
Breaking security of crypto systems using cache side-
channel attack

Bruno Lopes

Master Student

Lisbon, Portugal

brunomsl96@gmail.com

ABSTRACT

The focus of this research pretends to acknowledge the

concept and structure of a typical side-channel attack and

its variations. In a second phase, to dive into cache side-

channel attacks that use timing records as side-channel

information, for uncovering the secret key used by a victim

cryptographic application. Thus, we implement an attack,

based on Prime + Probe strategy, relying on the time

differences between L1-D and the other cache levels

latency. Our attack requires an unprivileged attack process

running in the same CPU core as our victim, using SMT

technology. The attack process can choose the plaintext

values to input in our victim. Our victim application uses

the inputted data to perform an AES encryption using

OpenSSL functions. Additionally, we evaluate the success

of the performed attack, using the amount of key

information discovered, according to different vectors, such

as the amount of side-channel information produced.

Author Keywords

Cache; Side-channel attack; Timing information; AES.

ACM Classification Keywords

Security and privacy -> Cryptography -> Cryptoanalysis

and other attacks; Side-channel analysis and

countermeasures.

INTRODUCTION
Computational systems can unintentionally leak

information that in a first instance can be considered as

innocent information. However, someone with malicious

intentions can analyze it, along with other information, to

compromise system’s security-critical data. Therefore, side-

channel attacks correlate the variations of the leaked (side-

channel) information against the respective input/output

from a system’s cryptographic computation. The main

purpose of this attack is to discover a secret such as a

cryptographic secret key used by a victim application,

compromising this way the system’s security-critical data.

A general side-channel attack is divided into two phases:

online phase, where the side-channel information is

extracted, and an offline phase where it is correlated and

processed. The leaked information consumed by these

attacks can take different forms: the type of sound emitted,

the amount of power consumption or the duration time of a

computation from a system derived from the different

memory level’s latencies.

BACKGROUND

Caches

The cache serves as a small piece of high-speed memory,

[1], managed by machine’s hardware. It keeps the CPU as

busy as possible by minimizing the bottleneck of load/store

latency to a lower memory level. Modern caches are

divided into three levels L1, L2, L3. The CPU looks for the

data by the same order: if there is a cache miss in a given

cache level, the next level is consulted. The more cache

levels accessed, the longer it takes to get the required data.

Each cache level is composed by a number of lines, [5].

Where each line has a specific number of cache lines. Each

cache line can store a fixed-size block of information,

called cache block.

Simultaneous Multithreading

Simultaneous multithreading [6] is a technology

implemented by most modern CPU’s that allows two

hardware threads to run in the same CPU core at the same

time. Consequently, these two threads share the same group

of memory hierarchy levels, which includes L1, L2 and L3.

Intel CPU’s often references this technology by”

Hyperthreading” technology.

CPU Dynamic Frequency Scaling

It’s a technique employed in modern architectures that

allow the CPU’s frequency to adapt “on the fly” to the

actual computation need, [7]. It conserves power and

reduces the amount of heat produced, since in moments it’s

not required a significant amount of computational effort,

the CPU’s underclocks and consequently saves energy.

AES

The Advanced Encryption Standard, [8], is a block cipher

algorithm using symmetric keys. This algorithm operates at

a 128-bit block at a time, accepting a 128, 192 or 256-bit

key and performing 10, 12, 14 rounds respectively. The

idea behind the AES algorithm is to pick 16-byte blocks of

the input each time, also known as state. This state will

receive a set of key dependent transformations and

substitutions for each round generating a final state, which

represents the desired output.

The set of transformations performed in each round are:

SubBytes, which substitutes one byte by a different

predefined one using a nonlinear function.

ShiftRow, shifts the 2nd, 3rd and 4th row of the state by 1, 2,

3 positions to the left respectively.

MixColumn, each column of the state matrix becomes its

multiplication in a GF(256).

AddRoundKey, where it’s applied an exclusive OR

operation between the state and the respective round key.

AES 128-biy key encryption pseudocode:

state = plaintext

AddRoundKey(state, roundkey[0])

For round in [1;8]:

 SubBytes(state)

 ShiftRows(state)

 MixColumn(state)

AddRoundKey(state, roundkey[round])

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, roundkey[9])

AES implementations are true reproductions of the AES

algorithm with some modifications that enhance the whole

process performance. Most of these modifications consists

on replacing some transformations by a lookup on a pre-

computed static table.

The most popular implementation are S-box and T-box:

S-box replaces the SubByte transformation by a lookup to a

table called S-box.

T-box makes a lookup on a T-box table instead of

performing the SubBytes and MixColumn transformations.

STATE OF THE ART

Side-channel attack

A side-channel attack aims to discover a secret in the

system for the advantage of an attacker. The most common

example of a secret is the key used by a victim in order to

perform a cryptographic computation over some

information for local storage or network dispatch purposes,

[4].

A side-channel attack strategy relies on extracting

information of the system that is not meant to be leaked.

This information is then cryptoanalysed achieving partially

or entirely our goal. Given the procedure of a typical side-

channel attack, we may easily divide it in two different

phases:

• An online phase, where the attacker needs the

victim to be performing some cryptographic

computation for extracting the side-channel

information.

• An offline phase, which no longer requires the

presence of the victim, and where the side-channel

information is processed (cryptoanalysed).

A side-channel attack can use different forms of side-

channel information, like timing [4][3], power consumption

[2] or even acoustic information.

Most known timing side-channel attacks

Evict + Time Attack

1) Attacker triggers a victim encryption execution

using a known random plaintext

2) Attacker evicts a specific line of the targeted cache

level

3) Attacker trigger a victim encryption execution

using the same plaintext and times it

The triplet extract from the previous process is <plaintext p;

line evicted l; duration d>. It’s up to the attacker to repeat

the same process again and again, gathering triplets having

the same or not attack input. The group of all the triplets

acquired correspond to the side-channel information.

For the lines with higher 2nd encryption duration: It means

the table blocks mapped by the same respective lines were

required during the 2nd encryption, always causing a cache

miss, since they were evicted from the cache in the line

eviction phase, delaying the overall encryption time.

For the rest of the lines: It means the table blocks mapped

by the same respective lines were not required during the

2nd encryption, causing no cache miss, and thus not

penalizing the overall encryption time.

AES specification equations that generate the 1st and 2nd

round state bytes are relatively simple equations that tell the

relation between plaintext information with key information

and table elements. On the other side, the attacker is aware

of the plaintext and the used table blocks (and consequently

the unused ones). This allows to the attacker to exclude the

key values that when placed on the equations they access

table blocks detected as blocks from lines with a low 2nd

enc. duration. The remaining key bytes not excluded

represents the key discovered by this process.

Prime + Probe

1) Attacker loads a cache sized data array

2) Attacker triggers a victim encryption execution

using a known random plaintext

3) Attacker fills and times each line with array data

From the previous process, it’s created some triplets in the

form of: <plaintext p; line evicted l; duration d>. It’s up to

the attacker to repeat the same process again and again,

gathering triplets having different attack input.

The meaning of the side-channel information as well as its

crypto-analysis is performed likewise in Evict + Time

attack.

Flush + Flush

1) Attacker performs a clflush instruction using any

table block address as argument

2) Attacker triggers a victim cryptographic execution

using a known random plaintext

3) Attacker performs and times a clflush using as

argument the same first table block address

There are extracted some triplets with the following format:

<plaintext p; table block evicted t; duration d>. It’s up to

the attacker to repeat the same process again and again,

gathering triplets having different plaintexts, [9].

The meaning of the side-channel information as well as its

crypto-analysis is performed likewise in Evict + Time and

Prime + Probe attack.

Countermeasures

Countermeasures solutions are divided in 2 different

groups: hardware-based solutions [10] [11] and software-

based solutions [4] [3].

Hardware Based

• Static Partitioning Cache: It separates the cache for the

victim and for the attacker.

 • Partition Locked Cache: A cache where protected cache

blocks cannot be replaced by nonprotected blocks.

• Non-monopolizable Cache: separated by the cache’s way.

• Fully Associative Cache using random as replacement

policy.

 • Random Eviction Cache: Typical cache that evicts a

random block when a certain number of memory accesses

is achieved.

Software Based

• Consider using alternative AES table architectures of

reduced size: S-box (256-byte table); S-box table and a

table composed by 2×S-box values (two 256-byte tables);

T0 (1024-byte table) and recreate T1,T2,T3 by doing

rotations, T0...T3 compressed into one table with non-

aligned lookups (2048-byte).

• Adding extra noise to an AES computation by doing extra

table accesses e.g.: Performing a second encryption in order

to interfere with the side-channel information leaked by the

main encryption computation.

• Cache state normalization by loading all the lookup tables

right before an encryption start, could easily defeat the big

majority of timing attacks: Evict+Time and Prime+Probe

based attacks.

• Replace the table lookups by a set of logical operations in

order to get the same result.

• Use lookup tables and place them on registers, in the case

there’s enough room for them.

SOLUTION PROPOSAL

The implemented attack corresponds to a cache side-

channel attack that targets AES implementation in

particular T-box tables. This attack is fueled by timing

information which means different access data

computations are performed and respective time is

captured. Then, each computation time tells the attacker

whether or not the cache levels below L1-D were accessed

or not. For this reason, our attack aims at the L1-D cache

level. Unlike most related side-channel attacks, this one

does not require the previous knowledge of the T-box

mapping on L1-D. Likewise other related attacks, our

online phase makes use of the prime + probe technique, and

during the offline phase it exploits the AES equations that

generate the 1st and 2nd round state bytes. This attack can

uncover the whole AES victim’s secret key.

Problem

First, we acknowledge the existence of a victim application

that ciphers a plaintext that can be inputted by a user or a

program. This application contains an inner secret key that

is passed along the received plaintext to call an AES

encryption function. That encryption function belongs to

the OpenSSL application, which is a cryptographic library

containing a large set of cryptographic functions to be used

by external users or programs. Victim application is a

custom software and it can be compared to applications

such as dmcrypt1 or a simple virtual private network

software. The attacker application materializes the strategy

used to uncover the secret key from the victim.

In other words, our attacker application can have two

distinct interactions: The first one, resides on the ability to

trigger victim application executions, inputting any desired

plaintext. The second, resides on calling OpenSSL

encryption functions, inputting any desired plaintext and

any key value, likewise it happens with the victim

application. The gathered side-channel information is then

crypto-analysed, revealing the victim’s secret key value.

• Attacker application is composed by the following

programs: atk.c , atk_enc.c and crypto.py.

• Victim application is composed by the following

programs: vic_enc.c.

Attack Structure

This section briefly describes each phase of the attack.

1) 1st phase - L1-D T-Box Mapping phase: the

attacker application performs OpenSSL

encryptions to discover which L1-D lines map

each T-box element.

2) 2nd phase - Online phase: the attacker application

triggers victim executions inputting a given

plaintext in order to extract side-channel

information.

3) 3rd phase - Offline phase: attacker application

gathers the information from 1) and 2) and exploits

the AES equations that generate the state bytes for

the 1st and 2nd round in order to uncover the

victim application secret key

OpenSSL

The OpenSSL is the system cryptographic software that

contains the AES implementation that can be used by

applications and users. For this attack, we are using the

OpenSSL 0.9.8, containing 4 encryption T-box tables, each

containing 256 4-byte elements (4KB of table information).

This T-box technology keeps the tables static in memory,

which means different calls to OpenSSL will always load

the tables into the same L1-D lines. Additionally, this type

of T-box implementation positions its tables consecutively

and contiguously in memory. In practical terms, it means

T0, T1, T2 and T3 tables are placed in memory by the same

order. The targeted encryptions are the AES 128-bit

encryptions and the encryption mode is the Electronic

CodeBook ECB.

Hardware Requirements

The list of the physical demands that have to be assured in

order to provide the proper environment for our attack is:

1) Application processes run in the same CPU core:

It’s required for both attacker and victim

applications run in the same core , this is possible

either using a uni-core system, or force both

threads to run on the same core on a multi-core

CPU.

2) Simultaneous Multithreading active: The CPU

core where the applications run require to have the

SMT technology enabled.

Measurement Concept

A measurement represents an atomic process that allows the

attacker to retrieve some information from the victim. Both

1st and 2nd attack phases resort on the usage of

measurements aligned with each one strategy.

The measurement concept considers two distinct

processes, running at the same time in the same CPU core:

1) Process 1 performs the same AES encryptions of a

given plaintext p and key k

2) Process 2 continuously fills each L1-D line by

loading the necessary array cache blocks until

process 1 finishes.

After the process 2 fills a specific line with its data, process

1 will access some T-box elements evicting or not some

cache blocks of that specific line. At this moment, the state

of this L1-D line can either contain only process 2 cache

blocks or process 2 and process 1 cache blocks. Thus,

process 2 performs once again a line fill and times it. The

time resulted from the previous computation tells us if the

process 1 loaded T-box cache blocks in that line:

• If the time is low: we conclude there were no

cache misses during the process of filling that

specific line. Which means no process 2 cache

blocks were evicted and for that reason no T-box

elements that are mapped in that line were not

required by the process 1.

• If the time is high, we conclude there was at least

one cache miss during the process of filling that

specific line. Which means at least one process 2

cache block was evicted and for that reason at least

1 T-box cache block that is mapped in that line

was required by the process 1.

Expanding this process for every L1-D line, it’s possible to

understand which lines are being used by 1 and those who

are not. Thus, each measurement produces a timing array,

where each index corresponds to the L1-D line and each

element to the respective timing value acquired.

We are using PAPI 6.0.0 for capture the total number of

clock cycles giving us the proper timing resolution the

situation demands.

1st Phase - L1-D T-box Mapping

L1-D T-box mapping phase serves to extract critical

information about the system to be used during the crypto-

analysis phase. In particular, which L1-D lines map the

different AES software T-box elements. The OpenSSL

version we are using in this attack keeps the respective T-

box table static in memory. Once the tables are discovered

they still mapped by the same lines of L1-D cache

throughout different executions. Note that most side-

channel attacks do not solve this problem. Instead they

simply assume the knowledge of T-box mapping on the

respective cache level.

atk.c process behaves like the process 2 and atk_enc. c

process like process 1 using the vocabulary from

Measurement Concept.

We perform a set of measurements, half inputting a

plaintext with value P1 and the other half with a plaintext

with value P2. Each P1 measurement generates a timing

array. We average all the P1 measurements timing arrays,

creating an averaged p1 array. The same is process is done

with the p2 measurements, creating an averaged p2 array.

We pick the p1 and p2 averaged arrays and compute the

respective difference array. The computation corresponds to

the operation (p2 − p1) by the line. This very array let the

attacker know every line that maps each table element.

2nd Phase – Online Phase

The purpose of this phase relies on producing enough side-

channel information to be consumed by the crypto-analysis

phase. It’s performed several measurements, where, atk.c

process behaves like the process 2 and vic_enc.c process

like process 1. The plaintext inputted is aligned with the

plaintext configuration p3.

The attacker’s result from each measurement corresponds

to a timing array with the size of the number of L1-D lines,

which is 64. The respective measurement plaintext and

timing array of a given measurement is stored inside a

meas#i.out file, where i represents the measurement index

number. These files correspond to our side-channel

information that will be used during our offline phase

3rd Phase – Offline Phase

This phase can be performed away from the victim system

and will consume the information acquired in the previous

phases in order to uncover the victim’s secret key.

1st and 2nd round equations from the Rijndael specification,

tell the attacker the relation between 3 types of information:

key, plaintext, table element. So, in the 1st round attack

phase, the 1st round equations are used for uncovering some

victim’s key bits. Next, the 2nd round attack phase uses the

2nd round equations for uncovering the remaining key bits.

In a single sentence the 1st round attack phase only serves to

decrease the complexity of the 2nd round attack phase. The

more key information discovered in the 1st phase the faster

the 2nd phase becomes.

EVALUATION AND RESULTS

We then proceed in listing a set of criteria vectors that will

quantify the success rate of a given attack containing

certain characteristics.

Criteria vectors are:

1. Number of halves of key bytes discovered

2. The right/wrong association between T-box

elements and respective L1-D mapping lines

There are some attack variables whose definition can only

be extracted empirically, which are:

1. It, I represent the number of line fills in the

measurements (in other words, they regulate the

timing resolution) from 1st attack and 2nd attack

phase, respectively.

2. Nt, N represent the number of measurements

performed in the 1st attack and 2nd attack phase,

respectively.

Each test consists in executing different attacks with

different characteristics and extract the respective score

according to our criteria. The tests are:

1. Test 1 – Performs different attacks varying Nt and

It variables value and acknowledge each resultant

vector 2 score.

2. Test 2 – Performs different attacks varying N and I

variables value and acknowledge each resultant

vector 1 score.

We also plot these test results, in order to capture an idea of

the success evolution according to the different attacks

performed.

CONCLUSION

In this work, we implemented an enhanced cache side-

channel attack targeting a T-box based AES

implementation on the L1-D cache level, based on the

Prime + Probe strategy. Additionally, we tested several

attacks with the purpose to understand the attack’s

limitations in terms of number of samples required (number

of measurements) and other technical variables. Plus,

several concepts were recovered related to the attack.

Concepts in the scope of the cache functionality and

structure, cryptographic algorithms, cryptographic

implementations, types of cache side-channel attacks on

AES.

REFERENCES

1. M. Kowarschik and C. Weiß, “An overview of cache

optimization techniques and cache-aware numerical

algorithms,” in Algorithms for Memory Hierarchies —

Advanced Lectures, volume 2625 of Lecture Notes in

Computer Science. Springer, 2003, pp. 213–232

2. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero,

and G. Palermo, “Aes power attack based on

induced cache miss and countermeasure,” in

Proceedings of the International Conference on

Information Technology: Coding and Computing

(ITCC’05) - Volume I - Volume01, ser.

ITCC’05.USA: IEEE Computer Society, 2005, p.

586-591.

3. D. J. Bernstein, “Cache-timing attacks on aes,” Tech.

Rep., 2005.

4. D. A. Osvik, A. Shamir, and E. Tromer, “Cache

attacks and countermeasures: The case ofaes,” in

Proceedings of the 2006 The Cryptographers’ Track at

the RSA Conference on Topics65 in Cryptology, ser.

CT-RSA’06. Berlin, Heidelberg: Springer-Verlag,

2006, p. 1–20.

5. D. A. Patterson and J. L. Hennessy, Computer

Organization and Design: The Hardware Software

Interface ARM Edition, 1st ed. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2016.

6. N. Tuck and D. M. Tullsen, “Initial observations of the

simultaneous multithreading pentium 4 processor,” in

Proceedings of the 12th International Conference on

Parallel Architectures and Compilation Techniques,

ser. PACT ’03.USA: IEEE Computer Society, 2003, p.

26.

7. W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-

N. Pouchet, F. Rastello, and P. Sadayappan, “Static and

dynamic frequency scaling on multicore cpus,”ACM

Trans. Archit. Code Optim., vol. 13,no. 4, Dec. 2016.

8. J. Daemen and V. Rijmen, The Design of Rijndael.

Berlin, Heidelberg: Springer-Verlag, 2002.

9. D. Gruss, C. Maurice, K. Wagner, and S. Mangard,

“Flush+flush: A fast and stealthy cache attack,” in

Proceedings of the 13th International Conference on

Detection of Intrusions and Malware, and Vulnerability

Assessment - Volume 9721, ser. DIMVA 2016.

Berlin, Heidelberg: Springer-Verlag,2016, p. 279–299.

10. A. Canteaut, C. Lauradoux, and A. Seznec,

“Understanding cache attacks,” INRIA, Research

Report RR-5881, 2006

11. Z. He and R. Lee, “How secure is your cache against

side-channel attacks?” in Proceedings of the 50th

Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO-50 ’17.New York, NY,

USA: Association for Computing Machinery, 2017, p.

341–353.

