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ABSTRACT 

The focus of this research pretends to acknowledge the 

concept and structure of a typical side-channel attack and 

its variations. In a second phase, to dive into cache side-

channel attacks that use timing records as side-channel 

information, for uncovering the secret key used by a victim 

cryptographic application. Thus, we implement an attack, 

based on Prime + Probe strategy, relying on the time 

differences between L1-D and the other cache levels 

latency. Our attack requires an unprivileged attack process 

running in the same CPU core as our victim, using SMT 

technology. The attack process can choose the plaintext 

values to input in our victim. Our victim application uses 

the inputted data to perform an AES encryption using 

OpenSSL functions. Additionally, we evaluate the success 

of the performed attack, using the amount of key 

information discovered, according to different vectors, such 

as the amount of side-channel information produced. 
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INTRODUCTION 
Computational systems can unintentionally leak 

information that in a first instance can be considered as 

innocent information. However, someone with malicious 

intentions can analyze it, along with other information, to 

compromise system’s security-critical data. Therefore, side-

channel attacks correlate the variations of the leaked (side-

channel) information against the respective input/output 

from a system’s cryptographic computation. The main 

purpose of this attack is to discover a secret such as a 

cryptographic secret key used by a victim application, 

compromising this way the system’s security-critical data. 

A general side-channel attack is divided into two phases: 

online phase, where the side-channel information is 

extracted, and an offline phase where it is correlated and 

processed. The leaked information consumed by these 

attacks can take different forms: the type of sound emitted, 

the amount of power consumption or the duration time of a 

computation from a system derived from the different 

memory level’s latencies. 

BACKGROUND 

Caches 

The cache serves as a small piece of high-speed memory, 

[1], managed by machine’s hardware. It keeps the CPU as 

busy as possible by minimizing the bottleneck of load/store 

latency to a lower memory level. Modern caches are 

divided into three levels L1, L2, L3. The CPU looks for the 

data by the same order: if there is a cache miss in a given 

cache level, the next level is consulted. The more cache 

levels accessed, the longer it takes to get the required data. 

Each cache level is composed by a number of lines, [5]. 

Where each line has a specific number of cache lines. Each 

cache line can store a fixed-size block of information, 

called cache block. 

Simultaneous Multithreading 

Simultaneous multithreading [6] is a technology 

implemented by most modern CPU’s that allows two 

hardware threads to run in the same CPU core at the same 

time. Consequently, these two threads share the same group 

of memory hierarchy levels, which includes L1, L2 and L3. 

Intel CPU’s often references this technology by” 

Hyperthreading” technology. 

 

CPU Dynamic Frequency Scaling 

It’s a technique employed in modern architectures that 

allow the CPU’s frequency to adapt “on the fly” to the 

actual computation need, [7]. It conserves power and 

reduces the amount of heat produced, since in moments it’s 

not required a significant amount of computational effort, 

the CPU’s underclocks and consequently saves energy. 

 

AES 

The Advanced Encryption Standard, [8], is a block cipher 

algorithm using symmetric keys. This algorithm operates at 

a 128-bit block at a time, accepting a 128, 192 or 256-bit 

key and performing 10, 12, 14 rounds respectively. The 

idea behind the AES algorithm is to pick 16-byte blocks of 

the input each time, also known as state. This state will 

receive a set of key dependent transformations and 

substitutions for each round generating a final state, which 

represents the desired output. 

 



The set of transformations performed in each round are: 

SubBytes, which substitutes one byte by a different 

predefined one using a nonlinear function. 

ShiftRow, shifts the 2nd, 3rd and 4th row of the state by 1, 2, 

3 positions to the left respectively. 

MixColumn, each column of the state matrix becomes its 

multiplication in a GF(256). 

AddRoundKey, where it’s applied an exclusive OR 

operation between the state and the respective round key. 

 

AES 128-biy key encryption pseudocode: 

state = plaintext 

AddRoundKey(state, roundkey[0]) 

For round in [1;8]: 

 SubBytes(state) 

 ShiftRows(state) 

 MixColumn(state) 

AddRoundKey(state, roundkey[round]) 

 

SubBytes(state) 

ShiftRows(state) 

AddRoundKey(state, roundkey[9]) 

 

 

AES implementations are true reproductions of the AES 

algorithm with some modifications that enhance the whole 

process performance. Most of these modifications consists 

on replacing some transformations by a lookup on a pre-

computed static table. 

The most popular implementation are S-box and T-box: 

S-box replaces the SubByte transformation by a lookup to a 

table called S-box. 

T-box makes a lookup on a T-box table instead of 

performing the SubBytes and MixColumn transformations. 

 

STATE OF THE ART 

Side-channel attack 

A side-channel attack aims to discover a secret in the 

system for the advantage of an attacker. The most common 

example of a secret is the key used by a victim in order to 

perform a cryptographic computation over some 

information for local storage or network dispatch purposes, 

[4].  

A side-channel attack strategy relies on extracting 

information of the system that is not meant to be leaked. 

This information is then cryptoanalysed achieving partially 

or entirely our goal. Given the procedure of a typical side-

channel attack, we may easily divide it in two different 

phases:  

• An online phase, where the attacker needs the 

victim to be performing some cryptographic 

computation for extracting the side-channel 

information.  

• An offline phase, which no longer requires the 

presence of the victim, and where the side-channel 

information is processed (cryptoanalysed).  

A side-channel attack can use different forms of side-

channel information, like timing [4][3], power consumption 

[2] or even acoustic information. 

Most known timing side-channel attacks 

Evict + Time Attack 

1) Attacker triggers a victim encryption execution 

using a known random plaintext 

2) Attacker evicts a specific line of the targeted cache 

level 

3) Attacker trigger a victim encryption execution 

using the same plaintext and times it 

 

The triplet extract from the previous process is <plaintext p; 

line evicted l; duration d>. It’s up to the attacker to repeat 

the same process again and again, gathering triplets having 

the same or not attack input. The group of all the triplets 

acquired correspond to the side-channel information. 

For the lines with higher 2nd encryption duration: It means 

the table blocks mapped by the same respective lines were 

required during the 2nd encryption, always causing a cache 

miss, since they were evicted from the cache in the line 

eviction phase, delaying the overall encryption time. 

For the rest of the lines: It means the table blocks mapped 

by the same respective lines were not required during the 

2nd encryption, causing no cache miss, and thus not 

penalizing the overall encryption time. 

AES specification equations that generate the 1st and 2nd 

round state bytes are relatively simple equations that tell the 

relation between plaintext information with key information 

and table elements. On the other side, the attacker is aware 

of the plaintext and the used table blocks (and consequently 

the unused ones). This allows to the attacker to exclude the 

key values that when placed on the equations they access 

table blocks detected as blocks from lines with a low 2nd 

enc. duration. The remaining key bytes not excluded 

represents the key discovered by this process. 

Prime + Probe 

1) Attacker loads a cache sized data array 

2) Attacker triggers a victim encryption execution 

using a known random plaintext 

3) Attacker fills and times each line with array data 

 

From the previous process, it’s created some triplets in the 

form of: <plaintext p; line evicted l; duration d>. It’s up to 

the attacker to repeat the same process again and again, 

gathering triplets having different attack input.  



The meaning of the side-channel information as well as its 

crypto-analysis is performed likewise in Evict + Time 

attack. 

Flush + Flush 

1) Attacker performs a clflush instruction using any 

table block address as argument 

2) Attacker triggers a victim cryptographic execution 

using a known random plaintext 

3) Attacker performs and times a clflush using as 

argument the same first table block address 

 

There are extracted some triplets with the following format: 

<plaintext p; table block evicted t; duration d>. It’s up to 

the attacker to repeat the same process again and again, 

gathering triplets having different plaintexts, [9].  

The meaning of the side-channel information as well as its 

crypto-analysis is performed likewise in Evict + Time and 

Prime + Probe attack. 

 

Countermeasures 

Countermeasures solutions are divided in 2 different 

groups: hardware-based solutions [10] [11] and software-

based solutions [4] [3]. 

Hardware Based 

• Static Partitioning Cache: It separates the cache for the 

victim and for the attacker. 

 • Partition Locked Cache: A cache where protected cache 

blocks cannot be replaced by nonprotected blocks. 

• Non-monopolizable Cache: separated by the cache’s way. 

• Fully Associative Cache using random as replacement 

policy. 

 • Random Eviction Cache: Typical cache that evicts a 

random block when a certain number of memory accesses 

is achieved. 

Software Based 

• Consider using alternative AES table architectures of 

reduced size: S-box (256-byte table); S-box table and a 

table composed by 2×S-box values (two 256-byte tables); 

T0 (1024-byte table) and recreate T1,T2,T3 by doing 

rotations, T0...T3 compressed into one table with non-

aligned lookups (2048-byte). 

• Adding extra noise to an AES computation by doing extra 

table accesses e.g.: Performing a second encryption in order 

to interfere with the side-channel information leaked by the 

main encryption computation. 

•  Cache state normalization by loading all the lookup tables 

right before an encryption start, could easily defeat the big 

majority of timing attacks: Evict+Time and Prime+Probe 

based attacks. 

• Replace the table lookups by a set of logical operations in 

order to get the same result. 

• Use lookup tables and place them on registers, in the case 

there’s enough room for them.  

 

SOLUTION PROPOSAL 

The implemented attack corresponds to a cache side-

channel attack that targets AES implementation in 

particular T-box tables. This attack is fueled by timing 

information which means different access data 

computations are performed and respective time is 

captured. Then, each computation time tells the attacker 

whether or not the cache levels below L1-D were accessed 

or not. For this reason, our attack aims at the L1-D cache 

level. Unlike most related side-channel attacks, this one 

does not require the previous knowledge of the T-box 

mapping on L1-D. Likewise other related attacks, our 

online phase makes use of the prime + probe technique, and 

during the offline phase it exploits the AES equations that 

generate the 1st and 2nd round state bytes. This attack can 

uncover the whole AES victim’s secret key. 

Problem 

First, we acknowledge the existence of a victim application 

that ciphers a plaintext that can be inputted by a user or a 

program. This application contains an inner secret key that 

is passed along the received plaintext to call an AES 

encryption function. That encryption function belongs to 

the OpenSSL application, which is a cryptographic library 

containing a large set of cryptographic functions to be used 

by external users or programs. Victim application is a 

custom software and it can be compared to applications 

such as dmcrypt1 or a simple virtual private network 

software. The attacker application materializes the strategy 

used to uncover the secret key from the victim. 

In other words, our attacker application can have two 

distinct interactions: The first one, resides on the ability to 

trigger victim application executions, inputting any desired 

plaintext. The second, resides on calling OpenSSL 

encryption functions, inputting any desired plaintext and 

any key value, likewise it happens with the victim 

application. The gathered side-channel information is then 

crypto-analysed, revealing the victim’s secret key value. 

• Attacker application is composed by the following 

programs: atk.c , atk_enc.c and crypto.py. 

• Victim application is composed by the following 

programs: vic_enc.c. 

 

Attack Structure 

This section briefly describes each phase of the attack.  



1) 1st phase - L1-D T-Box Mapping phase: the 

attacker application performs OpenSSL 

encryptions to discover which L1-D lines map 

each T-box element.  

2) 2nd phase - Online phase: the attacker application 

triggers victim executions inputting a given 

plaintext in order to extract side-channel 

information. 

3) 3rd phase - Offline phase: attacker application 

gathers the information from 1) and 2) and exploits 

the AES equations that generate the state bytes for 

the 1st and 2nd round in order to uncover the 

victim application secret key 

 

OpenSSL 

The OpenSSL is the system cryptographic software that 

contains the AES implementation that can be used by 

applications and users. For this attack, we are using the 

OpenSSL 0.9.8, containing 4 encryption T-box tables, each 

containing 256 4-byte elements (4KB of table information). 

This T-box technology keeps the tables static in memory, 

which means different calls to OpenSSL will always load 

the tables into the same L1-D lines. Additionally, this type 

of T-box implementation positions its tables consecutively 

and contiguously in memory. In practical terms, it means 

T0, T1, T2 and T3 tables are placed in memory by the same 

order. The targeted encryptions are the AES 128-bit 

encryptions and the encryption mode is the Electronic 

CodeBook ECB. 

 

Hardware Requirements 

The list of the physical demands that have to be assured in 

order to provide the proper environment for our attack is: 

1) Application processes run in the same CPU core: 

It’s required for both attacker and victim 

applications run in the same core , this is possible 

either using a uni-core system, or force both 

threads to run on the same core on a multi-core 

CPU. 

2) Simultaneous Multithreading active: The CPU 

core where the applications run require to have the 

SMT technology enabled. 

 

Measurement Concept 

A measurement represents an atomic process that allows the 

attacker to retrieve some information from the victim. Both 

1st and 2nd attack phases resort on the usage of 

measurements aligned with each one strategy. 

The measurement concept considers two distinct 

processes, running at the same time in the same CPU core: 

1) Process 1 performs the same AES encryptions of a 

given plaintext p and key k 

2) Process 2 continuously fills each L1-D line by 

loading the necessary array cache blocks until 

process 1 finishes.  

 

After the process 2 fills a specific line with its data, process 

1 will access some T-box elements evicting or not some 

cache blocks of that specific line. At this moment, the state 

of this L1-D line can either contain only process 2 cache 

blocks or process 2 and process 1 cache blocks. Thus, 

process 2 performs once again a line fill and times it. The 

time resulted from the previous computation tells us if the 

process 1 loaded T-box cache blocks in that line:  

• If the time is low: we conclude there were no 

cache misses during the process of filling that 

specific line. Which means no process 2 cache 

blocks were evicted and for that reason no T-box 

elements that are mapped in that line were not 

required by the process 1. 

• If the time is high, we conclude there was at least 

one cache miss during the process of filling that 

specific line. Which means at least one process 2 

cache block was evicted and for that reason at least 

1 T-box cache block that is mapped in that line 

was required by the process 1. 

Expanding this process for every L1-D line, it’s possible to 

understand which lines are being used by 1 and those who 

are not. Thus, each measurement produces a timing array, 

where each index corresponds to the L1-D line and each 

element to the respective timing value acquired. 

We are using PAPI 6.0.0 for capture the total number of 

clock cycles giving us the proper timing resolution the 

situation demands. 

1st Phase - L1-D T-box Mapping 

L1-D T-box mapping phase serves to extract critical 

information about the system to be used during the crypto-

analysis phase. In particular, which L1-D lines map the 

different AES software T-box elements. The OpenSSL 

version we are using in this attack keeps the respective T-

box table static in memory. Once the tables are discovered 

they still mapped by the same lines of L1-D cache 

throughout different executions. Note that most side-

channel attacks do not solve this problem. Instead they 

simply assume the knowledge of T-box mapping on the 

respective cache level. 

atk.c process behaves like the process 2 and atk_enc. c 

process like process 1 using the vocabulary from 

Measurement Concept. 

We perform a set of measurements, half inputting a 

plaintext with value P1 and the other half with a plaintext 

with value P2. Each P1 measurement generates a timing 

array. We average all the P1 measurements timing arrays, 

creating an averaged p1 array. The same is process is done 

with the p2 measurements, creating an averaged p2 array. 



We pick the p1 and p2 averaged arrays and compute the 

respective difference array. The computation corresponds to 

the operation (p2 − p1) by the line. This very array let the 

attacker know every line that maps each table element.  

2nd Phase – Online Phase  

The purpose of this phase relies on producing enough side-

channel information to be consumed by the crypto-analysis 

phase. It’s performed several measurements, where, atk.c 

process behaves like the process 2 and vic_enc.c process 

like process 1. The plaintext inputted is aligned with the 

plaintext configuration p3.  

The attacker’s result from each measurement corresponds 

to a timing array with the size of the number of L1-D lines, 

which is 64. The respective measurement plaintext and 

timing array of a given measurement is stored inside a 

meas#i.out file, where i represents the measurement index 

number. These files correspond to our side-channel 

information that will be used during our offline phase 

3rd Phase – Offline Phase  

This phase can be performed away from the victim system 

and will consume the information acquired in the previous 

phases in order to uncover the victim’s secret key.  

1st and 2nd round equations from the Rijndael specification, 

tell the attacker the relation between 3 types of information: 

key, plaintext, table element. So, in the 1st round attack 

phase, the 1st round equations are used for uncovering some 

victim’s key bits. Next, the 2nd round attack phase uses the 

2nd round equations for uncovering the remaining key bits. 

In a single sentence the 1st round attack phase only serves to 

decrease the complexity of the 2nd round attack phase. The 

more key information discovered in the 1st phase the faster 

the 2nd phase becomes. 

EVALUATION AND RESULTS 

We then proceed in listing a set of criteria vectors that will 

quantify the success rate of a given attack containing 

certain characteristics.  

Criteria vectors are: 

1. Number of halves of key bytes discovered 

2. The right/wrong association between T-box 

elements and respective L1-D mapping lines 

There are some attack variables whose definition can only 

be extracted empirically, which are: 

1. It, I represent the number of line fills in the 

measurements (in other words, they regulate the 

timing resolution) from 1st attack and 2nd attack 

phase, respectively. 

2. Nt, N represent the number of measurements 

performed in the 1st attack and 2nd attack phase, 

respectively.  

Each test consists in executing different attacks with 

different characteristics and extract the respective score 

according to our criteria. The tests are: 

1. Test 1 – Performs different attacks varying Nt and 

It variables value and acknowledge each resultant 

vector 2 score. 

2. Test 2 – Performs different attacks varying N and I 

variables value and acknowledge each resultant 

vector 1 score. 

We also plot these test results, in order to capture an idea of 

the success evolution according to the different attacks 

performed. 

 

CONCLUSION 

In this work, we implemented an enhanced cache side-

channel attack targeting a T-box based AES 

implementation on the L1-D cache level, based on the 

Prime + Probe strategy. Additionally, we tested several 

attacks with the purpose to understand the attack’s 

limitations in terms of number of samples required (number 

of measurements) and other technical variables. Plus, 

several concepts were recovered related to the attack. 

Concepts in the scope of the cache functionality and 

structure, cryptographic algorithms, cryptographic 

implementations, types of cache side-channel attacks on 

AES. 
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