
Autonomous vehicle perception using a driving
simulator: the capabilities of artificial LiDAR data

João Espadinha
joao.m.espadinha@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

January 2021

Abstract

In autonomous driving, object detection and semantic segmentation are critical tasks since it is re-
quired to not only detect and track objects on the road but also to have a deep understanding of the
surroundings. Since annotating 3D point clouds is a high resource and time-consuming task, artificial
data is seen as an upcoming resource that could solve these issues. In this work we propose a study
of the capabilities and potential of artificial LiDAR data for object detection and semantic segmentation,
using deep learning methods. For 3D vehicle perception challenges, training deep neural networks in
big, sparse and unordered point clouds has shown to be a hard task, in part due to the lack of publicly
available data. We used simulator CARLA to generate our data, and studied in depth ways of mitigating
the differences between artificial and real world data. We modelled both the noise from real world point
clouds, and the missed reflections (that we called point dropout) that occur in real world data collection.
We also explored potential benefits of using pre-trained models on artificial data when fine tuning with all
or a fraction of the available real world data. We found clear benefits when using artificial data to pre-train
a network, which allowed us to use a reduced amount of real world data, and boosting the performance
of our models.
Keywords: Object detection, semantic segmentation, artificial LiDAR data, deep learning.

1. Introduction

The overall goal of autonomous driving is allowing
the vehicle to make the most informed decision it
can, based on the circumstances it faces. So hav-
ing a deep understanding of its surroundings and
the behaviour of the dynamic agents is of the ut-
most importance. Object detection and semantic
segmentation are some of the key tasks used to
help tackle those problem, and the ones we will
address in this work.

Significant progress has been made on 2D ob-
ject detection and semantic segmentation but, for
3D vehicle perception challenges, training Deep
Neural Networks (DNNs) with a more complex rep-
resentation, like point clouds, has shown to be a
more challenging task. As a result, there is a gap
between performances for 2D and 3D perception,
which could be narrowed with additional publicly
available data. This lack of data can be explained
by the intense process of 3D point cloud annota-
tion, which requires time and resources. Besides
that, not only the available data usually has big
class imbalances, but it is also prone to human er-
ror when labeling.

As a result, artificial data can be an important

asset to tackle the previous problems. Simulators
usually provide highly precise annotations and,
once we set up the data capturing process, an-
notated data is generated with less time, cost and
human resources. In addition, during the data cre-
ation process we can adjust class statistics to our
needs and create scenes which are hard to repli-
cate in real world.

The main objective of this work is to study the
capabilities and potential of artificial LiDAR data
for object detection and semantic segmentation.
We want to assess the utility of artificial data us-
ing deep learning methods, and apply the gath-
ered knowledge to real world scenarios. The main
challenges that we have to overcome in order to
achieve our goal are: (1) reducing the dissimilarity
between artificial and real data, and (2) discovering
how we can benefit from using a pre-trained model
with artificial data in comparison with training the
DNN from scratch. To solve challenge (1), we cre-
ated a noise model and a point dropout model to
simulate real world effects, and applied them on
our artificial data. To solve challenge (2), first,
we evaluated two different transfer learning strate-
gies, by breaking down the DNNs into two differ-

1



ent sections: encoding and decoding. We decided
whether we should freeze the weights from the en-
coding section or not when fine tuning our DNNs
and, as a result, we assessed the similarity of en-
coded features with artificial and real data. Then
we performed a set of experiments to find out how
the use of a pre-trained model on artificial data
could affect performance and amount of real data
required to fine tune our DNNs.

2. Background
LiDAR (LIght Detection And Ranging) is an ac-
tive remote sensing system which provides precise
depth measurements of the surroundings, creating
a 3D representation of the environment. LiDAR
data points have a total of four elements: the 3D
coordinates (x,y,z) and an intensity value, which
represents the energy that each pulse returns with.

Currently, DNNs are the state-of-the-art methods
on 3D autonomous vehicle perception challenges
and have proven to be a powerfull tool when qual-
ity data is provided. The performance of this meth-
ods highly rely on the data that is used and, this
way, publicly available datasets started to emerge,
in order to contribute to the development of algo-
rithms that work on the real world. Some of the
available datasets with annotated LiDAR data are
H3D [14], nuScenes [3] and the one used in this
work, KITTI [6]. As mentioned before, the creation
of these types of datasets requires a lot of time and
resources, reasons why recent studies have tried
to create and employ artificial data for autonomous
driving purposes. This data has been generated, in
some cases, in video games like Grand Theft Auto
V and, in other cases, using simulators design for
this purpose, like SYNTHIA and CARLA [4].

2.1. Object detection
Object detection has the purpose of identifying and
detecting objects of a certain class. This identifica-
tion can be performed, for example, in images or, in
our case, in a 3D representation like a point cloud.

In early works, it was established that Convolu-
tional Neural Networks (CNNs) were the preferred
architectures when performing object detection on
images. Later, works as [8] suggested a two-stage
approach. In a first stage, a Region Proposal Net-
work (RPN) is used to extract several regions of
interest from a scene, which are regions where the
objects may be. Then, in a second stage, these
proposals are verified and classified by a second
network, like a CNN. Although this approach re-
quires more inference time, it has shown to outper-
form the one stage approaches, which do not use
a RPN. For object detection in point clouds, works
like [12] follow the same line of thought and apply
directly 3D convolutions. However, this approach
requires a lot of computational resources and time.

To solve this issue, newer methods transform the
point cloud into 2D representations, to then apply
2D convolutions. In some cases the point cloud
is projected into the ground plane, in others it is
projected into the image plane and, for the network
used in this work, PointPillars [11], a pseudo-image
is created.

2.2. Semantic Segmentation
Semantic segmentation is the process of linking
each element of a certain representation to a class
label. If we perform this task on an image, the el-
ements are pixels, if we perform on a point cloud,
each element is a three dimensional point.

In images, a commonly used architecture is the
Fully Convolutional Network (FCN). This approach
follows the architecture of a CNN, with the differ-
ence that the fully connected layer is substituted
by convolutional layers. This way, an output map
with smaller size than the image (due to the pre-
vious pooling layers) is obtained, which is than
converted to the original image size using back-
wards convolution. Following studies, such as [1]
build upon FCN, proposing an encoder decoder ar-
chitecture. The encoder block uses a CNN while
the decoder restores the lower dimension features
to the original image resolution. In the end, the
feature representation is mapped to the desired
number of semantic classes. As before, CNN
based approaches for semantic segmentation in
point clouds use a 2D or a 3D approach. Projec-
tion based methods are some of the leading meth-
ods due to their smaller computational needs and
good results. In this work, we use RangeNet++
[13], which uses a spherical projection approach to
create the 2D representation, which is fed into an
encoder-decoder network.

2.3. Related work
Artificial data for autonomous driving is becoming,
recently, a subject of study. Even though there
are some works that explore the creation and use
of artificial images [15] using deep learning meth-
ods, both for object detection and semantic seg-
mentation, there is a lack of work regarding ar-
tificial 3D scene generation. Some of these few
works explore its capabilities for object detection
and instance segmentation, and compare the per-
formance obtained when using KITTI [6].

At [5], a slightly different approach than ours is
proposed. Instead of creating fully artificially gen-
erated scenes, scans from real world scenarios
are generated and augmented with synthetic ob-
stacles. A data-driven approach was developed
which extracts, from real traffic scenes, the dis-
tribution of obstacles’ positions, orientations and
shapes. This learned distribution is then used to
augment the real world scenarios with the com-

2



puter generated objects. Results showed that re-
taining the complexity and realism of real world
scenarios brings added value in comparison with
fully simulated data. However, this approach is
a middle-ground between training DNNs with only
real or simulated data. Although we can generate
different scenes from the same backgrounds, if we
want a large sample size of scenarios, human an-
notation is still needed.

PreSIL [9] is the most identical work to ours. In
their approach, fully artificial data is created using
Grand Theft Auto V (GTA V), and used to detect
pedestrians. GTA V provides information regard-
ing object position, dimensions, heading, type and
vehicle model, and the point cloud is created us-
ing depth images, as we do in our work. There
are, however, some limitations in this approach,
like the fact that GTA V does not provide reflec-
tivity information or the fact that full 360º scans are
not provided. Afterwords, it was concluded that ar-
tificial data can boost performance when using a
pre-trained model on this data. This is especially
true when detecting objects with low class repre-
sentability in real world datasets, like pedestrians.
It can be explained by the fact that datasets created
using simulators can be more easily adapted to the
task’s needs, for example including more pedestri-
ans.

3. Methodology
The work developed consists in a study of the ca-
pabilities and potential of artificial LiDAR data for
the tasks of object detection and semantic seg-
mentation in autonomous driving scenarios, using
deep learning methods.

We can divide our work pipeline in four ma-
jor sections: data creation, data pre-processing,
learning process and the evaluation phase, as it
is shown in Figure 1. The main contributions of
this work are in the pre-processing and evaluation
phase.

Figure 1: Pipeline of the work that was developed.

3.1. Data Generation
During the data creation process, we didn’t have
direct access to a LiDAR sensor in our simulator
and, because of that, we needed to create one. A
typical LiDAR outputs the values of 3D positions (x,
y, z) of each observed point, as well as a value of
the energy that each point returned to the LiDAR

(Eret). To create our point cloud, we used other
resources available in the simulator, in this case, a
depth camera, that occupied the same position as
the LiDAR in our sensor setup.

To create our point could, first, we defined all
the unit vectors with the directions of the simulated
shots from the LiDAR. These vectors were created
based on the values of the horizontal and vertical
field of view and resolutions, from the specifica-
tions of the LiDAR that was being simulated (Velo-
dyne HDL-64E). With respect to the vertical and
horizontal resolutions, after comparing the projec-
tions of real point clouds from Velodyne HDL-64E
and simulated point clouds with the original resolu-
tion values from that scanner, a mismatch was ob-
served. The real point clouds were visibly sparser
and, as a consequence, we changed the original
hoerizontal and vertical resolution values to 0.125º
and 0.485º.

After the unit vectors were created, we projected
them in the image, using the depth camera param-
eters, and obtained the pixels coordinates. With
these values, we can calculate the depth for each
point that is located within the direction of the orig-
inal vector. When we had a point with image co-
ordinates located between pixels, we obtained the
depth value using bilinear interpolation of the depth
values from the four pixels around it. Finally, we
multiplied each unit vector by the corresponding
depth of the generated point, in order to get its 3D
position.

Regarding the returned energy value (Eret), it
was calculated by the following equations:

Eret = Eemit ×Rrel ×Ria ×Ratm , (1a)

Ria = (1− cosα)0.5 , (1b)

Ratm = exp(−σair ×D) . (1c)

where Eemit is the energy of the original laser
pulse, Rrel is the reflectivity of the surface mate-
rial, Ria denotes the reflection rate with respect
to the laser incident angle and Ratm is the air at-
tenuation rate, since each laser beam is absorbed
and reflected when travelling in the air. Rrel is ob-
tained from a prediction of the material of a certain
point, based on the class it belongs to. In Ratm,
reprsented by (1c), σair is a constant, equal to
0.004, and D is the distance from the LiDAR center
to the target.

Regarding the ground truth, we followed the pre-
defined formats used in the 3D object detection
dataset from KITTI Benchmark [7] and the seman-
tic segmentation dataset from Semantic KITTI [2].

With respect to object detection, all the ground
truth was written in two .txt files. The first one had
the information of the intrinsic and extrinsic matri-
ces. The first one maps points from camera coor-
dinate system to image coordinate system and the

3



second one maps the points from LiDAR to cam-
era coordinate systems. The second file had in-
formation about all the objects in the scene. For
each object, we stored information regarding its:
(i) class, (ii) truncation level, (iii) occlusion level,
(iv) angle alpha1 (observation angle of the object),
(v) location, (vi) dimensions, (vii) 2D bounding box,
(viii) rotation y1 (angle of rotation around the verti-
cal axis). For this task we generated objects from
the following classes: “car”, “pedestrian”, “cyclist”,
“truck” and “motorcycle”, from which “car” was the
class to be detected.

Regarding semantic segmentation ground truth,
a .label file was created for each point cloud, which
contained the semantic class that each point be-
longed to. Each semantic class is represented
by an integer and the simulator provides 25 dif-
ferent ones. However, there were two main prob-
lems that we had to tackle before being able to
use the data. First, from the 28 semantic classes
from KITTI and the 25 from CARLA, we observed
that some classes from different instances were
assigned with the same integer value. To solve this
issue, we mapped all CARLA classes to the integer
value from the closest KITTI class. Secondly, it was
observed that, not only some classes from CARLA
were more broad, but also that some classes
from KITTI were not represented in CARLA. This
way, we started by isolating the nineteen semantic
classes used in RangeNet++ [13]. After that, the
previously detected specific classes were mapped
to a broader class, and the ones not represented
in CARLA were excluded. In the end we ended
up with the following fourteen classes: “car” ,“bi-
cycle”, “motorcycle”, “truck”, “person”,“road”, “side-
walk”, “other-ground”, “building”, “fence”, “vegeta-
tion”, “terrain”, “pole” and “traffic-sign””.

3.1.1 Scene Generation and Selection

Since we want to study the capabilities of LiDAR
artificial data for real world applications, there is a
gap between domains (real and artificial) that could
undermine the performance of our models. One
way to attenuate this gap was explained in [16],
where it was shown that if the variability in simu-
lation is high enough, models trained in simulation
should generalize to the real world with no addi-
tional training.

This variability can be accessed in terms variety
of backgrounds, agents (vehicles’ models, pedes-
trians), as well as in terms of agents’ orientations,
relative position to our car and occlusion and trun-
cation levels. With respect to the background, we

1For more detailed explanation, see
https://towardsdatascience.comorientation-estimation-in-
monocular-3d-object-detection-f850ace91411

used all the eight different ones available in our
simulator, which included scenarios from rural ar-
eas as well as cities and highways. Regarding
the foreground, we had access to fifteen differ-
ent pedestrians and twenty-seven different vehi-
cles, which included nineteen different cars, three
different bicycles, three different motorcycles and
two different trucks.

Our data collection process consisted in driv-
ing around a car with our sensor suite, in each
town/area, while capturing consecutive frames.
The movement of our car and the other dynamic
agents was simulated. During the creation of our
scenes we tried to balance two major elements: fi-
delity in relation to the real world and diversity of
agents and its attributes (orientation, occlusion lev-
els, etc). The fact that we could not control move-
ment of our agents meant that we frequently cap-
tured frames with a small amount of objects. To cir-
cumvent this problem, we spawned an additional
amount of static objects (cars, motorcycles, etc)
in our background, ending up with scenes as the
one in Figure 2. These objects were spawned

Figure 2: Scene from CARLA where, besides the moving
agents, we can see several static agents that provide added
variety to our datasets.

with random orientation, to further contribute to the
variability of our dataset. Additionally, we spawned
new objects every 100 frames and deleted the ex-
isting ones every 500 frames. This was necessary
not only to diversify our scenes, but also to ensure
that, in some cases, our car would not get blocked
by other objects on the road for too long.

The data that we got from the simulator was or-
ganized in folders with 4000 sequential frames and
each folder had frames from a single scenario. This
way, after creating several data folders with all the
different scenarios, a selection of the ones with the
highest quality data was required. To ensure a high
quantity and variability of agents from all the differ-
ent classes, we chose the data folders with: (i) the
highest amount and variety of agents in the scenes
and (ii) the least amount of repeated frames (re-
peated frames appeared when the car got blocked
by other objects). After this first stage, we ended
up with a set of folders with sequential frames.
Since we wanted to keep the same structure be-
tween the artificial and KITTI [2, 6] datasets, after
this stage, we obtained our semantic segmentation
data.

Unlike semantic segmentation data that is orga-

4



nized in sequential frames, the KITTI object detec-
tion dataset is composed of random frames from
different scenarios, which means that an additional
selection process was needed. Since, in this work,
we are mostly interested in detecting cars, this
additional stage consisted in a selection of each
frame based on the amount of cars in it. As shown
in [6], to each object, a difficulty mode (“Easy”,
“Moderate” or “Hard”) can be applied depending on
its level of occlusion, truncation and bounding box
height. In PointPillars, if the attributes for the diffi-
culty mode “Hard” were not met, the ground truth
of that object would not be used for training. This
way, we estimated the amount of cars in a frame
after applying the same filtering technique, which
allowed us to better control the true statistics of this
class.

3.2. Pre-processing
Our main goal in this step was to study real world
effects, in order to model them and apply them on
the generated artificial data. The real world effects
we studied were the noise in the point clouds and
the missing points due to missed reflections, which
we call point dropout.

3.2.1 Noise Model

With our noise model, we aim at characterizing the
statistics of the noise vector at each point of the
point cloud, considering its distance to the origin of
the LiDAR reference frame and the angle between
its direction and the forward axis (x axis) of the
same reference frame. Our model considers that
the noise samples follow a normal distribution with
a mean value of 0 and a standard deviation that
was obtained from KITTI data (real world data).

To calculate our standard deviation, we started
by collecting points from different flat surfaces, ob-
tained from the KITTI dataset point clouds. For
each one we used Least Squares to fit a plane to
the corresponding points, in order to simulate the
noiseless surface. After that, for each point, we
computed the distance to the origin of the LiDAR
reference frame, the angle with the forward axis
and the perpendicular distance to the estimated
plane. Finally, we made a quadratic regression of
the perpendicular distances as a function of dis-
tance to origin and angle with x axis. The obtained
function is, by approximation, our standard devia-
tion, and its expression is given by:

(2)
σ = −0.050196α2 − 4.582916× 10−5 d2

− 0.001986 dα+ 0.097530α

+ 0.003070 d− 0.031166

where σ is our standard deviation, α is the angle
between the direction of a point and the forward

axis and d is the distance to the origin of the LiDAR
reference frame.

In order to apply noise to each point, based on its
parameters, we extracted the value of the standard
deviation from (4). Then, we sampled a value from
the normal distribution, and used its absolute value
as the magnitude of the noise vector. Finally, we
randomly selected the direction of the noise vector
and added its coordinates to the selected point.

3.2.2 Point Dropout Model

Regarding our point dropout model, we had the ob-
jective of creating a model that would give us a de-
cision of removal or non-removal for each point of
the point cloud, considering the same attributes as
before. Our model consists in a Bernoulli distribu-
tion that gives us the previously mentioned deci-
sion, from a value of the probability of removing a
certain point, that was obtained from KITTI data.

To obtain the mentioned probability, we started
by selecting several small surfaces from KITTI
point clouds, from which we computed the theoret-
ical amount of points the surface should have and
the amount of points from the actual point cloud.
Then, for each surface, we computed the distance
between its mean point and the origin of the LiDAR
reference frame, the angle between the mean point
and the forward axis and the probability of a point
being removed, given by:

(3)pr =
npt − npa

npt
where pr is our probability value, npt is the theoret-
ical number of points and npa is the actual number
of points in a certain surface. Finally, we applied a
quadratic regression to the probability values that
we computed before. In the end, we obtained a
function that can estimate the values of the aver-
age probability of removal for each combination of
distance to the origin and angle with the x axis.
From this function we obtain, by approximation, the
probability of a certain point being removed, and it
is represented by:

p = 0.186136α2 + 6.984331× 10−5 d2 + 1.648670

×10−4 dα−0.164589α+0.004652 d−0.173883

(4)
In order to simulate the missed reflections from our
simulated LiDAR shots, we started by computing
our probability of removal from (4) and the param-
eters of each point. Finally, we used a Bernoulli
distribution with the previous probability value to
obtain our final decision of removal or non removal.

3.3. Learning
For our experiments we used datasets from two
different domains: real and artificial. Our artifi-
cial data was created following the methodology

5



described in this section and was only used for
training. On the other hand, real world data was
used for both training and validation purposes.
We decided to use only real world data for val-
idation to prevent the model from overfitting to
the artificial data. For object detection, we ob-
tained our data directly from the 3D object detec-
tion dataset, provided by KITTI Benchmark, which
is divided into 7481 training instances and 7518
test instances. Since the test set did not provide
ground truth annotations, we only used the 7481
training instances. We divided the annotated sub-
set into 3712 frames used only for training and
3769 frames used for validation. For semantic
segmentation, we used data provided by Semantic
KITTI which consists in 22 different folders with se-
quential frames. Only the first eleven (0 to 10) were
annotated, with 28 different semantic classes, from
which we used the sequence 8, with 4071 frames,
as validation data and the remaining ones, with 19
130 frames, as training data.

During a training process, the main objective is
to achieve a good generalization ability. In a sit-
uation where we want to learn a certain task in
a domain (source domain), and apply it to a dif-
ferent one (target domain), just validating in a set
of data of the target domain may not be enough.
This way, we explored an additional strategy to help
us tackle difference between artificial and real do-
mains: transfer learning. We wanted to use this
approach to assess whether transferring the knowl-
edge from a model trained with artificial data to a
new one trained with real world data could give
us an added value in our studies. The training
strategy that we choose depends mainly on the
similarity between the source and the target tasks
and datasets. For our case, the source and tar-
get tasks are the same and the datasets only differ
in domain, reasons why we decided to not initial-
ize layers with random weights. Since we did not
know for sure how similar the features from both
domains are, we decided to investigate two differ-
ent approaches. In the first one, we followed the
standard procedure and transferred all pre-trained
weights, from which we froze the encoding layers
and trained the remaining ones. In the second ap-
proach, we also transferred all pre-trained weights
but fine tuned the whole network. Performing ex-
periments with both procedures allowed us to dis-
cover which approach we should and to assess the
similarity between the features from real and artifi-
cial domains.

4. Experimental Setup
In this section, we will describe all the programs
used and implementations that were applied in or-
der to perform our experiments and obtain our nu-
merical results.

4.1. Implementation Details
In order to create our artificial data, we used sim-
ulator CARLA[4] (Car Learning to Act). This is
an open-source simulator2 created to support de-
velopment, training and validation of autonomous
driving systems. As a result, it provides flexibility
in terms of sensor suites specifications and gives
some control over static and dynamic actors, envi-
ronmental conditions and more.

The the sensor setup used, consists in a RGB
camera and a LiDAR scanner identical to the ones
used in the KITTI setup [7]. We follow the spec-
ifications of the original LiDAR model (Velodyne
HDL-64E), with the exception of the vertical and
horizontal resolutions, which we changed, as we
explained in Subsection 3.1. Besides that, the ref-
erence frames of our sensors are defined with the
same convention as in KITTI [7] and our LiDAR
and camera occupy the same positions as, respec-
tively, the LiDAR scanner and camera 0, in KITTI
setup.

For the learning process, we used the implemen-
tation of PointPillars [11] from traveller593 (for ob-
ject detection) and of RangeNet++ [13] from Pho-
togrammetry & Robotics Bonn4 (for semantic seg-
mentation). In both networks, we obtained the
most accurate model based on the performance
it achieved on the real domain validation set. In
the case of PointPillars, we measured this per-
formance with the Average Precision (AP) for the
overlap of 3D bounding boxes (BB) metric, while for
semantic segmentation we used the values from
the mean Intersection over Union (IoU). Further-
more, we performed an initial learning rate tuning
step, following the idea introduced in [10]. As a
result, for object detection we obtained a configu-
ration of 0.0001 and 0.5 for, respectively, the initial
learning rate and decay values while, for seman-
tic segmentation, we obtained a configuration of
0.001 and 0.99 for the same hyperparameters.

4.2. Evaluation
In previous works [5, 9] using the 3D object detec-
tion dataset from KITTI, it was observed that, due
to the lack of annotated data, the experimental re-
sults were obtained using the validation set. Since
we faced the same issue we decided to follow this
practice. For semantic segmentation, even though
DNNs can be evaluated in a server using the KITTI
test set, the high volume of experiments did not al-
low us to use that tool. Thus, we followed the same
procedure as for the previous task, we evaluated
and compared our results on the validation set.

2CARLA simulator github repository https://github.com/carla-
simulator/carla

3Provided in https://github.com/traveller59/second.pytorch
4Provided in https://github.com/PRBonn/lidar-

bonnetal/tree/master/train/tasks/semantic

6



Dataset AP of 3D detections AP of detections in BEV AP of 2D detections AOS
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Raw data 13.20 11.14 10.58 45.78 35.90 31.07 56.84 40.91 37.40 55.26 39.39 35.78
Point Drop. 14.26 11.49 11.25 40.84 33.57 30.98 58.98 45.17 43.87 54.85 41.46 39.75

Noise 14.78 12.01 11.47 51.95 40.44 34.71 60.48 45.47 42.56 56.24 41.99 39.24
Both 13.84 11.29 11.00 41.95 31.97 28.87 59.88 44.65 41.78 58.34 42.78 39.75

Table 1: Results after evaluating the models trained with datasets with different pre-processing implementations (Object Detec-
tion).

Dataset ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

pe
rs

on

ro
ad

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

te
rr

ai
n

po
le

tra
ffi

c-
si

gn

m
Io

U

Raw data 23.3 0.3 2.5 0.5 9.3 54.6 28 0.7 16.3 2.2 0.6 5.1 4.7 1.2 10.7
Point Drop 41.3 0.7 3.5 0.4 8.8 58.1 27.7 0.6 14.1 1.7 1.1 8.5 3.5 2.2 12.3

Noise 27.4 0.7 3.9 0.3 8.3 55.8 27.4 0.3 19.7 1.6 0.4 6.6 4.0 2.4 11.3
Both 37.6 0.6 3.4 0.4 10.3 55.4 29.7 0.4 15.4 2.1 1.4 9.3 4.6 1.8 12.314

Table 2: Results after evaluating the models trained with datasets with different pre-processing implementations (Semantic Seg-
mentation).

4.3. Metrics
We used the official KITTI evaluation metrics from
[2, 6] for, respectively, object detection and seman-
tic segmentation, since they are widely used in
these types of works.

Regarding object detection, we required an In-
tersection over Union (IoU) of 70% between the
predicted and ground truth BB, for that prediction
to be considered a True Positive (TP). Besides
that, if multiple detections of a same object were
counted, the one with higher IoU was considered
a TP and axis aligned Non Maximum Suppression
(NMS) was applied, with an overlap threshold of
0.5 IoU. In the end, the evaluation metrics used for
this task are: (i) AP for the overlap of 3D BB, (ii)
AP for the overlap of 2D BB, (iii) AP for the over-
lap of BB in Birds Eye View (BEV) and (iv) Average
Orientation Similarity (AOS). It is also important to
mention that all this metrics are stratified into three
difficulty modes (“Easy”, “Moderate” and “Hard”).
For each difficulty mode, only ground truth with an
equal or lower difficulty index is considered when
training.

For the case of semantic segmentation, we used
the Intersection over Union metric, also known as
Jaccard Index, for each class, as well as the final
mean Intersection over Union.

5. Results & discussion
In this chapter, we will describe all the experimental
studies that were performed and the conclusions
that we took from the obtained results. With these
experiments, we have the goal of evaluating, em-
pirically, the effect of changes in certain properties
of our training sets and the effect of different learn-
ing techniques.

5.1. Study A
In this study, we want to assess the impact that our
pre-processing models have in the performance
of the network. For that reason, we created four

datasets, all with artificial data and with either: (i)
no pre-processing model applied (raw data), (ii)
only noise, (iii) only point dropout or (iv) both noise
and dropout. For object detection, all datasets
have 4000 frames, while for semantic segmenta-
tion they have 20 000 frames. For the first task, the
datasets were created using the additional frame
selection process described in Section 3.1.1, and
have a similar distribution of cars per frame as in
the 3D object detection dataset from [6], as shown
in figure 3:

Figure 3: Distribution of cars per frame in the datasets used in
Study A.

As we can see in Tables 1 and 2, we get an over-
all better performance, for both tasks, when we ap-
ply our pre-processing models on the point cloud.
This way, we can verify that our pre-processing
step is helping to close the gap between real and
artificial domains, as it was intended to. For ob-
ject detection, our best model is the one with noisy
point clouds, while for semantic segmentation we
obtain a better performance when we apply both
noise and dropout. One possible reason for the
small contribution of point dropout in object detec-
tion is the difference between the DNNs’ architec-
tures, more specifically in the pillar feature net sec-
tion from PointPillars [11]. In this block of the net-
work the point cloud is divided into a set of pil-
lars, and each one can have a maximum of 100

7



Datas. Size AP of 3D detections AP of detections in BEV AP of 2D detections AOS
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

4 000 14.78 12.01 11.47 51.95 40.44 34.71 60.48 45.47 42.56 56.24 41.99 39.24
10 000 13.21 11.34 10.89 41.36 31.77 28.05 57.48 43.74 41.49 56.34 42.63 40.22
20 000 12.87 11.11 10.81 41.45 34.14 30.56 53.31 42.08 39.87 51.90 40.60 38.27
40 000 12.48 10.90 10.79 33.62 28.35 25.95 51.74 39.99 39.55 51.31 39.36 38.64

Table 3: Results after evaluating the models trained with datasets with different sizes (Object Detection).

Datas. Size ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

pe
rs

on

ro
ad

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

te
rr

ai
n

po
le

tra
ffi

c-
si

gn

m
Io

U

20 000 37.6 0.6 3.4 0.4 10.3 55.4 29.7 0.4 15.4 2.1 1.4 9.3 4.6 1.8 12.314
34 000 41.0 0.8 3.4 0.3 11.3 63.0 31.7 0.7 13.1 1.9 1.1 8.3 5.1 1.7 13.1
50 000 38.1 1.5 4.3 0.4 10.6 62.0 32.3 0.9 16.2 2.2 2.1 8.9 4.8 1.8 13.3

Table 4: Results after evaluating the models trained with datasets with different sizes (Semantic Segmentation).

points. When this amount of points is exceeded,
the ones in excess are removed randomly. This
way, not only points can be removed even without
using our point dropout model, but there could also
occur cases where, even after using our model, the
amount of points could still exceed the maximum
allowed. This way, we believe that this first block of
PointPillars could influence the effectiveness of our
point dropout model.

5.2. Study B
For Study B, we have the objective of inferring
the impact that the increase in dataset size could
have in the performance of our networks. Thus
we created three additional training sets with ar-
tificial data for object detection, with 10 000, 20
000 and 40 000 frames, and two additional ones
for semantic segmentation, with 34 000 and 50
000 frames. Additionally, we applied to our data
the pre-processing models that performed the best
in our previous study. Thus our object detec-
tion datasets had noisy point clouds, while the
semantic segmentation ones had noise and point
dopout applied. In this case, the object detec-
tion datasets were not fully created using the ad-
ditional frame selection process. Besides the ini-
tial 4000 frames from the previous study, that were
included in all these datasets, the one with 10
000 frames included 2000 more selected frames,
and the remaining ones included 2000 more se-
lected frames than the later one. The remaining
data samples were taken directly from the simula-
tor, which means that our datasets would have a
higher amount of frames with a smaller amount of
cars (between 0 and 4). With the objective balanc-
ing the distribution of cars per frame, all of the new
selected ones had an amount of cars ranging from
5 to 9.

From Table 3 and Table 4, we can observe pretty
distinct results. For object, we obtained better
performance when training with only 4000 frames,
while for semantic segmentation we observe an in-
crease in performance as the dataset got bigger.

A more obvious reason for the observed behaviour
in the first task is the data selection process, since
the smaller dataset had fully selected data based
on the amount of cars per frame. This extra step
allowed us to not only choose higher quality data
but also to have a bigger control on the dataset
statistics. Besides that, the number of agent mod-
els in CARLA is limited and, as a consequence,
the variability in the object detection annotations
becomes very limited, since weight, height and
length are fixed values to each car model. In the
semantic segmentation case,the RangeNet++ pre-
processing step, in which all points are projected
into a spherical image, provides added variability,
since the projections of the point-wise annotations
will differ significantly more as we move.

5.3. Study C
For this study, we have the goal of verifying
whether we are able to get similar performance
when just fine tuning the non-encoding blocks of
the network in comparison with fine tuning the
whole network. This way, we can also get addi-
tional information regarding the similarity between
the features that are encoded with real data and
artificial data. For object detection we used the
model trained with 4000 frames of noisy data to
initialize our network, while for semantic segmen-
tation we used the one trained with 20 000 frames
of data with noise and dropout. We used real world
data from the training sets specified in Section 3.3
to fine tune either the whole networks or just, for
PointPillars, the decoder and single shot detec-
tor blocks and, for semantic segmentation, the de-
coder and segmentation head.

From Tables 5 and 6, we can draw the same con-
clusion: we obtain better results when fine tuning
the whole network. The fact that freezing the en-
coding blocks decreased performance allows us to
conclude that there are differences in the encoded
features when using artificial or real data. Thus we
can also infer that the used simulator does not pro-
vide high enough realism for us to reuse the same

8



Model AP of 3D detections AP of detections in BEV AP of 2D detections AOS
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

FT 2000 84.24 69.61 67.90 90.22 85.05 80.42 90.48 87.08 84.35 90.27 86.36 83.26
Dec 2000 70.02 54.94 51.71 89.00 77.99 75.31 88.70 77.36 73.98 87.57 75.13 71.15
FT 3712 85.34 75.58 69.63 90.14 86.51 81.23 90.50 88.18 86.53 90.34 87.57 85.54

Dec 3712 71.62 55.85 53.49 89.13 78.15 75.61 88.79 77.73 74.76 87.75 75.71 72.18
Table 5: Results after fine tuning the whole network (FT) or just the decoding/detection section (Dec), using real world datasets
(Object Detection).

Model ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

pe
rs

on

ro
ad

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

te
rr

ai
n

po
le

tra
ffi

c-
si

gn

m
Io

U

FT 10 117 89.3 12.0 17.9 23.2 21.1 90.6 73.6 22.5 74.6 27.9 80.4 66.7 29.8 24.9 46.7
Dec 10 117 84.4 2.7 7.1 9.3 16.8 85.6 63.7 13.8 62.3 12.4 66.1 62.4 20.3 15.5 37.3
FT 19 130 90.2 15.4 29.3 25.8 32.8 92.2 77.4 34.6 79.1 43.2 81.8 69.9 33.0 25.9 52.22

Dec 19 130 84.6 3.7 12.5 7.0 22.5 87.4 67.0 20.5 66.3 14.4 70.8 66.4 18.6 16.1 39.8
Table 6: Results after fine tuning the whole network (FT) or just the decoding/segmentation section (Dec), using real world
datasets (Semantic Segmentation).

encoded features when training with artificial and
real world data.

5.4. Study D
Finally, in this last study, we tried to find the
peak performance of our networks as well as
their capacity to maintain a stable performance as
we decrease the size of the real world training
set. These comparisons were drawn between the
cases where we fine tuned the whole network, ini-
tialized with the weights from a pre-trained model
on artificial data, and when we trained the network
from scratch. The pre-trained models used are the
same as the ones in study C, and we decreased
the size of the real world dataset.

From Tables 7 and 8, we can observe two differ-
ent behaviours. In the first one, regarding object
detection, using a pre-trained model with artificial
data allowed us to better stabilize the performance
of our networks when we decreased the size of the
training set. On the other hand, for semantic seg-
mentation, we can observe a general improvement
in performance when using a pre-trained model. In
the end, we obtained clear contributions from arti-
ficial data, both for object detection and semantic
segmentation.

6. Conclusions
With this work we intended to study the capabil-
ities and potential of artificial LiDAR data for ob-
ject detection and semantic segmentation on real
world scenarios. To do that we setup a data gen-
eration process on CARLA [1] that allowed us to
create data with the highest quantity and variability
of agents and scenarios possible. We also created
a noise and point dropout models to help reduc-
ing the gap between real and artificial domains. In
this work, we performed experiments to not only
assess the highest performance we can achieve
when training with artificial data, but also to study
the potential of using pre-trained models on artifi-

cial data to fine tune our DNNs. In the end, we ob-
served that simulators still cannot achieve a high
enough degree of realism to replicate the complex-
ity of the real world. However, we showed how we
still can benefit from using artificial data when ap-
plying the right training strategies. We can use a
pre-train model on artificial data to not only boost
performance, but also to allow us to use a smaller
amount of real world data when training.

References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla.

Segnet: A deep convolutional encoder-
decoder architecture for image segmenta-
tion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(12):2481–2495,
2017.

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel,
S. Behnke, C. Stachniss, and J. Gall. Se-
manticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proc.
of the IEEE/CVF International Conf. on Com-
puter Vision (ICCV), 2019.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora,
V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Bal-
dan, and O. Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In
2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages
11618–11628, 2020.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez,
and V. Koltun. CARLA: An Open Urban Driv-
ing Simulator. In Proceedings of the 1st An-
nual Conference on Robot Learning, pages
1–16, 2017.

[5] J. Fang, D. Zhou, F. Yan, Z. Tongtong,
F. Zhang, Y. Ma, L. Wang, and R. Yang. Aug-
mented lidar simulator for autonomous driv-

9



Model AP of 3D detections AP of detections in BEV AP of 2D detections AOS
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

FT 3712 85.34 75.58 69.63 90.14 86.51 81.23 90.50 88.18 86.53 90.34 87.57 85.54
FT 2000 84.24 69.61 67.90 90.22 85.05 80.42 90.48 87.08 84.35 90.27 86.36 83.26
FT 1000 80.22 69.06 66.87 90.14 84.00 80.11 90.21 85.72 80.73 90.09 84.94 79.68
FT 500 78.64 67.39 65.27 90.17 84.77 79.99 90.20 80.96 79.73 90.01 80.15 78.49
R 3712 85.58 75.27 69.66 90.03 86.99 84.17 90.71 88.66 87.11 90.61 88.13 86.08
R 2000 81.04 70.55 67.25 90.21 84.01 80.65 90.51 86.91 82.42 90.25 86.16 81.36
R 1000 79.34 67.57 65.43 90.01 80.43 79.74 90.26 81.78 80.17 90.05 80.95 78.82
R 500 73.12 59.33 56.42 89.06 79.34 77.76 88.66 78.03 76.67 87.58 75.96 73.94

Table 7: Results after fine tuning the whole network (FT) or training it from scratch (R), using increasingly smaller real world
datasets (Object Detection).

Model ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

pe
rs

on

ro
ad

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

te
rr

ai
n

po
le

tra
ffi

c-
si

gn

m
Io

U

FT 19 130 90.2 15.4 29.3 25.8 32.8 92.2 77.4 34.6 79.1 43.2 81.8 69.9 33.0 25.9 52.22
FT 10 117 89.3 12.0 17.9 23.2 21.1 90.6 73.6 22.5 74.6 27.9 80.4 66.7 29.8 24.9 46.7
FT 5 305 86.3 5.3 6.0 26.8 16.9 87.3 67.4 8.6 69.7 19.6 74.2 61.4 26.0 22.8 41.3
FT 2 173 75.0 1.3 1.2 5.4 7.1 82.3 52.4 2.2 51.5 7.7 63.9 49.7 19.0 17.6 31.2
R 19 130 89.3 16.0 17.9 32.9 26.6 92.1 76.9 34.2 76.6 39.5 80.6 68.8 28.3 24.4 50.03
R 10 117 87.1 17.5 10.8 29.8 16.0 90.4 73.0 21.9 72.4 24.2 78.4 65.9 23.9 23.3 45.3
R 5 305 84.9 9.6 2.7 21.1 9.8 87.2 67.4 9.7 67.6 17.4 73.1 60.2 22.5 23.0 39.7
R 2 173 73.7 0.7 0.1 11.9 1.9 78.9 49.9 2.1 52.1 9.7 65.0 47.7 14.2 15.6 30.2

Table 8: Results after fine tuning the whole network (FT) or training it from scratch (R), using increasingly smaller real world
datasets (Semantic Segmentation).

ing. IEEE Robotics and Automation Letters,
PP:1–1, 01 2020.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun.
Vision meets Robotics: The KITTI Dataset.
International Journal of Robotics Research
(IJRR), 2013.

[7] A. Geiger, P. Lenz, and R. Urtasun. Are
we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. In Conference
on Computer Vision and Pattern Recognition
(CVPR), 2012.

[8] R. Girshick. Fast r-cnn. In International Con-
ference on Computer Vision (ICCV), 2015.

[9] B. Hurl, K. Czarnecki, and S. Waslander. Pre-
cise synthetic image and lidar (presil) dataset
for autonomous vehicle perception. In 2019
IEEE Intelligent Vehicles Symposium (IV),
pages 2522–2529, 2019.

[10] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas,
A. Fischer, Y. Bengio, and A. Storkey. Width of
Minima Reached by Stochastic Gradient De-
scent is Influenced by Learning Rate to Batch
Size Ratio: 27th International Conference on
Artificial Neural Networks, Rhodes, Greece,
October 4–7, 2018, Proceedings, Part III,
pages 392–402. 10 2018.

[11] A. H. Lang, S. Vora, H. Caesar, L. Zhou,
J. Yang, and O. Beijbom. PointPillars: Fast
Encoders for Object Detection From Point

Clouds. 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR),
Jun 2019.

[12] B. Li. 3d fully convolutional network for
vehicle detection in point cloud. In 2017
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages
1513–1518, 2017.

[13] A. Milioto, I. Vizzo, J. Behley, and C. Stach-
niss. RangeNet++: Fast and Accurate Li-
DAR Semantic Segmentation. In IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems
(IROS), 2019.

[14] A. Patil, S. Malla, H. Gang, and Y.-T. Chen.
The h3d dataset for full-surround 3d multi-
object detection and tracking in crowded ur-
ban scenes. IEEE International Conference
on Robotics and Automation (ICRA), 2019.

[15] S. R. Richter, Z. Hayder, and V. Koltun.
Playing for benchmarks. In 2017 IEEE In-
ternational Conference on Computer Vision
(ICCV), pages 2232–2241, 2017.

[16] J. Tobin, R. Fong, A. Ray, J. Schneider,
W. Zaremba, and P. Abbeel. Domain random-
ization for transferring deep neural networks
from simulation to the real world. CoRR,
abs/1703.06907, 2017.

10


