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Abstract

With the growing interest in autonomous navigation systems, advanced vessel motion control
techniques are being developed to ensure that vessels can independently control their own actions,
especially in tasks where high precision is required. One of these tasks is the docking procedure. The
objective of this task is to approach the vessel to the docking position in safety, gradually decreasing
the speed until a complete stop. At low velocities the low propulsion on the rudder reduces the vessel’s
maneuverability. This combined with the high density of obstacles in the harbor environment makes
the docking task one of the most challenging tasks in a maritime setting. In this research, we propose
to solve this problem by, first, constructing a realistic 3D harbor environment. Next, due to the
learning abilities and the model-free approach, Deep Reinforcement Learning techniques were used to
develop an action-planning guidance layer for an underactuated vessel, without a prior path-planning.
It was used a Duelling Network in combination with the Double Deep Q-Network algorithm to train
the agent. The model was tested for three scenarios: 1) and 2) test the agent’s ability to approach the
docking position when it is already aligned with it; 3) test the capacity of the agent to make the whole
docking maneuver, by starting perpendicular to it. Regarding safety and robustness, results showed
good performance in all scenarios, while showing some limitations in control smoothness.
Keywords: Autonomous Docking, Reinforcement Learning, LiDAR, Duelling Network

1. Introduction

With the density of maritime traffic increasing,
various types of marine accidents frequently occur
[11]. 80% of marine accidents are caused by human
factors, according to the world maritime disaster
records that were filed by international maritime
organization (IMO) from 1978 to 2008 [20].

The harbor areas are particularly dangerous due
to the space limitations, reduced maneuverability
caused by the low velocities, heavy traffic and ex-
ternal perturbations, such as wind and currents [31].
The docking procedure, although handled success-
fully on a daily basis, mistakes and accidents are
frequent phenomenons resulting in injuries of both
personnel and equipment [25]. Therefore, improv-
ing the autonomous navigation level of vessels has
become an urgent problem to be solved, specially in
these stressful tasks that are more prone to errors.

In order to build an autonomous docking system,
a robust control technique is required to approxi-
mate the vessel to the quay. [34] presents a review
on the research on motion control of autonomous
surface ships. In this research are presented several
control techniques for autonomous ships, such as

Proportional Integral Derivative Algorithm (PID),
Model Predictive Control Algorithm (MPC) and
other optimization algorithms. Techniques based
on Artificial Intelligence (AI) were also presented,
focusing on Deep Learning (DL) and Deep Rein-
forcement Learning (Deep RL).

Starting by the PID controller, [8] and [15]
propose a PID controller approach for automatic
berthing of a catamaran and a ship, respectively.
Although the controllers on both researches prove
a satisfactory behaviour, with smooth maneuvers,
this approach cannot be used in a practical ship
berthing system because because it requires manual
adjustments to compensate for changes in environ-
ment (e.g., wind and sea state) and in the dynam-
ics of the ship (such as speed, draught, and water
depth) [41].

Staying in the classical methods, research such
as [22], [4] and [19] propose an optimal control
method for performing autonomous docking of ma-
rine vessels using nonlinear model predictive con-
troller (NLMPC). Despite optimization-based con-
trol techniques have been the focus of much research
and shown very good results in the maritime field,
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this method is heavily dependant on the model of
the system and on its accuracy [9]. This motivates
the use of intelligent control approaches, such as
Machine Learning (ML) and Deep Reinforcement
Learning (Deep RL) techniques, as they do not re-
quire the exact modeling of the system [14] (model-
free).

In such a case, an ANN-based (Artificial Neu-
ral Network) approaches have been one of the most
commonly used methods due to their learning abil-
ity and mimicking actions of the human brain
when performing stages of ship docking [19]. Re-
search such as [39], [41], [13], [14], [33] and [28] are
some of the examples that proposed an ANN-based
approach to solve the autonomous docking prob-
lem. However, the drawback of the ANN-based ap-
proaches is being dependent not only on the ANN’s
structure but also on the reliability of the training
data.

Contrary to ANN-based approaches, the advan-
tage of using Deep RL is that it does not require
any expert to directly teach the agent how to be-
have under particular conditions [2] since it learns
through trial and error interaction with the envi-
ronment. Although in the maritime field, Deep
RL techniques have also received attention in path
following [37][40], path planning [?][5] and colli-
sion avoidance [36] [38] [6], autonomous docking
has received little attention. Research such as [17],
[26], [18], [2], [3] proposed RL-based approaches to
solve the autonomous docking. Although these ap-
proaches have shown very good results compared to
classical methods, much remains to be done.

While MPC-based methods are heavily depen-
dant on a system model and ANN-based methods
need reliable data to train the network, Deep RL
approaches do not need any of them. This was
the main motivation in using Deep RL to solve this
problem. To the best of our knowledge, informa-
tion from the LiDAR sensor was also not used in
the state space for the specific task of autonomous
docking. Moreover, most research is done to solve
the problem of cargo ships docking at the container
port and, to the best of our knowledge, nothing has
been done to dock small boats at the marina, which
is more restricted due to the high density of obsta-
cles. The main contributions of this research are
the following:

• Construction of a simulated harbor for small
boats in V-REP framework [27], including the
simulation of the vessel’s dynamics system and
a LiDAR simulation;

• Use a discrete action space Deep RL algorithm
(Dueling DDQN [35]) to teach a small vessel
to perform optimal docking maneuvers in the
simulated harbor;

• Use extra information from the LiDAR sensor
in the state space as it provides very important
information about the distance to the environ-
ment around the vessel.

This research is organized as follows: Initially,
Section 2 presents the the theoretical background
needed in order to be able to follow the solu-
tions presented in this research. Next, Section
3 presents the implementation details. Section 4
presents the results of our approach for two differ-
ent scenarios Finally, Section 5 presents the con-
clusions and future work.

2. Background
In this Section, it will be first presented the math-
ematical model of the surface vessel and later
the theory behind the reinforcement learning tech-
niques used in this research.

2.1. Mathematical Modeling of a Surface Vehicle
In maneuvering, a marine vehicle experiences mo-
tion in 6 degrees of freedom (DOFs) [10]. When
designing control systems for marine craft, models
with reduced order are often used since most ve-
hicles do not have actuation in all DOF. In this
section the motions of the vessel are decoupled ac-
cording to 3 DOF, where it will be only used the
surge, sway, and yaw.

2.1.1 Fossen’s Robot-Like Vectorial Model
for Marine Vehicles

Robot-like vectorial model is adopted as a standard
by the international community due to its easy im-
plementation [10]. The vectorial model can be writ-
ten as follows:

M(q)q̈ +C(q, q̇) = τ (1)

This model was used as motivation to derive a
compact marine craft model in 3 DOFs using a vec-
torial setting. A complete 3 DOF vectorial setting
for marine vehicles was derived in [10]:

Mν̇ +C(ν)ν +D(ν)ν + g(η) + g0 = τ (2)

where

η = [x, y, ψ]T (3)

ν = [u, v, r]T (4)

are vectors of generalized position/Euler angles
and velocities, respectively, used to describe mo-
tions in 3 DOF. Similarly, τ is a vector of general-
ized forces and moments in 3 DOF. The matrices
M , C(ν) and D(ν) denote inertia, Coriolis and
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damping, respecively, while g(η) is a vector of gen-
eralized gravitational and buoyancy forces. Static
restoring forces and moments due to ballast systems
and water tanks are collected in the term g0.

2.1.2 Kinematics

Position and orientation of the vehicle are calcu-
lated in North-East-Down (NED) frame. Iner-
tial sensors whose measurements are located in the
body-fixed frame must be converted to NED frame
(local navigation frame). This transformation is
done with

η̇ = R(ψ)ν (5)

Explicitly,ẋẏ
ψ̇

 =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

uv
r

 (6)

where R(ψ) is the transformation matrix that is
used to transform linear and angular velocities from
the body fixed-frame to the NED fixed-frame.

2.1.3 Rigid-Body Kinetics

Kinetics, contrary to kinematics, analyses the forces
causing the motion. [10] showed that the rigid-body
kinetics of a vessel can be expressed in the following
vectorial setting:

MRBν̇ +CRB(ν)ν = τRB (7)

where, MRB is the rigid-body mass matrix, CRB

is the rigid-body Coriolis and centripetal matrix,
and τRB is the generalized vector of external forces
and moments expressed in the body frame.

The matrices associated with rigid-body kinetics
can be described as:

MRB =

m 0 0
0 m 0
0 0 Iz

 (8)

where m is the mass of the vehicle and Iz is the
moment of inertia around the z-axis.

CRB(ν) =

 0 −mr 0
mr 0 0
0 0 0

 (9)

2.1.4 Added Mass Dynamics

The general equations of motion of a marine vehicle
partially immersed in water contain terms which are
due to the added mass effect. In the structure of the
current model, it is desirable to divide the forces due
to the virtual mass into added mass inertia matrix,
MA, and added Coriolis and centripetal matrix,

CA(ν). The virtual mass matrices are written as
follows:

MA =

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Yṙ −Nṙ

 (10)

CA(ν) =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 (11)

According to [10], the motion equation (2), the
matrices M = MRB+MA and C(ν) = CRB(ν)+
CA(ν) can now be described.

2.1.5 Hydrodynamic Damping Forces

Several damping effects result from the interaction
between a maritime vehicle and the water. In this
research, only linear damping and the drag force
will be considered. In many cases, it is convenient
to write total hydrodynamic damping as:

D(ν) = D +Dn(ν) (12)

where D is the linear damping matrix due to
potential damping and possible skin friction and
Dn(ν) is the nonlinear damping matrix due to
quadratic damping and higher-order terms. These
damping matrices can be written as follows:

D =

Xu 0 0
0 Yv Yr
0 Nv Nr

 (13)

Dn(ν) =

Xu2 |u| 0 0
0 Yv2 |v| 0
0 0 Nr2 |r|

 (14)

2.1.6 Engine Thrust

The boat model is equipped with a propeller of vari-
able direction and propulsion magnitude, as shown
in the Figure 1. Therefore, the thrust that propels
the boat is modeled according to:

τ =

 P cosφ
−P sinφ
aP sinφ

 (15)

where P is the propeller force [N], φ is the rudder
angle [º], and a is the distance between the propeller
and the center of gravity of the vehicle [m].
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Figure 1: Schematic of the considered boat model

2.2. Reinforcement Learning

We consider a sequential decision making setup,
in which an agent interacts with an environment
over discrete time steps, see [29] for an introduc-
tion. In the research, for example, the agent per-
ceives a state st ∈ S consisting of vessel informa-
tion, such as distance and orientation relative to
the desired position, velocities and previous con-
trol commands, and additional LiDAR information.
The agent then chooses an action from a discrete set
at ∈ A = {1, ..., |A|} and observes a reward signal
rt.

The agent seeks maximize the expected dis-
counted return, where we define the discounted re-
turn as Rt =

∑∞
τ=t γ

τ−trτ . In this formulation,
γ ∈ [0, 1] is a discount factor that trades-off the
importance of immediate and future rewards.

For an agent behaving according to a stochastic
policy π, the values of the state-action pair (s, a)
and the state s are defined as follows:

Qπ(s, a) = E[Rt|st = s, at = a, π] (16)

V π(s) = Ea∼π(s)[Qπ(s, a)]. (17)

The preceding state-action value function (Q
function for short) can be computed recursively
with dynamic programming:

Qπ(s, a) = Es′ [rt + γEa∼π(s′)[Qπ(s′, a′)]|s, a, π]
(18)

We define the optimal Q∗(s, a) =
maxπ Q

π(s, a). Under the deterministic pol-
icy a = arg maxa′∈AQ

∗(s, a′), it follows that
V ∗(s) = maxaQ

∗(s, a). From this, it also follows
that the optimal Q function satisfies the Bellman
equation:

Q∗(s, a) = Es′ [r + γmax
a′
Q∗(s′, a′)|s, a] (19)

We define another important quantity, the advan-
tage function, relating the value and Q functions:

Aπ(s, a) = Qπ(s, a)− V π(s) (20)

Intuitively, the value function V measures the
how good it is to be in a particular state s. The Q
function, however, measures the value of choosing
a particular action when in this state. The advan-
tage function subtracts the value of the state from
the Q function to obtain a relative measure of the
importance of each action.

2.2.1 Deep Q-Networks

The value functions as described in the preceding
section are high dimensional objects. To approxi-
mate them, we can use a deep Q-network: Q(s, a; θ)
with parameters θ. To estimate this network, we
optimize the following sequence of loss functions at
iteration i:

Li(θi) = Es,a,r,s′ [(yDQNi −Q(s, a; θi))
2], (21)

with

yDQNi = r + γmax
a′
Q(s′, a′; θ−) (22)

where θ− represents the parameters of a fixed and
separate target network. A key innovation in [24]
was to freeze the parameters of the target network
Q(s′, a′; θ−) for a fixed number of iterations while
updating the online network Q(s, a; θi) by gradient
descent (This greatly improves the stability of the
algorithm).

Another key ingredient behind the success of
DQN is experience replay [24]. During learning,
the agent accumulates a dataset Dt = {e1, e2, ..., et}
of experiences et = (st, at, rt, st+1) from many
episodes. When training the Q-network, instead
only using the current experience as prescribed by
standard temporal difference learning, the network
is trained by sampling mini-batches of experiences
from D uniformly at random, which increases data
efficiency and reduces the correlation among the
samples used in the update.

2.2.2 Double Deep Q-Networks

The previous section described the main compo-
nents of DQN as presented in [24]. In this paper we
use the improved Double DQN (DDQN) learning al-
gorithm presented in [32]. In Q-learning and DQN,
the max operator uses the same values to both se-
lect and evaluate an action. This can therefore lead
to overoptimistic value estimates [32]. To mitigate
this problem, DDQN uses the following target:
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yDDQNi = r+γQ(s′, arg max
a′

Q(s′, a′; θi); θ
−). (23)

DDQN is the same as for DQN [24], but with the

target yDQNi is replaced by yDDQNi .

2.2.3 Duelling Deep Q-Networks

In this research we used the Duelling Network pro-
posed by [35]. The network architecture is practi-
cally the same as in the original DQN [24]. How-
ever, instead of following the fully connected layers
with the output, it instead uses two sequences (or
streams) of fully connected layers (Figure 2). The
streams are constructed such that they have the ca-
pability of providing separate estimates of the value
and advantage functions. Finally, the two streams
are combined to produce a single output Q func-
tion. As in [24], the output of the network is a set
of Q values, one for each action. Since the output
of the dueling network is a Q function, it can be
trained with the many existing algorithms. In this
research it was used the DDQN presented in the
Section 2.2.2.

Figure 2: Single stream Q-network (top) and the
dueling Q-network (bottom). The dueling net-
work has two streams to separately estimate the
state-value V (s) and the advantages for each ac-
tion A(s, a1), ..., A(s, am); Both networks output Q-
values for each action.

The motivation behind this dueling network was,
by explicitly separating the two estimators, the du-
eling architecture can learn which states are (or are
not) valuable, without having to learn the effect
of each action for each state, which accelerates the
learning process.

3. Implementation
As stated before, the objective of this research is
to teach a small vessel to perform optimal dock-
ing maneuvers using Deep RL. The agent is trained

to approach the dock position in a safe and robust
manner by directly mapping, at each time step, the
input states to the control variables (Propeller Force
and Rudder Angle) using a Deep RL agent. The
closed loop system is constructed around the vessel
model and the LiDAR sensor to accurately repre-
sent the network input states. The state variables
are further fed to the RL agent that generates the
optimal control commands at each time step. The
signal flow is represented in Figure 3.

Figure 3: Signal flow in the closed-loop system.

3.1. Simulator

To build the harbor environment (Figure 4) it was
used 3D models from Sketchup 3D Warehouse and
it was built with the aim of resembling the generic
harbours.

Figure 4: Harbor Simulation; Docking spot.

The agent model employed in the experiments is
a small vessel, with m = 150 kg, 3.0m of length and
1.0m of width. Since the hydrodynamic parameters
presented in the Section 2.1 must be estimated in
real experiments, for this research it was used the
parameters already estimated by [7]. Just as pro-
posed by [7], the model used in this research also
controls the propeller force and the rudder angle.

In order to have a perception of the whole envi-
ronment around the agent, 4 LiDAR sensors were
mounted on top of the boat with specific positions
and orientations that allows all the objects to be
detected.

The positions and orientations of the 4 sensors
relative to the vessel’s body-frame are specified in
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the Appendix A, where α, β, γ are the rotations
around the x-axis, y-axis and z-axis, respectively.

3.2. Problem Modeling as MDP
To achieve this using RL it is first necessary to de-
sign the learning strategy. In this section, first,
the state space variables are presented, as well as
the pre-processing approach for the LiDAR data.
Next, the control variables discretization will be ex-
plained. Topics such as reward function design and
network architecture will also be covered in this sec-
tion. In the end, the training specifications will be
presented.

3.2.1 State Space Representation

The intuition behind the state space representation
was to make it as generic as possible in order to be
able to transfer the network model to other environ-
ments, thus creating the advantage of not having
to re-train the model when changing environments.
With this in mind, we used the relative distance δd
and relative orientation δψ to the dock as the first
two state variables. The computation of these two
variables can be seen in Equation (24) and (25):

δd =
√

(xboat − xdock)2 + (yboat − ydock)2 (24)

δψ = ψboat − ψdock, (25)

where, (xboat, yboat) and ψboat are the boat posi-
tion and orientation, respectively, and (xdock, ydock)
and ψdock are the desired docking position and ori-
entation, respectively.

Since the agent needs to know the boat’s current
speed to make the decision to reduce it near the final
position, in this research, variables such as surge
velocity u, sway velocity v, and angular velocity
r were added to the state space. To learn which
actions lead to which states, the last step control
commands Pi−1 and φi−1 are also added to the state
space.

Data from LiDAR is also relevant as it provides
information on the distance between the boat and
other obstacles. In this research, first, the 3D point
cloud is transformed into a 2D point cloud that is
further segmented in sections using Python’s pan-
das library [23]. This is done by, first, calculating
the polar coordinate θ = atan2(y, x) of the 2D point
cloud. It is possible to segment the point cloud ac-
cording to the θ values using pandas library func-
tion cut(). After the θ segmentation it is computed
the closest point to the vessel for each point cloud
section using k-Nearest Neighbors [16]. The dis-
tance to the closest point is then saved for every
section and added to the state space. In this re-
search, the point cloud is segmented according to

θ in 8 sections, resulting in 8 distances. The work
flow for the point cloud pre-processing can be seen
in the Figure 5.

Figure 5: Point Cloud Pre-Processing.

To conclude, the state st can be represented as a
vector of size 15 as follows:

st = [δd, δψ, u, v, r, Pi−1, φi−1, dLidar1,...,8 ]. (26)

3.2.2 Action Space

As state before, control variables used in this re-
search are the propeller force P and the rudder an-
gle φ. Generally, the maximum allowed speed in-
side the harbors is 3 knots (kn), which is equivalent
to ∼1.5 m/s. However, in the last docking phase,
where the boat is already approaching the berthing
position, it is necessary that this speed is lower.
Due to this restriction, the propeller control com-
mand was limited to P ∈ [−50, 50N ] which leads to
a maximum speed of approximately 0.4 m/s. The
rudder angle will be limited to φ ∈ [−30◦, 30◦].

Since the network presented in Section 2.2.3 has
discrete action space it is necessary to discretize the
control variables. The propeller force and the rud-
der angle were both discretized in 10N and 10º in-
tervals, respectively. Multiplying the 11 possible
actions of the propeller by the 7 possible actions
of the rudder gives the total number of 77 possible
actions.

3.2.3 Reward Function

In the last phase of docking, it is possible to formu-
late the problem as an approximation to the final
position and orientation, gradually decreasing the
speed, until stopping completely in the desired pose.
With this in mind, the reward function designed for
this task can be seen in the Equation (27).

r =

 −rcollision, if collision
rfinal, if final pose

dterm + ψterm + uterm, else
(27)
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where,
dterm = −δd ∗ rdistance, (28)

ψterm = −|δψ| ∗ rorientation, (29)

vterm = − 1

δd
∗
√
u2 + v2 ∗ rvelocity. (30)

The intuition behind this reward design was to
give a very high reward if the agent reaches the final
state and a very high penalty if a collision happens.
The rewards for these two states are represented in
the Equation (27) as rfinal and rcollision, respec-
tively. The final state is reached each time (i) the
relative distance to the final position is less than
1m, (ii) the relative orientation is less than 0.07 rad
and (iii) the speed is less than 0.1m/s. At each
time step, if the agent does not reach the final state
or does not collide with any objects in the envi-
ronment, the reward is given by the last equation
in (27). The terms in (28) and (29) are responsi-
ble for penalizing the relative distance and relative
orientation to the final position, respectively, thus
encouraging the selection of actions that approxi-
mate the agent to the final pose. The term in (30)
penalizes the velocity linearly as a function of the
distance.

The chosen reward parameters are the follow-
ing: (i) rcollision = 30000; (ii) rfinal = 30000;
(iii) rdistance = 150; (iv) rorientation = 100; (v)
rvelocity = 20.

3.2.4 Network Architecture

The neural network adopted is a regular Multilayer
Perceptron (MLP) [12] with input of dimension 15
(number of state variables) and output of dimension
77 (number of actions). The number of hidden lay-
ers was based on another work [1] whose RL-based
control task was formulated in a similar way. That
research used 3 hidden layers with the 256,128, and
64 perceptrons, respectively.

As state before, the dueling architecture consists
of two streams that represent the value and advan-
tage functions, while sharing common layers. For
this research, the dueling network architecture is as
follows:

• The shared layers have the same layout has the
work done by [1] (256x128x64);

• The advantage functions comes after a fully
connected layer with size 77, which is the size
of the action space;

• The value function also comes after a fully con-
nected layer with size 64.

The adopted activation function was the ReLu
(Rectifier Linear Unit) [21] and the RMSProp opti-
mization algorithm [30].

3.2.5 Training parameters

Hyperparameter tunning is also an important task
for good performance in RL models. All the pa-
rameters used for this research and its respective
values are the following: (i) Discount Factor γ =
0.99; (ii) Experience Replay Buffer = 500,000; (iii)
Batch Size = 32; (iv) Target Update Rate = 500;
(v) Learning Rate α = 0.001.

3.3. Scenarios
For this research, two scenarios where taken into
account. In the first scenario, a model will be tested
in which, in training, the agent started each episode
aligned with the dock (Figure 6). In the second one,
each episode will start with the vessel in a position
perpendicular to the docking position (Figure 7).

Figure 6: Scenario 1. Figure 7: Scenario 2.

To complete the task of the third scenario it is
necessary to make some adjustments to the problem
formulation. These changes will be explained in the
next section.

3.3.1 Scenario 3 Adjustments

A variable stask was added that can only have the
value of 0 or 1, depending on the task that the agent
is completing (0 if the agent’s goal is to navigate
away from the dock to be aligned with the final
pose; 1 if the agent’s goal is to approach the final
pose in reverse). The state space is then similar to
the representation shown in Equation (26) with the
addition of this binary variable stask, making the
state space vector with size 16, as shown bellow:

st = [stask, δd, δψ, u, v, r, Pi−1, φi−1, dLidar1,...,8 ].
(31)

There are also some changes that need to be made
to the reward function, as can be seen in Equation
(32).

r =


−rcollision, if collision
rfinal, if final pose

rpre−final, if intrm. pose
dterm0

+ ψterm0
+ uterm0

, if task 0
dterm1 + ψterm1 + uterm1 , if task 1

(32)
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where rpre−final = 30000 is the reward that the
agent receives when it reaches the intermediate
pose, and the index 0 and 1 in the last two equa-
tions in (32) define weather the reward function is
penalizing the distance and the orientation relative
to the intermediate position (0) or the final position
(1). The rest of the parameters are the same as in
Equation (27).

4. Results
Results and commentaries for both scenarios are
presented in this Section.

4.1. Scenario 1
In this scenario, for each episode the vessel starts
already aligned with dock, with a small pertur-
bation imposed in the pose, choosing one of the
following poses: (i) (x1, y1, ψ1) = (20,−2, 200),
(ii) (x2, y2, ψ2) = (20, 0, 180), (iii) (x3, y3, ψ3) =
(20, 2, 160). The goal is to reach the final pose
(x, y, ψ) = (36, 0, 180).

The model was trained for a total of about 4700
episodes and the agent’s navigation behaviour for
this model can be seen in Figure 8.

Figure 8: Vessel’s pose (x, y, ψ).

Figure 9: Surge and Sway Velocities (u, v)
[m/s].

Figure 10: Propeller Force P [N].

Figure 11: Rudder Angle φ [º].

It can be observed in Figure 8 that the agent was
successful in safely approaching the desired position
in reverse, starting from 5 different positions, with
3 of these positions not appearing in training.

It can be observed in the plots of the surge and
sway velocities (Figure 9), that there is a tendency
for the agent to put the maximum speed (due to
the negative reward given at each step) until the
moment in which the velocity penalty becomes too
high and then gradually decrease the speed until
the final position.

Despite this decrease in speed being accompanied
by a somewhat sudden change in propeller force, as
can be seen in Figure 10, this does not have a very
strong influence on speed, since the agent is acting
at low speeds.

4.2. Scenario 2

In this scenario, at each episode, the agent al-
ways starts at the same position and orientation
(x, y, ψ) = (23,−10, 90). At the beginning of the
episode the variable that determines which is the
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agent’s task has the value 0, and as long as it stays
at 0 the reward function will penalize the distance
and orientation relative to the intermediate posi-
tion that is defined as (x, y, ψ) = (18, 3, 150). As
soon as this variable changes from 0 to 1, the re-
ward function then penalizes the distance and ori-
entation relative to the final position defined as
(x, y, ψ) = (36, 0, 180).

In an attempt to eliminate sudden movements
near the final position, the value of the parameter
rvelocity was changed from 20 to 10 in this Scenario,
thus taking away some influence of velocity in the
reward function. The model was trained for a total
of about 4000 episodes and the agent’s navigation
behaviour for this model can be seen in Figure 12.

Figure 12: Vessel’s pose (s, y, ψ).

Figure 13: Surge and Sway Velocities
(u, v) [m/s].

Starting perpendicularly positioned in relation to
the dock, one can see from Figure 12 that the be-
havior of the agent is very similar to that of a pi-
lot performing this task in real life. The agent first
navigates away from the dock in order to be aligned
with it and, as soon as the variable stask changes
from 0 to 1, the agent starts to navigate towards
the final position.

It is also possible to see in the Figure 13 that, at
the end of the first task the agent only reduced the
speed when it was almost reaching the intermediate
position. However, at the end of the second task,

Figure 14: Propeller Force P [N].

Figure 15: Rudder Angle φ [º].

the agent learned a behavior that is actually used by
motor boats in docking, which is to keep the velocity
constant until the vessel is very close to the final
position and when that position is reached a sudden
change is made from reverse navigation to forward
navigation. This way the inertia that is associated
with the constant speed of the boat is cancelled and,
consequently, there is a safer stop. One could argue
that this late reduction in velocity near the final
position can be dangerous in real tests, however,
since in this research the velocity was limited to 0.4
m/s, that is not a serious concern.

Compared to the previous scenarios, this reduc-
tion in the velocity penalty parameter led to a more
desirable behavior, without many abrupt changes
in propeller control. However, the ideal behavior
thought for this task would be a gradual and smooth
reduction of speed.

To complement the tests done here, a test for
a scenario that was never seen by the agent during
training (Figure 16) is done in order to demonstrate
the generalization of the trained model.

This test was able to demonstrate that, even
training the model starting always in the same po-
sition with the objective of always docking in the
same position, the agent managed to dock in an
opposite position to the training dock, having been
successful in making a maneuver that had never ap-
peared during the training.
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Figure 16: Vessel’s pose (x, y, ψ) for dock-
ing space in the opposite side.

The general behavior of the agent was positive,
but there were limitations. Although the sudden
changes in propeller control have practically disap-
peared with the reduction of the velocity penalty
parameter, these sudden changes have not disap-
peared in rudder control (Figure 15). Despite this
behaviour being justified by the lack of maneuver-
ability at low speeds, it is not ideal.

Another limitation to report is that the agent can
only reach the final position in safety if its initial po-
sition is within 3 meters relative to the initial train-
ing position. Further away than this threshold the
agent’s behavior is one of the following: (i) reaches
the tolerance of the intermediate position in a part
of the dock where it becomes difficult to approach
the final position without a collision; (ii) the agent
fails to reach the intermediate position, and, conse-
quently, the variable stask does not change from 0
to 1, but it does not collide with any obstacle either.

5. Conclusions

This research has studied applications of machine
learning in a marine setting, specifically Deep RL
applied as an action-planning guidance layer for the
vessel. To the best of our knowledge, this was also
the first time that a Duelling Network combined
with LiDAR data was used to solve the autonomous
docking problem. From the observed results, it is
clear how Deep RL methods are able to teach an
agent to learn optimal docking maneuvers through
collected experience.

The results reflect how the agent’s behavior is
highly dependent on reward function design and ac-
tion space definition. In particular, inspecting the
results from the first scenario it is clear how the
agent’s behaviour reflects the structure and magni-
tude of the reward components.

Some limited generalization was observed in the
first scenario, where the agent was trained for 3
positions, being successful in others slightly differ-
ent. It was also observed in the second scenario, in
which, although it was trained for only one position,

the agent was successful in docking in positions that
had never been seen in the training. In particular,
in positions that needed a maneuver to the opposite
side of the dock.

Although the model had good performance re-
sults, limitations were found in scenarios where the
robustness of the model was being tested for initial
positions much further away from the initial train-
ing position. As a result of this, it was possible to
observe that without a pre-defined path it becomes
difficult for the agent to be successful in conditions
where it starts far from the docking position.

6. Future Work

The first limitation lies in the collision that occurred
when the test episode in Scenario 2 started in a po-
sition further away than the initial training posi-
tion. Future work involves testing the influence of
the information coming from the LiDAR in collision
avoidance occasions.

In the second scenario, although in state space
only the distance to the final position is present, one
could argue that changing the vessel’s behaviour
from forward to reverse navigation only when the
agent reaches the intermediate position is a subopti-
mal solution and can be considered a path-following
approach. It remains to be proven that it is possible
to design the reward function so that this change is
made automatically by the agent, thus achieving an
optimal solution.

An analysis that can also be interesting in the fu-
ture is to compare the performance of this model,
which was trained in a network with a discrete ac-
tion space, with models trained in networks with
continuous action space.

To conclude, in order to make the environment
as realistic as possible, future work also involves
adding external disturbances, such as wind, cur-
rents, LiDAR measurements noise, as well as a more
complex vessel model (6 DOF) and an actuation de-
lay in control commands.
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A. Appendix

Rotation [º] Translation [m]

Lidar Number α β γ x y z

1 0 27 0 1.0 0.0 3.0
2 0 50 90 0.0 0.5 3.0
3 0 35 180 -1.0 0.0 3.0
4 0 50 270 0.0 -0.5 3.0

Table 1: Transformations between each LiDAR
body-frame and Agent body-frame.

12


