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Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. António Manuel Ferreira Rito da Silva

Member of the Committee: Prof. Miguel Ângelo Marques de Matos
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Abstract

The migration of monolith applications to a microservice architecture has long been a hot topic around

major competitive business companies. By turning their complex systems into independently scalable

services and managed by small agile software teams, the ideal of decreasing the time to market and

increasing the availability of their services has become much more attainable.

This work leverages on a previous work which was focused on the problem of the complexity asso-

ciated with software evolution when migrating a monolith to a microservices architecture by executing a

static analysis on the monolith’s codebase. Therefore, through a dynamic analysis, this work contributes

the following research questions: (1) Does the information collected during run-time, for the same set

of similarity measures, provide better results, in terms of the quality of the generated decompositions,

when compared with the static information captured on the previous work? (2) Does a similarity mea-

sure, based on the dynamic behaviour of a system, generate decompositions which are performance

optimized? (3) Are the used maintainability quality metrics correlated with performance?

To address each of these questions, a study was conducted on two monolith systems in which their

behaviour was dynamically analysed. As result of the analysis we conclude that (i) neither of the anal-

ysis techniques, static and dynamic, outperforms the other, but the dynamic collection of data requires

more effort (ii) the performance of a decomposition is correctly correlated with the maintainability quality

metrics and no similarity measure provides better results than other.

Keywords

Monolithic Application; Microservices; Architecture Migration; Dynamic Code Analysis; Trace Compres-

sion; Maintainability quality metrics.
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Resumo

A migração de aplicações monolı́ticas para uma arquitetura de microsserviços é, há muito tempo, um

tema abordado pelas grandes empresas tecnológicas. Ao transformar os seus sistemas complexos em

serviços escaláveis, independentes e geridos por pequenas equipas, o objetivo de reduzir o time-to-

market dos seus produtos bem como o aumento da disponibilidade dos seus serviços tornou-se mais

alcançável.

Este trabalho baseia-se num trabalho anterior que focou o problema da complexidade associada à

evolução de software na migração de um monólito para uma arquitetura de microsserviços executando

uma análise estática sobre o código do monólito. Portanto, através de análise dinâmica, este trabalho

contribui com as seguintes questões de investigação: (1) As informações recolhidas em tempo de

execução, para o mesmo conjunto de medidas de similaridade, fornecem melhores resultados, em

termos de qualidade das decomposições geradas, quando comparadas com as informações estáticas

capturadas no trabalho anterior? (2) Existe alguma medida de similaridade, baseada no comportamento

dinâmico de um sistema, que gere decomposições otimizadas em termos de desempenho? (3) As

métricas de qualidade de manutenção estão correlacionadas com desempenho?

Para responder a cada uma dessas questões, foi conduzido um estudo no qual se analisou a

execução de dois sistemas monolı́ticos. Como resultado da análise, concluı́mos que (i) nenhuma das

técnicas de análise, estática e dinâmica, supera a outra, mas a colheita dinâmica de dados requer mais

esforço (ii) o desempenho de uma decomposição está corretamente correlacionado com as métricas de

qualidade de manutenção e nenhuma medida de similaridade fornece melhores resultados que outra.

Palavras Chave
Monolı́to; Microsserviços; Migração de Arquitetura; Análise dinâmica de código; Compressão de traços;

Métricas de qualidade de manutenção.
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The concept of a microservices architecture has been acquiring numerous definitions over time in

the industry and a broader attempt, presented in [1], describes it as an architectural style which end

goal encompasses a set of cohesive and loosely coupled services, each one with its own independent

responsibilities by functionally splitting an application. Initially employed by Amazon and Netflix, this

architecture type emerged to solve the struggle of the software development processes not being able

to keep up with the pace of business and customers demands and therefore it has been widely adopted

by the software engineering and distributed systems communities.

However, in these days, numerous companies still live in a monolithic hell, possessing huge and com-

plex legacy monolithic systems, where each change on the codebase makes it harder to understand and

execute, leading to an increasingly maintenance overhead and a drastic decrease on the development

productivity. Moreover, the horizontal scalability of a monolith is also compromised. The high concentra-

tion of services in the same executing component and the usage of a single shared database increases

the overall system coupling and consequently turns it into a single point of failure (lack of reliability).

Hence, breaking down a monolithic architecture into microservices can definitely help these companies

by enabling continuous delivery and deployment of independent and scalable services that are easily

maintained by autonomous agile teams.

Nevertheless, identifying the microservices boundaries, one of the major and most challenging soft-

ware architects tasks, is still an obstacle when migrating a monolith system into microservices. Depend-

ing on the available architecturally significant requirements, an architect must reason about the inherent

trade-offs when making such a complex and difficult partition. A wrong cut may have a direct impact

on the distributed services’ interfaces and, in the absence of a integrated development environment, the

refactor becomes unmanageable.

As a consequence, a plethora of approaches have been proposed [2–5] to tackle this problem but the

majority only focus on the domain model by identifying structural modules and their inter-relationships.

Since persistent domain entities are highly coupled when accessed in the same transaction, the com-

plexity of decomposing/relaxing the transactional behavior into several distributed transactions is be-

ing discarded, problem better known as the forgetting of the Consistency Availability Partition toler-

ance (CAP) Theorem migration smell identified by [6].

Each of these approaches differs from the other regarding the used techniques but they all have in

common the same sequence of basic steps:(1) Collection: data is collected from the monolith’s code-

base or run-time behaviour; (2) Decomposition: a decomposition is generated by executing a clustering

algorithm with the data collected in the first step according to a certain similarity measure (3) Analysis:

a set of metrics is used to assess the generated decomposition quality.

In terms of collection, data is gathered from the monolith either by taking advantage of a static code

analysis [4], by profiling its execution behaviour with dynamic analysis or by using both data collection

3



techniques [7]. To generate a decomposition, different similarity measures are used where some only

focus on the accesses to domain entities, others distinguish reads from writes, and others consider the

sequence of accesses.

1.1 Previous work

To address the aforementioned limitations, the authors of [8,9] propose an analysis framework to support

architects during the migration of monolith applications to a microservices architecture. This framework

can be applied to any monolith that follows the Model-View-Controller (MVC) style and gives emphasis

to the impact of the decomposition on the monolith business logic by identifying business applications

transactional contexts. A business transaction (or functionality) should, ideally, be associated with a

single transactional context, such that the decomposition of the monolith into a set of microservices does

not have impact on the business logic. This impact is caused by the relaxation of the atomic transactional

behavior of each functionality forcing its redesign and implementation by developers. Besides changing

the inherent business logic, developers not only have to take into account the number of intermediate

states but also the interactions between its intermediate states and the intermediate states of other

functionalities and consequently, fault handling code must be written in order to compensate or recover

from a plethora of possible interactions between functionalities. The more relaxed the consistency of

a functionality, the more complex will be its implementation and therefore, the higher the cost - time

and resources - of change of the system, also known as the Modifiability software quality attribute.

To estimate this cost, the authors propose a complexity metric, formalized in the next chapter, based

on information related to read and write sets and the invocation sequence of domain entities of each

functionality.

The framework is also comprised by the same three steps:

• Collection: useful system data is collected from monolith systems, implemented using the Model-

View-Controller architectural style, by using a static code analyser that captures transactional

changes in the persistent model of domain entities triggered by the controllers, thus, correspond-

ing to the monolith functionalities. As result of the collection, the functionalities accesses to the

persistent entities are stored in JSON format. It consists in a key-value store that maps a con-

troller name to a list of all the accesses that can possibly be made for that controller. An access is

composed by the name of the accessed domain entity and the access type, either read or write;

• Decomposition: microservices candidates are identified using a hierarchical clustering (Python

SciPy1) to process the collected data and, according to four similarity measures, generate a den-

drogram of the domain entities. The generated dendrogram can be cut in order to produce different
1https://docs.scipy.org/doc/
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decompositions, given the number of clusters. The decomposition tool also supports different com-

binations of similarity measures, for instance, it is possible to generate a decomposition with the

following weights: 30% access, 30% read, 20% write, 20% sequence. These similarity measures

are further discussed in the next chapter.

• Visualization and analysis: different views of the identified microservices and their inter-relationships

are provided and also architects are allowed to interact with the tool to generate multiple decompo-

sitions, by varying the similarity measures weights and the number of clusters, and compare them

according to the maintainability metrics: complexity, coupling and cohesion. Additionally, two differ-

ent decompositions of the same system can be compared using the MoJoFM [10] distance metric.

MoJoFM is a distance measure between two architectures expressed as a percentage. This mea-

sure is based on two key operations used to transform one decomposition into another: moves

(Move) of entities between clusters, and merges (Join) of clusters. Given two decompositions, A

and B, MoJoFM is defined as:

MoJoFM(A,B) = (1− mno(A,B)

max(mno(∀A,B))
)× 100% (1.1)

where mno(A,B) is the minimum number of Move and Join operations needed to transform A into

B and max(mno(∀A,B)) is the number of Move and Join operations needed to transform the most

distant decomposition into B.

1.1.1 Problem

This work leverages the previous work [9], by studying whether the dynamic collection of the monolith’s

functionalities behavior can significantly improve the process of migrating a monolith to a microservices

architecture.

The main limitation the previous work suffers from is the fact that only Static Code Analysis (SCA)

is used to capture an abstracted model of the software state that may lead to some information loss

(weaker and unreal results) [11]. This technique inevitably suffers from the intrinsic problem of identifying

the run-time types when inheritance and polymorphism are used due to late binding.

1.2 Research Questions and Contributions

Therefore, this thesis studies two already known monolithic systems and presents an analysis of

whether the Dynamic Code Analysis (DCA) technique provides significant differences when compared

with the SCA in regards to the identification of candidate decompositions.

As a result, the following research questions are addressed:
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RQ1: Does the information obtained using a dynamic code analyser, for the same set of similarity

measures, provide better results, in terms of the quality of the generated decompositions, when

compared with the static information captured on the previous work?

RQ2: Does a particular similarity measure provide better results in terms of the performance of

the generated decompositions?

RQ3: Are the used maintainability quality metrics correlated with performance?

Simultaneously it tackles the existing limitations and improves the current analysis framework by:

• Employing DCA to collect data of the application run-time behaviour. New data artifacts were col-

lected: the execution log/trace of the monolith’s functionalities, containing the underlying dynamic

types (when possible), and the execution time and frequency of each functionality.

• Refurbishing the analysis step internals to enable the analysis of larger volumes of data, by be-

coming less resource-hungry concerning time and memory.

• Introducing a performance metric: network communication latency. This metric simply calculates

the number of hops between microservices during a distributed transaction. As one cannot pre-

dict the exact time taken by a request while travelling on the network or the execution time of a

local transaction, it can be assumed that the more microservices a system has, the higher is the

likelihood of increasing the latency of each functionality and consequently the overall system la-

tency. Despite not being related with the main focus of the Mono2Micro project - maintainability -

it was decided that this metric is a good fit to the current set of existing ones because it empowers

the software architects reasoning with information of a different perspective whilst decomposing a

system.

1.3 Organization of the Document

This thesis is organized and summarized as follows: Chapter 2 provides a thorough specification of

the preceding work that serves as a fundamental basis and states what was accomplished. Chapter 3

presents the used DCA tool and explains each step of the data collection pipeline and corresponding

artifacts. In Chapter 4, research questions are answered through the presentation of results of apply-

ing the analysis framework to the analysed systems. Chapter 5 introduces the state of the art in the

microservices migration research and also describes the work that has been done in the field of how

a dynamic code analysis can help in this migration process. Chapter 6 discusses the outcomes of this

work and unveils potential future works. Finally, Chapter 7 concludes this thesis with a general synopsis

of the work.
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This chapter starts by defining thoroughly the underlying key concepts of the Mono2Micro’s frame-

work. The second part of this chapter outlines what was accomplished by the previous work, which

research answers were proposed, how they were addressed and what were the main findings.

2.1 Analysis framework formalization

A monolith is defined by its set of functionalities which execute in atomic transactional contexts and, due

to the migration to the Microservices Architecture (MSA), have to be decoupled into a set of distributed

transactions, each one executing in the context of a microservice.

Therefore, a monolith is defined as a triple (F,E,G), where F defines its set of functionalities, E the

set of domain entities, and G a set of call graphs, one for each monolith functionality. A call graph is

defined as a tuple (A,P ), where A = E ×M is a set of read and write of accesses to domain entities

(M = {r, w}), and P = A×A a precedence relation between elements of A such that each access has

zero or one immediate predecessors, ∀a∈A#{(a1, a2) ∈ P : a1 = a} ≤ 1, and there are no circularities,

∀(a1,a2)∈PT
(a2, a1) /∈ PT , where PT is the transitive closure of P . The precedence relation represents the

sequences of accesses associated with a functionality.

2.1.1 Similarity Measures

The definition of similarity measures establishes the distance between domain entities. Domain entities

that are closer, according to a particular similarity measure, should belong to the same microservice.

Therefore, to minimize the amount of distributed transactions a functionality is decomposed in, domain

entities will tend to be closer when accessed by the same functionalities. The authors define four simi-

larity measures: access, read, write and sequence.

2.1.1.A Access similarity measure

The access similarity measure measures the distance between two domain entities, e1, e2 ∈ E, as:

smaccess(e1, e2) =
#(funct(e1) ∩ funct(e2))

#funct(e1)
(2.1)

where funct(e) denotes the set of functionalities in the monolith whose call graph has a read or write

access to e. This measure takes a value in the interval 0..1. When all the functionalities that access e1

also access e2 then it takes the value 1.
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2.1.1.B Read and Write similarity measures

These measures tend to include in the same microservice, domain entities that are read or written

together, respectively. Since the cost of reading and writing is different in the context of distributed

transactions, as writes introduce new intermediate states in the decomposition of a functionality, the

next two similarity measures distinguish read from write accesses in order to reduce the number of write

distributed transactions:

smread(e1, e2) =
#(funct(e1, r) ∩ funct(e2, r))

#funct(e1, r)
(2.2)

smwrite(e1, e2) =
#(funct(e1, w) ∩ funct(e2, w))

#funct(e1, w)
(2.3)

where funct(e,m) denotes the set of functionalities in the monolith whose call graph has an access

according to mode m, read or write, respectively.

2.1.1.C Sequence similarity measure

Finally, another similarity measure that is found in the literature groups domain entities that are frequently

accessed in sequence, in order to reduce the number of remote invocations between microservices,

i.e., the domain entities that are frequently accessed in sequence should be in the same microservice.

Therefore, the sequence similarity measure is defined as:

smsequence(e1, e2) =
sumPairs(e1, e2)

maxPairs
(2.4)

where sumPairs(e1, e2) =
∑

f∈F #{(ai, aj) ∈ Gf .P : (ai.e = e1 ∧aj .e = e2)∨ (ai.e = e2 ∧aj .e = e1)}) is

the number of consecutive accesses of e1 and e2, where Gf .P is the precedence relation for functionality

f , and maxPairs = maxei,ej∈E(sumPairs(ei, ej)) is the max number of consecutive accesses for two

domain entities in the monolith.

2.1.2 Metrics

A decomposition of a monolith is a partition of its domain entities set, where each element is included in

exactly one subset, a cluster, and a partition of the call graph of each one of its functionalities. Therefore,

given the call graph Gf of a functionality f , and a decomposition D ⊆ 2E , the partition call graph of a

functionality partition(Gf , D) = (LT,RI) is defined by a set of local transactions LT and a set of remote

invocations RI, where each local transaction

(i) is a subgraph of the functionality call graph, ∀lt∈LT : lt.A ⊆ Gf .A ∧ lt.P ⊆ Gf .P ;
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(ii) contains only accesses in a single cluster of the domain entities decomposition, ∀lt∈LT∃cinD :

lt.A.e ⊆ c;

(iii) contains all consecutive accesses in the same cluster, ∀ai∈lt.A,aj∈Gf .A : ((ai.e.c = aj .e.c∧(ai, aj) ∈

Gf .P ) =⇒ (ai, aj) ∈ lt.P ) ∨ ((ai.e.c = aj .e.c ∧ (aj , ai) ∈ Gf .P ) =⇒ (aj , ai) ∈ lt.P ).

From the definition of local transaction, results the definition of remote invocations, which are the

elements in the precedence relation that belong to different clusters, RI = {(ai, aj) ∈ Gf .P : ai.e.c 6=

aj .e.c}. Note that, in these definitions, the dot notation is used to refer to elements of a composite or one

of its properties, e.g., in aj .e.c, .e denotes the domain entity in the access, and .c the cluster the domain

entity belongs to.

2.1.2.A Complexity Metric

The complexity of migrating a functionality in the context of a decomposition is translated to the required

cognitive load effort the software developer has to address when redesigning a functionality. Splitting its

transactional behavior into several distributed transactions, introduces multiple intermediate states due

to the lack of isolation. Therefore, the impact on the functionality migration redesign effort is caused by

the following factors:

• The number of local transactions, because each local transaction may introduce an intermediate

state;

• The number of other functionalities that read domain entities written by the functionality, because

it adds the need to consider the intermediate states between the execution of the different local

transactions;

• The number of other functionalities that write domain entities read by the functionality, because the

functionality redesign has to consider the different states these domain entities can be.

complexity(f,D) =
∑

lt∈partition(Gf ,D)

complexity(lt,D) (2.5)

The complexity of a functionality is the sum of the complexities of its local transactions.

complexity(lt,D) = #∪ai∈prune(lt)

{fi 6= lt.f : dist(fi, D) ∧ a−1i ∈ prune(fi, D))}
(2.6)

The complexity of a local transaction is the number of other distributed functionalities that read,

or write, domain entities, written, or read, respectively by the local transaction. The auxiliary function

dist identifies distributed functionalities, given the decomposition; a−1i denotes the inverse access, e.g.
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(e1, r)
−1 = (ei, w); and prune denotes the relevant accesses inside a local transaction, by removing

repeated accesses of the same mode to a domain entity. If both read and write accesses occur inside

the same local transaction, they are both considered if the read occurs before the write. Otherwise,

only the write access is considered. These are the only accesses that have impact outside the local

transaction.

2.1.2.B Coupling and Cohesion Metrics

Coupling and cohesion are important qualities of any software system, particularly, in a system imple-

menting a microservices architecture, because one of its goals is to foster independent agile teams.

Therefore, we intend to measure the coupling and cohesion of the monolith decomposition.

The cohesion of a cluster of domain entities depends on the percentage of its entities that is accessed

by a functionality. If all the cluster’s assigned entities are accessed each time a cluster is accessed, it

means that the cluster is cohesive:

cohesion(c) =

∑
f∈funct(c)

#{e∈c.e:e∈Gf .A.e}
#c.e

#funct(c)
(2.7)

where funct(c) denotes the functionalities that access the cluster c, and Gf .A.e the entities that are

accessed by functionality f .

The coupling between two clusters is defined by the percentage of entities one cluster exposes to

other cluster. It can be defined in terms of the remote invocations between the two clusters.

coupling(ci, cj) =
#{e ∈ cj : ∃ri∈RI(ci,cj)e = ri[2].e}

#cj .e
(2.8)

where RI(ci, cj) denotes the remote invocations from cluster ci to cluster cj

2.2 Previous results

The preceding work [9] also addressed the problem of microservices identification in a monolith while

managing the impact that the relaxing of atomic transactional behavior has on the redesign and imple-

mentation of the functionality. Thereby the following two research questions were tackled:

RQ1: Is it possible to calculate the cost/complexity associated with the migration to a microser-

vices architecture due to the introduction of relaxed consistency into the business behavior?

RQ2: Which similarity measures are more effective in the generation of a candidate microservices

decomposition in terms of the cost of migration?
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To validate their approach, three monolith systems were statically analysed. With respect to the first

research question, the proposed complexity metric was evaluated through the analysis of its correlation

with the cohesion and coupling metrics. Results show that:

• the complexity metric grows as the number of clusters increases. This was expected since with

the increase of the number of clusters, the implementation of functionalities is split between more

clusters;

• complexity has some negative correlation with cohesion. Given the high amount of outliers, it

was concluded that the complexity of migrating the functionalities is not directly correlated with the

cohesion;

• the higher the complexity the higher the coupling. Decompositions with high complexity tend to

have a high number of distributed transactions for each functionality and, as a consequence, more

interactions between clusters, which is what the coupling criteria measures.

Concerning the second research question, the similarity measures were evaluated against the com-

plexity obtained for each combination and the achieved conclusions are that:

• there is no single combination of similarity measures that is more effective in the generation of

candidate microservices decomposition in terms of the cost of migration;

• using a combination of measures provides better results than using only one measure in terms of

complexity;

• the sequence similarity measure always provides the worst result in terms of complexity.
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This chapter starts by characterising the monolithic systems that were under profiling. Then a de-

scription of the DCA tool used to instrument the monoliths’ run-time behaviour is presented detailing its

internals, advantages and disadvantages which constitute the main reason of why this tool was adopted

to eliminate the current technology limitation. Subsequently, an in-depth explanation is given regarding

the data collection pipeline implementation on the Mono2Micro project. Figure 3.1 is also presented to

facilitate the visualization of the entire pipeline, the relationships between steps and respective deliver-

ables.

3.1 Monitored systems

Data was collected from the two already known monolith systems used in the previous work [9], LdoD1

and Blended Workflow2. Both Java client-server web applications follow the MVC architectural style,

where Spring-Boot3 controllers process input events by triggering transactional changes in the model,

thus, corresponding to the monolith functionalities. A monolith is designed considering its controllers

as transactions that manipulate a persistent model of domain entities implemented using Fénix Frame-

work4 Object-Relational Mapper (ORM). The choice of only using these two systems was based on

the leverage of the existing knowledge about the inner workings of both proprietary softwares. Not only

there was access to their source code but also it was known how to execute and interact with the web

applications which facilitated the collection of data and the integration with the DCA tool.

3.2 Dynamic analysis tool

The tool used to collect run-time data is Kieker5 proposed by the authors of [12] as an extensible dy-

namic analysis tool designed for application performance monitoring and architecture discovery. Kieker

is structured in two parts - monitoring and analysis - that together form a modular pipe-and-filter pipeline.

Dynamic data is firstly gathered by monitoring probes that are programmed with Aspect-oriented Pro-

gramming (AOP) and then converted into monitoring records that are written to a monitoring log (file

system, database or a message oriented middleware). If an analysis is desired afterwards, already

implemented readers can fetch the monitoring records and pass them to specific filters for further pro-

cessing to obtain an envisioned use case metric. All the previous state components of the pipeline are

fully customizable and can be extended from the existent ones. A dynamic trace analysis is available as

a built-in feature which is in charge of recording information about the system operation executions and

1https://github.com/socialsoftware/edition
2https://github.com/socialsoftware/blended-workflow
3https://spring.io/projects/spring-boot
4https://fenix-framework.github.io/
5http://kieker-monitoring.net/
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control flow traces and, as an add-on, visual architectural models are also provided such as call and

dependency graphs and sequence diagrams for the associated traces. Another remarkable advantage

that comes with this framework is that code instrumentation not only can be defined by annotations in

the source code but also via an external XML configuration file thus automating the program profilling

process. Regarding the introduced overhead, a quantitative evaluation is presented showing a small

linear increase6 in run-time which depends on the average number of activated monitoring points, in

other words, the granularity of instrumentation. Just as importantly, Kieker is backed by an extensive

user guide and its source code is present in a GitHub repository which exhibits recent signs of activity7

(a total of 238 commits to the master branch during the whole year of 2020).

3.3 Dynamic analysis collection pipeline

The collection pipeline is comprised of three main steps - Setup, Monitoring and JavaScript Object

Notation (JSON) File Generation - as illustrated by Figure 3.1. In general, only the first and last steps

may require manual adjustments depending on the execution environment and the software in question,

whereas the second is fully handled by Kieker and associated tools. In total, three types of deliverables

are produced by the end of the pipeline: configuration files, created in the Setup step; raw data files -

logs - extracted from the system while being monitored and finally, the desired outcome, the JSON file

including semantic data prepared to be analysed.

Figure 3.1: Data Collection pipeline

6the total constant overhead (probe triggering (∆B) + data collection (∆C) + writing data (∆D)) for monitoring an operation
with Kieker is under 2.5 microseconds

7https://github.com/kieker-monitoring/kieker/graphs/contributors
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3.3.1 Setup

This step establishes the building blocks of the monitoring step and answers the questions of where to

collect data from, what data should be collected and how it should be handled after being collected. The

first two questions were answered with the help of AspectJ8. It was used to instrument the byte code

of the Java applications and to develop new technology-specific probes as suggested in Kieker’s user

guide. Since it leverages the use of AOP, no manual modifications on the source code were required

neither the insertion of annotations on intended methods. An additional concept to take into consider-

ation is the chosen weaving type: Load-time Weaving (LTW). As one of the main goals of this work is

to overcome the static analysis limitation regarding the identification of dynamic types when inheritance

and polymorphism are involved, LTW had to be used because it postpones the weaving process until

the class files are loaded into the JVM and, as a result, the concrete objects’ types can be determined

as well as the methods effectively called (also called as dynamic/late binding). The remaining weaving

types explicitly supported by AspectJ - Compile-time and Post-compile weaving - operate exclusively

during the static binding process and thus, do not fulfill the requirements.

To enable LTW, a jar-file containing the AspectJ weaver has to be explicitly provided by the run-time

environment through the JVM weaving agent option as it can be observed in Listing 3.1. The authors of

Kieker already provide a jar-file including the weaver bundled with their tool (kieker-1.14-aspectj.jar).

Listing 3.1: Example of an excerpt of a .pom file responsible for setting the project configuration details

1 <plugin>

2 <groupId>org.springframework.boot</groupId>

3 <artifactId>spring-boot-maven-plugin</artifactId>

4 <configuration>

5 <agents>

6 lib/kieker-1.14-aspectj.jar

7 </agents>

8 </configuration>

9 </plugin>

8The Eclipse Foundation (2011). The AspectJ Project. http://www.eclipse.org/aspectj/
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After enabling LTW, the weaver must be configured with an aop.xml file in the classpath in the META-INF

directory. An example is provided in Listing 3.2. The file contains two essential sections:

Listing 3.2: Example of an aop.xml file

1 <!DOCTYPE aspectj PUBLIC ”-//AspectJ//DTD//EN” ”http://www.aspectj.org/dtd/aspectj 1 5 0.dtd”>

2 <aspectj>

3 <weaver options=”-Xset:weaveJavaxPackages=false”>

4 <include within=”pt.ist..*”/>

5 </weaver>

6

7 <aspects>

8 <aspect name=”pt.ist.socialsoftware.edition.ldod.aspects.GettersAndSetters”/>

9 </aspects>

10 </aspectj>

• Weaver: defines weaver options and specifies the classes to be considered for instrumentation

and therefore, the high-level location(s) where the data will be collected. The adopted strategy9

ensures that the weaver reaches all the executable source code, even in the absence of explicit

accesses to persistent entities to account for possible background interactions of the framework.

• Aspects: defines one or more aspects to be woven into the classes. According to the AOP

paradigm, an aspect is defined as the encapsulation of program logic (so-called concerns) that

crosscuts multiple parts in a program10. This behavioural property not only provided a more fine-

grained approach in terms of pinpointing the intended logic parts of the program but also allowed

to specify what data should be extracted from these.

Before diving into the two developed aspects files, it’s also crucial to take into account the following

concepts that were a result of the work done by Kiczales et al. [13] on AOP which had a huge impact on

the software engineering discipline:

According to Wikipedia’s11 simple and self-explanatory definition: “An aspect can alter the behavior

of the base code by applying an Advice12 (additional behavior) at various Join Points13 (points in

a program) specified in a query called Pointcut14 that detects whether a given join point matches.”

9dependant on the project hierarchical folder structure
10Logging and security exemplify common crosscutting concerns
11https://en.wikipedia.org/wiki/Aspect-oriented_programming
12https://www.eclipse.org/aspectj/doc/next/progguide/semantics-advice.html
13https://www.eclipse.org/aspectj/doc/next/progguide/semantics-joinPoints.html
14https://www.eclipse.org/aspectj/doc/released/progguide/semantics-pointcuts.html
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The implementation of aspects was driven primarily by the accuracy and performance of the col-

lection process. Since extra behaviour is added during run-time, care must be taken so that the extra

overhead does not jeopardize the user experience. The less precise the collection, the longer the system

will be occupied writing meaningless data to the file system. Thus, to minimize the extra overhead, point-

cuts (regular expressions) were designed as precise as possible and the logic inherent to the Advice had

to be adapted to not degrade the overall performance of the system.

The persistence of domain entities is guaranteed by the FénixFramework ORM that auto-generates

class files responsible for handling the intrinsic database logic. All these classes follow the same nomen-

clature pattern regarding their names and the names of their public access methods15. Classes’ names

are formatted as < entityName > Base and the names of data access methods, the ones responsible

for manipulating the respective entity’s persistent state, are formatted as {get, set, add, remove, delete} <

attributeName >. For instance, in the LdoD codebase exists a class called Category that, in order to

be persisted, has to extend the already generated class Category Base to access such methods as

getName, setName, addTag and removeTag.

An excerpt of the fully fledged aspect responsible for defining all pointcuts is presented in Listing 3.3.

The full version is available in Listing A.1.

Listing 3.3: Excerpt of the GettersAndSetters.java file containing the aspect’s pointcuts

1 @Aspect

2 public class GettersAndSetters extends AbstractOperationExecutionAspect {

3 // -------------------------------- BASE CLASS METHODS --------------------------------

4 @Pointcut("execution(public void pt.ist..*.*_Base.add*(..)) && within(pt.ist..*.*_Base)")

5 public void publicBaseAddMethods() {}

6 // ------------------------------------- CONTROLLER METHODS -------------------------------------

7 @Pointcut("@annotation(org.springframework.web.bind.annotation.PutMapping) && execution(* *(..))")

8 public void controllerPutMethods() {}

9 // -------------------------------------- KIEKER METHOD --------------------------------------

10 @Pointcut("(cflow(controllerPutMethods()) && publicBaseAddMethods()) || controllerPutMethods()")

11 public void monitoredOperation() {}

12 }

In simple terms, the goal of this aspect is to intercept the calls to the FenixFramework’s data access

methods aforementioned for a given controller execution so that the corresponding Advice can derive the

necessary information from the method. To achieve this level of interception, four types of Join Points16

were used:

• within(C) - Matches when the executing code belongs to class C. Used to intercept code belong-

ing only to Base classes;
15Methods whose Java access modifier is public
16https://www.eclipse.org/aspectj/doc/next/progguide/language-joinPoints.html
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• execution(S) - Matches when a particular method body executes with signature S. Used to restrict

the interception to only consider the execution of public methods, whose name starts with get, set,

remove and add, and the execution of controller methods;

• cflow(P ) - Picks each join point in the control flow of the join points picked by pointcut P . Used to

get the control flow of join points of each controller’s method execution. Should not be used alone

(without an intersection with other join point) because the focus is on specific join points.

• @annotation(T ) - Matches any element which has an annotation of type T .17. Used to get all

controller methods that are Application Programming Interface (API) endpoints. These methods

are annotated with: RequestMapping, PostMapping, GetMapping, PatchMapping, PutMapping,

MessageMapping and DeleteMapping;

Regarding the second aspect, the plan was to adapt the already existing file, implemented by the

authors of Kieker, so that the information of the executed method could be introduced in the monitoring

record and consequently written to the file system. Listing 3.4 represents an excerpt of this file containing

part of the logic introduced on the Advice. Full version available in Listing A.2.

This new information has to be, at least, the same one that static analysis gathers to determine the

corresponding accesses during the Translation step. Thus, the implemented logic collects the following

information:

1. Declaring class type name - The name of the class containing the definition of the method

2. Method’s name - The name of the called method

3. Target’s type - The type of the object that calls the method

4. Method’s arguments types - The types of the objects passed as arguments

5. Method’s return type - The type of the object returned by the method

As a result, in order to hold this data, the following compact format was adopted: 1:2:3:4:5

For example, this data was captured from a log line:

Member Base : setRole :Member : [”MemberRole”] : void

Considering that this logic is executed during the collection process at run-time, it should account

for two major contingencies: (i) objects may not have an explicit dynamic type, meaning the object

can be null (ii) Java generic types employed on iterables18 are no longer available19 and therefore, it’s

impossible to discover the iterable type;
17https://www.eclipse.org/aspectj/doc/next/adk15notebook/annotations-pointcuts-and-advice.html
18https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
19https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
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The algorithm displayed in Listing 3.4, reflects the assumptions that were taken to address these

contingencies:

1. Whenever a dynamic type can’t be discovered, the static type is used. See lines 19-20. If neither

of them can’t be found the type is considered unknown and is sent in blank.

2. Whenever in the presence of an iterable object with at least one element, its type is considered

to be the type of the first element (for performance reasons). Otherwise, if empty, the type is

considered unknown and is sent in blank. See lines 4-13.

Listing 3.4: Excerpt of the AbstractOperationExecutionAspect.java file containing the Advice with the extra added

behaviour, in particular, the part that figures out the type of the returned value

1 // Getting the returned value type of the given method

2 retval = thisJoinPoint.proceed();

3 if (retval != null) {

4 if (retval.getClass().getSimpleName().equals("RelationList")) {

5 RelationList retValAux = (RelationList) retval;

6 Iterator<?> i = retValAux.iterator();

7

8 if (i.hasNext()) {

9 Object firstElement = i.next();

10 if (firstElement != null) {

11 newSignature.append(firstElement.getClass().getSimpleName());

12 }

13 }

14 } else {

15 newSignature.append(retval.getClass().getSimpleName());

16 }

17 }

18 } else {

19 String returnedValueStaticType = ((MethodSignature) thisJoinPoint.getSignature()).getReturnType().

getSimpleName();

20 newSignature.append(returnedValueStaticType);

21 }

At this time, only the question of how data should be handled after being collected remains open.

Straight answer is: it depends on how the DCA tool, Kieker, is configured. The best way to setup Kieker

is through the usage of a special configuration file called kieker.monitoring.properties.

An excerpt with the most impactful non-default properties on the monitoring process is presented in

Listing 3.5. Full version available in Listing A.3. These properties allow to customize the Kieker’s writing

environment as follows:

RecordQueueFQN: The internal synchronized queue implementation to use. Before adding an
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Multi-Producer-Single-Consumer (MPSC) queue implementation, the overall performance of the sys-

tem, while being analysed, was surprisingly slow to the point where any action on the system became

unfeasible.

RecordQueueSize: Defines the queue’s capacity20 in terms of the number of records. This prop-

erty should be sensible to the amount of memory available on the hosting platform. A maximum

capacity of five million records seemed reasonably appropriated given the available resources on

both systems.

RecordQueueInsertBehavior: Specifies the action to take when there are incoming records and

the queue is full. There are three possible actions: (i) Monitoring is terminated with an error (value 0)

(ii) Writing is blocked until there is room for more records (value 1). This option has a critical caveat: if

the writing process is blocked, it will affect drastically the system’s performance because the process

it’s no longer asynchronous. Thus its use is discouraged when monitoring on a production/uncon-

trolled environment. (iii) New records are discarded until space is available (value 2). Since there are

no more options available, this was the chosen one. It exchanges the loss of records by no system

performance degradation.

maxEntriesInFile: The maximum number of records/lines in a (log) file. One million entries seemed

reasonable given that a full log file weights around 132MB.

compression: The compression method used to compress each log file. In this case, each log

file is written as zipped binary file. For instance, a zipped log file with one million entries ended up

weighing just 17MB. Other compression methods can be used, such as gzip, but zip was chosen

because it offers a good trade-off between compression speed and ratio. This property proved to be

extremely valuable due to the file systems’ little disk space.

Listing 3.5: Kieker’s configuration properties that have the most impact on the writing process

1 kieker.monitoring.core.controller.WriterController.RecordQueueFQN=org.jctools.queues.

MpscArrayQueue

2 kieker.monitoring.core.controller.WriterController.RecordQueueSize=5000000

3 kieker.monitoring.core.controller.WriterController.RecordQueueInsertBehavior=2

4 kieker.monitoring.writer.filesystem.FileWriter.maxEntriesInFile=1000000

5 kieker.monitoring.writer.filesystem.FileWriter.compression=pt.ist.socialsoftware.edition.

ldod.compressors.ZipCompressor

20Depending on the used queue implementation (Bounded or Unbounded), this property can establish either the initial or maxi-
mum capacity
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3.3.2 Monitoring

Having set up all the requirements, the monitoring process may start. During run-time, when a controller

executes, Kieker will capture the accesses to the domain entities in the context of the execution of

a controller and will store the Monitoring Records represented as Comma-separated Values (CSV).

Listing 3.6 shows a sample file system Monitoring Log entry.

Listing 3.6: Example of a monitoring log entry

$1;1597411157437353328;;Category_Base:getTaxonomy:Category::Taxonomy;127;1597411157437348525

;1597411157437353202;;2;1

The entry not only contains the method’s data according to the format previously explained, (Cate-

gory Base:getTaxonomy:Category::Taxonomy), but also context information such as timestamps, typi-

cally with nanosecond resolution, for the start and the end of an execution (from 1597411157437348525

to 1597411157437353202) and “efficient facilities to log the information needed to reconstruct (distributed)

traces from the Monitoring Log reliably: an execution order index (2) and an execution stack size (1)”.

The first two values, $1 and 1597411157437353328, are intrinsically related with Kieker’s internals so their

significance can be discarded.

After the monitoring has ended, one is incapable of telling in which order the calls to the ORM have

happened in the context of controller execution. To achieve the desired representation of an ordered

sequence of executions (trace), Kieker provides a built-in trace analysis tool that is able to (i) reconstruct

traces from a set of log files, (ii) produce visual architectural models of the reconstructed traces and

(iii) generate aggregate information regarding the whole reconstruction process such as the frequency

and maximum number of executions of each trace.

Only the trace reconstruction feature was useful for the purpose of this work since there were no

plans to improve the current Mono2Micro’s visualization phase and the JSON Generation step already

aggregates the necessary data.

3.3.2.A Trace Reconstruction

Traces can be reconstructed with two representations: execution traces and message traces. An execu-

tion trace representation of a trace is simply the ordered sequence of executions while a message trace

describes a trace in terms of an ordered sequence of messages instead of executions. An execution

represents the operation call which started the execution whereas a message can represent both start

and end of an execution when the control flow is returned to the calling execution.

The execution trace representation was adopted as it mimics the same behaviour of the static anal-
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ysis approach used in the previous work. This representation can be obtained by executing the trace-

analysis.sh script, provided by Kieker, as shown in Listing 3.7 with the following options:

ignore-invalid-traces: The script execution will not abort on the occurrence of an invalid trace.

print-Execution-Traces: Execution trace representations of valid traces are saved into a text file

print-invalid-Execution-Traces: Execution trace representations of invalid traces are saved into a

text file. Used for debugging purposes.

Listing 3.7: Example of the command to generate execution traces with Kieker’s trace analysis tool

1 $ ./trace-analysis.sh \

2 --ignore-invalid-traces \

3 --inputdirs <path of input directory containing log files> \

4 --outputdir <path of output directory> \

5 --print-Execution-Traces \

6 --print-invalid-Execution-Traces

As a result, the file executionTraces.txt is generated containing all the valid traces. Listing 3.821

shows an example of a valid execution trace representation. The first line of each representation indi-

cates the trace’s unique identifier (6), the timestamp at which the first execution started (minTin) and

the timestamp at which the last execution ended (maxTout), respectively and, last but not least, the

maximum execution stack size (maxEss) considering all the trace’s executions. All the following lines

follow the format of < x[y, z] t1 − t2 methodData > where x identifies the trace that the executions be-

longs to, y denotes the execution order index and z the execution stack size, t1 and t2 indicate the start

and the end times of an execution respectively, and finally the method’s data (methodData) according to

the already mentioned format.

Listing 3.8: Excerpt of a trace from the file executionTraces.txt

TraceId 6 (minTin=1597411129007876729; maxTout=1597411129008257865; maxEss=1):

<6[0,0] 1597411129007876729-1597411129008257865 ReadingController:resetPreviousRecommendedFragments:::String>

<6[1,1] 1597411129008071866-1597411129008107197 FenixFramework:getDomainObject::["String"]:ExpertEditionInter>

<6[2,1] 1597411129008142154-1597411129008155507 FragInter_Base:getFragment:ExpertEditionInter::Fragment>

<6[3,1] 1597411129008168612-1597411129008177066 Fragment_Base:getXmlId:Fragment::String>

<6[4,1] 1597411129008195218-1597411129008202017 FragInter_Base:getXmlId:ExpertEditionInter::String>

21Irrelevant information removed to increase readability
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3.3.3 JSON Generation

As the name suggests, this step is focused on producing a JSON file from the execution traces obtained

in the previous step. This JSON file represents a mapping between functionality names and functionality

objects, where each object has a traces field that consists in a list of trace objects. Each trace is char-

acterized by a unique identifier and a compressed list of accesses observed for a specific functionality

execution. An Access is composed by the numeric identifier of the domain entity and the access type,

either read or write. After completing the three sub-steps - Parsing, Translation and Compression - each

trace of (compressed) accesses is prepared to be associated with its corresponding functionality if it

proves to be unique.

3.3.3.A Parsing

On this phase, the executionTraces.txt file is parsed line by line to obtain the functionality name, the

trace’s unique identifier and the methods’ data of each trace.

Taking the first three lines of the trace presented in Listing 3.8 as an example, the functionality

name would be ReadingController.resetPreviousRecommendedFragments, the trace identifier 6 and

FenixFramework : getDomainObject :: [”String”] : ExpertEditionInter the method’s data. This data

is further parsed to collected each respective semantic information - name and the types of the target,

arguments and return objects - and subsequently used as input to the translation step.

3.3.3.B Translation

The goal of this sub-step is two-fold: (i) translate accessed entities names to numeric identifiers (ii) trans-

late the method’s data, received as an input, to the corresponding accesses to persistent domain entities.

The translation to unique numeric identifiers is maintained until all traces are parsed. When a new

persistent domain entity is discovered, a counter is increased and its value is assigned to the entity.

Hence uniqueness is ensured.

The translation algorithm behaves as follows:

• If the method’s name starts with get it means that persistent entities were read. The accessed

entities can be the target’s type and the return type.

• Alternatively, if the method’s name starts with set, add, remove or delete then persistent entities

may have been written. In this case, the written entities can be the target’s type and each argument

type.

When translating a type, it’s necessary to first check whether or not that it corresponds to a persistent

entity. For instance, if there is a case where the target’s type is unknown (null) and the return/argument
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is of type String, then no persistent entities were actually accessed. If it proves to be a persistent entity,

then its numeric identifier is associated with the access type (Read orWrite) thus constituting an Access.

3.3.3.C Compression

One of the biggest challenges of this work, that arose from executing a dynamic analysis, was the

massive amount of data generated allied to the difficulty of processing large traces due to time and

space requirements. The explanation for this amount is quite simple: loops. Since code is executed in

this type of analysis, a loop may repeat its body X amount of times and as a consequence, the size of

execution traces may increase linearly. Therefore, after the whole execution trace has been translated

into a list of accesses, this list is subject to compression.

This compression was achieved by leveraging the use of an enhanced version of the linear sequence

compression algorithm called Sequitur [14] that can represent a sequence as a hierarchical structure.

The authors of [15] were able to improve the compression ratio of Sequitur, and still preserving its

linear performance, by combining it with Run-length Encoding (RLE). A compressed sequence is a new

sequence composed of a new type of element. For ease of communication, let’s call it Reduced Trace

Element (RTE). A RTE can be seen as a container that attaches the information of how many times the

element that it holds is repeated. It can only hold one of the following elements: a Rule or an element

of the original sequence. A Rule, identified with the symbol #, is a special element that specifies how

many of the next elements are going to be repeated.

For instance, the compressed version of the 27-length sequence shown in Listing 3.9, where letters

maybe symbolize accesses, only contains 13 elements as illustrated in Listing 3.10. Although the original

size has been reduced to more than half, this is still not the best possible compression, as discussed

with one of the authors of [15]. The best compressed sequence can be observed in Listing 3.11 which

contains only 12 elements. Unfortunately, no good solution was found to implement this last extra mile

“without having at least O(n2) complexity” until this work is published.

In a small scale, depicted by this example, it may seem a minor improvement but assuming that

traces can reach lengths of dozens of millions of accesses, the impact on the compressed size would

be much more noticeable.

Listing 3.9: Example of a sequence

B, B, C, C, B, D, D, D, E, D, E, E, D, E, E, B, C, C, B, C, C, B, C, C, B, C, C

Listing 3.10: Example of the compressed sequence
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(B)x2, (C)x2, (B)x1, (D)x3, (E)x1, (#1 (2))x2, (D)x1, (E)x2, (B)x1, (#4 (2))x3, (C)x2, (B)x1, (C)x2

Listing 3.11: Best compression

(B)x2, (C)x2, (B)x1, (D)x3, (E)x1, (#1 (2))x2, (D)x1, (E)x2, (#4 (2))x4, (B)x1, (C)x2

In the end, after fully crunching the executionTraces.txt, a JSON file is generated as it can

be seen in Listing 3.12. In this example, three functionalities were discovered. The first one,

ReadingController.startReadingFromInter, only has one trace while the remaining ones have two.

As formerly mentioned, each functionality has a field t denoting their list of unique22 trace objects. Each

trace object has a unique identifier portrayed by the id field as well as the a field holding the compressed

list of accesses. Each element of this list, a RTE, is serialized as a list whose content may change as

follows:

• if the RTE holds an Access, then the numeric identifier of the domain entity is appended to the list

after the access type, read (”R”) or write (”W”);

• if the RTE holds a Rule, then the amount of subsequent elements that belong to the same se-

quence is appended to the list;

• if the element held by the RTE is repeated more than one time, then this number is added at the

end of the list;

For instance, the ReadingController.startReadingFromInter functionality has a Rule, serialized

as [5, 2], that means the sequence of five elements next to it occurs two times. If the rule was de-

compressed, these six elements (rule plus next five consecutive elements) would produce 10 access

elements. The same rationale is also applied to some of those access elements that possess a third

element, for example [”R”, 71, 2]. The decompressed size of those six elements would be 26, almost

eight times more than the compressed size just on this short example.

22Uniqueness is ensured by comparing the compressed list of accesses of a new trace, for the same functionality, against the
list of the traces already discovered.
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Listing 3.12: Excerpt of a JSON file

{
"ReadingController.startReadingFromInter": {

"t": [

{
"id": 0,

"a": [["R",30,2],["R",20,5],[5,2],["R",71,2],["R",20,2],["R",71],["R"

,52,6],["R",70,2],["R",71],["R",57],["R",17,4]]

},
]

},
"EditionController.getEditionTableOfContentsbyAcronym": {

"t": [

{
"id": 0,

"a": [["R",30,2],["R",16,5],["R",30],["R",70,3]]

},
{

"id": 1,

"a": [["R",30,2],["R",16,3]]

}
]

},
"FragmentController.getFragment": {

"t": [

{
"id": 0,

"a": [["R",30,2],["R",20,4],["R",30],["R",20]]

},
{

"id": 1,

"a": [["R",30,2],["R",20,4]]

}
]

}
}

3.4 Implementation Optimisations

This section is dedicated to the work done in order to optimise the Mono2Micro analysis framework.

Despite the crucial role of compressing traces when generating the JSON file, the amount of dynamic

collected data was still significant to the point that its analysis became the bottleneck. Both time and

memory resources were compromised. The worst observed case was a total of 42497 unique traces

while some were reaching (compacted) sizes between five to six million elements. The time spent

analysing the JSON file was ranging from 20 minutes to a couple of hours, an unpleasant slowness for

personal use. The showstopper became the memory footprint since time was the least of concerns given

the investigation purpose. All efforts were focused on the goal of allowing the analysis on a personal

machine with at least 16GB of Random-access Memory (RAM). Therefore, to preserve these resources,
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a few measures were put to practice.

3.5 Time

To decrease the amount of time taken during analysis, the following major changes were applied:

• Iterable data structures, such as List23, were converted to HashMaps24. A HashMap is a

hashtable-based implementation class in which key-value pairs can be added. It is expected

constant-time performance O(1) for most operations like add(), remove() and contains(). For

instance, considering the function Decomposition.getClusterByEntity(entityName) that had to

iterate over the list of clusters of a Decomposition in linear time and was being called inside

loops within loops, now it is expected to run instantly because the class Decomposition holds

an HashMap responsible for mapping an entity to the respective cluster. Other example was the

function Cluster.containsEntity(entityName) that, by using a list of entity names, in the worst

case, had a complexity of O(n · m) being n the number of entities of a cluster and m the entity

name string size. Since its execution was taking place inside three nested loops, an enhance-

ment became imperative. Now, its complexity is approximately O(1) because it is backed by a

HashSet25 containing instead numeric identifiers for the entities.

• Refactored functions that can be executed in the same cycles. For example, the calculus of com-

plexity and coupling of a cluster, implies that all controllers that access a cluster must be traversed.

Instead of traversing those controllers twice to calculate each metric, now both metrics are calcu-

lated in the same loop.

• Decreased the number of String comparisons by turning almost every String object into a primitive

number type26: byte, short or int.

3.6 Memory

Memory consumption became an issue when analysing JSON files with size in the order of hundreds

of megabytes until a few gigabytes (around 2GB). This was mostly caused by keeping in memory too

much information at once. Consequently, the amount of required RAM was reduced as follows:

• The JSON file is now read by chunks instead of keeping it all in memory which turned out to be

23https://docs.oracle.com/javase/8/docs/api/java/util/List.html
24https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
25https://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html
26https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
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impractical. This was achieved by using Jackson’s Streaming Api27, a library that enables the

parsing of JSON content.

• When calculating metrics, only one controller and its respective local transactions graph are kept in

memory at a time. This graph is the data structure that requires the most memory since it depends

directly on the size of traces. Before introducing this optimization, all controllers were being kept

in memory, each one with its own graph, before calculating the metrics.

• During the Analyser’s execution28, after the analysis of each decomposition, the result is written

immediately to the file system. Before, the results of each decomposition were being saved in

memory and only in the end, after analysing all decompositions, the results were written to disk;

• Unique identifiable Strings (e.g, entity names, access modes and cluster names) are now mapped

to JAVA’s primitive data types29: byte/short/int. These types only consume up to four bytes

whereas e.g, an empty String object occupies more than thirty bytes30.

27https://github.com/FasterXML/jackson-docs/wiki/JacksonStreamingApi
28A special feature of the framework that is capable of analysing multiple decompositions generated with different weight com-

binations of similarity measures.
29https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
30dependent on the underlying Java Virtual Machine (JVM) configuration
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The goal of evaluation is to answer the research questions by (i) assessing which technique, static

or dynamic, provides the best results and the effort of applying the latter; (ii) qualifying the impact of

each similarity measure on the performance of generated decompositions; (iii) discovering possible

correlations between the maintainability quality metrics and performance.

The source of data came from the two already mentioned monolith systems used in the previous

work, LdoD (122 controllers, 71 domain entities) and Blended Workflow (98 controllers, 52 domain

entities), that were subject of dynamic analysis.

Regarding the LdoD system, it was monitored in three different environments: production, functional

testing and simulation. The production monitoring lasted 3 weeks and a total of 490GB worth of data

was collected. Throughout this period, a tight supervision was necessary to oversee the impact the

monitoring had on the performance of the system’s functionalities. Since the server hosting the applica-

tion had a small free disk space (around 20GB) and a massive drop in performance was observed if it

was full, it was mandatory to collect the generated logs from time to time (2-3 days) to not harm the user

experience and to gather fresh logs instead of discarding them.

Table 4.1: Dynamically collected data

LdoD Blended Workflow
Production Tests Simulation Simulation

Covered Entities (%) 79 82 80 86
Covered Controllers (%) 44 96 84 68

Analyzing the collected data presented in Table 4.1, only 44% of the controllers were exercised

in production. Therefore, further processing and evaluation of this data were abdicated due to the

substantial effort required to process it and the relatively little coverage. Concerning functional testing, it

was achieved by running a suite of 200 integration tests (4.207 lines of code) that exercised 96% of the

controllers and 82% of the domain entities, generating a few megabytes (<200MB) of data, while the

instruction coverage, reported by JaCoCo1, was 72% for domain entities and 82% for controllers. The

reduced size of the collected data is explained by the usage of small subset of the original database’s

data and so, the traces associated with the execution of functionalities were much shorter. Finally,

an expert of the system simulated, during one hour, the use of functionalities, using a database with a

minimal set of data, and 200MB of data was collected and 84% of the controllers and 80% of the domain

entities were exercised.

In what concerns the Blended Workflow system, it was only simulated by an expert during an hour

and 86% of entities and 68% of controllers were exercised. The reduced number of exercised controllers

is justified by the deprecation of several controllers that are not reachable through the user interface.

Similarly to how data was evaluated in the previous work regarding the static analysis, for each

system, and respective environment, a JSON was generated, after collection, and then served as input
1https://github.com/jacoco/jacoco
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to the analyser feature of Mono2Micro that creates several dendrograms by varying the weights of the

four existing similarity measures - Access, Write, Read and Sequence - in intervals of 10 in a scale of 0 to

100. Then several cuts were performed on each one. Each cut resulted in a candidate decomposition of

the monolith with a specific number of clusters, varying from 3 to 10. For each generated decomposition,

the values for the quality metrics were calculated. The complexity metric value had to be normalized in

order to compare them among the monoliths, since they depend on the number of functionalities of each

monolith.

The uniform complexity of a given decomposition d of a monolith is calculated by dividing the com-

plexity of d by the maxComplexity. The maxComplexity value is determined by calculating the com-

plexity of a decomposition of the monolith where each cluster has a single domain entity. Therefore, the

uniform complexity of any monolith decomposition is a value in the interval 0 to 1.

Analogously, to assess the correlation between each metric and the weights given to each similarity

measure and the number of clusters, a linear regression model was employed using the Ordinary Least

Squares (OLS) method. For instance, Equation (4.1) demonstrates the linear regression model that

correlates the complexity of a decomposition with the weights of each similarity measure.

uComplexity(d) = β1 · d.weightA + β2 · d.weightW

+ β3 · d.weightR + β4 · d.weightS

+ β5 ·#d.clusters+ cons

(4.1)

To test this regression, a hypotheses was defined as follows:

• H0: β1 = β2 = β3 = β4 = β5 = 0; meaning that the complexity of a decomposition does not have a

relation with any of the five parameters

• H1: β1 6= 0 ∨ β2 6= 0 ∨ β3 6= 0 ∨ β4 6= 0 ∨ β5 6= 0; meaning that the complexity of a decomposition

does have a relation with at least one of the five parameters

All the obtained regression results in the next sections show enough evidence to reject the null

hypothesis at a significance level of 0.05.

Henceforth, to reduce the amount of space occupied by the results depicted in tables, a terminology

was also adopted where:

• N means the number of clusters;

• A, W , R and S stand for Access, Write, Read and Sequence similarity measures respectively;

• R2 represents the statistical measure that indicates the variability in the dependent variable of the

regression model.
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• Coef. refers to the Regression Coefficient (βi) obtained for a given dependent variable Xi. It

represents the effect of the dependent variable on the independent variable (Y ). If βi is positive,

then as Xi increases, the value of Y will also increase. If βi is negative, then as Xi increases, the

value of Y will decrease.

• 95% Conf. Interval depicts the 95% Confidence Interval. As the name suggests, it ensures that

one can assume with 95% of confidence that there is a statistically significant correlation explained

by the respective coefficient if zero does not belong to the interval.

4.1 Static and Dynamic Analysis Comparison

This section solely focus on comparing the results of both analysis techniques. The statically collected

data was obtained from an on-going thesis occurring in parallel with this work. To assess if one technique

outperforms the other, two distinct evaluations were conducted:

• Similarity measures evaluation: To determine whether the dynamic analysis is able to discover

a combination of similarity measures that provides better decompositions, in terms of complex-

ity, coupling and cohesion and specifically compare the conclusions about complexity from the

previous work that used static analysis.

• Decompositions evaluation: To assess whether the dynamic analysis produces significantly dif-

ferent decompositions when compared to the ones statically generated and with a source of truth.

4.1.1 Similarity measures evaluation

In this segment, the assessment of the impact of the similarity measures is first demonstrated against the

complexity metric, then coupling and finally cohesion. In each case, a comparison between the results

from the static and dynamic analysis is shown across both systems and respective environments with the

goal of identifying a combination of similarity measures that excels in providing better decompositions for

each quality metric as well as to understand if the results from the dynamic technique either corroborate

or refute the ones obtained from its counterpart.

4.1.1.A Complexity

The regression results concerning the impact of the combination of the similarity measures and number

of clusters on the complexity metric show that, according to Table 4.2 and Table 4.3, the dynamic and

static analysis confirm the statistically significant positive correlation with complexity for the coefficients

of the number of clusters. Regarding the similarity measures, there is no strong unanimity in the results.
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For instance, for the access measure, the static analysis always reports a positive correlation whereas,

depending on the environment, the dynamic analysis reports the two opposite behaviours. The write

and sequence measures coefficients seem to produce decompositions with higher complexity.

The obtained R2 values were considerably high with the exception of functional testing environment

with just 0.176. This means that, apart from this specific environment, the regression model explains

most of the data-set (low variability) and yet, it’s still hard to conclude that one combination of similarity

measures can provide better results in terms of complexity as some confidence intervals contain the

zero value and the magnitude of the coefficients is not pronounced.

This confirms the conclusion achieved from the previous work that “there isn’t a unique solution to

the values of similarity, that leads to the best decomposition in terms of the complexity metric.”

Table 4.2: Comparison of the impact of similarity measures on Complexity between both analysis on the LdoD
system

Static analysis Tests Simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N 0.0230 [0.021, 0.025] 0.0253 [0.023, 0.028] 0.0206 [0.019, 0.023]
A 0.0035 [0.003, 0.004] -0.0003 [-0.001, -9.14e-05] 0.0017 [0.002, 0.002]
W 0.0041 [0.004, 0.004] 2.781e-05 [-0.000, 0.000] 0.0079 [0.008, 0.008]
R 0.0039 [0.004, 0.004] -0.0002 [-0.000, 7.17e-05] 0.0007 [0.001, 0.001]
S -0.0002 [-0.000, 4.66e-05] 0.0002 [-2.19e-05, 0.000] 0.0018 [0.002, 0.002]
R2 0.434 0.176 0.682

Table 4.3: Comparison of the impact of similarity measures on Complexity between both analysis on the Blended
Workflow system

Static analysis Simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N 0.0439 [0.043, 0.045] 0.0277 [0.026, 0.029]
A 0.0014 [0.001, 0.002] -0.0011 [-0.001, -0.001]
W 0.0019 [0.002, 0.002] 0.0002 [-9.17e-08, 0.000]
R 0.0016 [0.001, 0.002] -0.0013 [-0.001, -0.001]
S 0.0021 [0.002, 0.002] 0.0019 [0.002, 0.002]
R2 0.632 0.476

4.1.1.B Coupling

In regards to the repercussions of the similarity measures and number of clusters on coupling, the results

depicted in Table 4.4 and Table 4.5 indicate a mutual corroboration between both analysis and systems

in the sense that the access, read, write and sequence weights have a statistically significant positive

correlation while the number of clusters has a statistically significant negative correlation with coupling.

All linear regressions have a considerably high R2 value, greater than 0.45. Despite the small dimension

of the coefficients (< 0.01), this low variability increases the confidence of claiming that the access and

read measures may be the best duo of similarity measures to generate loosely coupled decompositions.
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Table 4.4: Comparison of the impact of similarity measures on Coupling between both analysis on the LdoD system

Static analysis Tests Simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N -0.0212 [-0.022, 0.020] -0.0318 [-0.033, -0.031] -0.0277 [-0.029, -0.027]
A 0.0034 [0.003, 0.003] 0.0039 [0.004, 0.004] 0.0037 [0.004, 0.004]
W 0.0038 [0.004, 0.004] 0.0043 [0.004, 0.004] 0.0052 [0.005, 0.005]
R 0.0032 [0.003, 0.003] 0.0038 [0.004, 0.004] 0.0039 [0.004, 0.004]
S 0.0041 [0.004, 0.004] 0.0046 [0.004, 0.005] 0.0045 [0.004, 0.005]
R2 0.634 0.694 0.667

Table 4.5: Comparison of the impact of similarity measures on Coupling between both analysis on the Blended
Workflow system

Static analysis Simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N -0.0209 [-0.022, -0.020] -0.0298 [-0.031, -0.029]
A 0.0049 [0.005, 0.005] 0.0047 [0.005, 0.005]
W 0.0039 [0.004, 0.004] 0.0056 [0.006, 0.006]
R 0.0047 [0.005, 0.005] 0.0045 [0.004, 0.005]
S 0.0054 [0.005, 0.006] 0.0059 [0.006, 0.006]
R2 0.459 0.564

4.1.1.C Cohesion

Finally, an assessment was performed with the purpose of correlating the similarity measures and num-

ber of clusters with the cohesion. The regression results for the LdoD and Blended Workflow systems,

expressed in Table 4.6 and Table 4.7 respectively, suggest that, once again, both analysis support one

another: the access, read, write and sequence measures have a statistically significant positive correla-

tion with cohesion as well as the number of clusters. The majority of the regression models were able

to explain around three quarters of the data-sets given the elevated R2 values with the exception of the

static analysis executed on the Blended Workflow system. Again, all similarity coefficients have consid-

erably close and low values, however, it appears that the access and read measures may be the best

combination of similarity measures to generate high cohesive decompositions while the write measure

tends to provide the opposite outcome.

Table 4.6: Comparison of the impact of similarity measures on Cohesion between both analysis on the LdoD system

Static analysis Tests Simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N 0.0383 [0.037, 0.039] 0.0420 [0.041, 0.043] 0.0380 [0.037, 0.039]
A 0.0043 [0.004, 0.004] 0.0027 [0.003, 0.003] 0.0040 [0.004, 0.004]
W 0.0024 [0.002, 0.003] 0.0024 [0.002, 0.003] 0.0019 [0.002, 0.002]
R 0.0032 [0.003, 0.003] 0.0039 [0.004, 0.004] 0.0040 [0.004, 0.004]
S 0.0032 [0.003, 0.003] 0.0027 [0.003, 0.003] 0.0035 [0.003, 0.004]
R2 0.720 0.727 0.727
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Table 4.7: Comparison of the impact of similarity measures on Cohesion between both analysis on the Blended
Workflow system

Static analysis Simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N 0.0003 [0.014, 0.015] 0.0383 [0.037, 0.039]
A 0.0063 [0.006, 0.006] 0.0051 [0.005, 0.005]
W 0.0066 [0.007, 0.007] 0.0032 [0.003, 0.003]
R 0.0065 [0.006, 0.007] 0.0045 [0.004, 0.005]
S 0.0062 [0.006, 0.006] 0.0039 [0.004, 0.004]
R2 0.366 0.768

4.1.2 Decompositions evaluation

Although, it seems that the data collected dynamically provides similar insight in terms of the correlation

between the similarity measures and the quality metrics, it was also assessed whether these techniques

produce significantly different decompositions. To perform this analysis the collected data was firstly

compared as observed in Table 4.8.

Table 4.8: Collected data comparison

LdoD Blended Workflow
Static Tests Static Simulation Static Simulation

AVG(Covered Entities per Controller) (%) 95 71 91 77 93 78

As expected, all controllers were captured by static analysis as opposed to dynamic analysis accord-

ing to Table 4.1. On the other hand, for the coverage of the accesses to domain entities in the context

of the controllers, in some cases, the dynamic analysis could identify accesses to domain entities, in the

context of a controller execution, that the static collection could not, due to late binding. And, of course,

the opposite also occurs, because depending on the inputs provided to controllers and data available in

the database, some of the domain entities may not be accessed, both in tests and simulation.

To assess the results of the static and dynamic analysis approaches, the highest quality decompo-

sitions are compared, in terms of complexity, from each approach with a decomposition proposed by a

domain expert, for both systems. In this analysis the expert decompositions are considered as a ref-

erence that is used to evaluate, using the MoJoFM metric, which approach provides closer results to

it. Since both techniques may miss some domain entities during the collection phase, it was decided

that all the unassigned entities would be put in the biggest cluster, as this strategy conforms with the

incremental decomposition strategy rationale [1, Chapter 13].

The results from the comparisons are represented in Table 4.9, where each cell indicates the Mo-

JoFM value between the lowest complexity decomposition with N clusters, using the column’s collection

technique, and the system’s expert decomposition. Overall, the MoJo values obtained for each collection

approach were very similar, for both systems, which leads to the conclusion that there isn’t a collection

technique that provides better results. However, note that, in both environments, the dynamic analysis
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Table 4.9: Comparison of the highest quality decompositions with expert decompositions

LdoD Blended Workflow
Static Tests Simulation Static Simulation

N

3 62.12% 65.15% 68.18% 46.67% 44.44%
4 60.61% 69.7% 66.67% 44.44% 46.67%
5 56.06% 68.18% 66.67% 44.44% 60%
6 78.79% 66.67% 66.67% 62.22% 57.78%
7 77.27% 74.24% 68.18% 66.67% 64.44%
8 83.33% 72.73% 59.09% 66.67% 62.22%
9 81.82% 74.24% 57.58% 71.11% 62.22%
10 45.45% 74.24% 56.06% 71.11% 62.22%

avg 68.18% 70.64% 63.64% 59.17% 57.5%

did not cover all controllers during the collection phase and also missed more entities than the static ap-

proach as shown in Table 4.1 and Table 4.8. Therefore, it was decided to assess if the dynamic analysis

approach would generate decompositions closer to the expert decomposition than the ones generated

by the static approach if only the common controllers and entities were considered.

To evaluate this scenario, static analysis was re-ran considering only the common controllers and

domain entities, for each dynamic environment. The results, depicted in Table 4.10, reveal that, on

average, both approaches continue to generate decompositions almost equally distant to the expert’s,

for both systems. The major noticeable difference is the drop from 68.18% to 62.88% on the average

MoJo values obtained for the static approach when evened with the dynamic analysis executed on the

simulation environment. This suggests that the missed controllers by the dynamic collection during the

simulation (84%) compared to functional testing (96%), may be crucial to find the couplings between

the domain entities that lead to a decomposition closer to the expert’s, highlighting the impact of the

variability among different dynamic collection environments. In addition, the values of the simulation

environment on the Blended Workflow system remained the same because it was the only case where

dynamic analysis could not discover new entities compared to static analysis. Nonetheless, it did, in

fact, discover entities on some controllers that its static counterpart could not, hence the 93% coverage

proved in Table 4.8.

Table 4.10: Comparison of the highest quality decompositions with expert decompositions, considering only the
common controllers and entities

LdoD Blended Workflow
Static Tests Static Simulation Static Simulation

N

3 65.15% 59.09% 63.64% 71.21% 46.67% 44.44%
4 51.52% 69.7% 62.12% 71.21% 51.11% 46.67%
5 72.73% 68.18% 63.64% 66.67% 53.33% 60%
6 72.73% 54.55% 68.18% 66.67% 51.11% 57.78%
7 75.76% 74.24% 63.64% 69.7% 68.89% 64.44%
8 74.24% 72.73% 68.18% 59.09% 66.67% 62.22%
9 72.73% 74.24% 57.58% 57.58% 68.89% 62.22%
10 68.18% 72.73% 56.06% 56.06% 77.78% 62.22%

avg 69.13% 68.18% 62.88% 64.77% 60.56% 57.5%

37



Based on these results, for both systems, there are no significant differences between the lowest

complexity decompositions obtained using statically and dynamically collected data and that none of the

approaches achieve identical decompositions to the expert’s, since the average MoJo values obtained

vary around 55-70%.

Given the resemblance when compared to the expert, it was then assessed how far apart the static

and dynamic decompositions were from each other, considering the common controllers and entities.

Table 4.11: Comparing static with dynamic decompositions, considering only the common controllers and entities

LdoD Blended Workflow
Static and Tests Static and Simulation Static and Simulation

N

3 57.41% 84.62% 83.33%
4 83.02% 82.35% 63.41%
5 78.85% 80.39% 50%
6 78.85% 78% 58.97%
7 78.85% 76% 57.89%
8 82.69% 46.94% 50%
9 80.77% 48.98% 50%
10 60% 42.86% 37.84%

avg 75.06% 67.52% 56.43%

Considering Table 4.11, for LdoD, the average MoJo between the evened static and tests approaches

was 75%, while between the evened static and simulation approaches was 67%. For Blended Work-

flow, the average MoJo between the evened static and simulation approaches was 56%. This leads to

the conclusion that, on average, although equally distant to the expert’s decomposition, the static and

dynamic approaches do not generate similar decompositions, which suggests that there is space for

future research on these differences even when neither of the analysis techniques surpasses the other,

according to the previous results.

4.2 Performance evaluation

This section is, instead, devoted to (1) understand the impact of each similarity measure in the perfor-

mance of the generated decompositions and (2) apprehend potential correlations between the maintain-

ability and performance metrics. and consequently provides an answer the last two research questions

introduced in Section 1.2. The obtained results were exclusively produced from data collected with

dynamic analysis.

The introduced performance metric calculates the number of hops between microservices during a

distributed transaction, in other terms, the network communication latency of a distributed functionality.

Leveraging the formalisation presented in Section 2.1, the performance of a functionality for a given

decomposition is expressed as the average of the performance of its traces:
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performance(f,D) =

∑
tf∈traces(partition(Gf ,D)) performance(tf )− 1

#traces(partition(Gf , D))
(4.2)

where traces(partition(Gf , D) denotes the unique sequences of local transactions in the partition call

graph of functionality f , and performance(tf ) denotes the number of local transactions in the sequence.

Since the goal is to count the number of remote invocations between local transactions, minus one must

be subtract. This subtraction assumes that each trace in the partition call graph has a at least one local

transaction.

The performance of a decomposition is the average of the performance of its functionalities:

performance(D) =

∑
f∈F performance(f,D)

#F
(4.3)

where performance(f,D) corresponds to the performance of a functionality f in the context of a de-

composition D.

The values obtained for this metric also had to be normalized given the same rationale applied to

the complexity metric. By analogy, to assess the correlation between this metric and the weights given

to each similarity measure and the number of clusters, the same linear regression model was employed

as demonstrated in Equation (4.1)

4.2.1 The impact of Similarity Measures on Performance

To evaluate the impact of each similarity measure over performance, the same strategy was applied

as in Section 4.1.1. The results, exhibited in Table 4.12, show a comparison across both systems

and respective environments to determine a combination of similarity measures that provides low la-

tency decompositions. As expected, there is a consensus indicating that the number of clusters have a

statistically significant positive correlation with performance. A higher number of clusters/microservice

candidates is presumed to increase the network communication latency of a functionality. However, in

terms of similarity measures, there is no robust conclusion given that some confidence intervals include

the zero value, results from different environments/systems disagree on the sign of the coefficient as

well as the coefficient values are very close to zero (< 0.01) indicating a very weak correlation.

Table 4.12: Comparison of the impact of similarity measures on Performance

LdoD Tests LdoD Simulation Blended Workflow simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

N 0.0207 [0.018, 0.023] 0.0088 [0.007, 0.01] 0.0223 [0.021, 0.024]
A -0.0003 [-0.001, -8.24e-05] 0.0017 [0.001, 0.002] -0.0008 [-0.001, -0.001]
W -0.0004 [-0.001, -0.000] 0.0082 [0.008, 0.008] 0.0002 [5e-05, 0.000]
R -0.0001 [-0.000, 0.000] 0.0002 [-3.33e-05, 0.000] -0.0009 [-0.001, -0.001]
S -0.0002 [-0.000, 6.46e-05] 0.0012 [0.001, 0.001] 0.0016 [0.001, 0.002]
R2 0.129 0.640 0.460
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4.2.2 Correlation between Performance and Maintainability quality metrics

The regression results from Table 4.13 and Table 4.14 show that both complexity and coupling metrics

have a statistically significant positive correlation, with considerably low variability (R2 > 0.6), with per-

formance which allows to conclude that decompositions with higher network latency tend to have worse

values regarding the two maintainability metrics. This correlation is expected since decompositions with

a high network latency tend to have a high number of distributed transactions for each functionality and

inevitably more remote invocations between clusters. Note that, the correlation between latency and

complexity is much stronger than with coupling, as can be observed by the magnitude of the coefficients

that show almost a direct proportion with complexity.

Table 4.13: Comparison of the impact of Performance in Complexity

LdoD Tests LdoD Simulation Blended Workflow simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

Performance 1.0014 [0.992, 1.011] 0.8680 [0.861, 0.875] 1.1896 [1.182, 1.198]
R2 0.955 0.962 0.980

Table 4.14: Comparison of the impact of Performance in Coupling

LdoD Tests LdoD Simulation Blended Workflow simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

Performance 0.1751 [0.160, 0.191] 0.1047 [0.094, 0.115] 0.5344 [0.512, 0.557]
R2 0.722 0.605 0.727

Concerning cohesion, as shown in Table 4.15, the performance metric shows a negative correlation

on both simulation environments whereas on the functional testing executed on the LdoD system, a cor-

relation can not be established given the inclusion of 0 in the confidence interval. This lack of unanimity

is, to some extend, expected because the number of remote invocations of a functionality is not directly

correlated with the cohesion, a functionality does not need to access the entities of all clusters to have

low latency.

Table 4.15: Comparison of the impact of Performance in Cohesion

LdoD Tests LdoD Simulation Blended Workflow simulation
Coef. 95% Conf. Interval Coef. 95% Conf. Interval Coef. 95% Conf. Interval

Performance 0.0201 [-0.004, 0.045] -0.1766 [-0.190, -0.164] -0.2576 [-0.283, -0.233]
R2 0.628 0.672 0.704
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4.3 Lessons learned

Returning to the research questions defined in Section 1.2:

RQ1: Does the information obtained using a dynamic code analyser, for the same set of similarity

measures, provide better results, in terms of the quality of the generated decompositions, when

compared with the static information captured on the previous work?

RQ2: Does a particular similarity measure provide better results in terms of the performance of

the generated decompositions?

RQ3: Are the used maintainability quality metrics correlated with performance?

It is now possible to provide a plausible answer to each one them. Starting on the first research question,

it was concluded that, through the comparison of an expert decomposition with the ones generated using

data from each analysis technique, they do not outperform each other. Moreover, the decompositions

statically and dynamically generated were further compared together and the results show that they

have significant differences despite having the same disparity degree towards the expert one. Finally, a

study was also conducted on the impact of similarity measures over the quality metrics with the usage

of dynamic analysis. No specific combination of similarity measures determines the generation of the

best decomposition according to any of the three maintainability quality metrics.

The answer for the second research question follows the same conclusion as the first given that no

robust result indicate the existence of a possible combination of similarity measures that could generate

low latency decompositions.

Last but not least, this work was able to correctly calculate and correlate the introduced performance

metric with the already existent maintainability metrics, thus constituting the answer to the third research

question.

While addressing the research questions, other notable lessons emerged:

• The combination of the similarity measure values for the best decomposition according to the

quality metrics may be dependent on specific characteristics of the monolith system. As such, the

best approach is to run the analyser feature to find the best combinations for each monolith;

• The effort to collect data dynamically is significantly superior than the static collection, specially

when collecting and evaluating data from production which resulted in a very low coverage. On the

other hand, the use of integration tests, which achieved better coverage, has a higher development

cost, because, contrary to unit tests that aim to have 100% coverage, integration tests, are harder

to maintain since they are designed to verify the modules integration, not the execution of all paths;
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5
Related Work
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This chapter presents the most recent literature that was reviewed in order to establish a confident

cornerstone for this work.

In recent years, a myriad of approaches to support the migration of monolith systems to microser-

vices architectures have been proposed [3, 16–24], which use the monolith specification, codebase,

services interfaces, run-time behavior, and project development data to recommend the best decompo-

sitions [25].

This work intends to address the approaches that use the monolith codebase and/or run-time be-

havior. Although they follow the same steps, they diverge on what is their main concern and, conse-

quently, on the similarity measures that they use, such as accesses [5], reads [2, 4], writes [2, 4], and

sequences [2]. On the other hand, some authors use execution traces to collect the behavior of the

monolith, e.g. [5, 24], but there is no empirical evidence on whether it provides better data than the

static mechanisms, and what is the required effort to collect the data. Recent work on the migration

of microservices also integrates static and dynamic analysis techniques [7, 26], by complementing the

data collected through static analysis with dynamic analysis collected data. So far, there is no work that

evaluates or discusses the quality of data obtained with the use of static and dynamic analysis in the

migration of monolith systems to a microservices architectures.

In [27], it is introduced an approach, DeMIMA, that semi-automatically identifies architecture design

patterns (authors call them ”design motifs”) from source code and consequently increases developers

program comprehension. This is achieved by creating an abstract model of the program by using a com-

bination of static and dynamic analysis to calculate four language-independent properties - exclusivity,

receiver type, lifetime and multiplicity - which allow to identify commonly UML relationships like associa-

tion, aggregation, and composition that are used to describe design patterns. After the program’s model

is built, DeMIMA uses a constraint satisfaction solver to find the solution of the design motif identification

problem where the variables are the elements of the design motif model which domain comprehends

the entities of the program’s model and the variables constraints are the relationships between the ele-

ments of the design motif. In regards to static and dynamic analysis, there is, unfortunately, little detailed

information about their modus operandi.

The article of Jin et al. [5] proposes a framework to identify service candidates (including entity and

interface identification) from a monolithic system through the extraction and processing of its execution

traces and also provides a systematic way to measure quantitatively and consistently the independence

of a functionality, modularity and independence of evolvability of the identified services candidates by us-

ing an evaluation suite composed of 8 metrics. Their framework is composed of three steps: Firstly, they

use Kieker as the dynamic code analyser, the same tool that was used in this work. Executions traces

are collected by using a pre-defined test suite and then a representative execution trace is extracted

among the others thus ignoring methods invocation frequency which can be an important information
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to retain for other possible metrics. Secondly, they identify and group class entities by generating func-

tional atoms (a minimal coherent unit, in which all the entities are responsible for the same functional

logic) using a hierarchical clustering algorithm as we do. After the discovery of all functional atoms,

they use a functional atom grouping algorithm, which maximizes the intra-connectivity inside service

candidates (cohesion) while minimizes the inter-connectivity across candidate boundaries (coupling),

such that each resulting group will constitute the set of entities of a service candidate. Lastly, to identify

the interface of a service candidate, they pick the first method that appears on each execution trace

and associate it with the respective owner class and that constitutes an interface method. Regarding

their evaluation suite to assess the quality of service candidates, it’s very likely that we might use their

metrics related to the independence of functionality to evaluate and support our work because it was

the first time that a dynamic analysis was integrated in the Mono2Micro project. For instance, the metric

cohesion at message level that measures the cohesiveness of interfaces published by a service, deals

with the similarity of input messages (parameters) and output messages (return values) which can be

better calculated with data collected only during a system’s run-time execution (if inheritance is used, a

static analysis can’t distinguish subclass objects if it is expecting the respective superclass). With this

metric we will be able to correlate it with the one that we are using - Cohesion of a Cluster - because

service interfaces are the mean used for functionalities to access the cluster. By relying on black-box

testing to derive execution traces, their results depend not only on the existence of a pre-defined test

suite (not always available) but also on its associated coverage level.

Another recent effort towards the decomposition of monolithic system into a microservice architecture

using execution traces is present on [28]. The authors reveal a six step framework to help software

architects identify different decomposition candidates reducing the inherent process subjectivity by also

providing three metrics to assess the decomposition quality. Their approach assumes the existence of

detailed log trace collected at run-time (any entry point of a system, classes, methods and database

accesses must be traced) and thus they do not delve into the data collection subject. They simply

recommend the usage of an instrumentation tool called Elastic APM1, in case run-time data isn’t being

collected yet, to enable logging generation at the method level with a very low effort. The most important

steps of their framework are the first two where a process-mining tool (DISCO2) is used to identify what

are the most frequently traversed execution paths by inspecting the log file. It graphically represents the

call graph of the system according to the collected execution traces and shows, at the same time, the

frequency that each path has been traversed, something that we are already doing but did not use in

this work. The remaining steps suffer from the lack of automation and detail because: 1) no specification

is given about how the common execution paths are clustered (they just mention the clustering in the

conclusion without referring the concept in the respective step); 2) the third step, Removal of Circular

1https://www.elastic.co/solutions/apm
2https://fluxicon.com/disco/
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Dependencies, is done manually and they only refer that an algorithm to discover cycles can be used

without giving an academic background to support their claim and finally; 3) the identification and quality

assessment (metric calculation) of decomposition candidates, steps four and five respectively, as well

as the selection of the best decomposition, step 6, also lack automation because everything is done

manually by experts through the visualization of the graph generated by a third party tool. The metrics

they suggest are: Coupling between microservices, Number of classes per microservices and Number

of classes that need to be duplicated. The coupling metric is defined by the division of the number of

calls to external services used in each class belonging to the microservice by the total number of classes

inside the microservice. The usage of the number of classes that need to be duplicated metric is justified

with the premise that the more duplicated classes between microservices, the bigger the system size

and consequently the harder will be its maintenance, but we believe that this metric can be further

improved (or even better justified) because the existence of duplicated entities between microservices

can imply changes on the consistency level of certain functionalities.

In [29], the authors propose a method to assist the extraction of functionality-oriented microservices

by monitoring the dynamic behaviour of software and clustering entities with similar business logic from

execution traces. They also used Kieker, as their DCA, on four JAVA monolithic systems which, in

total, collected just 204 unique traces. To evaluate the obtained microservice candidates, five metrics

related to cohesion and coupling were used systematically from the perspective of maintainability. The

only adopted environment to generate data was through the design and execution of 204 test cases.

In general, their proposed execution-oriented clustering method can obtain microservices with better

functional independence in comparison with three state-of-the-art methods, resulting in more loosely

coupled microservices. Despite the similarities between this approach and the one developed in this

work, in the scope of Mono2Micro, their clustering uses the typical class and method hierarchical naming

structure to define the microservices boundaries from the static information obtained on traces such as

the JAVA package and, as such, completely discarding the notion of late binding which is the main

advantage of executing a dynamic analysis. Additionally, our work is a novelty in terms of comparing the

potential and effort of both code analysis techniques and they assume that “program behaviors cannot

be explicitly reflected in source code”, but according to our results, it’s not possible to corroborate this

assumption because neither of the analysis surpassed the other.

In [30], static analysis is used to complement the incompleteness of dynamic analysis, in order to

increase programming comprehensibility of large systems. It proposes a two-phase hybrid clustering

approach that groups entities (classes) by combining their behavioral characteristics and structural re-

lationships. The similarity between system entities is identified by the number of the alleged software

features while we use our own set of similarity measures intrinsically related to state consistency. A

software feature is essentially a use-case scenario that, when exercised, will generate execution traces
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(no descriptive or visual representation is provided), similar to our controller definition. The authors

do not explain how they process the collected traces which was an important part of this work. From

these traces, classes/entities are extracted that will serve as an input to the hierarquical clustering algo-

rithm. In the first phase, backed by dynamic analysis, a skeleton decomposition is created from the said

traces. Until the skeleton is created more steps have to be completed of which two should be highlighted

and adapted to Mono2Micro:(i) Clustering of Omnipresent Classes (ii) Removal of Singleton Clusters .

Omnipresent Classes, considered as software utilities and used in a large number of subsystems, are

removed to improve the clustering result and grouped into a utility cluster. The removal of singleton

clusters, the ones containing just one single class, constitutes the last step where these classes are

added to a pool to be used in a orphan adoption algorithm, in the second phase, that analyzes their

static dependencies (naming conventions and structural relations) with the already formed clusters. The

authors evaluate their approach only with a case study where they had to insert probes at the entry and

exit of every method. It’s not clear whether they opted by manual or automatic probe insertion and in

which environment they exercised the dynamic analysis. Once again, both analysis are used without

any scrutiny. The effort of applying dynamic analysis and the impact that this analysis may have on the

run-time performance of the analysed system are completely discarded.

In [26], an approach is proposed to migrate monolithic systems into microservices where service

boundaries are primarily defined with data collected from static analysis and subsequently refined

through the visualization of the system run-time behaviour. Overall, it’s a non-automated approach

which requires previous knowledge about the software’s structure and behavior to derive an architec-

tural view (use cases and domain contexts) of the system such that it can later be validated with statically

collected data (source code packages) in order to identify potential ambiguities. Additionally, the authors

just present one case study and do not execute an evaluation over their procedure. This work differs

from [30] since the first uses dynamically collected data to refine the data that was collected with static

analysis and the other does the inverse process.

In [7] it’s described a systematic and automatic approach to refactor monolithic systems, based on

the Django web framework, to a microservice architecture that combines the results from static and

dynamic code analyses. First, static analysis, relies on the system’s source code, is employed to create

a graphical model of the system where nodes can be classes, packages and modules and edges the

import statements and method calls. Each edge is assigned a weight to represent the strength of the

respective dependency. This weight is calculated through the sum of the number of imports and method

calls between two nodes. Then, the system’s operational behaviour is profiled to gather information -

executed API endpoints, database queries and class methods - to calculate a new weight for each edge

of the graph based on the execution frequency of each method. The final edge weight is a function

of the static and dynamic weights. This graph is then used as input into a clustering algorithm that
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groups nodes according to the weights of the edges to form the microservice candidates. Despite this

insightful and novel approach, only a qualitative evaluation is presented to perceive the impact of the

combination of both analyses in comparison with the static analysis provided by a different tool, Service

Cutter3. Moreover, just one system was studied and the evaluated quality was subjectively achieved by

questioning three developers responsible for that system. Finally, contrary to this work, no explanation

is provided about how (much) data was processed after one week of monitoring and no analysis was

executed over coverage percentage.

A recent approach described in [24], proposes an automated framework to extract microservices

from legacy monolithic systems only requiring the executable file. Execution and performance logs are

the data artifacts obtained through dynamic and performance (CPU and Memory) analysis executed by

Kieker and Java VisualVM4. Their framework processes the execution logs to identify controller objects

(COs) and subordinate objects (SOs) (entities) in a similar manner as described in Section 3.3). Then

a matrix is created that associates a quantified relation to each pair <CO, SOs>. This relation is cal-

culated based on the established functional metrics Invocation Strength and Invocation Frequency to

create better high-cohesive-low-coupled microservices. These metrics that work as similarity measures,

as opposed to ours, our solely focused on frequency (performance) while ours are focused on aggre-

gating entities according to a specific change in state consistency (read, write, sequence). Invocation

Strength is a constant that attributes a weight to the type of execution call. They consider three types

of operations: CREATE, UPDATE and READ. Each type has its own weight while Mono2Micro does not

yet associates a different weight to write and read operations neither differentiates between create and

update operations. The Invocation Frequency is another constant that depends on the same operation

type but it’s also influenced by the number of invocations for the respective operation. After calculat-

ing the functional matrix, the performance values of CPU and Memory are matched with the respective

entries. Then, a Genetic algorithm is used on the matrix to identify microservices according to specific

heuristics: CPU and memory consumption and the aforementioned functional metrics). Finally, they

evaluated their framework by designing and executing tests cases without considering the impact that

coverage might have on the achieved results as well as no insight was provided about how they coped

with the amount of data collected.

3https://servicecutter.github.io/
4https://visualvm.github.io/
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In this chapter it is discussed what was achieved to benefit the software engineering community,

specifically in the context of the Mono2Micro project towards the migration of monolith systems to mi-

croservices architectures according to transactional contexts. Moreover, threats to the validity of this

work are also presented as well as some matters that may be addressed in subsequent researches.

6.1 Accomplishments

Alongside the effort of providing an answer to each of the three research questions, other noteworthy

collateral accomplishments arose, namely:

• Dynamic analysis was introduced as a new collection technique through the usage of a highly

customizable and extensible tool;

• Mono2Micro’s analysis framework was heavily optimized with the purpose of processing much

larger quantities of data in the shortest time possible;

• A new performance metric was added in the framework to provide an additional perspective to

software architects when evaluating the quality of generated decompositions;

• Cooperation with an external researcher from the area of dynamic analysis, specifically in the

performance analysis of software systems, in order to apply his feasible sequence compression

algorithm on the collected traces.

6.2 Threats to Validity

However, the obtained results and conclusions on the evaluation (Chapter 4) aren’t flawless. Their

validity is still threatened both internally and externally.

6.2.1 Internal Validity

Since dynamic analysis adds an extra layer of computation on top of the monitored systems run-time

behaviour, the assumptions made on the instrumentation, to minimize the performance degradation

perceived by end-users, are a clear bias on the obtained results given that: (i) an iterable object type is

considered to be the type of the first element and (ii) new records are discarded when Kieker’s queue is

full .

The approach of placing the entities not found during the collection process into the biggest cluster,

when comparing the static and dynamic decompositions with the expert’s, may have biased the results,

as there is a probability associated with the expert decomposition that may or may not contain those
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entities in the same cluster. However, comparisons were made using other approaches and achieved

similar results, thus, there is enough confidence in discarding this as a threat.

6.2.2 External Validity

Due to the effort associated with the dynamic collection of data, only two systems were analysed, but

from the comparison with the decompositions generated from statically collected data, it’s possible to

infer that the quality of one decomposition does not outperforms the other, though the dynamic analysis

of more monoliths is necessary. Nevertheless, the conclusions about the incompleteness of data and

required effort associated with the dynamic collection of data are evident and show that a cost/benefit

relation may tend for the static analysis approaches.

6.3 Future work

As a consequence of the results of this thesis and the learned lessons, the following topics are suggested

as future work:

• Experiment with machine learning techniques using the metrics as fitness functions to infer which

combination of similarity measures is more adequate for a concrete monolith system.

• Further explore the results of the dynamic collection of data, in terms of the frequency of each of the

functionalities, and define new similarity measures to verify if it can generate better decompositions

as well as new metrics that can provide

• Analyse more monolith systems with different technology stacks using dynamic analysis to reduce

the existing bias on the regression models.

• Investigate other sequence compression algorithms with the purpose of decreasing the JSON file

size and also the time the Mono2Micro framework takes to process it.

6.4 Data availability

The data used and produced in this research is available at https://github.com/socialsoftware/

mono2micro/tree/master/data/dynamic

50

https://github.com/socialsoftware/mono2micro/tree/master/data/dynamic
https://github.com/socialsoftware/mono2micro/tree/master/data/dynamic


7
Conclusions
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The migration of monolith systems to the microservices architecture is a complex problem that software

development teams have to address when systems become more complex and larger in scale. There-

fore, it is necessary to develop the methods and tools that help and guide them on the migration process.

One of the most challenging problems is the identification of microservices. Several approaches have

been proposed to automate such identification, which, although following the same steps, use different

monolith analysis techniques, similarity measures, and metrics to evaluate the quality of the system.

In this thesis, two monolith systems were analysed to study the impact of applying static and dynamic

analysis on the quality of the automatically generated decompositions as well as whether a particular

combination of similarity measures provides better decompositions.

From the results of this research, it was concluded that there is no particular similarity measure that

generates the best decompositions, considering the quality metrics for complexity, coupling, cohesion,

and performance and a hypothesis is raised that it may depend on particular characteristics of the

monolith. Therefore, as a suggestion, the analyzer feature of the Mono2Micro’s framework can be used

to generate decompositions using an extensive combination of similarity measures to find the one that

has the best quality.

Moreover, as result of the executed analysis, it was also concluded that the different monolith analysis

techniques generate decompositions that do not outperform each other, but, it was clear that the effort

required by the dynamic analysis is much superior and resulted in less coverage. Although the cost

is much higher, both systems were extensively dynamically analyzed, and compared with the static

analysis, which is a unique effort with no precedents. Future experiments can be done, but this work

already contains, in this aspect, an important and novel contribution.

Lastly, a new metric concerning performance was also added to current suite of metrics of

Mono2Micro which was proved to be correctly correlated with the already existent maintainability ones.

This addition is unequivocally out of the context of Mono2Micro, which is focused on transactional con-

texts, nonetheless it also plays a key role in a microservices architecture.

A new performance metric was added in the framework to provide an additional perspective to soft-

ware architects when evaluating the quality of generated decompositions;

As additional contributions, (i) the gathered data from the evaluated monolith systems, using both

static and dynamic analysis, is publicly available and can be used by third parties to do further research;

(ii) the current analysis framework is now prepared to feasibly process larger amounts of data; (iii) the

dynamic data collection was implemented to be as configurable and extensible as possible such that it

can handle a wider variety of code bases with different technology stacks that are built using Java in a

long-term view .
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A
Code of Project

Listing A.1: Class file containing the aspect’s Joint points and Pointcuts. It specifies the methods in which the

Advice should be applied. Import statements are omitted

1 /**

2 * @author Bernardo Andrade

3 */

4 @Aspect

5 public class GettersAndSetters extends AbstractOperationExecutionAspect {

6 public GettersAndSetters() {}

7 // ----------------------------------------- EXCEPTIONS ------------------------------------------

8 @Pointcut("execution(pt.ist.fenixframework..* get*(..))")

9 public void gettersReturningFenixFrameworkObject() {}

10

11 @Pointcut("execution(* set*(pt.ist.fenixframework..*, ..))")

12 public void settersWithFenixFrameworkObjectArgument() {}

13

14 @Pointcut("!gettersReturningFenixFrameworkObject() && !settersWithFenixFrameworkObjectArgument()")

15 public void noGettersOrSettersWithFenixFramework() {}
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16 // --------------------------------------------- _BASE CLASSE METHODS

---------------------------------------------

17 @Pointcut("execution(public void pt.ist..*.*_Base.add*(..)) && within(pt.ist..*.*_Base)")

18 public void publicBaseAddMethods() {}

19

20 @Pointcut("execution(public void pt.ist..*.*_Base.remove*(..)) && within(pt.ist..*.*_Base)")

21 public void publicBaseRemoveMethods() {}

22

23 @Pointcut("execution(public * pt.ist..*.*_Base.get*(..)) && within(pt.ist..*.*_Base)")

24 public void publicBaseGetMethods() {}

25

26 @Pointcut("execution(public void pt.ist..*.*_Base.set*(..)) && within(pt.ist..*.*_Base)")

27 public void publicBaseSetMethods() {}

28

29 @Pointcut("publicBaseAddMethods() || publicBaseRemoveMethods() || publicBaseGetMethods() ||

publicBaseSetMethods()")

30 public void baseClassMethods() {}

31 //---------------------------------------------------------------- FENIX FRAMEWORK

----------------------------------------------------------------

32 @Pointcut("execution(public * pt.ist.fenixframework.FenixFramework.getDomainObject(..))")

33 public void fenixFrameworkGetDomainObject() {}

34

35 @Pointcut("execution(public * pt.ist.fenixframework.DomainRoot_Base.get*(..)) || execution(public *

pt.ist.fenixframework.DomainRoot_Base.set*(..))")

36 public void gettersAndSettersInDomainRootBase() {}

37

38 @Pointcut("gettersAndSettersInDomainRootBase() || fenixFrameworkGetDomainObject()")

39 public void fenixFrameworkGettersAndSetters() {}

40 // ---------------------------- OTHER CLASSES (AND METHODS) THAT MAY BE IMPORTANT TO CATCH

----------------------------

41 @Pointcut("execution(public * pt.ist.fenixframework.backend.jvstmojb.pstm.AbstractDomainObject.

getExternalId(..))")

42 public void fenixFrameworkAbstractDomainObjectGetExternalId() {}

43

44 @Pointcut("execution(protected * pt.ist.fenixframework.backend.jvstmojb.pstm.OneBoxDomainObject.

deleteDomainObject(..))")

45 public void fenixFrameworkAbstractDomainObjectDeleteDomainObject() {}

46

47 @Pointcut("fenixFrameworkAbstractDomainObjectGetExternalId() ||

fenixFrameworkAbstractDomainObjectDeleteDomainObject()")

48 public void otherMethodsThatMayBeImportant() {}

49 // ----------------------------------------------------------------- CONTROLLER CLASSES

-----------------------------------------------------------------

50 @Pointcut("(@target(org.springframework.stereotype.Controller) || @target(org.springframework.web.

bind.annotation.RestController)) && execution(* *(..))")
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51 public void controllerClasses() {}

52 // ------------------------------------------------------------------------- CONTROLLER METHODS

-------------------------------------------------------------------------

53 // Controller GET methods

54 @Pointcut("(@annotation(org.springframework.web.bind.annotation.RequestMapping) || @annotation(org.

springframework.web.bind.annotation.GetMapping)) && execution(* *(..))")

55 public void controllerGetMethods() {}

56

57 // Controller POST methods

58 @Pointcut("(@annotation(org.springframework.web.bind.annotation.RequestMapping) || @annotation(org.

springframework.web.bind.annotation.PostMapping)) && execution(* *(..))")

59 public void controllerPostMethods() {}

60

61 // Controller PATCH methods

62 @Pointcut("@annotation(org.springframework.web.bind.annotation.PatchMapping) && execution(* *(..))"

)

63 public void controllerPatchMethods() {}

64

65 // Controller PUT methods

66 @Pointcut("@annotation(org.springframework.web.bind.annotation.PutMapping) && execution(* *(..))")

67 public void controllerPutMethods() {}

68

69 // Controller DELETE methods

70 @Pointcut("@annotation(org.springframework.web.bind.annotation.DeleteMapping) && execution(* *(..))

")

71 public void controllerDeleteMethods() {}

72

73 // Controller MESSAGE methods

74 @Pointcut("@annotation(org.springframework.messaging.handler.annotation.MessageMapping) &&

execution(* *(..))")

75 public void controllerMessageMethods() {}

76

77 @Pointcut("controllerGetMethods() || controllerPostMethods() || controllerPatchMethods() ||

controllerPutMethods() || controllerDeleteMethods() || controllerMessageMethods()")

78 public void controllerMethods() {}

79 // ----------------------------------------------------------------- KIEKER METHOD

-----------------------------------------------------------------

80 @Pointcut("(baseClassMethods() && noGettersOrSettersWithFenixFramework()) ||

fenixFrameworkGettersAndSetters() || otherMethodsThatMayBeImportant()")

81 public void domainAndORMMethods() {}

82

83 @Pointcut("(cflow(controllerMethods()) && domainAndORMMethods()) || controllerMethods()")

84 public void monitoredOperation() {}
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Listing A.2: Class file which defines the Advice responsible for gathering all the information to compose the Moni-

toring Record. Lines 42-123 were added to the original file such that new method information could be

added to the record. Import statements are omitted

1 /**

2 * @author Andre van Hoorn, Jan Waller, Bernardo Andrade

3 */

4 @Aspect

5 public abstract class AbstractOperationExecutionAspect extends AbstractAspectJProbe {

6 private static final Logger LOGGER = LoggerFactory.getLogger(AbstractOperationExecutionAspect.class

);

7 private static final IMonitoringController CTRLINST = MonitoringController.getInstance();

8 private static final ITimeSource TIME = CTRLINST.getTimeSource();

9 private static final ControlFlowRegistry CFREGISTRY = ControlFlowRegistry.INSTANCE;

10

11 @Pointcut

12 public abstract void monitoredOperation();

13

14 @Around("monitoredOperation() && notWithinKieker()")

15 public Object operation(final ProceedingJoinPoint thisJoinPoint) throws Throwable {

16 if (!CTRLINST.isMonitoringEnabled()) {

17 return thisJoinPoint.proceed();

18 }

19 final boolean entrypoint;

20 final int eoi; // this is executionOrderIndex-th execution in this trace

21 final int ess; // this is the height in the dynamic call tree of this execution

22 long traceId = CFREGISTRY.recallThreadLocalTraceId(); // traceId, -1 if entry point

23 if (traceId == -1) {

24 entrypoint = true;

25 traceId = CFREGISTRY.getAndStoreUniqueThreadLocalTraceId();

26 CFREGISTRY.storeThreadLocalEOI(0);

27 CFREGISTRY.storeThreadLocalESS(1); // next operation is ess + 1

28 eoi = 0;

29 ess = 0;

30 } else {

31 entrypoint = false;

32 eoi = CFREGISTRY.incrementAndRecallThreadLocalEOI();

33 ess = CFREGISTRY.recallAndIncrementThreadLocalESS();

34 if ((eoi == -1) || (ess == -1)) {

35 LOGGER.error("eoi and/or ess have invalid values: eoi == {} ess == {}", eoi, ess);

36 CTRLINST.terminateMonitoring();

37 }

38 }

39 final long tin = TIME.getTime();

40 // execution of the called method
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41 Object retval = null;

42 final StringBuilder newSignature = new StringBuilder(128);

43 try {

44 // 1) Getting the entity declaring type that executes the given method

45 try {

46 newSignature.append(thisJoinPoint.getSignature().getDeclaringType().getSimpleName());

47 } catch (Exception e) {

48 throw e;

49 } finally {

50 newSignature.append(":"); // Separator

51 }

52 // 2) Getting the method name

53 try {

54 newSignature.append(thisJoinPoint.getSignature().getName());

55 } catch (Exception e) {

56 throw e;

57 } finally {

58 newSignature.append(":"); // Separator

59 }

60 // 3) Getting the entity runtime type that executes the given method

61 try {

62 Object target = thisJoinPoint.getTarget();

63 if (target != null) {

64 newSignature.append(thisJoinPoint.getTarget().getClass().getSimpleName());

65 }

66 } catch (Exception e) {

67 throw e;

68 } finally {

69 newSignature.append(":"); // Separator

70 }

71 // 4) Getting the arguments types of the given method

72 try {

73 if (thisJoinPoint.getArgs().length > 0) {

74 Object[] args = thisJoinPoint.getArgs();

75 String argTypes = "[";

76 for (int i = 0; i < args.length; i++) {

77 if (args[i] == null) {

78 String argStaticType = ((MethodSignature) thisJoinPoint.getSignature())

79 .getParameterTypes()[i]

80 .getSimpleName();

81 argTypes += "\"" + argStaticType + "\"";

82 } else {

83 String argDynamicType = args[i].getClass().getSimpleName();

84 argTypes += "\"" + argDynamicType + "\"";

85 }
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86 if (i < args.length - 1) {

87 argTypes += ",";

88 }

89 }

90 argTypes += "]";

91 newSignature.append(argTypes);

92 }

93 } catch (Exception e) {

94 throw e;

95 } finally {

96 newSignature.append(":"); // Separator

97 }

98 // 5) Getting the returned value type of the given method

99 try {

100 retval = thisJoinPoint.proceed();

101 if (retval != null) {

102 if (retval.getClass().getSimpleName().equals("RelationList")) {

103 RelationList retValAux = (RelationList) retval;

104 Iterator<?> i = retValAux.iterator();

105 if (i.hasNext()) {

106 Object firstElement = i.next();

107 if (firstElement != null) {

108 // ASSUMPTION: returned value dynamic type is the dynamic type of the

first element of the list

109 newSignature.append(firstElement.getClass().getSimpleName());

110 }

111 }

112 } else {

113 newSignature.append(retval.getClass().getSimpleName());

114 }

115 } else {

116 String returnedValueStaticType = ((MethodSignature) thisJoinPoint.getSignature())

117 .getReturnType()

118 .getSimpleName();

119 newSignature.append(returnedValueStaticType);

120 }

121 } catch (Exception e) {

122 throw e;

123 }

124 } finally {

125 final long tout = TIME.getTime();

126 CTRLINST.newMonitoringRecord(

127 new OperationExecutionRecord(

128 "",

129 newSignature.toString(),
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130 traceId,

131 tin,

132 tout,

133 "",

134 eoi,

135 ess

136 )

137 );

138

139 if (entrypoint) {

140 CFREGISTRY.unsetThreadLocalTraceId();

141 CFREGISTRY.unsetThreadLocalEOI();

142 CFREGISTRY.unsetThreadLocalESS();

143 } else {

144 CFREGISTRY.storeThreadLocalESS(ess);

145 }

146 }

147 return retval;

148 }

149 }

Listing A.3: Kieker’s configuration file: kieker.monitoring.properties

1 ## The location of the file is passed to Kieker.Monitoring via the JVM parameter

2 ## kieker.monitoring.configuration. For example, with a configuration file named

3 ## my.kieker.monitoring.properties in the folder META-INF you would pass this location

4 ## to the JVM when starting your application:

5 ##

6 ## java -Dkieker.monitoring.configuration=META-INF/my.kieker.monitoring.properties [...]

7 ##

8 ## If no configuration file is passed, Kieker tries to use a configuration file in

9 ## META-INF/kieker.monitoring.properties

10 ## If this also fails, a default configuration is being used according to the values in

11 ## this default file.

12

13 ## The name of the Kieker instance.

14 kieker.monitoring.name=Dummy

15

16 ## Whether a debug mode is activated.

17 ## This changes a few internal id generation mechanisms to enable
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18 ## easier debugging. Additionally, it is possible to enable debug

19 ## logging in the settings of the used logger.

20 ## This setting should usually not be set to true.

21 kieker.monitoring.debug=true

22

23 ## Enable/disable monitoring after startup (true|false; default: true)

24 ## If monitoring is disabled, the MonitoringController simply pauses.

25 ## Furthermore, probes should stop collecting new data and monitoring

26 ## writers stop should stop writing existing data.

27 kieker.monitoring.enabled=true

28

29 ## The name of the VM running Kieker. If empty the name will be determined

30 ## automatically, else it will be set to the given value.

31 kieker.monitoring.hostname=

32

33 ## The initial ID associated with all experiments. (currently not used)

34 kieker.monitoring.initialExperimentId=1

35

36 ## Automatically add a metadata record to the monitoring log when writing

37 ## the first monitoring record. The metadata record contains infromation

38 ## on the configuration of the monitoring controller.

39 kieker.monitoring.metadata=true

40

41 ## Enables/disable the automatic assignment of each record's logging timestamp.

42 ## (true|false; default: true)

43 kieker.monitoring.setLoggingTimestamp=true

44

45 ## Whether a shutdown hook should be registered.

46 ## This ensures that necessary cleanup steps are finished and no

47 ## information is lost due to asynchronous writers.

48 ## This should usually not be set to false.

49 kieker.monitoring.useShutdownHook=true

50

51 ## Whether any JMX functionality is available

52 kieker.monitoring.jmx=false

53 kieker.monitoring.jmx.domain=kieker.monitoring

54

55 ## Enable/Disable the MonitoringController MBean
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56 kieker.monitoring.jmx.MonitoringController=true

57 kieker.monitoring.jmx.MonitoringController.name=MonitoringController

58

59 ## The size of the thread pool used to execute registered periodic sensor jobs.

60 ## The thread pool is also used to periodically read the config file for adaptive

61 ## monitoring.

62 ## Set to 0 to deactivate scheduling.

63 kieker.monitoring.periodicSensorsExecutorPoolSize=0

64

65 ## Enable or disable adaptive monitoring.

66 kieker.monitoring.adaptiveMonitoring.enabled=false

67

68 ## Default location of the adaptive monitoring configuration File

69 kieker.monitoring.adaptiveMonitoring.configFile=META-INF/kieker.monitoring.

adaptiveMonitoring.conf

70

71 ## Enable/disable the updating of the pattern file by activating or deactivating

72 ## probes through the api.

73 kieker.monitoring.adaptiveMonitoring.updateConfigFile=false

74

75 ## The delay in seconds in which the pattern file is checked for changes.

76 ## Requires kieker.monitoring.periodicSensorsExecutorPoolSize > 0.

77 ## Set to 0 to disable the observation.

78 kieker.monitoring.adaptiveMonitoring.readInterval=0

79

80 ## The maximal size of the signature cache. This is a weak limit, as the cache can exceed

this size

81 ## slightly in practical application.

82 ## Set to -1 for an unbounded cache.

83 kieker.monitoring.adaptiveMonitoring.maxCacheSize=-1

84

85 ## The behaviour of the signature cache, if the maximal size is bounded.

86 ## 0: The cache ignores entries once the maximal size is reached.

87 ## 1: The cache removes a (semi)random entry from the cache once the maximal size is

exceeded.

88 ## 2: The cache is completely cleared once the maximal size is reached.

89 kieker.monitoring.adaptiveMonitoring.boundedCacheBehaviour=0

90
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91 ###########################

92 ####### TIMER #######

93 ###########################

94 ## Selection of the timer used by Kieker (classname)

95 ## The value must be a fully-qualified classname of a class implementing

96 ## kieker.monitoring.timer.ITimeSource and providing a constructor that

97 ## accepts a single Configuration.

98 kieker.monitoring.timer=kieker.monitoring.timer.SystemNanoTimer

99

100 ##

101 #kieker.monitoring.timer=kieker.monitoring.timer.SystemMilliTimer

102 ## A timer with millisecond precision.

103 ## The offset of the timer. The time returned is since 1970-1-1

104 ## minus this offset. If the offset is empty it is set to the current

105 ## time.

106 ## The offset must be specified in milliseconds.

107 kieker.monitoring.timer.SystemMilliTimer.offset=0

108

109 ## The timeunit used to report the timestamp.

110 ## Accepted values:

111 ## 0 - nanoseconds

112 ## 1 - microseconds

113 ## 2 - milliseconds

114 ## 3 - seconds

115 kieker.monitoring.timer.SystemMilliTimer.unit=0

116 ##kieker.monitoring.timer=kieker.monitoring.timer.SystemNanoTimer

117

118 ## A timer with nanosecond precision.

119 ## The offset of the timer. The time returned is since 1970-1-1

120 ## minus this offset. If the offset is empty it is set to the current

121 ## time.

122 ## The offset must be specified in milliseconds.

123 kieker.monitoring.timer.SystemNanoTimer.offset=0

124 ## The timeunit used to report the timestamp.

125 ## Accepted values:

126 ## 0 - nanoseconds

127 ## 1 - microseconds

128 ## 2 - milliseconds
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129 ## 3 - seconds

130 kieker.monitoring.timer.SystemNanoTimer.unit=0

131

132 ###########################

133 ####### WRITER #######

134 ###########################

135

136 ## The internal synchronized queue implementation to use.

137 ## It must provide a constructor with a single int parameter which represents the queue's (

initial) capacity.

138 ## java.util.concurrent.ArrayBlockingQueue

139 ## java.util.concurrent.LinkedBlockingQueue

140 kieker.monitoring.core.controller.WriterController.RecordQueueFQN=org.jctools.queues.

MpscArrayQueue

141

142 ## This parameter defines the synchronized queue's (initial) capacity in terms of the number

of records.

143 ## Note that the actual capacity can be increased depending on the queue implementation.

144 kieker.monitoring.core.controller.WriterController.RecordQueueSize=10000000

145

146 ## 0: terminate Monitoring with an error (default)

147 ## 1: writer blocks until queue capacity is available

148 ## 2: writer discards new records until space is available

149 ## Be careful when using the value '1' since then, the asynchronous writer

150 ## is no longer decoupled from the monitored application.

151 kieker.monitoring.core.controller.WriterController.RecordQueueInsertBehavior=1

152

153 ## Selection of monitoring data writer (classname)

154 ## The value must be a fully-qualified classname of a class implementing

155 ## kieker.monitoring.writer.IMonitoringWriter and providing a constructor that

156 ## accepts a single Configuration.

157 kieker.monitoring.writer=kieker.monitoring.writer.filesystem.FileWriter

158

159 ## When flushing is disabled, it could require a lot of events before finally any writing to

the map file is done.

160 ## In case of long running observations, this is the desired behavior. However, in shorter

experiments and in cases when the application crashes,

161 ## it is helpful to ensure all map entries have been written as soon as possible.
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162 ## To force flushing on the the map file, set the following property to true.

163 kieker.monitoring.writer.filesystem.TextMapFileHandler.flush=true

164

165 ## As mentioned before, the FileWriter writes a map of all strings to a map file.

166 ## This is usually done by the TextMapFileHandler, which is the default.You may choose

another map file handler.

167 kieker.monitoring.writer.filesystem.FileWriter.mapFileHandler=kieker.monitoring.writer.

filesystem.TextMapFileHandler

168

169 ## Log file pool handler manages when files are written, how they are named and when they

are removed.

170 ## The default RotatingLogFilePoolHandler which supports a upper limit of log files which

are kept.

171 kieker.monitoring.writer.filesystem.FileWriter.logFilePoolHandler=kieker.monitoring.writer.

filesystem.RotatingLogFilePoolHandler

172

173 ## The log stream handler writes the text output.

174 ## Default is the TextLogStreamHandler (text serialization in standard Kieker format)

175 ## Alternatively, you may use the BinaryLogStreamHandler which serializes the data in binary

format.

176 ## You may want to write your own LogStreamHandler, e.g., to support JSON as output format.

177 kieker.monitoring.writer.filesystem.FileWriter.logStreamHandler=kieker.monitoring.writer.

filesystem.TextLogStreamHandler

178

179 ## The FileWriter uses UTF-8 as default char set. However, you may want to specify another

charset with

180 kieker.monitoring.writer.filesystem.FileWriter.charsetName=UTF-8

181

182 ## As host file systems have limits on file length and to avoid losing all data when the log

is corrupted,

183 ## you can limit the maximal number of entries (events) per created file. The value must be

greater than zero.

184 kieker.monitoring.writer.filesystem.FileWriter.maxEntriesInFile=1000000

185

186 ## The maximal file size of the generated monitoring log. Older files will be

187 ## deleted if this file size is exceeded. Given in MiB.

188 ## At least one file will always remain, regardless of size!

189 ## Use -1 to ignore this functionality.
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190 kieker.monitoring.writer.filesystem.FileWriter.maxLogSize=-1

191

192 ## The maximal number of log files generated. Older files will be deleted if this number is

exceeded.

193 ## At least one file will always remain, regardless of size!

194 ## Use -1 to ignore this functionality.

195 kieker.monitoring.writer.filesystem.FileWriter.maxLogFiles=-1

196

197 ## In order to use a custom directory, set customStoragePath as desired. Examples:

198 ## /var/kieker or C:\\KiekerData (ensure the folder exists).

199 ## Otherwise the default temporary directory will be used

200 kieker.monitoring.writer.filesystem.FileWriter.customStoragePath=

201

202 ## When compression is enabled, each log file is written as zipped binary file.

203 ## Depending on the libraries used alongside Kieker, you can user ZIP, GZIP and XZ

compression.

204 ## The corresponding classes are:

205 ## NoneCompressionFilter (no compression)

206 ## GZipCompressionFilter

207 ## XZCompressionFilter

208 ## ZipCompressionFilter

209 kieker.monitoring.writer.filesystem.FileWriter.compression=pt.ist.socialsoftware.edition.

ldod.compressors.ZipCompressor

210

211 ## When flushing is disabled, it could require a lot of records before

212 ## finally any writing is done.

213 kieker.monitoring.writer.filesystem.FileWriter.flush=false

214

215 ## When flushing is disabled, records are buffered in memory before written.

216 ## This setting configures the size of the used buffer in bytes.

217 ## 512 Kilobytes

218 kieker.monitoring.writer.filesystem.FileWriter.bufferSize=524288
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