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Abstract

In this work, we combine two in-house dialogue multi-agent systems into a single (multi-agents) system.

However, the latter does not handle linguistic phenomena as synonyms, and acronyms; in addition it

does not handle context. Thus, we propose a retrieval-based agent that handles the first two – the

General Agent – and an end-to-end dialogue system that takes context into consideration in order to

perform response selection – the Contextual Agent. When training an end-to-end model to perform

this task, most systems take advantage of a possible answer (gold reply) and one or more not possible

answers (the distractors). The latter are randomly selected from the corpus, despite the fact that, in

a real scenario, possible response candidates are usually similar to the gold reply. Therefore, in this

work, we introduce the concept of tailored distractors, corresponding to different methods of selecting

distractors that are closer to the gold reply. We show that these distractors have a positive impact in the

response selection task, but also if we consider a generative dialogue system. We use the method that

yields best results to fine-tune a model for response selection, used by our Contextual Agent.
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Resumo

Neste trabalho, combinamos dois sistemas multi-agente de diálogo num único sistema (multi-agente).

No entanto, o último não trata fenómenos linguı́sticos como sinónimos e acrónimos; além disso, não

considera o contexto. Assim, propomos um agente baseado em recuperação que trata dos dois primeiros

– o Agente Geral – e um sistema de diálogo que tem o contexto em conta para selecionar a resposta – o

Agente Contextual. Ao treinar um modelo para realizar essa tarefa, a maioria dos sistemas tira proveito

de uma resposta possı́vel (resposta gold) e uma ou mais respostas impossı́veis (os distratores). Es-

tas últimas são selecionadas aleatoriamente do corpus, apesar do facto de que, num cenário real, as

possı́veis respostas candidatas geralmente são semelhantes à resposta gold. Portanto, neste trabalho,

apresentamos o conceito de distratores sob medida, correspondendo a diferentes métodos de seleção

de distratores que estão mais próximos da resposta gold. Mostramos que esses distratores têm um

impacto positivo na tarefa de seleção de respostas, mas também se considerarmos um sistema de

diálogo gerador. Usamos o método que produz os melhores resultados para ajustar um modelo para

seleção de resposta, usado pelo nosso Agente Contextual.

Palavras Chave

Seleção de resposta; Seleção de distrator; Sistema de diálogo multi-agente;
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1.1 Motivation

Chatbots have been getting a great deal of attention lately, in a time when Natural Language Processing

(NLP) is developing faster than ever. They are a type of dialogue systems, or conversational agents,

designed to have extended conversations with the user, having a similar behavior to human interaction

(Jurafsky and H. Martin, 2019).

In this context, two recent works from INESC-ID developed multi-agent systems (Santos, 2019) (Fer-

nandes, 2019), both centered in the idea that all agents can potentially answer all questions. Here, an

agent is an entity that receives one query and returns one or more responses. In this thesis, our first

objective is to integrate those systems into a single multi-agent system.

However, the integrated system does not solve two limitations. The first is that none of the agents

allowed to use paraphrases, synonyms and domain specific synonyms and acronyms, among others.

Thus, our second objective is to propose a new agent architecture – the General Agent. The second

limitation is that none of the agents takes the context of the conversation, defined by Sankar et al. (2019)

as the dialog history between the user and the agent, into account. Just like in a human conversation,

it is crucial to use the context in order to have plausible and high quality responses. The third objective

of this thesis is to develop the Contextual Agent, that takes the context into account when selecting a

response.

To select a response using the context, we fine-tune a state-of-the-art classifier to classify if a sen-

tence follows a certain context. While fine-tuning, the model needs both positive and negative training

examples. The latter are usually randomly selected (Lowe et al., 2015). However, in retrieval-based

systems, a search engine is used to retrieve a number of candidates, from which the model selects a

response. Thus, the candidates already have some degree of similarity between them, as proven by

preliminary results that show that candidates retrieved by a search engine are, on average, two times

more similar than randomly retrieved ones.

Therefore, training a model with random distractors may not be the best choice, when, in a real-world

scenario, the model will have to distinguish a correct answer among a set of strong contenders. Thus,

in this thesis, we also introduce the notion of tailored distractors, and study different ways of selecting

them, rather than choosing them randomly, and study the impact of each method on response selection

and generation systems.

Khandelwal et al. (2018) and Sankar et al. (2019) showed that current dialog systems do not properly

use the context of the conversation, having a similar performance when the conversation history suffers

perturbations, such as shuffling all sentences and words within each sentence. So, regardless of the

context of the conversation, the bot gives the same answer. Taking their insights into account, we make

a final experiment that studies if a more current language model is really using context when selecting

an answer by introducing perturbations in it and observing if the system’s performances changes.

3



1.2 Objectives

In the following we resume the main objectives of this thesis:

1. Integrate two multi-agent systems developed at INESC-ID (Fernandes, 2019) (Santos, 2019),

and simplify the creation and addition of new agents to the system. Considering that part of this

work will be developed as part of the project AIA – “Agente Inteligente para o Atendimento no

Balcão do Empreendedor”, the resulting system will work for the Portuguese language.

2. Develop an agent architecture with additional functionalities.

3. Develop an agent that uses the context of a conversation to select a response.

4. Study the hypothesis that selecting tailored distractors improves the performance of a retrieval

and generative model.

5. Perform an ablation study to assess if a modern language model takes the context into account.

1.3 Contributions

The contributions of this thesis are the following:

• Integrate two multi-agent dialogue systems;

• Propose the General Agent architecture;

• Instantiate the General Agent with two different corpora:

– With an AMA corpus, obtaining the AMA Agent (project AIA);

– With a COVID corpus, obtaining the COVID Agent;

• Create the Contextual Agent;

• Introduce three ways of selecting tailored distractors;

• Evaluate our tailored distractors on a customer support dataset (project MAIA);

• Show that a current neural dialogue system is using the context of the conversation.

The resulting multi-agent dialogue system, containing the General and Contextual agents, can be con-

sulted at https://github.com/leonorllansol/multi-agent-dialogue.

4
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1.4 Organization of the Document

This thesis is organized as follows: Section 2 describes concepts and systems used in the development

of this thesis. Section 3 studies works related to this thesis, particularly focused on the representation

and use of context in dialogue systems. Section 4 describes the integration of the two multi-agent

systems, and the creation and addition of new agents to it. Section 5 describes the introduced methods

to select tailored distractors. Section 6 shows how to easily integrate new agents into the multi-agent

system, how the impact of tailored distractors was evaluated, and the ablation study performed to assess

if context is taken into account in a modern language model. Finally, Section 7 points the conclusions of

our work and suggestions for future work.
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In this Section, we describe existing systems that were used on the development of this thesis.

Particularly, we study how neural networks evolved until the Transformer architecture (Section 2.1) and

explain the concept of Transfer Learning (Section 2.2), for a better understanding of the language models

we will use (Section 2.3). Finally, we describe the in-house developed systems that will be used in this

thesis (Section 2.4).

2.1 From RNNs to Transformers

A few years ago, the state-of-the-art approaches for language problems, such as machine translation

and speech recognition, were Recurrent Neural Networks (RNN) (Anderson and Rosenfeld, 1988),

which are neural networks with memory (they can remember past inputs), where the relation between

input words is taken into account due to its sequential nature, encoding the whole sentence first and then

decoding it. While they have many advantages over basic neural networks, due to their ability of persist-

ing information, they have some problems, in particular: they fail at modeling long-range dependencies,

since their hidden states contain information about the whole sentence and the context vector has a

fixed size, which difficults the storage of input information for longer inputs; and, due to their sequen-

tial nature, they do not allow for parallelization, which leads to performance issues for longer sequence

lengths.

A solution to model long-range dependencies is a Long-Short Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) which is a particular type of RNN whose basic unit is composed of a cell and

three gates: input, forget and output gate. The forget gate allows the LSTM to forget things which are

not important, and the input and output gates moderate what goes in and out of each cell. This solves

the RNN problem of modeling long-range dependencies. However, it still does not perform well when

the input sentence is long, since it still has a sequential nature.

A first solution to the problem of non parallelization is Convolutional Neural Networks (CNN). They

parallelize – each word on the input can be processed at the same time, not depending on other in-

put words to be processed. However, they do not model dependencies between words, which is the

problem that the Transformer aims to solve. The Transformer (Vaswani et al., 2017) is a transduction

model which avoids recurrence by relying entirely on an attention mechanism, with the goal of drawing

global dependencies between input and output. Without the sequential nature of a RNN, it allows for

parallelization, reducing the time necessary to train the model, and reaches state-of-the-art results for

translation tasks.

To understand the Transformer architecture, one must first understand the attention mechanism.

Similar to human attention, where the mechanism gets its name, it allows the decoder to go back and

focus on particular parts of the input.
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The Transformer relies on a particular type of attention – self-attention – where a sentence attends

to itself, in order to compute a representation of the sentence. Its architecture consists on an encoder

and a decoder, each with N layers (6 in the original model). The layers of the encoder have two sublayers:

a multi-head self-attention mechanism and a feed-forward neural network. The multi-head self-attention

mechanism consists on h layers of self-attention running in parallel. The model was tested on machine

translation (English to German and English to French) and outperformed state-of-the-art models, further

showing that training was faster. It is now the main reference in machine translation and other language

problems.

Since neural approaches will be used in this work, and being the Transformer architecture the main

neural approach today, and the basis of BERT and GPT-2 that will be used in this work and are described

in Sections 2.3 and 2.4, this section introduced the concepts of Transformer and attention, which are

important to understand some of the systems we will study in section Related Work.

2.2 Transfer Learning

One of the main problems of machine learning is gathering enough data to train a model – insufficient

training data. This problem is aggravated in current deep learning models, which need even more

training data than traditional machine learning models (Tan et al., 2018).

The concept of transfer learning comes from the idea that, if a person generalizes her experience,

she can apply it in different domains. For example, someone with experience in playing the violin can

learn how to play the piano faster than those without experience with musical instrument, by generalizing

his violin knowledge and applying it to the piano (Zhuang et al., 2019). Thus, transfer learning solves

the aforementioned problem by using the same knowledge across domains, allowing a model to be pre-

trained on data from a source domain (more general) and then fine-tuned on data from a target domain

(more specific). Hence, a big amount of data is needed to pre-train the model, but, to train a model on a

specific task, only a small amount is needed.

2.3 Language models: BERT and GPT-2

Language modeling consists on assigning a probability to a sequence of words. Pre-training language

models and applying them to specific tasks can be done through two approaches: feature-based, where

task-specific architectures are used as additional features, or fine-tuning, where the model is trained on

the specific task by fine-tuning all the pre-trained parameters.

Previous language models assigned a probability to a word, considering the words to its left. BERT

(Bidirectional Encoder Representations From Transformers) (Devlin et al., 2019) obtained state-of-the-
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art results in the task of language modeling, having a masked language modeling objective that does it

bidirectionally, that is, looking at a sentence both from left to right and from right to left. It is a fine-tuning

approach and an example of transfer learning: it is pre-trained on a large amount of data and can be

fine-tuned to specific tasks, using less data. It introduces two tasks to the pre-training:

• Masked Language Model (MLM) – random tokens are masked, using special token [MASK], and

then predicted by the model, using both the left and right context.

• Next Sentence Prediction (NSP) – model learns relationships between two sentences: when train-

ing, given two sentences A and B, 50% of the time B is the actual sentence that follows A, and is

labeled as so (IsNext), and 50% of the time it is a random sentence from the corpus (NotNext).

While the Transformer has encoders and decoders, BERT only encodes a sentence, being composed

of Transformer encoder layers. So, when a sentence is given as input to BERT, the output is a repre-

sentation of that sentence, which consists of the word embedding of each token, plus an embedding

for an extra token, [CLS], which represents the whole sentence and is used for sentence classification

purposes.

GPT-2 (Radford et al., 2019) is also a language model, and a fine-tuning approach. It uses the auto-

regression mechanism, as RNNs do, using the output of the previous layer as input of the next layer.

While BERT takes a sentence as input and returns a vector representation of it, GPT-2’s output is a

complete sentence. Unlike BERT, it is only composed of Transformer decoder layers: it uses the context

to its left to predict the next word.

While pre-training these models requires a large amount of data, fine-tuning them only requires a

small amount of task specific data, which we will take advantage of, as we will see further.

This Section introduced two models based on which we develop this work, since we will use BERT

For Next Sentence Prediction, which is a BERT model with a Next Sentence Prediction layer on top, and

DialoGPT-2 (Zhang et al., 2019c), a model fine-tuned from GPT-2 for dialog.

2.4 In-house tools

Here, we describe three in-house tools that will be used. Two of them are multi-agent systems that

were developed as Master thesis at INESC-ID (Section 2.4.1), and the other is a GPT-2-based ranking

and generative framework which was developed under the scope of project MAIA: Multilingual AI Agent

Assistants1, whose goal is to develop a platform where AI agents perform customer support (Section

2.4.2).

1https://resources.unbabel.com/maia-unbabel-research (Last accessed on: 23/11/2020)
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2.4.1 Multi-agent systems

On most dialogue systems, there is either a single agent behind each virtual assistant or multiple agents

working separately, with, for example, each being delegated a different type of question. However, it

may be useful to have multiple agents working together, which is the motivation for multi-agent systems.

As previously said, this work will be built upon two multi-agent frameworks developed as Master the-

sis at INESC-ID: “Chattuga – A meta-chatbot for the Portuguese language” (Fernandes, 2019) and “Say

Something Smart 3.0: A Multi-Agent Chatbot in Open Domain” (Santos, 2019), from now on, MULTI-SSS.

Both of these works focus on developing plug and play architectures to integrate conversational agents,

and both take the same assumption: all agents can potentially answer all questions. This is because

agents, like humans, have strengths and weaknesses, so it may be useful for them to work together.

These systems have two main components: agents, that given one query, select one or more re-

sponses from a set of candidate responses that can be either retrieved by a search engine, such as

Whoosh2, when the corpus is large enough, or locally retrieved by each agent; and decision mak-

ing strategies, that given a set of responses, return one of them, according to their heuristic. They

also have a component responsible for managing the conversation and interaction between the system

and the agents and strategies, which was called Coordinator in MULTI-SSS, but which we will call the

Dialogue Manager (Section 3.1).

2https://whoosh.readthedocs.io/en/latest/intro.html (Last Accessed on 28/01/2021)
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Figure 2.1: CHATTUGA’s architecture

Figure 2.2: MULTI-SSS’s architecture

Both systems architectures, in what regards agents and decision making strategies, are shown in
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Figures 2.1 and 2.2.

Chattuga’s Dialogue Manager has a classifier that, upon receiving a user query, classifies it using

a set of labels, such as the type of the query, i.e. if it is a question and, if so, the type of the question,

such as WHAT question, WHO question, or WHEN question). Regarding the agents used in CHATTUGA,

already existing agents were integrated into a multi-agent system:

• Talkpedia (Mota, 2015) – uses Wikipedia to retrieve an answer.

• SSS (Ameixa, 2015) – uses data from movie subtitles to retrieve an answer.

• Say Something Smart AMA – uses SSS, using data from a corpus built with Agência para a

Modernização Administrativa (AMA)3 instead of movie subtitles.

• Edgar (Fialho et al., 2013) – specialist in answering questions about the Monserrate Palace

• Cheat – rule-based agent that only answers salutations, yes no questions and or questions.

In MULTI-SSS (Santos, 2019), the above mentioned agent SSS was turned into a multi-agent system, us-

ing, for example, similarity measures as agents, as the Cosine Similarity and the Levenshtein Distance.

It also has an Edgar agent, as CHATTUGA. Note that none of the mentioned agents handles synonyms

or acronyms, or uses context to select a response.

Regarding the decision making strategies, in CHATTUGA there are four strategies, all based in

classification modules:

• Query Agent – the query is classified and its labels are compared with each agent’s area of exper-

tise, giving each agent a score; the answer given by the agent with highest matching is returned.

• Query Answer – the query is classified, as are the answers given by each agent. The query’s

labels are compared to each answer’s labels, and the answer with highest matching is returned.

• Answer Impersonal – each answer is scored using an impersonal answers module that compares

it to the query, when the query is labelled as IMPERSONAL.

• Answer Personal – each answer is scored using a personal answers module that compares it to

the query, when the query is labelled as PERSONAL.

Each strategy returns one answer, and the final answer to return to the user is chosen by the Dialogue

Manager, based on the weights of each strategy.

In MULTI-SSS, there are two decision making strategies available:

• Voting Model – the most common answer is returned.

3https://www.ama.gov.pt/ (Last accessed on 28/08/2020).
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• Priority System – an answer is prioritized according to a predefined score given to each agent, so

the answer returned will be that of the agent with the highest score. If this agent does not return

an answer, the returned answer is chosen using the Voting Model over the answers given by the

remaining agents.

Unlike in CHATTUGA, where all strategies can be available, in MULTI-SSS only one strategy is avail-

able, so the answer returned by the active strategy is returned to the user.

MULTI-SSS has two additional modules – the Agent Manager, which is an interface point between

the system and the agents and is responsible for initializing the agents, and the Decision Maker, that

bridges the system and the decision making strategies.

To better understand these systems’ flow, we present a running example each system, whose steps

match those in Figure 2.1, for CHATTUGA, and 2.2, for MULTI-SSS:

• CHATTUGA

1. The user poses the query q to DM: “Quantos anos tens?” (“How old are you?”)

2. The DM classifies q with labels QUESTION, WH QUESTION, PERSONAL, OTHER, NUM, COUNT

and AGENT LIFE, and forwards q to all active agents: Edgar, Talkpedia and Cheat

3. The agents return their selected responses to the DM:

– aCheat: “Essa não é a minha área de especialidade.” (“This is not my area of expertise.”)

– aEdgar: “Tenho 65 anos.” (“I’m 65 years old.”)

– aTalkpedia: “Não sou um grande perito nesse tema, mas sobre isso sei que em agosto

de 2019, os Wet Bed Gang actuaram no festival de música MEO Sudoeste.” (“I am not a

great expert on this subject, but I know that in August 2019, Wet Bed Gang performed at

the MEO Sudoeste music festival.”)

4. The DM forwards the agents’ answers, [aCheat, aEdgar, aTalkpedia], to the active Decision Mak-

ing Strategies (query agent, answer impersonal and query answer, all with the same weight),

except for the answer impersonal one, since this one is only chosen when IMPERSONAL is in

the query labels.

5. Each of the decision making strategies selects one of the agents’ answers and returns it to

the DM:

– query agent – aEdgar, “Tenho 65 anos.” (“I’m 65 years old.”)

– query answer – aEdgar, “Tenho 65 anos.” (“I’m 65 years old.”)

6. Since all decision making strategies returned the same answer, aEdgar, the DM returns that

answer to the user: “Tenho 65 anos.” (“I’m 65 years old.”)
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• MULTI-SSS

1. The user poses the query q to DM: “Quantos anos tens?” (“How old are you?”)

2. The DM forwards q to the Agent Manager.

3. The Agent Manager sends q to each active agent: Cosine, Edgar and Levenshtein.

4. The agents return their selected responses to the Agent manager:

– aCosine: “Ela é do ano do galo.” (“She is from the year of the rooster.”)

– aEdgar: “Tenho 65 anos.” (“I’m 65 years old.”)

– aLevenshtein: “Trinta e quatro.” (“Thirty four.”)

5. The Agent Manager returns the agents’ answers, [aCosine, aEdgar, aLevenshtein], to the DM.

6. The DM sends the agents’ answers to the Decision Maker.

7. The Decision Maker sends the agents’ answers to its active decision making strategy, Simple

Majority.

8. Since all the answers are different, the Simple Majority returns the first one to the Decision

Maker, aCosine.

9. The Decision Maker sends the answer to the DM.

10. The DM returns the selected answer, aCosine, to the user: “Ela é do ano do galo.” (“She is from

the year of the rooster.”).

Besides turning SSS into a multi-agent system, Santos (2019) also developed a learning module to

take user feedback into account (online learning). The user evaluates the response, which leads to the

weight update of the agent’s features (text similarity with input, response frequency, answer similarity with

input). This approach was proposed by Mendonça et al. (2017) and uses the Exponentially Weighted

Average Forecaster (EWAF) algorithm to update the weights.

Neither of the aforementioned works use context when selecting an answer, which is why, in this

work, they will be integrated into a single multi-agent system and a new agent that uses context when

selecting a response will be created, along with a new agent that will allow instances with different

corpora and the use of user-defined synonyms and acronyms.

2.4.2 DialoGP3T

To study the impact of tailored distractors, we use DialoGP3T, a model4 developed under the scope

of project MAIA, which is an adaptation of TransferTransfo (Wolf et al., 2019). It is built on top of a

4https://github.com/huggingface/transfer-learning-conv-ai (Last accessed on: 19/10/2020)
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Listing 2.1: Persona example

1 'personality'=[
2 ”i like to remodel homes .”,
3 ”i like to go hunting .”,
4 ”i like to shoot a bow .”,
5 ”my favorite holiday is halloween .”
6 ]

pre-trained GPT-2 model. Besides taking the context of the conversation into account, it also considers

another type of context: the persona of the agent, which is a set of sentences describing the agent.

While most models try to minimize a single loss, this model is trained on a multi-task setting with two

goals:

• minimize the language modeling loss, in order to generate plausible responses.

• minimize the next sentence prediction loss, in order to correctly classify a gold response among a

set of random distractors.

At each iteration, the model loss is computed as a weighted sum of both losses, where the weights

assigned to each one are 2 to the first and 1 to the last, and can be changed in a configuration file.

Therefore, this model is both retrieval and generative. As the name suggests, the model is a transfer

learning approach, where its training consists of pre-training it and fine-tuning it for a specific task.

As fine-tuning data, it uses the PersonaChat dataset5, which contains 17898 entries, where each

entry contains a persona, and a set of utterances, with each containing a set of candidates, where the

last one is the gold reply and the others are distractors, and a conversation history. An example of a

persona from the PersonaChat dataset is shown in Listing 2.1.

Other corpora can be used to fine-tune the model, as long as they have the same json structure as

the PersonaChat.

For our experiments to study the impact of our tailored distractors in retrieval and generative models,

we will use DialoGP3T, since its multi-task training setting allows it to do both. We use the PersonaChat

and the pre-trained model microsoft/DialoGPT-small6 (Zhang et al., 2019c). It is a neural model for

response generation, trained on top of GPT-2 using Reddit dialogue data. To solve the problem of

uninformative responses, that can answer many questions, they implement a maximum mutual informa-

tion (MMI) scoring function, which is trained to predict a query (source), given a response (target), to

maximize the probability of generating a response that uniquely answers that query, and is, thus, more

informative.
5https://s3.amazonaws.com/datasets.huggingface.co/personachat/personachat self original.json (Last accessed on:

19/10/2020)
6https://huggingface.co/microsoft/DialoGPT-small(Last accessed on: 27/11/2020)
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In this thesis, we join two multi-agent dialogue systems, and add a context agent to the resulting

system. In this section, we start by studying current dialogue systems’ architectures (Section 3.1). We

also study how context is represented and used in current dialogue systems (Section 3.2). Then, we

introduce the task of Next Sentence Prediction, and study recent systems which use it (Section 3.3).

That leads us to the task of distractor selection, which we explain and see in which tasks it is used, and

how (Section 3.4). Finally, we explore how response selection systems and the usage of context are

currently evaluated (Section 3.5).

3.1 Dialogue Systems Architecture

Our first objective is to join two multi-agent systems, each with different components. To better ac-

complish it, and try to standardize our system as much as possible, we present a brief study of the

components that make a dialogue system.

A multi-agent dialogue system is a system composed of multiple agents. Each agent receives a query

and returns a response, whether retrieved or generated. Most of these systems’ agents are cooperative,

working together to achieve a certain goal. Fum et al. (1988) motivated a distributed architecture where

a set of autonomous agents cooperated to solve a NLP assignment. More recently, Papangelis et al.

(2019) train two conversational agents that learn by interacting with each other. In some systems, there

are multiple agents available, as in ours, but each of them focuses on a particular skill, such as Facts,

Movies, and Thoughts. These are usually called miniskills, and, based on the dialogue state and user’s

intent, only one of them is selected to answer each user’s request (Fang et al., 2018) (Chen et al., 2018).

Others, as MACA (Truong et al., 2017), are frameworks that allow to easily integrate different agents, as

in ours, but only allow to have one agent implemented at a time, while, in our system, multiple agents

can be active and respond simultaneously.

Regarding dialogue systems’ architectures, the main components are:

1. Natural Language Understanding (NLU) – preprocessing operations are applied to the user

input, such as POS tagging, stopwords removal (Truong et al., 2017), intention, sentiment and

topic extraction (Fang et al., 2018), dialogue act extraction and coreference resolution (Chen et al.,

2018).

2. Dialogue Manager (DM) – manages the conversation, using the user’s intent and the dialogue

history to redirect the user’s request to one of multiple miniskills (Fang et al., 2018) (Chen et al.,

2018), implemented in this component, or redirect to a single agent, when there is only one (Truong

et al., 2017).

3. Natural Language Generation (NLG) – applies postprocessing operations to the DM’s output,
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whether to make it more readable and natural (Truong et al., 2017), or to create a sentence from

its output (Fang et al., 2018), possibly using a template of natural responses (Chen et al., 2018).

Spoken dialogue systems have two additional components: Automatic Speech Recognition (ASR)

before the NLU, that converts speech to text, and Text To Speech (TTS) after the NLG, that converts

text to speech.

Although we want to standardize our system so it has the aforementioned components, we do not

perform any preprocessing to the user request nor postprocessing before returning the response to the

user, as it is not in the objectives of this thesis, thus we will not have a NLU nor a NLG modules, only a

DM.

3.2 Using context in dialogue systems

As previously seen, we consider the context to be dialogue history between the user and the agent

(Sankar et al., 2019). Uses of context include:

• Techniques that change the context:

– Anaphora resolution, which consists on determining the antecedent of an anaphor (Mitkov,

2007). To determine the correct antecedent, it is necessary to search for candidates in the

context.

– Ellipsis resolution, which consists on finding an antecedent in the context for an ellipsis,

which is a phenomenon where words are omitted from the text (Zhang et al., 2019b).

– Question-in-context rewriting introduced by Elgohary et al. (2019): given the context, rewrite

a context-dependent question into a self-contained question with the same answer, solving

language understanding elements, such as coreferences and ellipsis. A context-dependent

question depends on the context of the conversation to be understood. It can have references

to previous entities, or ellipsis that can only be resolved if the context is considered. A self-

contained question does not need context to be understood; pronouns are replaced by the

corresponding antecedent. In the following example, we show a context-dependent question

and its rewritten self-contained question (Elgohary et al., 2019):

Context-dependent: Did they marry?

Rewritten: Did Hannah Arendt and Heidegger marry?

• Techniques that use the context:

– Dialogue Act Prediction of the next response, such as “statement” and “question” (Kumar

et al., 2018) (Kumar et al., 2019) (Tanaka et al., 2019). Kumar et al. (2018) showed that
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dialogue acts information improves the task of response selection, for both retrieval and

generative-based models. The dialogue acts were given as information on test time, but

Kumar et al. (2019) developed a multi-task system that does not depend on being given the

dialogue act information, being able to predict the dialogue acts and select a response. Al-

though using dialogue acts to aid response selection is an interesting approach, it will not be

done in this work since, to the best of our knowledge, there is no Portuguese corpus tagged

with dialogue acts.

– Question Generation (Tuan et al., 2019) (Gao et al., 2019), which is usually performed con-

sidering just the answer sentence to which we want to generate a question. Tuan et al. (2019)

showed that using context improves the quality of the generated questions. In this paper,

context is modeled using a multi-stage attention mechanism, which captures the most rele-

vant parts of the document that are related to the answer sentence, using this to generate the

question.

– Response Selection, which consists on selecting a response from a set of candidates, con-

sidering the context of the conversation.

The last is a core task in retrieval-based chatbots. While early studies only consider the last utterance

in the context to find an appropriate response (single-turn response selection) (Wang et al., 2013), it

has recently been shown that considering more than one utterance of the context (multi-turn response

selection) can improve the quality of the selected answer (Zhou et al., 2016), since human responses

are based on the whole conversation at different granularities (words, phrases, sentences) rather than

just on the last utterance.

Previous works consider context as a sequence of words, but Zhou et al. (2016) propose a multi-view

approach for response selection, where one view considers context divided into words – word sequence

view – and another view considers context divided into utterances – utterance sequence view. In the

word sequence view, context and response are represented as low dimensional word embeddings,

constructed by a Gated Recurrent Unit (GRU) (Chung et al., 2014), which is similar to an LSTM, as

studied in Section 2.1, but without an output gate. In the utterance sequence view, utterance and

response embeddings are built by a CNN. In each view, a confidence is calculated for each response,

based on the similarity between the embeddings of the response and the context. The final score of

each response is the sum of the two confidences, one per view, and the response with the highest score

is selected.

Wu et al. (2017) state that representing the whole context as a vector, like in (Zhou et al., 2016),

causes models to lose information. To avoid this, they propose a model – Sequential Matching Network

– that matches a response with each utterance, encoding important information in a matching vector.

Each utterance is represented by a word embedding, which is then fed to a GRU. All matching vectors
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(one per utterance) are then accumulated to compute the final matching score between context and

response.

Both the aforementioned systems use GRU, which are a type of RNN. Since RNNs are used for

encoding text, which is too costly to use for capturing multi-grained semantic representations and have

the disadvantages seen before, Zhou et al. (2018) propose a multi-turn response selection system using

dependency information which is entirely based on the attention mechanism, inspired in the Transformer

architecture. The attention mechanism is extended in two ways:

• self-attention – sentence attends to itself, allowing the capture of intra word-level dependencies.

• cross-attention – context and response attend to each other, to find which response has more in

common with the context.

The proposed model is called DAM – Deep Attention Matching network – which aims to match a

response with multi-turn context, by learning a matching model which measures the relevance between

the context and a candidate response. The model selects the k best-matched responses from n available

candidates for a given conversation context c. Although we initially meant to built this work from this

model, we will see further that we do not use it and why.

Bapna et al. (2017) explore how to improve dialogue context modeling within a RNN-based spoken

language understanding system. The performed experiments suggest that encoding more context from

the dialogue results in a reduction in overall frame error rate, improving the quality of the given answers.

To use context, systems must represent it. This requires transforming the context’s utterances into a

vector representation. Table 3.1 resumes some current systems’ ways of representing context.

Through its analysis, we conclude that context is used in many different tasks, and is represented

using mostly BiLSTM, LSTM, RNN, GRU and word embeddings.

3.3 Next Sentence Prediction

In this thesis, one of the models used to develop our contextual agent and to assess the impact of our

tailored distractors is fine-tuned from BERT. One of BERT’s pre-training objectives is Next Sentence

Prediction (NSP): given two sentences A and B, 50% of the time B is the actual sentence that follows A,

and is labeled as so (IsNext), and 50% of the time it is a random sentence from the corpus (NotNext).

The Hugging Face1 library has made available some interfaces built on top of BERT, that are available

for fine-tuning for some NLP tasks, such as Question Answering (BertForQuestionAnswering2), Sen-
1https://huggingface.co/ (Last accessed on: 11/12/2020)
2https://huggingface.co/transformers/model doc/bert.html#bertforquestionanswering (Last accessed on 04/12/2020)
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Model Task Architecture used to cre-
ate a context representa-
tion

Gao et al. (2019) Question Generation
Bidirectional LSTM
(BiLSTM)

Ma et al. (2019b) Response Selection us-
ing a novel triple attention
mechanism

Self-attention is used to
create a vector represen-
tation of each utterance,
which is fed into an LSTM
layer

Tanaka et al. (2019) Dialogue-Act Prediction Two RNNs: one for en-
coding utterances and
one which takes the
output of each utterance
encoder to generate a
context vector

Zhou et al. (2018) Response Selection us-
ing a novel model only
based on attention

Each utterance is repre-
sented by word embed-
dings, which are then fed
to an attentive module,
that outputs the context
representation

Elgohary et al. (2019) Question-in-Context
Rewriting

BiLSTM

Zhou et al. (2016) Response Selection us-
ing a multi-view approach

GRU in word sequence
view, CNN in utterance
sequence view

Wu et al. (2017) Response Selection us-
ing a sequential matching
network

Word embeddings and
GRU

Ohsugi et al. (2019) Conversational Machine
Comprehension

BERT encodes relation
between context and cur-
rent paragraph

Table 3.1: Ways of representing context

tence Classification (BertForSequenceClassification3) and NSP (BertForNextSentencePrediction4).

The last corresponds to the NSP objective used in BERT’s pre-training, and consists of a NSP head on

top of BERT model.

BertForNextSentencePrediction always takes two sentences as input, s1 and s2, and returns a

vector [p1, p2], where p1 is the probability of s2 following s1, and p2 is the probability of s2 being a

random sentence.

Although it is a recent model, BertForNextSentencePrediction model has already been used for

various tasks:

• Wang et al. (2019) use it to help Reddit users find posts that are similar to theirs, by predicting
3https://huggingface.co/transformers/model doc/bert.html#bertforsequenceclassification (Last accessed on 04/12/2020)
4https://huggingface.co/transformers/model doc/bert.html#bertfornextsentenceprediction (Last accessed on 04/12/2020)
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the probability of a post B’s text body following a post A’s title. Besides using the pre-trained

BertForNextSentencePrediction model, they also fine-tune it: for each post, they assume that

different posts from the same author and same subreddit are similar, thus they select one of those

as a positive example (IsNext). As a negative example, they randomly select a post that is not

from the same author (NotNext).

• Shi and Demberg (2019) study it for the task of Implicit Discourse Relation Classification, by com-

paring the performance of BERT pre-trained with the NSP objective and without it, and showing

that the first has better results. This proves that the NSP task helps at modeling the semantic

relations between two sentences.

• Kong et al. (2020) introduce the task of sentence level cloze completion, which consists on fill-

ing the blanks in a text with complete sentences. They use BertForNextSentencePrediction to

predict the most appropriate candidate to each blank space, given its context.

As we will see in Section 4.2.3, BertForNextSentencePrediction will also be used in our work.

3.4 Distractor Selection

In the previous section, it was seen that the task of NSP includes fetching a random sentence from a

corpus, as a negative example. In this section, we study the importance of selecting negative examples

using some heuristic, instead of selecting them randomly, as one of the objectives of this thesis is

to study the hypothesis that selecting tailored distractors improves the performance of a retrieval and

generative model.

The task of distractor selection was created to aid in the creation of multiple choice questions

(MCQ) from long texts. Mitkov and Ha (2003) introduced this task that uses NLP methods, such as

term extraction, word sense disambiguation and WordNet (Miller, 1995), to generate questions and

corresponding items. While one of the items is the correct answer, the others are distractors, which

must be semantically close to the correct answer, so that finding the correct answer is less obvious for

students. In this novel approach, the selection of distractors is done using WordNet. Through user

evaluation, it was realized that, from all the tasks involved in MCQ generation, the task of distractor

selection was the one that needed more improvement.

Mitkov et al. (2009) studied how to improve the quality of the selected distractors by testing different

ways of calculating semantic similarity, but no method was found to outperform the others.

Mitkov and Ha (2003) created MCQs from long texts, but using only one sentence of the text for

each question. Araki et al. (2016) was the novel system to create MCQs from multiple sentences, in a
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way that requires the student to take inference steps, such as coreference resolution, to find the correct

answer.

Another traditional task that has been automatized and uses distractors is Cloze (Taylor, 1953) (Jiang

and Lee, 2017) (Gao et al., 2020), which is a test where parts of a text have been removed and the

student must fill the gaps, choosing from a set of candidates that include the correct missing span and

distractors.

The mentioned systems train their models using English exams designed by teachers.

The task of distractor selection for multiple choice questions usually consists on computing a metric

that compares each distractor (d) to the correct answer (c). Namely, as mentioned, for the task of mul-

tiple choice questions, Mitkov and Ha (2003) compute the semantic similarity using the Wordnet, which

retrieves hypernyms and hyponyms, to have d semantically close to c. Gao et al. (2020), to select dis-

tractors for the Cloze task, use the length difference between c and d, the cosine similarity between

c and d, the distractor frequency, where d has highest score if it appears less, and the frequency

difference between c and d. Jiang and Lee (2017), also for the Cloze task, compute a semantic simi-

larity using word2vec (Mikolov et al., 2013), a spelling similarity and a word co-ocurrence similarity,

assuming that sentences with common words or spelling are harder to distinguish by students.

On this work, we select distractors computing a semantic similarity with the correct response, among

other methods, as we will see further.

Current dialogue systems, namely response selection systems, use a dialogue corpus, some of them

the Ubuntu Dialogue Corpus (Lowe et al., 2015). To train their models, for each training example, they

need the context of a conversation, and one positive and one (or more) negative examples. This negative

example is, in most response selection systems, randomly sampled from the corpus (Lowe et al., 2015)

(Gunasekara et al., 2019) (Wu et al., 2017) (Zhou et al., 2016) (Zhou et al., 2018) (Henderson et al.,

2019) (Gu et al., 2019) (Ma et al., 2019a) (Yuan et al., 2019). (Zhang et al., 2017) propose a more

sophisticated approach, where negative examples are randomly chosen from all other utterances within

the same document, instead of randomly chosen from the whole corpus, so “distractors are likely from

the same sub-conversation or even from the same sender but at different time steps”. Devlin et al. (2019)

also use random distractors in their NSP pre-training task, as previously mentioned in Sections 2.3 and

3.3.

Recent works have motivated the importance of selecting distractors instead of using random ones.

Based on the assumption that, in real-world scenarios, models have to select a correct response from a

set of strong distractors instead of random ones, this is, distractors that are harder to distinguish from the

correct response than random ones, Lin et al. (2020) propose the creation of a grayscale dataset to train

response selection systems: instead of considering the ground-truth response the correct response

and all the distractors as incorrect, they use a multi-level ranking, where the ground-truth response
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is white, randomly sampled utterances are black, and utterances obtained using retrieval or generative

systems are gray.

In order to evaluate how a response selection system performs with strong distractors, Sato et al.

(2020) propose a method to build test sets with well-chosen false candidates. The choice of these

candidates consists on retrieving candidates related to the ground-truth response, based on the similarity

between their content words, and, from these, remove utterances that are acceptable as a response

through human evaluation. This is, to the best of our knowledge, the closest approach to ours. Our

tailored distractors are inspired by the distractor selection process in multiple choice question systems,

and correspond to Sato et al. (2020)’s well-chosen false candidates, but, while they only use them

for testing, we use them to train our model. Furthermore, we select them by taking into account the

similarity between the whole sentences, whereas they only take the content words into account.

3.5 Evaluation

To evaluate our different components, we start with a brief study of the guidelines for machine learning

experiments (Section 3.5.1).

Common NLP tasks’ performance is evaluated through metrics as accuracy, recall and precision. For

instance, when doing response selection, there is labeled data, so if the system selects the gold reply, it

is correct, if it selects another utterance, it is incorrect. Particularly, Zhou et al. (2018) use the evaluation

metric R(n)@k for the task of response selection, which is the recall of true positive replies among the k

selected.

As previously mentioned, DialoGP3T has two objectives: ranking and generation. Therefore, we

study evaluation metrics for those two objectives, respectively, in Sections 3.5.2 and 3.5.3.

However, evaluating the usage of context cannot be done using such metrics. To do so, we study

how to evaluate the usage of context in Section 3.5.4.

3.5.1 Guidelines for Machine Learning experiments

Alpaydin (2010) describe a set of guidelines to take into consideration when evaluating machine learning

models, and how to plan and design experiments.

They state that the three basic principles of experimental design are:

• Randomization – the order by which the settings are ran must be random, so that the results are

independent

• Replication – for the same configuration, the experiment must be ran a number of times (cross-

validation). This allows to obtain the experimental error which leads to the conclusion of whether
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the results have statistical significance.

• Blocking – remove variability from the results. For example, if we are comparing to machine

learning algorithms, the same training and testing data must be used in both of them, so that the

results are comparable.

The suggested guidelines for machine learning experiments concern:

1. Define the aim of the study, by clearly stating the objectives of the experiment.

2. Select a response variable, such as the error or loss.

3. Choose factors (different algorithms, different datasets) and levels (different parameters for algo-

rithm).

4. Choose the experimental design, as the size of training and testing sets, how the different factors

will be tested (one or multiple at a time).

5. Perform the experiment, making sure that it is reproducible, by, for example, stating the seed value.

6. Perform a statistical analysis of the data to discover if the results obtained are statistically signifi-

cant.

One way to assess the significance of the results is through hypothesis testing. We may define

an hypothesis that X > Y; if the results are consistent with that hypothesis, then we fail to reject it,

otherwise, we reject it. The null hypothesis is the one we want to test (X > Y), against the alternative

one (X ≤ Y). To test the null hypothesis, a ttest can be performed, to find, from the means of two

independent samples, X and Y, if those samples are from populations with different mean values. A level

of confidence α is chosen as a statistically significance threshold, usually 0.05, and the ttest returns a

p-value:

• if p-value <= 0.05: we fail to reject the null hypothesis, meaning that the difference between the

two means is statistically significantly different from zero at level of significance α

• if p-value > 0.05: we have evidence to reject the null hypothesis, meaning that the difference

between the two means is not statistically significantly different from zero at level of significance α

We will use these principles to guide the evaluation of our results.

3.5.2 Retrieval evaluation

To evaluate how good a system is at ranking candidates, the metric used is Hits@k, k in [1,5,10], which

represents the correct answer in the top k hits. When k = 1, the result is the accuracy.
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3.5.3 Generation evaluation

To evaluate how good a system is at generating responses, the following metrics are used:

• BLEU (Bilingual Evaluation Understudy Score) (Papineni et al., 2002) – evaluates machine trans-

lation by measuring how many words overlap on a translation and a reference translation.

• TER (Translation Error Rate) Score (Snover et al., 2006) – evaluates machine translation by mea-

suring how much a translator would have to edit a translation so that it would match a reference

translation. As this score is an error, the lower it is, the better.

• BertScore (Zhang et al., 2019a) – evaluates text generation by measuring the similarity between

a candidate and a reference sentence.

3.5.4 Context evaluation

An ablation is a term that originates from neuropsychology, where parts of animals brains where re-

moved to study how it affected their behaviour. Applied to machine learning, it consists on removing a

feature from a model, to observe the effect it has on its performance (Sheikholeslami, 2019).

Ablation studies are used in two works that have the goal of understanding how neural models use

context (Khandelwal et al., 2018) (Sankar et al., 2019), by measuring changes in the model’s perfor-

mance in absence of contextual information. Khandelwal et al. (2018) use it to explain how models use

long-range context (larger sequence of words considered, beyond sentence level), and focus on LSTM,

due to its ability to model long-range dependencies, and to remember some aspects that are useful to

model context, such as sentence length and word order. Sankar et al. (2019) use ablation to show that

neural models do not make use of all the information available to it (including conversation history), and

use two models: recurrent seq2seq and transformer-based seq2seq.

In order to understand their approach, Khandelwal et al. (2018) propose two important concepts:

• Infinite context setting – provide the model with all the tokens prior to the target word.

• Effective context size – number of tokens of context which need to be provided to the model in

order to achieve similar loss to providing infinite context.

Some interesting answers are found to the question “How much context is used?”, in particular,

that LSTM language models have an effective context size of about 200 tokens, which means that

considering more than 200 tokens has the same loss as the infinite context setting. Knowing the effective

context size, they study the importance of contextual information, such as word order and word identity,

looking at both nearby and faraway context. They found that:
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• Local word order, which considers the average length of one sentence, only matters for the most

recent 20 tokens. The range (20 tokens) was determined by changing the order of tokens and

observing how it affected the loss.

• Global word order, that considers all sentences in the conversation history, only matters for the

most recent 50 tokens. This means that introducing perturbations in the context more than 50

tokens before the current one has no effect on the performance. From this analysis, 50 tokens was

set as the boundary between nearby and long-range context.

• Content words (nouns, verbs and adjectives) matter more than function words (determiners and

prepositions) – when a perturbation function is applied to the context (dropping), losing content

words has a higher loss than losing function words.

While Khandelwal et al. (2018) introduce perturbations in the context to take the aforementioned

conclusions, in (Sankar et al., 2019) these are used to show that neural models do not make use of all

the information available to it (including conversation history). Two models were used: recurrent seq2seq

and transformer-based seq2seq. The central premise of Sankar et al. (2019) is that models use some

of the information available to it if they are insensitive to perturbations that destroy them. So, to see if

the models use the context of the conversation, they introduce the following perturbations:

• utterance-level

– shuffle sequence of utterances in dialog history

– reverse order of utterances in dialog history

• word-level (within every utterance)

– shuffle words in utterance

– reverse order of words in utterance

– drop 30% of words

– drop all nouns

– drop all verbs

The following observations were made:

• Even under extreme perturbations, the models show little change in perplexity, which means

that they are insensitive to the perturbations and, therefore, using the central premise of the paper,

make minimal use of the dialog history.
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• Transformers are insensitive to word-reordering, indicating that they could be learning bag

of words like representations. This observation is particularly odd, since Transformers have a

Positional Encoding mechanism to represent the order of words in a sentence.

• Transformers are less sensitive to perturbations that mess with utterance structure than re-

current models, which suggests that the latter are better to model conversational dynamics.

The major conclusion is that both recurrent and transformer-based seq2seq models are not signifi-

cantly affected by drastic changes in the conversation history, which means that they do not really take

it into account to generate the answers.

Considering the conclusions taken in the two aforementioned works (Khandelwal et al., 2018) (Sankar

et al., 2019), current neural models are not using context as we would expect them to be. This is a moti-

vation for our work, since we want to study if considering context when choosing an answer will improve

the quality of the given answers.
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In this chapter, we focus on integrating two retrieval-based multi-agent dialogue systems: MULTI-SSS

(Santos, 2019) and CHATTUGA (Fernandes, 2019). Both systems focus on the idea that all agents can

potentially answer all questions. In Section 4.1, we describe how we joined each of their components,

in Section 4.2 we describe the creation of new agents, and in Section 4.3 we describe the addition of

these agents to our system.

4.1 Integrating two multi-agent dialogue systems

Although the systems have different strengths and functionalities, here we focus on what they have in

common: a Dialogue Manager (from now on, DM), Agents, and Decision making strategies.

In both systems, when the user poses a query to the system, it is received by the DM. The differences

between them, in what regards the interaction between the DM, the agents and the decision making

strategies, are pointed in Table 4.1.

Step MULTI-SSS CHATTUGA

Interaction between DM
and Agents

Upon receiving a User
query, the DM sends it to
the Agent Manager, who
is responsible for initializ-
ing the agents once and,
when it receives a query
from the DM, it sends the
query to all agents and re-
ceives their answers, re-
turning the set of answers
to the DM.

When the DM starts, it
sets up all agents. Upon
receiving a User query, it
sends it to all agents and
receives their answers.

Interaction between DM
and Decision Making
Strategies

The DM sends the
agents’ answers to the
Decision Maker, who
sends them to the only
active Decision Making
Strategy and receives its
answer, which is returned
to the DM, who returns
that answer to the User.

The DM directly sends the
agents’ answers to all the
decision making strate-
gies, with each of them
returning a single answer.
The set of answers by
strategy is returned to
the DM, who chooses the
best answer to return to
the User based on its con-
fidence on each strategy.

Table 4.1: Relevant differences between the systems

Integrating the two mentioned systems consisted on joining the DMs, the agents and the decision

making strategies.
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4.1.1 Joining the DMs

Combining the DMs consisted on understanding what they had in common and what were their differ-

ences regarding their interactions with the agents and the decision making strategies, so that we could

create a new one, for our system, that encompasses their similarities and differences while maintaining

the system’s consistency.

Regarding the interaction between the DM and the agents, as seen in the previous section’s

figures and in Table 4.1, both DMs are responsible for sending the user query to the agents and receiving

their answers. In MULTI-SSS, an Agent Manager serves as an interaction point between the DM and the

agents, while in CHATTUGA their interaction is direct. In our system, we chose to follow MULTI-SSS and

have an Agent Manager to handle the interactions between the DM and the agents.

Regarding the interaction between the DM and the decision making strategies, both DMs send

the set of answers given by the agents to the decision making strategies. In MULTI-SSS, this is done

using the Decision Maker, an interaction point between the DM and the decision making strategies,

responsible for sending the agents’ answers to the only active decision making strategy and returning

its answer to the DM. So, in MULTI-SSS, the final answer is chosen by the decision making strategy. In

CHATTUGA, the agents’ answers are sent directly from the DM to each decision making strategy, where

each returns an answer to the DM, who, based on the weights given to each strategy, chooses the final

answer to return to the user. So, in CHATTUGA, the final answer is chosen by the DM. In our system, we

chose to have an interaction point between the DM and the decision making strategies – the Decision

Manager – as in MULTI-SSS, but, instead of one single strategy active at a time, we have a panoply of

strategies with weights associated, as in CHATTUGA, with the DM being responsible for the choice of the

final answer to return to the user.

An advantage of keeping the decision making strategies’ weights, as done in CHATTUGA, is that, in

future work, they can be used by our system to learn which strategy gives better answers, using, for

example, MULTI-SSS’s online learning, which so far is only used to evaluate agents.

Regarding other functionalities of the DMs, from MULTI-SSS we kept its five running modes, including

its online learning module, although we only use the multi-agent mode, but we kept the other functional-

ities available for future use. From CHATTUGA’s DM, we used the training of classifiers, which are used

to classify the user’s queries.

4.1.2 Joining the agents

Joining the agents consisted on analysing the agents from both systems and removing any redundancy.

As previously mentioned, MULTI-SSS’s agents include similarity metrics, as Cosine, Jaccard and

Levenshtein, and it also has an Edgar agent. CHATTUGA’s agents are Cheat, Edgar, SSS, SSS-AMA
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and Talkpedia.

Analysing those agents, we see that CHATTUGA has an agent SSS, that is a previous version of

MULTI-SSS, thus it is redundant to have this agent. It also has an agent SSS-AMA, which is the same

as SSS, but using a corpus from Balcão do Empreendedor instead of the subtitles corpus. This was

removed at first, but later replaced, as we will see further.

Both systems have an Edgar agent. In our system, the decision on which one to choose was made

based on their storage usage and simplicity, so we chose to keep MULTI-SSS’s.

Summarizing, the removed agents were CHATTUGA’s SSS, CHATTUGA’s SSS-AMA and CHATTUGA’s

Edgar.

New agents were created and added, as we will see in Sections 4.2 and 4.3.

We also made it easier to activate and deactivate agents, by just changing the value associated to

the agent in the system’s configuration file, where 0 means that the agent is not active, and 1 means it

is active.

4.1.3 Joining the decision making strategies

There were no conflicts or redundancies between both previous systems’ decision making strategies,

particularly since they have different heuristics: MULTI-SSS’s strategies make their decisions only based

on the set of answers given by the agents, while CHATTUGA also takes other things into account, such

as the area of expertise of the agents, the query labels, output by its classifier, and the query itself.

4.1.4 Final architecture

The integrated multi-agent system also focuses on the idea that all agents can potentially answer all

questions. Regarding the interaction between the DM and the agents, we chose to keep MULTI-SSS’s

component that manages the agents – the Agent Manager. We also chose to keep the component that

manages the decision making strategies – the Decision Manager – which has a different name, that will

be explained next. The main components of the integrated multi-agent system are the following, some

of which were already described when the systems were introduced in Section 2.4:

• Dialogue Manager (DM) – interaction point between the user, the Agent Manager and the Deci-

sion Manager. Upon receiving a user query, it sends it to the Agent Manager, that returns a set of

answers by agent. The DM forwards these answers to the Decision Manager, which returns a set

of answers, one given by each decision making strategy. Based on the DM ’s confidence on each

strategy, it chooses one final answer that is returned to the User.

• Agent Manager – interaction point between the DM and the agents. On its first call, it is responsi-

ble for initializing the agents. Upon receiving a query from the DM, it retrieves a set of candidates
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using a search engine. It forwards the query to all active agents, along with the candidates, for

those who require it, and receives the responses given by each of them. The set of responses by

agent is then returned to the DM.

• Agent – receives a query and, optionally, a set of candidates and returns one or more answers,

based on its functionality.

• Decision Manager - interaction point between the DM and the decision making strategies. On

its first call, it is responsible for initializing the decision making strategies. Upon receiving a set of

answers from the DM, it forwards it to each decision making strategy, with each of them returning

one answer. The set of answers by strategy is then returned to the DM. The name of this module

was changed from Decision Maker to Decision Manager because it does not decide which answer

to return to the user; this decision is made by the DM, as in CHATTUGA. Instead, it is responsible

for managing the decision making strategies.

• Decision Making Strategy - receives a set of answers by agent and chooses one of them to

return, based on its heuristic.

Figure 4.1: Integrated system’s architecture
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The architecture of the resulting integrated multi-agent system can be seen in Figure 4.1.

As a technical detail, in CHATTUGA all the decision making strategies were on the same file; in SSS,

they were classes in different files, with similar code functions, but there was no inheritance. The same

happens with the agents. To avoid code repetition and better modularize our code, we created two

abstract classes: Agent, with the abstract method requestAnswer(query), and DecisionMethod, with

abstract method getAnswer(answers). Each agent is now represented in a different class and inherits

from Agent, overriding requestAnswer’s behaviour to match that agent’s behaviour. The same applies

to all decision making strategies, which are now in different classes which inherit from DecisionMethod

and override getAnswer to select an answer based on that strategy’s heuristic.

For a better understanding of our system, we present a running example:

1. The user poses the query q to the system: “Quantos anos tens?” (“How old are you?”)

2. The DM classifies q with labels QUESTION, WH QUESTION, PERSONAL, OTHER, NUM, COUNT and

AGENT LIFE, and forwards q to the Agent Manager.

3. The Agent Manager instantiates the active agents: Cosine, Edgar and Talkpedia, and forwards q

to them.

4. The agents return their selected responses to the Agent Manager :

• aCosine: “Ela é do ano do galo” (“She is from the year of the rooster.”)

• aEdgar: “Tenho 65 anos.” (“I’m 65 years old.”)

• aTalkpedia: “Não sou um grande perito nesse tema, mas sobre isso sei que em agosto de

2019, os Wet Bed Gang actuaram no festival de música MEO Sudoeste.” (“I am not a great

expert on this subject, but I know that in August 2019, Wet Bed Gang performed at the MEO

Sudoeste music festival.”)

5. The Agent Manager sends the agents’ answers to the DM.

6. The DM forwards the agents’ answers, [aCosine, aEdgar, aTalkpedia], to the Decision Manager.

7. The Decision Manager sends the agents’ answers to the active Decision Making Strategies (simple

majority, with a weight of 0.4, and query agent, with a weight of 0.6).

8. Each of the decision making strategies selects one of the agents’ answers and returns it to the

Decision Manager :

• query agent – aEdgar, “Tenho 65 anos.” (“I’m 65 years old.”)

• simple majority – aCosine, “Ela é do ano do galo” (“She is from the year of the rooster.”)
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9. The Decision Manager returns the strategies’ answers to the DM.

10. Since the decision strategies returned different answers, and query agent has a higher weight, the

DM returns Edgar’s answer, aEdgar, to the user: “Tenho 65 anos.” (“I’m 65 years old.”)

4.2 Creating new agents

After the work developed in the previous section, a first version of our system was ready to use. When

a user introduces a query, it is classified by the classifiers developed on CHATTUGA, getting a set of

labels. These labels are used, for example, in the Query Agent strategy, where, to select an answer, the

labels of the query are compared to those of the agent who gave each answer. These labels can be,

among others, YN QUESTION, when it is a question that can be answered with “yes” or “no”, OR QUESTION,

when it is a question where the answer is one thing or another, or IMPERSONAL, where the question is not

personal. For the latter, we have a specialized agent – Talkpedia (Mota, 2015) – that answers impersonal

questions using Wikipedia1. There were, however, no specialized agents for labels YN QUESTION and

OR QUESTION, which are common types of question. To solve this, we created two new simple agents

specialized in those types of question: Yes No Agent and Or Agent. Section 4.2.1 describes these

agents.

In the previous section, it was mentioned that CHATTUGA’s agent SSS-AMA was deleted, because

it was an exact copy of the original SSS, but with a different corpus. A direct solution to solve this

would be to create an AMA agent, that would take the AMA corpus and return an answer. However, this

would imply that, every time we wanted to add a new agent with a different corpus to our system, we

would have to manually create a new agent, whose behaviour would be identical to the other agents. To

avoid this repetition, and to add other functionalities that the system also lacked, the General Agent,

described in Section 4.2.2 was created.

Finally, since one of the objectives of this thesis is to develop an agent that takes context into account,

Section 4.2.3 describes the creation of a contextual agent.

4.2.1 Simple agents

• Yes No Agent – given a query, randomly returns “yes” or “no”.

• Or Agent – given a query, randomly returns the phrase that is before or after the “or” in the sen-

tence, using syntactic parsing, as seen in the following example, where the answer is randomly

chosen between “azeite” (“olive oil”) and “vinagre” (“vinegar”).:

1https://www.wikipedia.org/ (Last accessed on: 01/08/2020).
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“Gostas mais de azeite ou vinagre?” (“Do you prefer olive oil or vinegar?”)

4.2.2 General agent

As the name implies, the General Agent is a standard agent that can have multiple instances, where each

instance has a different corpus. The agent’s name and the path to its corpus are defined in the General

Agent’s configuration file, as shown in Listing 4.1, where there is one active agent and corresponding

paths.

Listing 4.1: General Agent configuration file example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <config>

3 <mainClass>GeneralAgent</mainClass>

4 <agentAmount>1</agentAmount>

5

6 <excelPath name='ExampleAgent'>None</excelPath>

7 <corpusPath name='ExampleAgent'>corpora/example.txt</corpusPath>

8 <indexPath name='ExampleAgent'>resources/whooshIndexes/example</indexPath>

9 <labelsPath name='ExampleAgent'>corpora/exampleLabels.txt</labelsPath>

10

11 <threshold>0.35</threshold>

12 <useWhoosh>true</useWhoosh>

13 <stopwords>resources/stopwords/edgar stop.txt</stopwords>

14 </config>

General Agent has the following new features:

• dynamically adding new agents - in order to create a new agent, the only requirement is a csv

or excel file, with the following mandatory columns:

– topic – topic of the question, needed for classification purposes.

– question

– answer

Optionally, it can also have the following columns:

– source – the source of the information, useful, for example, when using FAQs from different

websites or public institutions.

– paraphrases – list of paraphrases of the question.
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As we wanted our system to, given a paraphrase of a query in the corpora, give the correct answer,

an experiment was made to test the performance with paraphrases of the search engine used to

retrieve candidates to feed the agents, Whoosh. We fed it with question-answer pairs and tested

whether, retrieving only one result for a query which is a paraphrase of the question, the retrieved

question was the correct one. The result was 64% accuracy, so we added each paraphrase with

its corresponding question’s answer to Whoosh. Although these are kept as different question-

answer pairs on Whoosh, they are still signaled on our corpus as being paraphrases, having the

same DialogId, as it may be handled in the future.

Thus, given a question, Q, an answer, A, and a list of paraphrases, for instance, [P1, P2], what

enters our system is the following:

SubId - 001001

DialogId - 98

Diff - 0

I - Q

R - A

SubId - 001001

DialogId - 98

Diff - 0

I - P1

R - A

SubId - 001001

DialogId - 98

Diff - 0

I - P2

R - A

Notice how DialogId and R are the same, but the second and third I are paraphrases of the first,

which is the one in the corpus.

From this file, all the needed files are automatically created, including a text file in the subtitle

format that Whoosh will read, and those needed for question and answer classification. The new

labels are also automatically extracted and added to the agents configuration file as the labels of

expertise of that agent.

• synonyms list - a list of synonyms inside of the agent’s domain can be provided as a text file,

where each line has the following format:

word,synonym1,...,synonymN
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To improve efficiency, if a synonym is found in a user query, it is replaced by the main word before

sending the query to Whoosh.

• acronyms list - a list of acronyms can also be provided in the same manner as the synonyms list

described above, where each line has the following format:

acronym,expansion

• context as a list of labels - a first implementation of context in our system consists on storing

the topic, predicted by the classifier, of each user query, producing a history of topics. This is

useful because, when the user poses a query that could match two different labelled questions in

our corpus, we can choose the one whose label is the same as the user’s previous query, as it is

reasonable to assume that the topic is the same.

• WordNet synonyms - while comparing a user query to a list of candidate queries, General Agent

calculates a set distance between the user query and the candidate query, using WordNet syn-

onyms and stemming. If a synonym of a word in the user query is present on the candidate query,

the word on the candidate query is replaced by the one in the user query.

4.2.3 Contextual agent

One of the objectives of this thesis is to extend the multi-agent system to use the context of the con-

versation. To accomplish that, we create an agent that uses the context of the conversation to select a

response.

To calculate a matching between a context and a given response, we need to focus on their se-

mantics. For this purpose, we represent them using word embeddings, which are representations of

the meaning of words (Jurafsky and H. Martin, 2019). Recent matching models use attention to learn

to which parts of each sentence they should pay more attention. Zhou et al. (2018) propose a deep

attention matching network to match context and response that applies stacked attention layers over

word embeddings to get multi-grained semantic representations of words. With this considered, our ini-

tial plan was to follow Zhou et al. (2018) and work with word embeddings and multiple attention layers,

and eventually get to a number that would express the level of matching between a context and a given

response.

However, the idea of joining word embeddings and attention layers was recently simplified through the

use of BERT (Devlin et al., 2019), which was introduced in Section 2.3. It is a pre-trained language model

that joins word embeddings and attention by stacking Transformer encoder layers. BERT is an example

of transfer learning, where models are pre-trained with very large amounts of data and can be fine-tuned,

using a small amount of data, to specific tasks. Particularly, it can be fine-tuned to numerous specific
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NLP tasks. Hugging Face2 provides a set of classes for fine-tuning BertModel, the class that represents

BERT, for NLP tasks, such as BertForSequenceClassification, BertForNextSentencePrediction,

and BertForQuestionAnswering.

BertForNextSentencePrediction consists on a NextSentencePrediction layer on top of BertModel.

BertModel’s input can be composed of one or two sentences; in the former, the output is a sentence em-

bedding, while in the latter, it is a single embedding representing both sentences. BertForNextSentence-

Prediction always takes two sentences as input, s1 and s2, and returns a vector [p1, p2], where p1 is

the probability of s2 following s1, and p2 is the probability of s2 being a random sentence.

Since our goal is to select the answer that best matches the context of the conversation, that is, the

sentence that, given the context of the conversation, is more likely to be the next utterance returned by

our system, we decided to use BertForNextSentencePrediction to solve our problem, using as input

the context of the conversation (s1) and a candidate response (s2). Thus, the best response will be the

one with highest p1.

Since our system is for the Portuguese language, the proper pre-trained model to use is Bert Base

Multilingual cased3, which is pre-trained for 104 languages. This model is supposed to support sen-

tences with up to 512 tokens. Although the context of a conversation can be longer than 512 tokens, we

chose to only consider the last 512 tokens of the context. However, we found that there were indexing

problems with sentences with more than 200 tokens. Thus, we used a model fine-tuned from the original

Bert Base Multilingual cased that accepts long sentences – bert-base-multilingual-cased-sentence4.

Considering that we have a conversational system, we want our model to be able to predict if

a sentence is the best next utterance in a dialogue. However, the available models were not pre-

trained on a dialog dataset. Thus, we use transfer learning, by instantiating the Hugging Face model

BertForNextSentencePrediction with the pre-trained model configuration bert-base-multilingual-cased-

sentence. Then, we fine-tune this model to our specific task, which is to predict if a sentence is the best

next utterance in a dialogue. For such task, we need a dialogue dataset.

Our system uses subtitle data (Subtle corpus) to retrieve responses using a search engine, which

are sent to each agent, although, depending on their configuration, they can use another corpus. In the

Subtle corpus, each entry has a SubId (subtitle id), DialogId, Diff, I (interaction) and R (response).

Although the field DialogId exists, it does not identify a full dialogue, but a single interaction between

two communicators, and is incremented upon each new utterance.

However, to train our model, we need to be able to properly identify the context of a conversation,

and, therefore, need a dataset, in Portuguese, with full dialogues identified.

Existing datasets with the structure we need are the Ubuntu Dialogue Corpus (Lowe et al., 2015) (in

2https://huggingface.co/ (Last accessed on: 01/08/2020).
3https://huggingface.co/bert-base-multilingual-cased (Last accessed on: 01/08/2020).
4https://huggingface.co/DeepPavlov/bert-base-multilingual-cased-sentence (Last accessed on: 01/08/2020).
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Measure Number of utterances Number of tokens Number of tokens per utterance
Minimum 1 2 1
Maximum 28 584 217

Mean 3.6136 37.5411 10.3889
Median 3 26 7
Mode 2 12 4

Standard Deviation 2.5213 38.2454 11.3855
Variance 6.3570 1462.7072 129.6301

Table 4.2: Dataset dialog’s statistical measures

English), the Douban Conversation Corpus (in Chinese) (Wu et al., 2017) and the Cornell Movie-Dialogs

Corpus (Danescu-Niculescu-Mizil and Lee, 2011) (in English). The last is made of movie subtitles, like

Subtle is, but with a file that contains the structure of its 83096 conversations, movie conversations.txt,

from which we can obtain the utterances that belong to each conversation, allowing us to, at each point

of a conversation, know its context. However, this corpus contains data for the English language, and

no similar corpus was found for the Portuguese language. Because we considered that having this

data in Portuguese would be crucial for our work, we decided to manually translate 5000 dialogues to

Portuguese.

Although 5000 out of 83096 dialogues is a small sample, one of the goals of transfer learning is to

use a small amount of data to fine-tune the pre-trained model, thus we thought that we could get good

results with that number of dialogues.

The translated dataset contains 18039 utterances across 5000 dialogues. It contains four columns:

• line id – uniquely identifies each utterance.

• dialog id – uniquely identifies each dialog, where each dialog has one or more utterances.

• utterance – text of the utterance, in English.

• utterance pt – text of the utterance, in Portuguese.

In Table 4.2, the intra-dialogue statistics number of utterances and number of tokens are shown.

It is also shown the statistics of the number of tokens per utterance, in the whole dataset.

The intuitive way to use the dataset to train our model would be, for each dialogue, and for each

utterance in that dialogue, consider the context to be all the previous utterances before the current one.

We would use the model BertForNextSentencePrediction, fine-tuning it by stating that the current

utterance is the continuation of the context, using the label 0 (isNext). However, we would only be

training our model with one label, not giving it any information regarding the label 1 (notNext), so it

would always predict the label 0.

To solve the aforementioned problem, for the same context, we give our model two possible next

sentences: the utterance that follows it – gold reply – and a distractor, with labels 0 and 1, respectively.
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The criteria used for selecting a distractor for each gold reply is described in Chapter 5.

Having a distractor selected, we encode two sentence-pairs: the context with the gold reply and the

context with the distractor, and add the labels 0 and 1 to a list of labels. From these encodings and list

of labels, we can create a dataset structure from where batches will be extracted to train our model. The

process of creating the dataset structure from the dialogues is summarized in Algorithm 4.1.

Algorithm 4.1: Dataset creation from dialogues
inputs = [];
labels = [];
for dialog in dialogs do

for i in range(len(dialog)) do
gold reply = dialog[i];
context = dialog[ : i];
distractor = selectDistractor(gold reply);
sim = spacy.similarity(gold reply, distractor);
encoded gold = tokenizer.encode plus(context, text pair=gold reply);
encoded distractor = tokenizer.encode plus(context, text pair=distractor);
inputs.append(encoded gold);

labels.append(0) ; // 0 - gold reply follows the context

inputs.append(encoded distractor);

labels.append(1) ; // 1 - distractor does not follow the context

dataset = createDataset(inputs, labels);

To train our model, instead of retraining the entire BertForNextSentencePrediction model, which

consists on the BertModel with a NextSentencePrediction layer on top, we froze BertModel’s layers

and only trained the last layer, which speeds up the training. To adjust the model’s weights and the learn-

ing rate, we used the Adam optimizer and a scheduler. After each epoch of training, the performance of

the model is tested on the validation set. The training and validation loops are shown, respectively, in
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Algorithms 4.2 and 4.3.

Algorithm 4.2: Training loop
model = BertForNextSentencePrediction.from pretrained(“DeepPavlov/bert-base-multilingual-
cased-sentence”);

model.train();
nr epochs = 4;
learning rate = 2e-5;
for i in range(nr epochs) do

total train loss = 0;
for batch in train dataloader do

inputs = batch[0];
labels = batch[1];
loss, logits = model(inputs, next sentence label=labels);
total train loss += loss.item();
loss.backward();
optimizer.step();
scheduler.step();

end
avg epoch train loss = total train loss / len(train dataloader);

end

Algorithm 4.3: Validation loop
model.eval();
total accuracy = 0;
for batch in validation dataloader do

inputs = batch[0];
labels = batch[1];
logits = model(inputs, next sentence label=labels);
total accuracy += getAccuracy(labels,logits);

end
avg val accuracy = total accuracy / len(validation dataloader)

Regarding the hyperparameters used to train the model, according to Devlin et al. (2019)’s fine-

tuning procedure, the batch size must be 16 or 32; the learning rate must be 2e-5, 3e-5 or 5e-5; and the

number of epochs must be 2, 3 or 4.

For our model, we trained it using one GPU with 11178MiB of memory. We experimented both batch

sizes of 16 and 32, and found that the available memory was not enough to train with the latter. Thus,

we use a batch size of 16 to train our model. Since a scheduler is used to adjust the learning rate at

each iteration of the training, we assumed that its initial value would not significantly impact the results

and thus selected a learning rate of 2e-5.

To select the number of epochs necessary to train our model, in Section 6.2.1 we compare a baseline

approach, with random distractors, to one with tailored distractors, and through the metric accuracy

choose the best distractor selection approach and number of epochs.
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4.3 Adding new agents

After creating the agents mentioned in the previous Section, in this Section we show how to add them

to our system.

The procedure to add a new agent is:

1. Create a new folder inside folder ExternalAgents with the name of the new agent, with the class

that contains the implementation of the agent and its configuration file:

• agents/ExternalAgents/NewAgent/config.xml

• agents/ExternalAgents/NewAgent/NewAgent.py

2. The class that implements the agent must be a subclass of Agent and, thus, implement the

requestAnswer method, that receives a request and returns a response.

3. The agent’s name must be added to the system’s configuration file, with a new line under tag

agents:

<agent name="NewAgent" active="0"/>

4. The agent’s name and areas of expertise must be added to the agents’ configuration file:

<externalAgent name="NewAgent">

<labels>

<label score="1.0">QUESTION</label>

<label score="1.0">NON_QUESTION</label>

</labels>

</externalAgent>

If the agent does not have an area of expertise, the labels QUESTION and NON QUESTION are added,

so that all type of user input is sent to that agent, since every input is either a question or a non

question.

4.3.1 Simple Agents

For the simple agents, Yes No Agent and Or Agent, no additional steps are required.

48



4.3.2 General Agent

After adding the General Agent to the system, using the steps described above, instances of it are

created. To do so, the following steps are necessary:

• If the instance agent requires extra synonyms and/or acronyms, it is necessary to create a folder,

inside the General Agent folder, with the instance agent’s name, and the files synonyms.txt and/or

acronyms.txt.

• Add the instance agent’s information to the General Agent’s configuration file, as seen in Section

4.2.

4.3.3 Contextual Agent

Besides the steps described above, on the Contextual Agent’s initialization, the tokenizer and the fine-

tuned model were loaded. Then, upon receiving a user query, the DM forwards it to the AgentHandler,

along with the context, which is represented as a list with each query and system response. The Agen-

tHandler sends the context to every agent, although only the ContextAgent uses it.

When the AgentHandler sends an user query to the ContextAgent, for each candidate retrieved by

Whoosh, it passes the context concatenated with the user, c, input and the candidate’s response, r, to

the fine-tuned model. The model returns a list with two elements, where the first is the probability of r

following c, and the second is the probability of r being a random sentence. The n response with higher

first probability are returned by the agent, being n the number of responses given by each agent.
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In the Next Sentence Prediction task of BERT pre-training, given two sentences A and B, 50% of the

time B is the actual sentence that follows A, and is labeled as so (IsNext), and 50% of the time it is a

random sentence from the corpus (NotNext).

However, in retrieval-based systems, a search engine is used to retrieve a number of candidates,

from which the model selects a response. Thus, the candidates already have some degree of similarity

between them, as proven by an experiment where we used a corpus of 360 chitchat questions for the

Portuguese language, and a corpus with movie subtitles – subTle (Ameixa et al., 2013) – to retrieve the

candidate responses. First, we computed the similarity, using spaCy1, between candidate responses

retrieved by Whoosh; then, we did the same but with responses randomly chosen from that corpus. In

both settings, for each question in the chitchat corpus, n candidates were retrieved, where n is one of 2,

5, 10 and 20. The results are shown in Table 5.1, where each value is averaged over five runs of that

setting.

# Retrieved candidates Whoosh Random
2 0.3499 ± 0.2445 0.1703 ± 0.20736
5 0.3427 ± 0.2410 0.1693 ± 0.21034
10 0.3295 ± 0.2250 0.16676 ± 0.20818
20 0.3252 ± 0.2196 0.16936 ± 0.20844

Table 5.1: Spacy similarity of responses retrieved by Whoosh and random responses

We conclude that, on average, when using Whoosh, the similarity amongst candidates decreases as

the number of candidates increases; no correlation is found when using random candidates. Further-

more, we see that candidates retrieved by the search engine are, on average, two times more similar

than the ones randomly retrieved, which motivates the introduction of other ways of selecting distractors,

other than randomly.

To the best of our knowledge, the closest approach to ours of distractor selection is done in Sato

et al. (2020). Assuming that systems that generate appropriate responses can also select them, they

use response selection to evaluate response generation systems. This tackles the problem of having

many appropriate responses for one input context (one-to-many problem), making it difficult to evaluate if

a generated response is appropriate. To infer if a system is good at selecting responses, they feed it with

the ground-truth response and false candidates. Instead of randomly choosing the false candidates, they

select well-chosen false candidates, to test whether the system can select the correct response amongst

similar responses. Their selection of false candidates is done by comparing the content words of each

candidate with those of the ground-truth response.

Our distractors correspond to their well-chosen false candidates, but we use them when training our

model, while they only use them for testing. Furthermore, we select distractors by taking into account

the similarity between the whole sentences, whereas they only take the content words into account.
1https://spacy.io/ (Last accessed on: 06/12/2020)
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Listing 5.1: Noisy distractors example

1 'history'={”hello what are doing today ?”}
2 'candidates'={”NGDPRUJUPFKHRYKBYMCS”,
3 ”DRDSAKCLUQSJRXGNKVYT”,
4 ”RIXAJZFIGELJFINUBEVE”,
5 ”DTQFLDQQRBFICKTLNLOO”,
6 ”i am good , i just got off work and tired , i have two jobs .”}

Next we present four ways of selecting distractors. First, we propose the creation of noisy distractors

to observe how they affect the performance metrics (Section 5.1). Then, we propose an approach that

uses a search engine to retrieve candidates close to the correct response (Section 5.2). Then, we

introduce a technique that computes a semantic similarity between the gold reply and a set of random

utterances, in order to select a set of distractors (Section 5.3). Finally, we use a ranking system to assign

probabilities to each candidate in the training corpus, and then retrain the system using as distractors

the candidates, different from the gold reply, that were given higher probabilities of being the correct

answer (Section 5.4).

5.1 Noisy

The first approach consists on creating noisy distractors. This approach’s goal is not to improve the

performance metrics, but to study if retrieval models effectively use the distractors, or if their performance

does not change when these are replaced with noisy data.

The noisy distractors are generated as random strings, so that they do not make sense syntactically

nor semantically.

Given a corpus, the approach consists on replacing all the distractors by noisy distractors, while

keeping the gold reply intact. For example, using 4 distractors with the PersonaChat corpus, the result

of this approach is seen in Listing 5.1.
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5.2 Selecting distractors using a search engine

Figure 5.1: Search engine approach approach

When there is a large number of candidates, response selection systems use search engines to retrieve

candidates, who are ranked according to that system’s heuristic. To retrieve candidates from a search

engine, it is necessary to have question-answer pairs, which are used to create indexes. Then, given a

query and a number of hits, n, the search engine finds the n candidates that better matches that query,

and returns their answers, ordered by their level of matching.

Given a corpus, c, the first step is to create indexes: first, preprocess c to only consider question-

answer pairs, namely, for each entry, the last utterance in the history and the gold response. Having

created the indexes, a new version of c is created: for each history, we give Whoosh the last utterance

and request k + 1 candidates, depending on the number of distractors, k, wanted. From those, the

first retrieved candidate will be the gold reply and the remaining k candidates are shuffled and used as

distractors. The resulting dataset requires an additional processing step, which is to delete entries with

less than k + 1 candidates, which can happen because, occasionally, the search engine does not match

the question sent with the requested number of hits. This process is shown in Algorithm 5.1.

Algorithm 5.1: Search engine
questions, answers = createQAs(c);
engine.createIndexes(questions, answers);
new corpus = [];
for question in c do

candidates = engine.requestCandidates(question, n hits = k+1);
gold reply = candidates[0];
distractors = candidates[1:k+1];
if len(distractors) < k then

continue;

new corpus.append(gold reply, distractors);

The process of creating a dataset with tailored distractors retrieved from a search engine is illustrated

in Figure 5.1. An example of an entry of a corpus created using this technique and the PersonaChat

dataset is shown in Listing 5.2.
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Listing 5.2: Search engine distractors example

1 'history'={”hello what are doing today ?”}
2 'candidates'={”hello , i am looking to see which soup kitchen needs volunteers this week .”,
3 ”i am thinking about my upcoming retirement . how about you ?”,
4 ”packing for school this morning and then heading to work later . you ?”,
5 ”hi ! i need some advice .”,
6 ”i am good , i just got off work and tired , i have two jobs .”}

5.3 Semantic similarity

Another approach to select tailored distractors is based on its semantic similarity with the gold reply.

As previously seen, in the multiple choice question generation task, the selected distractors have a high

degree of similarity with the gold reply, enough to make it difficult for students to select the correct answer

without minimal domain knowledge, but are not paraphrases of the gold reply.

Our approach consists on selecting distractors that are semantically similar to the gold reply, without

being paraphrases. To do this, using a natural language inference corpus, the average semantic sim-

ilarity for the paraphrase relation is computed. Then, a set of random utterances is sampled from the

corpus, and the similarity between each of them and the gold reply is calculated. The ones selected as

distractors are those with higher similarity below the paraphrase threshold.

Thus, to build a corpus with this method, it is necessary to have a corpus, c, with dialogues and

gold replies, a Natural Language Inference corpus, c nli, with annotated paraphrases, in the same

language as c, and a method to compute semantic similarity, m.
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This method is described in Algorithm 5.2.

Algorithm 5.2: Semantic similarity
sim by label = {};
new corpus = [];
for sentence 1, sentence 2, label in c nli do

sim by label[label] += m(sentence 1, sentence 2);

sim paraphrase = avg(sim by label[paraphrase]);
threshold = select below(sim paraphrase);
for gold reply in c do

utterances = random.sample(c, n) ; // select n random utterances from c

for u in utterances do
u.sim = m(u, gold reply);

utterances.sort(sim, descending);
distractors = [];
for u in utterances do

if u.sim < threshold then
distractors.append(u);

if len(distractors) == k then
break;

new corpus.append(gold reply, distractors);

5.4 Top-ranking

Figure 5.2: Top-ranking approach

This approach requires a ranking pre-trained model, m, and a corpus, c, with a set of entries consisting

on a conversation history, a gold reply, and a set of distractors. We assume that c contains n distractors

by entry, but, due to memory limitations, only d, randomly chosen, are used during training, where d <=

c.

The approach consists on using a ranking model to rank candidates according to their probability of

being the gold reply. Then, the d candidates with a higher probability, excluding the one that is the gold

reply, are used as distractors in a new corpus, where each entry has the same conversation history and

gold reply as the original corpus, the distractors being the only difference. Thus, the distractors in the
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Listing 5.3: Top ranking distractors example

1 'history'={”hello what are doing today ?”}
2 'candidates'={”hey there , are you a mother ?”,
3 ”yeah , well what about you ?”,
4 ”i just got a pet fish for my 18th birthday yesterday from my parents .”,
5 ”i am a recovering heavy drinker . full time . how about you ?”,,
6 ”i am good , i just got off work and tired , i have two jobs .”}

tailored corpus are the ones that the model had higher difficulties to tell apart from the gold reply, and

can then be used to train the model from scratch. This is more similar to a real world setting where the

model will have to select a gold reply from a set of strong distractors.

This method is described in Algorithm 5.3 and shown in Figure 5.2. An example of an entry of a

corpus created using this technique and the PersonaChat dataset is shown in Listing 5.3.

Algorithm 5.3: Top ranking
m.train(c);
rankings = m.rank(c);
new corpus = [];
i = 0;
for history, gold reply in c do

top k ranked = rankings[i][:k+1];
if gold reply in top k ranked then

top k ranked.remove(gold reply)
top k ranked = top k ranked[:-1] distractors = top k ranked;
new corpus.append(history, gold reply, distractors);
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Listing 6.1: AMA example

1 [Marca na hora e marca na hora online] 'Qual o custo de adquirir uma Marca na Hora e

quais as modalidades de pagamento?'
2 ([Marca na hora e marca na hora online] 'What is the cost of purchasing a Marca na Hora

and what are payment methods?')
3

4 [Inscrições online] 'Quais as modalidades de pagamento disponı́veis?'
5 ([Inscrições online] 'What are the available payment methods?')

To evaluate our work, we evaluate each of the developed components: how easy it is to add a new

agent to our multi-agent system (Section 6.1), the impact of selecting tailored distractors (Section 6.2), a

case study regarding customer support and tailored distractors (Section 6.3), and how a current model

uses context (Section 6.4)

6.1 Creating and integrating agents into the multi-agent system:

case studies

In this Section we show how to create and add new agents to our system. Since the creation and addition

of other agents (not instances of General Agent) to our system were already tested with success, in

collaboration with Universidade de Coimbra, here we only show how to create agents that are instances

of the General Agent and how to add them to our system.

6.1.1 AMA

• Creating the agent As previously said, this thesis was developed as part of the project AIA –

Agente Inteligente para o Atendimento no Balcão do Empreendedor, in collaboration with AMA –

Agência para a Modernização da Administração (Administration Modernization Agency). A dataset

containing FAQs about the services available by this agency was already on CHATTUGA, serving

as SSS-AMA’s corpus. This consists on a dataset with a label associated to each question-answer

pair, where the label is the AMA service regarded in the question or answer.

This new agent is useful to understand the impact of considering context as a list of labels, as seen

in the previous section. In Listing 6.1, where the label is before the question, are two questions

that belong to our corpus.

If the user asks “Quais as modalidades de pagamento?” (“What are the payment methods?”), both

the above questions could be a match, but they have different answers. If the previous interaction

between the user and the system was predicted as being about [Inscriç~oes online], it is intuitive
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that the best match in this case is the one with this label. Since General Agent keeps the context

as a list of labels, it is possible to access the previous label and give higher weight to answers with

the same label, thus solving this dilemma.

• Adding the agent to the system For this agent, there is no list of synonyms nor acronyms, so we

only need to add its information to General Agent’s configuration file, as seen in Listing 6.2.

Listing 6.2: General Agent configuration file with AMA agent example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <config>

3 <mainClass>GeneralAgent</mainClass>

4 <agentAmount>1</agentAmount>

5

6 <excelPath name='AMAAgent'>None</excelPath>

7 <corpusPath name='AMAAgent'>corpora/ama.txt</corpusPath>

8 <indexPath name='AMAAgent'>resources/whooshIndexes/ama</indexPath>

9 <labelsPath name='AMAAgent'>corpora/AMAlabels.txt</labelsPath>

10

11 <threshold>0.35</threshold>

12 <useWhoosh>true</useWhoosh>

13 <stopwords>resources/stopwords/edgar stop.txt</stopwords>

14 </config>

6.1.2 COVID

• Creating the agent

Given the pandemic happening in the world when this thesis was being developed, an agent to

answer questions about COVID-19 was created. The corpus was manually created by collecting 75

question-answer pairs from FAQs from Portuguese official health sources1. To create the corpus,

a taxonomy was created to manually classify the topic of each question-answer pair, and a list of

paraphrases for each question were manually filled.

The following are some of the columns of the corpus, along with the corresponding values of an

instance of the dataset:

1https://covid19.min-saude.pt/perguntas-frequentes/ (Last accessed on: 05/12/2020)
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– question (example: “O vı́rus transmite-se pelos animais?” (“Is the virus transmitted by ani-

mals?”))

– answer (example: “Não havendo uma certeza absoluta, há indı́cios de que os cães e os gatos

poderão ser fontes de contaminação, por exemplo através do pelo. Mas ainda não sabemos

se o são a um nı́vel que justifique preocupações sérias para os seres humanos.” (“With no

absolute certainty, there are indications that dogs and cats may be sources of contamination,

for example through hair. But we still don’t know if they are at a level that justifies serious

concerns for human beings.”))

– topic – the topic of the question. For example, if the topic is PROTECÇÃO (PROTECTION),

it means that the question is about how to protect from the virus. (example: CONTÁGIO

(CONTAGION))

– subtopic (optional) – one or more subtopics of the question, related to the topic. For exam-

ple, if the topic is PROTECÇÃO (PROTECTION), a subtopic can be MÁSCARAS (MASKS) – the

question concerns protection using face masks, or LUVAS (GLOVES) – the question concerns

protection using gloves. (example: ANIMAIS (ANIMALS))

– source – public institution from which the information was taken (example: JORNAL EX-

PRESSO)

– paraphrase id – this column is filled with sequential numbers, unless it is a paraphrase to an

existing entry, which is possible since there are data from different sources.

– paraphrases (optional) – list of paraphrases of the question. (example: “Os animais trans-

mitem o coronavı́rus aos humanos?” (“Do animals transmit the coronavirus to humans?”))

In this case study, it is clear why it is important to use a custom list of synonyms. When a user

talks about COVID, he may also write it as “COVID-19” or “COVID 19”, and when talking about

“coronavirus”, he may write it as “corona” or just “virus”. In the COVID domain, those examples

are synonyms, but not in the WordNet, which is why it is crucial to have them as a list of synonyms

to let our system treat them as such.

• Adding the agent to the system

Listing 6.3: General Agent configuration file with Covid agent example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <config>

3 <mainClass>GeneralAgent</mainClass>
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4 <agentAmount>1</agentAmount>

5

6 <excelPath name='AntiCovidAgent'>corpora/bot-FAQ.xlsx</excelPath>

7 <corpusPath name='AntiCovidAgent'>corpora/covid.txt</corpusPath>

8 <indexPath name='AntiCovidAgent'>resources/whooshIndexes/covid</indexPath>

9 <labelsPath name='AntiCovidAgent'>corpora/covidLabels.txt</labelsPath>

10

11 <threshold>0.35</threshold>

12 <useWhoosh>true</useWhoosh>

13 <stopwords>resources/stopwords/edgar stop.txt</stopwords>

14 </config>

To add this agent to our system, we just need one file: the excel or csv with the columns mentioned

above. Then, we add the agent’s files to General Agent’s configurtation file; particularly, the path

to the excel file (excelPath), and the desired paths for the files that will be created: the corpus

(corpusPath), the indexes (indexPath) and the labels (labelsPath), as seen in Listing 6.3. Also,

to let the system know the custom synonyms and acronyms, the folder AntiCovidAgent containing

an acronyms file – acronyms.txt – and a synonyms file – synonyms.txt – must be created inside

the General Agent folder. An example for each of these files can be seen in Figures 6.1 and 6.2,

respectively.

DGS,Direç~ao Geral de Saúde

OMS,Organizaç~ao Mundial de Saúde

SNS,Serviço Nacional de Saúde

Figure 6.1: generalAgent/AntiCovidAgent/acronyms.txt

covid 19,covid,covid19,covid-19

coronavirus,coronavı́rus,vı́rus,virus,sars-cov-2

Figure 6.2: generalAgent/AntiCovidAgent/synonyms.txt

6.2 Results concerning tailored distractors

In this Section, we present the results of our different methods of selecting distractors. We evaluate

them for the Portuguese (Section 6.2.1) and English (Section 6.2.2) languages.
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6.2.1 Portuguese

For the Portuguese language, our goal is to find the setting that shows better results for fine-tuning

the BertForNextSentencePrediction model, to be used in our system’s contextual agent. Here, we

describe the results with the Semantic Similarity and Whoosh approaches. Finally, we compare them

and choose the one to use in our agent.

6.2.1.A Noisy

As we will see further, in Section 6.2.2, using noisy distractors significantly decreased the retrieval

metrics, therefore we decided not to test them for the Portuguese language.

6.2.1.B Search engine

To select distractors using a search engine, we use Whoosh and the translated mini Cornell corpus.

Since the model used for the Portuguese language is BertForNextSentencePrediction, to fine-tune

it we need, for each utterance, one positive example and one negative. Thus, in this setting, only one

distractor is retrieved from Whoosh. For this experiment, we used the Whoosh indexes that were already

created for the Subtle corpus. For each utterance of our corpus, 3 candidates were retrieved by Whoosh,

and the 3rd one was used as a distractor.

To select whether we will fine-tune our BertForNextSentencePrediction model with 2, 3 or 4

epochs, we make experiments with 4 epochs of train and then select the one with higher average accu-

racy. Since the candidates retrieved from Whoosh are deterministically chosen, instead of creating five

different datasets, as in the previous experiment, we create one dataset and randomly split it five times

into training and testing set, and fine-tune the model with the training one, computing the accuracy at the

end of each epoch. We also repeat this four times for each, in order to obtain enough results to measure

if they have statistical significance.

We repeat the aforementioned process for datasets created with random distractors, and testing the

models with a Whoosh validation set, to see if selecting Whoosh distractors in training improves the

results in testing, compared to selecting them randomly.

Table 6.1 shows the results, averaged over all the results obtained as described above, and their

statistical significance. We observe that training the model with the Whoosh distractors improves, on

average, 5% compared to training with the random ones. From Figure 6.3, built with the data from Table

6.1, we observe that the results are, on average, better in the 4th epoch, when trained with Whoosh

distractors, and better in the 3rd epoch, when trained with random ones. The original results can be

consulted in A.2.
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Epoch Random Whoosh p-value Significant
1 0.49454 ± 0.00953 0.55024 ± 0.00262 9.68417e-5 Yes
2 0.49176 ± 0.00356 0.5541 ± 0.00470 2.77729e-8 Yes
3 0.49468 ± 0.00696 0.55556 ± 0.00322 3.62604e-6 Yes
4 0.49452 ± 0.00400 0.55678 ± 0.00402 8.10505e-9 Yes

Table 6.1: Context agent - train with corpora built with Random and Whoosh distractors, test with a corpus built with
Whoosh distractors

Figure 6.3: Accuracy by epoch, random vs Whoosh

6.2.1.C Semantic Similarity

As stated in Section 5.3, to use this method to select distractors, we need a corpus, a NLI corpus and

a method to compute semantic similarity. We use our translated mini Cornell corpus, used to train

the model for our contextual agent. The selection of threshold and similarity method are described next,

as well as the results of using this distractor selection approach. 4.2.3.

• Selecting a threshold and similarity method

Two natural language inference corpus for the Portuguese language were used: SICK BR (Real

et al., 2018) and ASSIN-12.

2http://propor2016.di.fc.ul.pt/?pageid = 381(Lastaccessedon : 12/12/2020)
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– The SICK BR corpus has 10000 pairs of sentences, A and B, annotated with the relation be-

tween them: ENTAILMENT, NEUTRAL or CONTRADICTION. It also annotates the relation from

an unilateral point of view, with the features A entails B, B entails A, A neutral B and

B neutral A. For example, given two sentences A and B, if A entails B and B neutral A,

the relation is ENTAILMENT. If A entails B and B entails A, the annotated relation is also

ENTAILMENT, but they are paraphrases. Since we want to compute the semantic similarity,

we are interested in isolating paraphrases from entailments. Thus, we preprocessed the cor-

pus so that these cases are labelled as PARAPHRASE. After having these labelled, we dropped

the columns A entails B, B entails A, A neutral B and B neutral A, since their information

was no longer relevant for our purpose.

– The ASSIN-1 corpus annotates 5000 sentence pairs with None, Entailment and Paraphrase.

We preprocessed it from XML to CSV and converted None to NEUTRAL, Entailment to ENTAIL-

MENT and Paraphrase to PARAPHRASE, so we could join it with the preprocessed SICK BR

corpus.

The resulting dataset contained 60.8% of the sentence pairs NEUTRAL, 9.6% CONTRADICTION,

18.4% ENTAILMENT and 11.2% PARAPHRASE.

To compute the semantic similarity between a gold reply and a given utterance, we tested two

approaches: Spacy and BERT.

Spacy has a similarity3 method that computes a cosine similarity over word vectors. There are

three models available for the Portuguese language: small (pt core news sm), medium (pt core n-

ews md) and large (pt core news lg). Both medium and large models include word vectors, while

the small one does not include this feature. The difference between them is the number of unique

vectors: the medium model has 20000 and the large one has 500000 unique vectors. Thus, two

settings were tested using spacy: with the medium (spacy md) and the large (spacy lg) models.

As previously seen, BERT’s output consists of the word embedding of each token, plus an em-

bedding for an extra token, [CLS], representing the whole sentence and used for sentence classi-

fication purposes. To test BERT to compute the semantic similarity between two sentences, two

approaches were used: compute the cosine similarity over the [CLS] tokens of the two sentences

(BERT cls), and compute the same similarity over the average of the embeddings of the words

from each sentence (BERT avg).

Each setting was ran on the described inference dataset, and then averaged over each label. The

results are shown in Table 6.2.

3https://spacy.io/usage/vectors-similarity (Last accessed on: 30/11/2020)
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Setting ENTAILMENT NEUTRAL PARAPHRASE CONTRADICTION

Spacy md 0.7907 0.6904 0.8582 0.7802
Spacy lg 0.7891 0.6874 0.8571 0.7773
BERT cls 0.9698 0.9599 0.9817 0.9776
BERT avg 0.8528 0.7819 0.9009 0.8709

Table 6.2: Similarity by label

Given the settings results, we chose the one that better differentiated the labels. The BERT cls

setting has very high and close results, so we excluded it. From the remaining, our intuition is

that sim(NEUTRAL) < sim(CONTRADICTION) < sim(ENTAILMENT) < sim(PARAPHRASE). The BERT avg

setting has sim(CONTRADICTION) > sim(ENTAILMENT), so we excluded it. Between the remaining,

Spacy md and Spacy lg, as no significant difference was seen between them, we chose Spacy md

as it is a smaller model.

Using the selected method to compute semantic similarity, spacy.similarity() using the medium

model, our approach consists on selecting 100 random utterances from the dialog corpus and

compute the similarity between each of them and the gold reply. Then, we order them by descend-

ing order of similarity. To select the one that is most similar to the gold reply, but without being a

paraphrase of it, we use the results shown in Table 6.2, where the average similarity between para-

phrases is 0.8582. We choose a superior threshold slightly lower than that, namely 0.83. Thus,

from the set of ordered distractors, we select the first one whose similarity with the gold reply is

less or equal than 0.83.

• Find the best BertForNextSentencePrediction fine-tuning setting

As in the previous approach, we make experiments with 4 epochs of train and then select the one

with higher average accuracy. The experiments consist on creating five different datasets, which

will always be different because the distractor chosen for each gold reply is the one most similar to

the gold reply but not too similar from a set of 100 randomly sampled utterances (as explained in

Section 5.3). Then, for each dataset, we split it into training and validation sets, and fine-tune the

model with the training set, computing the accuracy at the end of each epoch. We repeat this four

times for each, in order to obtain enough results to measure if they have statistical significance.

We repeat the aforementioned process for datasets created with random distractors, and testing

the models with tailored distractors, to see if selecting tailored distractors in training improves the

results in testing, compared to selecting them randomly.

Table 6.3 shows the results, averaged over all the results obtained as described above, and their

statistical significance. We observe that training the model with the tailored distractors improves,

on average, 3% to 4% compared to training with the random ones. From Figure 6.4, built with the
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data from Table 6.3, we observe that the results are, on average, better in the 4th epoch. The

original results can be consulted in A.1.

Epoch Random Tailored p-value Significant
1 0.50314 ± 0.00634 0.53662 ± 0.00593 0.00003 Yes
2 0.50296 ± 0.00438 0.54258 ± 0.00784 0.00005 Yes
3 0.50452 ± 0.00497 0.54462 ± 0.00883 0.00009 Yes
4 0.50626 ± 0.00544 0.54578 ± 0.00950 0.00014 Yes

Table 6.3: Context agent random and tailored train, tailored test

Figure 6.4: Accuracy by epoch, random vs tailored

6.2.1.D Top Ranking

To select distractors using the top ranking approach, we use the DialoGP3T model, that does both rank-

ing and generation, allowing us to observe the impact of our distractors in both. As seen in Section 2.4,

this model requires a pre-trained GPT-2 model, namely DialoGPT for the English language. However,

there is no multilingual DialoGPT model, nor one for the Portuguese language; the only one available

is pierreguillou/gpt2-small-portuguese4. Since this model was not fine-tuned for dialogue and has

37.99% accuracy after 5 epochs of training, we decided not to use it and only test the top ranking

approach with English data.
4https://huggingface.co/pierreguillou/gpt2-small-portuguese (Last accessed on: 12/12/2020)
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6.2.1.E Distractors used in contextual agent

In the previous Sections, we verified that fine-tuning BertForNextSentencePrediction using either se-

mantic similarity chosen or Whoosh chosen distractors had better results than with random ones, with

statistical significance. In both settings, the best accuracy was obtained after training 4 epochs, with

the semantic similarity setting having an average of 54.578% accuracy and the Whoosh one having

55.678%. Since the Whoosh setting is around 1% better, and the contextual agent will use Whoosh to

retrieve candidates, we choose to use the model trained with Whoosh distractors.

Summing up, our BertForNextSentencePrediction model used in the contextual agent is fine-tuned

with:

• Whoosh distractors

• batch size = 16

• learning rate = 2e-5

• number of epochs = 4

6.2.2 English

Regarding the semantic similarity approach, for Portuguese it was done using SICK BR and Assin data

and the spacy similarity method. However, for the English language, using the MultiNLI corpus (Williams

et al., 2018), labeled with entailment, neutral and contradiction relations, and the MSR paraphrase

corpus 5, containing sentence-pairs labeled as paraphrases, the tested method for computing semantic

similarity, spacy, with the English medium model, did not differentiate the labels as expected, with a

neutral average of 0.78725 ± 0.087, entailment of 0.7746 ± 0.0925, contradiction of 0.7811 ±

0.0910, and paraphrase of 0.95675 ± 0.03, when we expected a more significant difference between

the first three. Furthermore, when computing the average similarity of PersonaChat’s responses with

random distractors from the corpus, the result was 0.93, which, from the attained similarity averages,

would suggest that all the utterances from the corpus were paraphrases, which does not make sense.

Therefore, we decided not to use the semantic similarity approach for the English language.

To evaluate the impact of selecting tailored distractors, using the three remaining approaches, in

ranking and generation, we use four versions of the PersonaChat dataset:

• R (baseline) – original PersonaChat with random distractors

• N – noisy PersonaChat

5https://www.microsoft.com/en-us/download/details.aspx?id=52398 (Last accessed on: 12/12/2020)

70



• W – Search engine (Whoosh) PersonaChat, built by creating a Whoosh index of question-answer

pairs from the original corpus and retrieving four distractors for each gold reply

• T – top-rank PersonaChat, built using the top-ranking method with our DialoGP3Tmodel

Each of these datasets is used to train DialoGP3T, resulting in four different models: R, N, W and T.

To have results with statistical significance, we trained the aforementioned models with five different

seeds. We tested them with testing data made of random (Table 6.4) and tailored distractors (both T

and W, Table 6.5). The original tables with values across all seeds are shown in A.4 and A.5. Note that

these testing sets have the same gold replies and history; only the distractors are different. Namely, the

random testing set has 19 distractors, and both the tailored ones only have 4. Thus, since distractor

selection does not affect generative results, only the ranking results change and, since in tailored test

sets there are only 5 candidates, the Hits@5 and Hits@10 metrics are always 1, which explains why

only the Hits@1 results are shown in Table 6.5.

Regarding the principles of design studied in Section 3.5, we ensure Replication by running the same

setting five times with different seeds; we ensure Blocking by always testing with the same testing sets,

whether random or tailored ones; finally, we ensure Randomization by running the settings in a random

order across seeds and testing sets.

Metric R N W T

Hits@1 0.81882 ± 0.00513 0.05223 ± 0.01683 0.75448 ± 0.04487 0.83476 ± 0.00455
Hits@5 0.97736 ± 0.00126 0.27192 ± 0.06292 0.96324 ± 0.00881 0.97702 ± 0.00125
Hits@10 0.99644 ± 0.00036 0.52522 ± 0.07984 0.99248 ± 0.00160 0.99514 ± 0.00055

BLEU 2.62674 ± 0.15890 2.90554 ± 0.11438 2.70748 ± 0.15361 2.67988 ± 0.10051
TER 1.035 ± 0.01390 1.0419 ± 0.02092 1.041 ± 0.02826 1.02646 ± 0.00895

BertScore 0.84874 ± 0.01223 0.85576 ± 0.00117 0.8555 ± 0.00103 0.85468 ± 0.00119

Table 6.4: Mean and stdev by metric and training set for random testing

Test set R N W T
W 0.74712 ± 0.00214 0.20520 ± 0.03418 0.80614 ± 0.02922 0.77470 ± 0.03960
T 0.82404 ± 0.00413 0.20408 ± 0.03762 0.75388 ± 0.00444 0.84582 ± 0.00343

Table 6.5: Seed variation Hits@1 results (T and W test)

We observe that, regarding the Hits@1 metric, the model trained with the top-rank distractors has

the best results. Regarding the Hits@5 and Hits@10 metrics, the model trained with random distractors

shows the best results. Regarding the generation metrics, the model trained with noisy distractors

surprisingly shows the best results, the BLEU and BertScore metrics.

Looking at the tailored testing results (Table 6.5), we observe that the setting with best results is the

one whose training set contains distractors selected the same way as in the testing set, both for top-rank

and Whoosh.
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To assess the significance of these results, for each metric, we gather the five different results, one by

seed, of each model. Then, to compare two models, we calculate the p-value using their corresponding

results. If p-value < 0.05, we consider the result to be significant. We do this to assess if the following

hypothesis are true: the T model has best Hits@1 result for R testing; the N model has best BLEU and

BertScore results for R testing; the T model has best Hits@1 result for T testing; and the W model has

best Hits@1 result for W testing. The results are shown in Table 6.6, where X > Y for Z stands for the

hypothesis that model X performs better than model Y on test set Z, using the metric specified in column

Metric.

Hypos Metric Original values Test values p-value Significant
T > R for R Hits@1 0.81882 ± 0.00513 0.83476 ± 0.00455 0.00086 Yes
N > R for R BLEU 2.62674 ± 0.15890 2.90554 ± 0.11438 0.01465 Yes
N > R for R BertScore 0.84874 ± 0.01223 0.85576 ± 0.00117 0.26942 No
T > R for T Hits@1 0.82404 ± 0.00413 0.84582 ± 0.00343 0.00002 Yes
W > R for W Hits@1 0.74712 ± 0.00214 0.80614 ± 0.02922 0.01052 Yes
W > T for W Hits@1 0.75388 ± 0.00444 0.80614 ± 0.02922 0.01536 Yes

Table 6.6: Seed variation results (T and W test)

The only hypothesis that is not statistical significant is the N model has better BertScore results for

R testing, which means that the improvement observed may be by chance. All the other hypothesis are

statistically significant, namely:

1. the T model has better Hits@1 results than the R model for R testing;

2. the N model has better BLEU results than the R model for R testing;

3. the T model has better Hits@1 results than the R model for T testing;

4. the W model has better Hits@1 results than the R and T models for W testing.

From 3. and 4., we conclude that for scenarios with strong distractors, training a model using

strong distractors generated using the same heuristic is a better option than using random ones.

6.3 Case study: customer support

Since this work was developed under the scope of project MAIA: Multilingual AI Agent Assistants6,

whose goal is to develop a platform where AI agents perform customer support, we also use a customer

support dataset to test our tailored distractors.

6https://resources.unbabel.com/maia-unbabel-research (Last accessed on: 23/11/2020)
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We used Twitter’s Customer Support dataset7. It contains data from multiple companies, such as

Apple, American Airlines and Xbox. For the purpose of our experiments, we only focused on the Xbox

dataset.

We preprocessed the data to match the json structure required by the DialoGP3T model. One prob-

lem we found was the use of Twitter mentions, where all utterances started with one, or more, in the

case where one user replies to multiple users, and these would not add useful information to our model.

Thus, we removed all the mentions from the beginning of the utterances, and covered the remaining

with MENTION. We also covered all URLs with URL. Examples taken from the corpora, before and after

preprocessing, are shown in Table 6.7.

Before After
“@XboxSupport Unless you do not provide any ev-
idence then I would like my ban to be removed”

“Unless you do not provide any evidence then I
would like my ban to be removed”

“@XboxSupport @784280 Happened to
a friend of mine too..doesn’t look good..
https://t.co/R1ll5kwN0A”

“Happened to a friend of mine too..doesn’t look
good.. URL”

Table 6.7: Before and after preprocessing

Tables 6.8 and 6.9 show the average results across five different seeds obtained for a test set with,

respectively, randomly and top-rank chosen distractors. Since the number of candidates was 10 for

the random test set and 5 for the tailored test set, we omit the Hits@10 metric for the first and also

the Hits@5 metric for the latter, which are always 1. Also, as mentioned in previous experiments, the

generative scores are independent of the distractors, thus are not shown in the second table. The

original results before averaging are in Tables A.6 and A.7.

Metric R T p-value Significant
Hits@1 0.73362 ± 0.00913 0.78172 ± 0.00927 0.00003 Yes
Hits@5 0.99134 ± 0.00205 0.99324 ± 0.00084 0.11002 No
BLEU 11.12594 ± 0.22760 11.00848 ± 0.23538 0.44566 No
TER 1.0243 ± 0.01417 1.02768 ± 0.01648 0.73721 No

BertScore 0.8514 ± 0.00547 0.85324 ± 0.00158 0.50423 No

Table 6.8: Xbox average results (random test)

Metric R T p-value Significant
Hits@1 0.73504 ± 0.00920 0.78364 ± 0.00908 0.00003 Yes

Table 6.9: Xbox average results (tailored test)

We observe that, both for random and tailored testing, using the model trained with the top-rank

7https://www.kaggle.com/thoughtvector/customer-support-on-twitter (Last accessed on: 09/12/2020)
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distractors improves the Hits@1 metric by almost 5%, with statistical significance. This reinforces the

importance of selecting tailored distractors.

6.4 Do current language models use the context of the conversa-

tion?

In Section 3.5.4, it was seen that Khandelwal et al. (2018) and Sankar et al. (2019) showed that neural

models were not using the context of the conversation as expected, by performing an ablation study that

showed that the models’ performance was not affected by drastic changes in the context.

However, with the fast development of NLP, many new models have emerged since those stud-

ies were made. Particularly, we want to show that our DialoGP3T model is using the context of the

conversation, and, therefore, is sensitive to changes in the context. With that goal, we perform an abla-

tion study where we introduce perturbations in the context to assess whether the performance metrics

change. Here, we assume that the context does not include the most recent utterance, since it is the

one to which the model will generate a response. In Listing 6.4 a randomly selected context from the

PersonaChat corpus is shown.

Listing 6.4: Original history

1 'history': [

2 ” SILENCE ”,

3 ”hi friend . let us talk .”,

4 ”how are you doing tonight ?”,

5 ”great . just working on my art and feeding my pets . what about you ?”,

6 ”well i'm albert thanks for asking and art is fun”,

7 ”i love canada , i am a great painter , my feline friends help me out too .”,

8 ”just a nice guy really just i been told”,

9 ”good for you . i hope you do not ea seafood . it isn't good .”,

10 ”talk faster and sometimes i cant sleep phone rings all the time”,

11 ”my cats always call me , i've too many .”,

12 ”well people always sue everyone i'm the one to call”

13 ]

Since the goal is to study the perturbations’ impact independently, for each of them a new version of the

corpus is produced, where the only difference is the context. The perturbations are the following:

• No context – delete all the utterances in the context.
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Listing 6.5: No context history

1 'history': [

2 ”well people always sue everyone i'm the one to call”

3 ]

• Half context – randomly delete half of the utterances in the context.

Listing 6.6: Half context history

1 'history': [

2 ” SILENCE ”,

3 ”hi friend . let us talk .”,

4 ”great . just working on my art and feeding my pets . what about you ?”,

5 ”well i'm albert thanks for asking and art is fun”,

6 ”i love canada , i am a great painter , my feline friends help me out too .”,

7 ”well people always sue everyone i'm the one to call”

8 ]

• Shuffle context – shuffle all the utterances in the context.

Listing 6.7: Shuffle context history

1 'history': [

2 ”just a nice guy really just i been told”,

3 ”hi friend . let us talk .”,

4 ”talk faster and sometimes i cant sleep phone rings all the time”,

5 ”great . just working on my art and feeding my pets . what about you ?”,

6 ”i love canada , i am a great painter , my feline friends help me out too .”,

7 ”good for you . i hope you do not ea seafood . it isn't good .”,

8 ”well i'm albert thanks for asking and art is fun”,

9 ” SILENCE ”,

10 ”how are you doing tonight ?”,

11 ”my cats always call me , i've too many .”,

12 ”well people always sue everyone i'm the one to call”

13 ]
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Using the new three corpora, we train three versions of DialoGP3T : no context model, half

context model and shuffle context model. These models are trained through 1 epoch, and with

five different seeds, to assess their results’ statistical significance. They are then tested using the Per-

sonaChat validation corpus, with the original context.

Table 6.10 shows the mean and standard deviation of each setting across the different seeds (the

results by seed are in Appendix A.3), and the p-value obtained by performing a ttest on each setting

with the original setting, in order to assess if the obtained values have statistically significance. We use

alpha = 0.05, thus a result is significant if it has p− value < 0.05. O represents the original model (in-

tact context), N the no context model, H the half context model and S the shuffle context model.

We observe that the only setting with significant results across all metrics is No Context model (N),

whose results are significantly worse than those of the original model, namely, with a Hits@1 of 0.6142,

compared to the original’s 0.8188. The two other settings also show significantly worse results for the

Hits@1 metric, but only approximately less 0.01 than the original; their BLEU results are significantly

better than the original ones.

Metric Dataset Mean ± StDev p-value Significant

Hits@1

O 0.8188 ± 0.00513 - -
N 0.6142 ± 0.00894 3.4876x10−5 Yes
H 0.80632 ± 0.00581 0.00712 Yes
S 0.8075 ± 0.00158 0.0060 Yes

Hits@5

O 0.97736 ± 0.00126 - -
N 0.88014 ± 0.00867 1.0944x10−5 Yes
H 0.97406 ± 0.00197 0.0167 Yes
S 0.97502 ± 0.00227 0.0888 No

Hits@10

O 0.99644 ± 0.00036 - -
N 0.96332 ± 0.00382 3.885x10−5 Yes
H 0.99574 ± 0.00068 0.0892 No
S 0.99566 ± 0.00082 0.1033 No

BLEU

O 2.62674 ± 0.15890 - -
N 1.47026 ± 0.21993 2.2732x10−5 Yes
H 2.92308 ± 0.10873 0.0106 Yes
S 2.88062 ± 0.10773 0.0211 Yes

TER

O 1.035 ± 0.01390 - -
N 0.96830 ± 0.00735 7.2536x10−5 Yes
H 1.04446 ± 0.00679 0.2221 No
S 1.03870 ± 0.01023 0.6456 No

BertScore

O 0.84874 ± 0.01223 - -
N 0.82348 ± 0.00921 0.00699 Yes
H 0.85588 ± 0.00100 0.2624 No
S 0.85554 ± 0.00121 0.2826 No

Table 6.10: Mean, stdev and p-value across seeds (Random vs each setting)

This experiment has shown that DialoGP3T takes the context of a conversation into account

when selecting a response, since its ranking accuracy decreases around 20% when the context of the
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conversation is removed from the dataset, thus demonstrating the model’s robustness.
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7.1 Main contributions

In this thesis, we joined two multi-agent systems into one, and tackled two limitations. The first was

that none of this agents allowed the use of paraphrases, synonyms and domain specific synonyms and

acronyms, so a new agent architecture was proposed – the General Agent – which allows to specify

paraphrases to questions in the corpus, define domain-specific synonyms and acronyms, and also con-

sider synonyms when computing the distance between two sentences. It also allows to have different

instances of that agent with different corpora. The second limitation was that none of the agents took the

context of the conversation into account. To solve this and make it take context into consideration when

selecting a response, a BERT For Next Sentence Prediction model was fine-tuned for dialogues, and

used in the Contextual agent, to predict the probability of each candidate response being the most appro-

priate, given the context. To fine-tune the model, we proposed three techniques of distractor selection,

instead of selecting them randomly: using a search engine, based on semantic similarity and based

on a ranking model. These techniques were tested both on the BERT For Next Sentence Prediction

model and on a DialoGPT based framework. Interesting conclusions were drawn, namely, that training

a model with tailored distractors improves the performance on testing with both random and tai-

lored distractors when compared to training with random distractors. We used the distractor selection

technique that had the best results to select tailored distractors on a customer support dataset, where

positive results were also observed. Finally, we performed an ablation study that showed that a current

neural model is sensitive to changes in the context, by removing the whole context of each entry in

the training corpus and observing a significant decrease in the model’s performance when testing in a

corpus with the full context, thus proving its robustness.

7.2 Future work

As future work, regarding the multi-agent dialogue system architecture, since a considerable number of

modern systems are generative, it would be interesting to have generative agents, and Natural Language

Understanding and Natural Language Generation modules in the system’s architecture. It would also

be interesting to explore MULTI-SSS’s online learning, and possibly adapt it to also work with decision

making strategies, as it currently only learns from agents, and train CHATTUGA’s query classifiers to

handle new labels, such as sentiments and intents, and handle them.

Regarding the usage of context, as previously seen, BERT only allows to represent 512 tokens.

We decided to only consider the last 512 tokens of the context when matching it with a response. An

alternative to consider a larger number of tokens would be to split the context into 512 token blocks

and match each block with each response, sum all scores and select the response with a higher score.

Context could also be used to solve linguistic phenomena, such as anaphora and ellipsis resolution.
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It would also be interesting to, for the response selection task, fine-tune different models made avail-

able by HuggingFace, such as BertForQuestionAnswering1 with a multilingual pre-trained model, to

create an agent specialized in question answering in Portuguese, taking the context into account.

Concerning our tailored distractors, since we observed that they have a positive impact in different

models’ performance, it would be interesting to explore other ways of selecting them, other than the

ones proposed in this thesis, such as generative approaches.

1https://huggingface.co/transformers/modeldoc/bert.htmlbertforquestionanswering(Lastaccessedon : 28/12/2020)
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Training set Epoch Run 1 Run 2 Run 3 Run 4 Avg

Tailored

1 0.535 0.524 0.534 0.538 0.5328
2 0.533 0.535 0.534 0.541 0.5358
3 0.535 0.535 0.535 0.535 0.535
4 0.535 0.534 0.534 0.535 0.5345
1 0.529 0.527 0.540 0.531 0.5318
2 0.534 0.531 0.539 0.538 0.5355
3 0.535 0.535 0.538 0.537 0.5363
4 0.537 0.534 0.542 0.536 0.5373
1 0.538 0.539 0.537 0.536 0.5375
2 0.548 0.552 0.546 0.549 0.548
3 0.554 0.547 0.547 0.548 0.549
4 0.554 0.553 0.551 0.552 0.5525
1 0.533 0.541 0.526 0.538 0.5345
2 0.535 0.541 0.537 0.548 0.5403
3 0.545 0.550 0.543 0.550 0.547
4 0.544 0.554 0.543 0.552 0.5483
1 0.543 0.554 0.543 0.546 0.5465
2 0.554 0.558 0.552 0.549 0.5533
3 0.557 0.554 0.558 0.554 0.5558
4 0.555 0.557 0.558 0.555 0.5563

Random

1 0.531 0.502 0.506 0.511 0.5125
2 0.517 0.491 0.511 0.507 0.5065
3 0.524 0.503 0.516 0.507 0.5125
4 0.533 0.503 0.513 0.508 0.5143
1 0.491 0.501 0.513 0.516 0.5053
2 0.495 0.498 0.526 0.515 0.5085
3 0.490 0.502 0.515 0.504 0.5028
4 0.500 0.500 0.529 0.509 0.5095
1 0.503 0.488 0.496 0.494 0.4953
2 0.502 0.493 0.505 0.502 0.5005
3 0.508 0.500 0.492 0.497 0.4993
4 0.505 0.503 0.501 0.500 0.5023
1 0.509 0.496 0.520 0.478 0.5008
2 0.500 0.494 0.496 0.502 0.498
3 0.501 0.506 0.513 0.490 0.5025
4 0.496 0.503 0.512 0.499 0.5025
1 0.496 0.491 0.506 0.514 0.5018
2 0.498 0.488 0.498 0.521 0.5013
3 0.504 0.492 0.511 0.515 0.5055
4 0.502 0.494 0.507 0.504 0.5018

Table A.1: Context agent random and tailored train, tailored test
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Training set Epoch Run 1 Run 2 Run 3 Run 4 Avg

Whoosh

1 0.551 0.543 0.549 0.545 0.5470
2 0.556 0.552 0.552 0.551 0.5528
3 0.559 0.549 0.557 0.553 0.5545
4 0.561 0.551 0.559 0.553 0.556
1 0.557 0.548 0.554 0.556 0.5538
2 0.561 0.555 0.561 0.560 0.5593
3 0.559 0.555 0.558 0.560 0.558
4 0.560 0.557 0.561 0.558 0.559
1 0.555 0.545 0.547 0.550 0.5493
2 0.548 0.541 0.547 0.551 0.5468
3 0.554 0.546 0.552 0.551 0.5508
4 0.554 0.547 0.552 0.548 0.5503
1 0.555 0.556 0.549 0.547 0.5518
2 0.550 0.563 0.553 0.559 0.5563
3 0.552 0.566 0.555 0.563 0.5590
4 0.553 0.566 0.560 0.564 0.5608
1 0.563 0.554 0.524 0.556 0.5493
2 0.562 0.558 0.556 0.545 0.5553
3 0.559 0.556 0.555 0.552 0.5555
4 0.563 0.557 0.556 0.555 0.5578

Random

1 0.491 0.483 0.484 0.507 0.4913
2 0.473 0.485 0.500 0.505 0.4908
3 0.471 0.486 0.494 0.507 0.4895
4 0.485 0.484 0.502 0.507 0.4945
1 0.503 0.505 0.500 0.492 0.5
2 0.491 0.506 0.503 0.482 0.4955
3 0.491 0.507 0.515 0.484 0.4933
4 0.490 0.498 0.500 0.484 0.4930
1 0.505 0.489 0.511 0.506 0.5028
2 0.514 0.499 0.474 0.495 0.4955
3 0.519 0.519 0.488 0.492 0.5045
4 0.512 0.515 0.486 0.488 0.5003
1 0.506 0.491 0.494 0.506 0.4993
2 0.503 0.492 0.465 0.496 0.4890
3 0.509 0.485 0.471 0.502 0.4918
4 0.504 0.499 0.475 0.504 0.4955
1 0.473 0.479 0.465 0.500 0.4793
2 0.491 0.495 0.474 0.492 0.4880
3 0.481 0.494 0.474 0.504 0.4883
4 0.484 0.497 0.480 0.496 0.4893

Table A.2: Context agent random and Whoosh train, Whoosh test
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Seed TS Hits@1 Hits@5 Hits@10 BLEU TER BertScore

3

O 0.8241 0.9783 0.9969 2.7408 1.0322 0.8533
N 0.6006 0.8741 0.9612 1.3717 0.9633 0.8252
H 0.8054 0.975 0.9959 2.7659 1.035 0.8569
S 0.8103 0.9751 0.9955 2.6927 1.0231 0.8565

5

O 0.8134 0.9754 0.9967 2.6500 1.0493 0.8536
N 0.6149 0.8764 0.9609 1.1377 0.976 0.8218
H 0.8092 0.9737 0.9953 2.9346 1.0502 0.8545
S 0.8063 0.9723 0.9962 2.7745 1.0308 0.8537

8

O 0.8135 0.9786 0.9962 2.5859 1.0226 0.8269
N 0.6257 0.8923 0.9690 1.5276 0.9599 0.8093
H 0.8116 0.9758 0.9967 3.052 1.0401 0.8558
S 0.8078 0.9787 0.9967 2.9552 1.0381 0.855

10

O 0.8200 0.9774 0.9964 2.3771 1.0212 0.8551
N 0.6140 0.8719 0.9601 1.6533 0.9759 0.8346
H 0.7967 0.9708 0.9949 2.8781 1.0508 0.8554
S 0.8064 0.9727 0.9945 2.7626 1.024 0.8545

12

O 0.8231 0.9771 0.9960 2.7799 1.0497 0.8548
N 0.6157 0.886 0.9655 1.661 0.9664 0.8265
H 0.8087 0.975 0.9959 2.9848 1.0462 0.8568
S 0.8049 0.9753 0.9962 2.7713 1.0238 0.8551

Table A.3: Seed variation, context ablation results

Seed TS Hits@1 Hits@5 Hits@10 BLEU TER BertScore

3

R 0.8241 0.9783 0.9969 2.7408 1.0322 0.8533
T 0.8337 0.9774 0.9959 2.6839 1.0329 0.8533
W 0.7221 0.9556 0.9909 2.6861 1.0556 0.8557
N 0.0415 0.2082 0.4478 2.7529 1.0629 0.8550

5

R 0.8134 0.9754 0.9967 2.6500 1.0493 0.8536
T 0.8284 0.9750 0.9946 2.6314 1.0329 0.8538
W 0.7439 0.9628 0.9927 2.9579 1.0804 0.8562
N 0.0347 0.1992 0.4296 2.8977 1.0333 0.8541

8

R 0.8135 0.9786 0.9962 2.5859 1.0226 0.8269
T 0.8381 0.9781 0.9953 2.678 1.0241 0.8547
W 0.7286 0.9565 0.9918 2.6629 1.0398 0.8537
N 0.0701 0.3238 0.5943 2.9171 1.0116 0.8564

10

R 0.8200 0.9774 0.9964 2.3771 1.0212 0.8551
T 0.8335 0.9767 0.9953 2.5671 1.0118 0.8553
W 0.7450 0.9637 0.9919 2.5371 1.0105 0.8561
N 0.0690 0.3247 0.5868 2.8858 1.0420 0.8564

12

R 0.8231 0.9771 0.9960 2.7799 1.0497 0.8548
T 0.8401 0.9769 0.9946 2.8390 1.0306 0.8563
W 0.8328 0.9776 0.9951 2.6934 1.0187 0.8558
N 0.0626 0.3037 0.5676 3.0742 1.0597 0.8569

Table A.4: Seed variation results (random test)
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Seed TS Hits@1 T Hits@1 W

3

R 0.8282 0.75
T 0.8441 0.7602
W 0.7509 0.8208
N 0.1775 0.1676

5

R 0.8217 0.745
T 0.8410 0.753
W 0.7656 0.8191
N 0.1591 0.1690

8

R 0.8180 0.7450
T 0.8490 0.7499
W 0.7503 0.8187
N 0.2275 0.2260

10

R 0.8264 0.7480
T 0.8459 0.7564
W 0.7622 0.8182
N 0.2529 0.2392

12

R 0.8259 0.7476
T 0.8491 0.7499
W 0.8445 0.7539
N 0.2034 0.2242

Table A.5: Seed variation results (T and W test)

Seed TS Hits@1 Hits@5 BLEU TER BertScore

3 R 0.7484 0.9934 11.1763 1.0130 0.8545
T 0.7921 0.9947 11.0988 1.0166 0.8542

5 R 0.7281 0.9881 11.3060 1.0258 0.8545
T 0.7903 0.9926 10.8267 1.0344 0.8538

8 R 0.7347 0.9918 10.9970 1.0183 0.8417
T 0.7805 0.9929 10.7776 1.0046 0.8508

10 R 0.7246 0.9926 11.3495 1.0482 0.8533
T 0.7715 0.9931 11.3635 1.0392 0.8526

12 R 0.7323 0.9908 10.8009 1.0162 0.8530
T 0.7742 0.9929 10.9758 1.0436 0.8548

Table A.6: Xbox seed variation results (random test)
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Seed TS Hits@1 TopRank

3 R 0.7499
T 0.7937

5 R 0.7296
T 0.7924

8 R 0.7370
T 0.7821

10 R 0.7262
T 0.7750

12 R 0.7325
T 0.775

Table A.7: Xbox seed variation results (tailored test)
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