
Feature Engineering for Click Prediction

Fernando Lourenço
fernando.lourenco@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2020

Abstract

Keywords: Deep-learning, click-through rate, conversion rate, Machine learning

1. Introduction
In the digital advertising world, publishers and ad-
vertisers have many pricing models to negotiate
from. These models (Cost per Click - CPC, Cost
per Mille - CPM , Cost per action - CPA, etc.) de-
scribe what an advertiser is actually paying for, so
that the right model can be chosen according to
their needs. Click prediction plays a very impor-
tant role in this type of business because it gives us
an approximate expectation about which ads can
lead to a higher income. In this work we focus on
two paying models, CPC and CPA.

”Deep learning is a specific sub field of machine
learning: a new take on learning representations
from data that puts an emphasis on learning suc-
cessive layers of increasingly meaningful represen-
tations” [2]. When referring to the deep part in
this field, we mean that instead of only one layer of
representation (linear models), these models have
successive layers stacked one after the other learn-
ing more complex projections as it deepens, each
layer creates a representation based on the previ-
ous layer. Machine learning problems can be seen
as a function f(x) which transforms x into a cer-
tain y. The difference between machine learning
(ML) - shallow and deep learning (DL) architec-
tures is the way we compute f(x), in ML can be
defined as f(x) = y, however in DL we define as
f(x) = fL(...(f2(f1(x1)))), where L is the number
of layers.

2. Related Work
The next sections will briefly present each of the
selected works, while trying to answer three impor-
tant questions, namely: what is the problem being
addressed, what approach did the authors propose
to address that problem, and what results they were
able to achieve. Finally, there are some other re-
lated works which represent other good ideas that
could be applied. The proposed CCPM model is

based on a convolutional neural network, and has
the ability to extract local and global key features
from the input instances, through wide convolu-
tional layers alternated with dynamic pooling lay-
ers. The Deep and Cross network (DCN) has a very
interesting structure because it is the combination
of two separate approaches: a Cross Network, where
feature crossing is done explicitly at each layer, and
a Deep Network, which is a fully-connected feed-
forward neural network. The solution architecture
is a factorization machine (FM) component intro-
duced by [5] to learn feature interactions up to
order 2, and a deep component which is a feed-
forward neural network whose objective is to learn
high-order feature interaction. The first is called
Factorization Machine supported Neural Network
(FNN) inspired by FMs [5, 6, 8]. The second is a
Sampling-based Neural Network (SNN) powered by
either a sampling-based restricted Boltzmann ma-
chine (SNN-RBM) [4] or a sampling-based denois-
ing auto-encoder (SNN-DAE) [1] using a proposed
negative sampling method. The AutoInt model pro-
posed in [7], uses a multi-head attention mecha-
nism [9] combined with residual connections.

3. Proposed Approach

As aforementioned our goal is to compare different
models that execute feature engineering automati-
cally. Our approach began by creating a process-
ing pipeline. First we have to select a data set, it
can be either for click-through rate or conversion
rate. We have selected two data sets by coincidence
both CTR. The second step is to select a model
to test, in the 4 we show both the theory behind
the selected models and their possible implementa-
tion. Last step is to chose a proper evaluation met-
ric, there are many functions that can be selected
which will be explain further. What to expect in
CTR/CVR data sets? Data comes with different
types, however in these specific cases the most com-

1



mon are numerical and categorical, we can also find
time series. The numerical features, are the ones
having a meaningful ranking among them. Taking
as example grades, we know that if student A had
a better grade than student B, then A > B. Hence,
these values domain is ordered, and this order has a
meaning. Categorical data on the other hand, does
not have an order. Lets consider another example,
colors [’Red’, ’Blue’, ’Green’], a naive approach to
encode this data would be assigning a number to
each value, e.g red - 1, blue - 2 and green - 3. How-
ever, we cannot state that red ¡ blue ¡ green, so this
approach would induce our model to error.

Our research lead to believe that some mathemat-
ical operations, such as: inner product, outer prod-
uct, multiplication, factorization, etc; have prop-
erties that explore the relation between features.
These are applied in many model layers, see chap-
ter 2. We will test and study some of these models,
in order to conclude which ones perform better and
how these layers influence the prediction. To do this
we selected the following models:

• Autoint

• deep & cross network

• deep factorization machine

• product-based neural network - inner and outer
product version

4. Implementation
We will briefly explain the logic behind our selected
models and make the bridge between the math be-
hind each model logic and their corresponding im-
plementation using python data science libraries.
These models can be implemented using keras cus-
tom layer. By defining the build method we can
create the weights and bias needed, which are learn-
able parameters that allow our model to keep track
of how much importance the result components of
our layer should have. The logic to how the features
can be combined with the corresponding weights is
defined in the call method, where the math that
make our models unique. Exploring different al-
gorithms to combine the features and create low
and high-order combinatorial features to improve
the model performance. Deep factorization ma-
chine [3], combines two architectures the factor-
ization and deep component. The first, measure
feature interactions through the inner product of
their latent vectors having the following output:
yFM = 〈w, x〉 +

∑d
i=1

∑d
j=i+1〈Vi, Vjxi · xj . Deep

and cross network [10], as also uses a deep part
which implementation would be similar to the one
in the previous section. So we will only focus on the
cross layer, that as the following formula: xl+1 =

x0x
T
l wl + bl + xl. This last model uses an interest-

ing approach which can be enhanced by changing
the operation related to feature interaction. In this
work it is used the inner product but can be de-
fined as a neural network. The correlation between
features is define as: α

(h)
m,k = expψ

(h)
(em,ek)∑n

i=01 expψ
(h)

(em,ek)
,

where ψ is our similarity function between fea-
ture m and k under the attention head h define
as ψh(em, ek) = 〈Wh

Queryem,W
h
Keyek〉, WQuery and

WKey are transforming matrices from the original
embedding space to a new space.

5. Conclusions
In conclusion to this work, the techniques which
performed better for our case studies were the outer
product in PNN and the inner product in the At-
tention network for AutoInt. Although in training
these models perform better, we were not able to ex-
tract the full power from the other models. Because,
training is a process that requires a lot of resources
related to time and memory; We were able to train
our models through 1000 epochs achieving a sta-
ble loss and validation loss values. But with some
hyper-parameter tuning, and other data strategy
would have given us best results for these two mod-
els. The results we achieved were not as strong as
the papers introducing these algorithms. Our main
hypothesis resides in the fact that we need to apply
a good embedding to the data before we apply it
to the model. The best results in this area reside
in weather a good representation can be found for
our features. These must be in the same represen-
tation dominion so semantics is very important for
this task in order to represent data in a way that
their combination is meaningful.

References
[1] Y. Bengio, L. Yao, G. Alain, and P. Vincent.

Generalized denoising auto-encoders as gener-
ative models. In Advances in Neural Infor-
mation Processing Systems 26, pages 899–907.
Curran Associates, Inc., 2013.

[2] F. Chollet. Deep Learning with Python. Man-
ning Publications, 1st edition, 2017.

[3] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He.
DeepFM: A factorization-machine based neu-
ral network for CTR prediction. In Proceed-
ings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-
17, pages 1725–1731, 2017.

[4] G. E. Hinton. A Practical Guide to Training
Restricted Boltzmann Machines, pages 599–
619. Springer, 2012.

[5] S. Rendle. Factorization machines. In Proceed-
ings of the 2010 IEEE International Confer-

2



ence on Data Mining, ICDM ’10, pages 995–
1000. IEEE Computer Society, 2010.

[6] S. Rendle. Factorization machines with libFM.
ACM Trans. Intell. Syst. Technol., 3(3):57:1–
57:22, 2012.

[7] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu,
M. Zhang, and J. Tang. Autoint: Automatic
feature interaction learning via self-attentive
neural networks. CoRR, 2018.

[8] A. P. Ta. Factorization machines with follow-
the-regularized-leader for ctr prediction in dis-
play advertising. In 2015 IEEE International
Conference on Big Data (Big Data), pages
2889–2891, 2015.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information
Processing Systems 30, pages 5998–6008. Cur-
ran Associates, Inc., 2017.

[10] R. Wang, B. Fu, G. Fu, and M. Wang. Deep &
cross network for ad click predictions. In Pro-
ceedings of the ADKDD’17, ADKDD’17, pages
12:1–12:7. ACM, 2017.

3


