is also an

appealing area. To explore that possibility the framework was adapted to work in unknown environments

by applying the same concepts behind dynamic obstacle avoidance. The same sensing capabilities used

to detect dynamic obstacles are used to simulate world building as the quadrotor navigates the environ-

ment. At each new update in the environment configuration, the trajectory is checked for feasibility and

according to the outcome it might need to be repaired in a similar way as before. A simulation illustrating

these concepts is presented below.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.38: (a) through (h) : navigation in unknown environment. At first in (a) a trajectory is generated
towards the destination but as the quadrotor moves in it, the sensing systems capture new information
on the surroundings thus updating the configuration space. Due to this in (b) the trajectory becomes
unfeasible and it is regrown as shown in (c). This process continues until the quadrotor reaches the
goal.
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Chapter 4

Physics Simulation

The next step in aiding the testing and validation of the developed framework is to deploy it in robust,

flexible and accurate computer simulations where we have a high-fidelity environment and quadrotor

dynamics modelling that the previous simulations were not able to reproduce since they reduced the

quadrotor to a point in the configuration space perfectly capable of following the intended trajectory. This

set of simulations is called Software-In-The-Loop (SITL) and allows for an accurate depiction of a real-

world testing without the need for actual hardware. This is specially advantageous because it completely

eliminates hazardous situations that could come up when dealing with the inherent unpredictable nature

of autonomous navigation. In this work, a combination of ROS and the PX4 firmware ( which serves

as the UAV’s autopilot and flight controller) with Gazebo acting as the simulation environment. The

interaction between these components can be summed up below but it will be detailed further on. The

communication between ROS and PX4 is done through the use of the MAVROS package. It is also

common to deploy a Ground Control Station (GCS) in autonomous missions with pre-determined flight

routes which is not the case here so it will be overlooked.

Figure 4.1: Visual representation of SITL simulation components. PX4 communicates with the simulator
(e.g. Gazebo) to receive sensor data from the simulated world and send motor and actuator values. It
communicates with the Ground Control Station (GCS) and an Offboard API (e.g. ROS) to send telemetry
from the simulated environment and receive commands. Adapted from [87].
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4.1 Gazebo

Gazebo [88] is high-fidelity open-source physics simulator developed for quadrotors and any other robots

at the University of California. It uses the Ogre3D visualisation tool and allows the use of four distinct

physics engines though the default is the Open Dynamics Engine(ODE). Compatibility and integration

with PX4 and the ability to easily create world models in Gazebo made this the natural choice. The

representation of any model in Gazebo is made through a special type of file called SDF (Simulation

Description Format). This file is written in XML code formatting. Some basic concepts regarding world

modelling in Gazebo are detailed in Appendix A.

4.2 PX4 SITL + ROS

The Robot Operating System (ROS) is an open-source software framework for robotic and drone de-

velopment and has been featured extensively in many programs since it is development in 2009 [89]. It

operates according to a publisher/subscriber messaging service where a global server called ROSMas-

ter is established and clients (nodes) can connect to it. The communication between nodes and between

these and the master node (ROSMaster) is done through dedicated channels (topics) that each node

can publish to if they want to broadcast information or subscribe to in the case of receiving it. The main

advantage of ROS as a robotics tool lies in the easy exchange of information such as sensor readings,

position from GPS between multiple clients.

Figure 4.2: Generic ROS model. ROS Master is responsible for the management and registration ser-
vices of nodes within the model. A node is an executable file in the system. Each node can communicate
with other nodes by publishing or subscribing in topics which are effectively communication channels.
Taken directly from [89].

PX4 is an open source autopilot (used to control the trajectory of a robot) flight stack focused on

embedding communication and control of ground and underwater vehicles and aircraft such as mul-

ticopters, fixed wing aicrafts and VTOLs. By doing so, PX4 allows developers to deal only with high

level functions such as planning and perception which are illustrated in Appendix B. One of the advan-

tages of PX4 is that it can be deployed in computers and not only in embedding systems (such as a

real flight controller board) making it useful for developers. The former is called SITL simulation while

the latter is a Hardware In The Loop simulation. It also offers flexible and powerful flight modes and

safety features. PX4 SITL communication with Gazebo is done through the MAVLink protocol con-

sisting of a lightweight messaging protocol designed specifically for the drone ecosystem. This protocol

works under a publish/subscribe and point-to-point design pattern where data is streamed in topics while
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configuration sub-protocols such as the mission protocol or parameter protocol are point-to-point with

re-transmission. To communicate with ROS, an additional ”bridge” is used called MAVROS which deals

with the middleware message translation between PX4 SITL on running on a MAVLink protocol to ROS.

4.3 Simulation Overview

To further expand on the concepts presented before, a high-level diagram of the overall simulation ar-

chitecture is presented below.

Figure 4.3: Simulation architecture diagram.

Three major components are outlined: Gazebo simulator, PX4 SITL firmware and the MAVROS/Trajectory

nodes. One of the main goals of this thesis was to implement autonomous capabilities onboard a UAV so

with that in mind the separation between components was made in the previous figure. The Trajectory

Node which is comprised of the algorithms from the framework developed in chapter 3 as well as some

necessary adjustments implemented are running on a Raspberry Pi 3B+ acting as a companion com-

puter. This small single-board computer is easily carried even by small quadrotors so the choice here

was natural. On the other hand we have a desktop, where the PX4 code is running in SITL mode (simu-

lating the flight control unit, FCU, of the quadrotor) while communicating directly with Gazebo simulation

environment. The companion computer and the desktop are connected via serial (using a USB-to-TTL

cable). The Raspberry Pi is declared as the ROSMASTER with the Trajectory Node and MAVROS

Node. The former is comprised of the algorithms developed in chapter 3 and publishes trajectory data

to the latter which converts it into the appropriate MAVLink messages and streams it via serial connec-

tion to the simulated FCU on the desktop. The FCU receives this, decodes and turns them into the

necessary command inputs (through the simulated controllers) which are then streamed via MAVLink to

the simulated quadrotor in Gazebo. There is also an exchange of information regarding the quadrotors

state back to the Trajectory Node. To better understand the functioning of the developed simulation, a

standard example will be explained next.
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Figure 4.4: ROS graph of the simulation, showing the active nodes and topics.

(Since PX4 code is running in SITL mode and communicating directly with the gazebo physics,

running ”behind the scenes”, the corresponding node does not show any connections to the others)

During a simulation, PX4 SITL and Gazebo are both launched on the desktop as well as the ROS

nodes on the Raspberry Pi. To visualize the simulated quadrotor as well as the environment the graph-

ical interface of Gazebo is also launched. On the Raspberry Pi side, the Trajectory node creates the

necessary callbacks to the relevant topics: /mavros/state holds the current state of the quadrotor;

/mavros/local position/pose and /mavros/local position/velocity store information on the current po-

sition and velocity of the quadrotor; /mavros/setpoint raw/local allows the quadrotor to publish rel-

evant trajectory information and /mavros/setpoint raw/target local is a sanity check topic which al-

lows to verify if the information on the previous topic was published as intended. After initiating the

callbacks, the node awaits for connection with the desktop by checking the serial connection periodi-

cally and once that connection is made it has to verify if the FCU from PX4 SITL is up and running.

Before doing this, the publishing rate must be set to a value higher than 2Hz (meaning we should

publish values at least twice each second). The value chosen and the reasoning behind will be dis-

cussed below. By periodically checking on the state of the quadrotor through /mavros/state, after a

connection it is a good pratice to publish on a topic to check on the connection. Here, we publish on

/mavros/setpoint position/local which takes 3D coordinates (x, y, z). The quadrotor state is set to Off-

board mode through /mavros/state. This mode is necessary since it allows to control robot movement

and attitude by streaming data to the appropriate topics. The quadrotor is then armed through the same

topic which activates the motors use. After this, we check on the current quadrotor position given by

/mavros/local position/pose and according to the value of the start state set in the trajectory generation

algorithm, we either drive the quadrotor to this position by publishing it through the previously mentioned

topic or if it is already at the position nothing is done. Once we publish the start state (xstart, ystart, zstart)

on that topic, PX4 SITL controller drives the quadrotor to that position using arbitrary velocity and ac-

celeration. Once the quadrotor reaches that position, the trajectory generation method is launched as
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before and a trajectory is generated containing several individual states. Before, each state in the trajec-

tory was defined as containing a defined position, velocity, acceleration, jerk and snap. However, these

states present discontinuites between the derivatives despite the trajectory generation method used,

reducing this problem by employing piece-wise polynomials of higher degrees. If these states were feed

directly to the quadrotor, it would lead to discontinuities in acceleration since a real quadrotor would not

be able to change direction abruptly. To absorb the discontinuites some sort of feedback or feedforward

controller must be used to drive the quadrotor current state to the desired state. PX4 firmware provides

a feedforward cascade position and velocity controller which is detailed in Appendix C consisting of a

proportional position controller (P) and a proportional-integral-derivative controller (PID). By setting a

position and velocity from each state to /mavros/setpoint raw/local, PX4 uses the internal controller

and the fact that quadrotor dynamics are differentially flat to produce the necessary thrust F and attitude

Ψ to drive the quadrotor to the desired position at the desired velocity (according to arbitrary yaw angles

ψ), thus effectively following the given trajectory. To that effect the position and velocity at each state

in the quadrotor trajectory is then published as a setpoint to this topic at a rate equal to the defined

sampling interval of the trajectory optimization method which was defined as 10Hz. However, this value

was lowered to 5Hz since in practice trajectory tracking performs better. This is due to the position

and velocity controller which tends to react more accurately when setpoints are given more sparsely.

According to PX4 documentation, there is also a possibility to define setpoints using position, veloc-

ity and also acceleration since an acceleration controller is also present. While attempting to feed the

setpoints as such, the quadrotor exhibited erratic behaviour which was also corroborated by consulting

several open discussions on similar attempts on the PX4 forums. /mavros/setpoint raw/target local

provides loopback information on the setpoints previously sent and it is a safety check to guarantee

that the setpoints are being correctly sent. /mavros/local position/pose is mainly used to see how

well the trajectory tracking is being done throughout the simulation. The two remaining shown top-

ics /mavros/global position position/global and /mavros/global position position/gp vel are used by

PX4 to translate the setpoints from the local frame to the world frame. Also in the controller side, the

necessary translations between inertial and body frames are also taken care of. The rest of the trajectory

node works under the same assumptions as before, which means that dynamic obstacles are simulated

in the same manner and they are not represented physically in Gazebo. In the next section, the results

from several simulations are shown and analysed.

4.4 Results

In the simulations, the quadrotor used was the already mentioned 3DR Iris which is one of the standard

aircrafts already modelled in PX4. The simulations are divided according to the evolution of the frame-

work as described in chapter 3, testing first without avoidance capabilities and then inserting them. They

are spread across different constructed Gazebo maps. Despite, using the less powerful Raspberry Pi

to run the trajectory generation algorithm, the decrease in performance was lower than expected and it

sat at a mean increase in computational time of around 20% when compared to the execution time on
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a desktop. These simulations are tailored to show the stability and to evaluate the effectiveness of the

developed algorithms. This is done by analysing the deviation error between the commanded position

pcom that is fed to PX4 controller and the resulting position pres that is exhibited by the quadrotor. This

is an example of metrics from trajectory tracking. The position error (which we want to keep as low and

fluctuation free as possible) allows us to check on the potential real-world feasibility of both the trajectory

generation method and the obstacle avoidance maneuvers followed. Formally it can be written as:

Error = |pcom − pres| (4.1)

Trajectory Generation

Figure 4.5: Position error evolution with time.

The first test corresponds to a simulation in which a simple maneuver of overcoming a wall (figure

A.2 in Appendix A) between two points, one from each side. Both velocity and acceleration were set the

highest values (v = 9m/s and a = 9m/s2) in which the trajectory generation algorithm can potentially

operate according to the paper where the method was first introduced. After setting both values without

first tuning the position and velocity controller from the default values, the quadrotor struggled to keep up

with the position and velocity commands which lead to high position error translated in erratic behaviour

such as hitting the wall or spinning out of control. After adjusting the controller parameters, the best

results were achieved in figure 4.5 where position error reaches a maximum of 0.8m, an acceptable

error specially in spaced outdoor environments. There are only small oscillations and overall the control

is smooth. This maximum error is verified when the quadrotor after ascending upwards straight to an

altitude above the wall, it suddenly accelerates and this steep change leads to an overshoot in position.

The tuned values were kept for the following simulations. The noisy behaviour in the position error at

the end of each simulation is attributed to the fact that once the destination is reached, the quadrotor is

instructed to hover around that point.
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Figure 4.6: Position error evolution with time.

The next set of simulations were performed in the environment pictured in figure A.3 in Appendix

A and they correspond to the navigation between the beginning position before and the goal position

after the maze of obstacles. The tuned values correspond to an ideal situation as presented before and

while the presence of more obstacles in this situation does not invalidate them, it might increase the

tracking error if we maintain such a high acceleration. To prevent having to further adjust the values,

an alternative is found by lowering the maximum acceleration to 6m/s2. The main benefit behind this

is to prevent overshooting from happening when going around narrow paths between obstacles with a

high acceleration. By doing this, the maximum position error (in figure 4.6) is kept under 0.3m which

is evidence of a good tracking. The overshooting verified tends to happen primarily due to changes in

direction when turning around obstacles in the first environment as explained before. Nonetheless this is

expected behaviour which could be further mitigated by lowering the maximum acceleration but this is a

cost that can put in risk some UAV applications requiring minimum trajectory times. Tuning the trajectory

optimization parameters such as the time penalty to reduce abrupt changes in velocity could also be

explored.

Figure 4.7: Position error evolution with time.
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Under the same acceleration constraints as the previous simulations, another set of simulations were

performed in the environment illustrated in figure A.4 in the Appendix A. The results obtained in figure

4.7 lead to analogous conclusions as before: overshooting is small but always present as expected and

the tracking error is kept around acceptable values. We can also see that the overall error is smaller

than in the previous simulations which is due to the more free space to navigate in the environment.

Figure 4.8: Position error evolution with time.

The last set of simulations were made on a highly space constrained environment (figure A.5 in

Appendix A). The idea was to see if it was possible to navigate safely between the start and goal

positions under the maximum acceleration set before. Despite several attempts at tuning the controller

parameters to allow for an acceptable trajectory tracking, due to the constrained space and the inherent

tracking phenomenons (such as overshooting), most simulations resulted in unacceptable deviations

from the intended trajectory resulting in collisions with obstacles in the environment. Only by lowering

acceleration to 2m/s2 it was possible to achieve an acceptable position error. However, this leads to a

slowly moving quadrotor, thus crippling the inherent advantages of this type of aircrafts. This is obviously

an outlier situation since in most practical applications UAVs have enough airspace to move freely in but

it is always a good practice to perform stress testing simulations such as these.

Obstacle Avoidance Response

To test the tracking capabilities while performing avoidance maneuvers similar simulations to before were

designed. All of them were performed on the environment shown in figure A.4 in Appendix A under the

same velocity and acceleration conditions (9m/s and 6m/s2 , respectively) described before. The choice

of this particular map is due to the fact that despite containing several static obstacles in it, there is still

enough space allowed for a quadrotor to perform avoidance maneuvers when compared for example

with the maze environment where such operations would be severely hindered.
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(a) (b)

(c)

Figure 4.9: Position error evolution with time for three distinct simulations (a), (b) and (c) on the same
environment.

The maximum peaks of position error in all three graphs correspond to situations where avoidance

maneuvers were taken and they exhibit a similar behaviour as the situations mentioned before when

turning corners or around obstacles. However, these peaks tend to be of a higher magnitude since it

is common that the transitioning trajectories generated in avoidance maneuvers are more aggressive

with more sudden changes in direction and therefore more steep control inputs. Nonetheless in all

cases, when limiting the velocity of intruders to reasonable values (lower than 4m/s), the maximum

error was under 0.7m which falls within reasonable values for UAV applications. The same logic behind

decreasing the maximum acceleration of intruders can also be used to improve the tracking error since

less aggressive maneuvers would be needed.

4.5 Remarks

This chapter effectively ended the work done in this thesis with appropriate physics simulations to val-

idate the developed framework. The reasons behind the use of ROS, Gazebo and PX4 SITL in the

simulation environment was carefully presented as well as a general overview of the interaction with

particular depth given to some of the components (it would not be within the scope of this work to fully

explain the PX4 SITL simulation environment). Several simulations were designed to corroborate the

application of each of the framework capabilities and the results fell in line with the expected outcome,

showing that it is possible to follow the generated smooth trajectories with a high degree of accuracy.
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The use of a Raspberry Pi to accommodate the trajectory algorithms was also studied showing that

these algorithms are capable of running onboard a small UAV.
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Chapter 5

Conclusions

The original goal of this thesis was set as the ”development of a framework that empowers an UAV with

the capability of going from a start to a destination while simultaneously avoiding static and dynamic

obstacles during its course”. Special emphasis was put on generating flyable smooth trajectories that

require as least of a computational effort as possible.

This lead to a two step approach to deal with the problem: an Offline/Pre-Flight path planning and

Online/Real Time Path Replanning.

• The first component consists of a path generation method, the Informed RRT*, which generates a

pseudo-optimal path which is then fed to an optimization method capable of generating a trajectory.

The optimization method focuses on minimizing the total snap (fourth derivative of position) along

the trajectory which translates to a high degree of smoothness and low control effort;

• The second component enters into effect when the quadrotor first starts to fly and it is main ap-

plication is to deal with dynamic obstacles (intruders) that might put the aircraft in risk. Avoidance

of these intruders is based on reactive maneuvers where transitioning trajectories are generated

between safe points in the original trajectory that allow the quadrotor to circumvent intruders or

entire new trajectories from escape points. The trajectory is generated in a similar way as in the

first component but now a faster path generation method is used, the RRT-Connect, coupled with

a path shortening iterative process to lower path length. The optimization method is tuned to

prioritize a faster generation while ensuring smoothness is maintained.

Environment modelling was an important topic and the decision fell on the Octomap representation.

To test the capabilities of the developed framework, several non-physics simulations were carried out

which showed the effectiveness of the approach under a set of drawn out conditions which serve the

main purpose of narrowing the scope of the work done here.

The next step to further validate the capabilities of the framework were physics simulations using a

combination of Ros, Gazebo and PX4 SITL. To guarantee the real-time application in small quadrotors,

a Raspberry Pi was used to run the trajectory algorithms. Results showed a good performance even

considering the computational limitations of the Raspberry Pi and the use of standard position and
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velocity controllers to track the generated trajectories.

Unfortunately the next logical step of performing HIL simulations was not performed, where instead

of simulating quadrotor control through PX4 SITL, an actual flight controller unit is used. This process

would greatly benefit the developed work as it would allow the framework to safely be employed on a

real quadrotor for further testing. Several difficulties were faced during the development of this thesis

derived from personal inexperience in the several theoretical fields involved in the thesis but also poorly

devised planning. In addition to this, technical difficulties related to bugs from some of the software

used such as the Octomap library contributed to the mentioned shortcomings. The framework was

developed specifically to fit a small quadrotor with autonomous capabilities, it would be beneficial to

further expand this to larger quadrotors and other multirotor aircraft. While it is a relatively recent field,

neural networks could prove to be an interesting way of dealing with autonomous navigation in the future

either by fully applying them to the problem or by using some of its benefits to complement path and

trajectory generation algorithms. In order to improve tracking performance, a deeper dive in control

theory could be done as well as integrating it into the current PX4 code. Some of the capabilities

presented require the detection and tracking of intruders, which is something to consider for real time

applications since they employ computationally expensive algorithms and further constrain the already

low computational capacity of small onboard computers. Integration of these capabilities in the real

world testing of the framework could also be explored.
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Appendix A

Gazebo Simulation Environment

Figure A.1: Gazebo SDF high level hierarchy for creating basic worlds and models. Adapted from [88].

A world file can be defined to represent the generic properties of an environment such as gravity, wind

speed and other static/dynamic properties. In each world several Gazebo models can be created. These

are defined by .sdf files. These models are internally composed of sub-categories such as links, joints,

sensors or plugins. Links are individual elements of the model such as the individual rotors of an UAV

that are simulated physically. The .sdf file contains information on the mass, inertia matrix, visual, and

collision properties of each link so that they can interact dynamically with the environment. Joints restrict

the motion between links (one example could be the hinges that constrain the rotors to the airframe).

Plugins can be used to command velocities or accelerations to the models simulated components thus

allowing for interaction with the simulation model or world. In this work, the PX4 SITL plugin is used

to allow the PX4 flight stack code to run in combination with the simulation. Sensor behaviour models

are also simulated. The interaction between all of the above provides realistic dynamics environment

for simulating multi-rotor vehicles. The different constructed Gazebo maps used in the simulations are

shown below.
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Figure A.2: Wall in Gazebo

This is a simple wall with 4m of height. Both length and width are not relevant to the nature of the

simulations where this environment is used.

Figure A.3: Maze course in Gazebo

This environment is composed of several smaller parallelepipedal obstacles with equal dimensions

of 0.5m− 1m− 3m (width, length and height) disposed in a symmetrical pattern on the gazebo grid with

at least 2m all around spacing between them.
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Figure A.4: Obstacle course in Gazebo

This environment is composed of spaced corridors filled with different obstacles at defined points

with at least 2m of spacing all around.

Figure A.5: Constrained obstacle course in Gazebo

This environment is a more spaced constrained version similar to the previous one. Spacing is now

reduced to only 1m.
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Appendix B

PX4 Architecture

Figure B.1: High-Level Software Architecture of PX4. Taken directly from [87].

PX4 is made up of two layers: the flight stack which consists of the guidance, navigation and control
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for autonomous drones and the middleware which deals with the communication between systems.

Figure B.2: Flight Stack architecture. Taken directly from [87].

The estimator takes sensor measurements and computes a vehicle state from them such as comput-

ing the ground speed from IMU sensor data. The controller takes a setpoint and adjusts the value of the

process variable to match it. The position controller is particularly relevant here since a desired position

is feed onto the controller which produces the necessary attitude and thrust to attain the position. The

mixer takes force inputs and converts them to motor commands. This conversion is specific to vehicle

individual dynamics and motor arrangements.
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Appendix C

PX4 Controller

(a)

(b)

Figure C.1: (a) Combined Position and Velocity Controller Diagram. The desired velocity vsp is used as
feedforward term, it is added to the output of the position controller and the result is used as the input to
the velocity controller. Taken directly from[87]. (b) PID controller structure.

The structure of a standard PID controller can also be seen above. The proportional gain P is used

to minimize the tracking error and the higher the value, the quicker the response is but at a cost of higher

oscillations. The derivative gain D controls overshooting and higher values lead to amplified noise. The

integral gain (I) keeps track of the error and increases its value when there is an accumulation of error

through time. A good tradeoff between these values is expected.
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Appendix D

Taversal Node Hierarchy

Figure D.1: Hierarchy for traversal node. CollisionTraversalNode corresponds to the collision checking
routine while DistanceTraversalNode performs distance computation between two objects. Each of this
subclasses is comprised of the functions necessary to perform these operations according to the re-
quirements of each type of bounding volume involved (for example, BVHCollision performs the collision
checking between two bounding volumes while ShapeCollision performs the same operation for two
basic shapes. Taken directly from [79].
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