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Abstract

Affecting 30% of the population above 85 years of age, Alzheimer’s Disease (AD) is a chronic
neurodegenerative disease responsible for about two-thirds of dementia cases worldwide. With the
ageing in the global population, the number of AD patients is expected to rise significantly in the coming
years. As most of the tests that detect AD are either too expensive or invasive, we turn our heads to
neuropsychological tests and machine learning to help solve this issue. These tests assess the cognitive
abilities of patients and can be taken in less than one hour with little expense. In search for the optimal
solution, we look into state-of-the-art technologies for classification, missing value imputation (MVI) and
other steps in the data mining process. From this, we manage to build a working classification pipeline
capable of analyzing the test data and predicting a patient’s future conversion to AD as well as its time
frame. This prediction is performed for a certain time window, and with a certain degree of confidence.
Our solution to improve upon this work is to implement state-of-the-art algorithms and test different
configurations until an ideal setup is determined.
Keywords: Alzheimer’s Disease; Mild Cognitive Impairment; Machine Learning; Deep Learning;
Classification; Missing Value Imputation; Class Imbalance; Feature Selection.

1. Introduction

Alzheimer’s Disease (AD) is a chronic neurodegen-
erative disease responsible for about two thirds of
dementia cases worldwide. Its causes are poorly
understood and it remains untreatable. As of 2019
it is estimated that AD affects 3% of people aged
65 or younger, although the number rises to above
30% for people aged 85 and older [1].

At the earliest stages of the disease a full mani-
festation of the symptoms does not occur. Usually,
a patient is first diagnosed with Mild Cognitive Im-
pairment (MCI) when some cognitive declines be-
gin to appear (such as memory lapses and mo-
tor difficulties). However, diagnosing early stage
AD is not a straightforward process, as it is nec-
essary to understand the differences between MCI
caused declines and declines generally caused by
ageing. Furthermore, neurodegenerative diseases
can take years to manifest, all the while drain-
ing at MCI patients’ cognitive abilities. By the
time a patient is diagnosed with dementia, their
brain would have already suffered irreparable dam-
age, severely impacting autonomy and cognition.
The World Alzheimer Report 2015 [12] estimated
that the number of people living with dementia will
nearly triple to 131 million by 2050.

Being able to predict the progress from patients
with MCI to AD is of great importance. It can help
with the appropriate selection of therapeutic inter-
ventions for each unique patient, as well as improv-
ing their quality of life for the following years by
slowing the decline in cognitive skills. It can also
have a great social-economic impact, as it would
reduce unnecessary tests and procedures on mil-
lions of patients worldwide. Lastly it could have
a large impact on the families and patients them-
selves, by providing some predictability to a dis-
ease ridden with uncertainty.

This work addresses the problem of predicting
the evolution from MCI to AD in any given patient,
as well as predicting the time of such evolution.
To achieve this, several datasets with neuropsy-
chological data will be used. The datasets con-
tain the scores of multiple neuropsychological tests
performed by each patient to evaluate their present
cognitive capabilities. The different sets are orga-
nized into yearly intervals, so as to help determine
how long the disease takes to evolve in each pa-
tient.

We will use state of the art machine learning
techniques to help determine the time until conver-
sion to AD, with a particular focus on the field of
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missing value imputation. Our aim is to innovate
and explore new and unique approaches to solve
the problems at hand.

2. Background
The CCC, a study conducted by researchers from
the Universidade de Medicina de Lisboa (or Faculty
of Medicine of the University of Lisbon) (FMUL),
was launched to evaluate the progression of MCI
and AD on Portuguese patients [14]. The study
admitted patients initially diagnosed with MCI and
had them take BLAD tests. These were performed
and evaluated with the help of several institutions
(Laboratory of Language Studies at Santa Maria
Hospital and a Memory Clinic, both in Lisbon, and
the Neurology Department at University Hospital in
Coimbra). After their initial tests, the patients had
follow-up appointments where they were tested for
dementia.

The initial dataset (CCC-1) with the patients’ test
scores and diagnosis was released on April 2017.
Since this release, and as of present day, the
dataset has been updated twice, with CCC-2 be-
ing released in October2017 and CCC-3 being re-
leased in October 2018. The dataset is divided into
two subsets: one for patients recruited in Lisbon
and another for patients in Coimbra.

The original datasets were organized according
to a First-Last approach, where one single dataset
would hold the data for all patients and each data
instance had information regarding their initial and
last evaluation. In [11], T. Pereira proposed reorga-
nizing the dataset into a Time Window approach.
This approach groups data according to a specific
temporal frame. For example, the dataset referring
to the five year window would have the initial tests
performed by each patient and a class indicating
whether they converted to dementia after that five
year interval.

Figure 1: Representation of the four datasets

For this work we utilized CCC-3 following the
Time Windows approach, as proposed by T.
Pereira. The data is organized into four different
sets with each referring to a different time window
(2, 3, 4 and 5 years). The characterization of these
datasets is presented in tab:Datasets.

The datasets contains a heterogeneous set of
data. This includes both categorical and numerical
features, as well as features with different propor-

Table 1: Characterization of the datasets utilized: Number
of stable MCI cases (sMCI), number of converter MCI cases
(cMCI), total number of samples and percentage of missing
data.

Dataset sMCI cMCI Total Missing %

Lisbon

2Y 394 107 501 28.38%
3Y 305 163 468 28.27%
4Y 227 204 431 28.34%
5Y 175 235 410 28.96%

Coimbra

2Y 64 10 74 32.72%
3Y 50 17 67 32.46%
4Y 40 21 61 32.64%
5Y 30 23 53 33.89%

tions of missing data. Each feature has a different
or unknown correlation to MCI and AD. In order to
solve problems like these with such datasets there
is the need to set up a classification pipeline. Ide-
ally, any step in this pipeline should be adjustable
without requiring any changes to the remaining
steps. This structure allows us to experiment with
different methods and different configurations in or-
der to achieve the best possible results. In prob-
lems like these, the pipeline is generally composed
of the following steps:

2.1. Data Cleaning
This step consists in scanning the database to
eliminate any errors or inconsistent data. Some
examples can include the presence of decimal val-
ues in categorical features, or values that have no
explanation other than human error. Features with
an extremely high amount of missing data should
also be eliminated. As for the datasets being used,
this step has already been performed by reporting
all errors to the doctors responsible for its mainte-
nance.

2.2. Feature Selection
In the Feature Selection (FS) step, a subset of fea-
tures are selected from the original dataset, based
on how relevant or unique they are. This step pro-
vides significant benefits, such as reducing over-
fitting, decreasing training time and easing under-
standing. Several different methods can be used
for this process, with each of them measuring and
comparing different characteristics of the features.
The considered FS methods for this paper are:
Mutual Information Maximization (MIM) [16]; Chi-
Squared (CS) [3]; And Recursive Feature Elimi-
nation with a Support Vector Machine (RFE SVM)
[17].

2.3. Missing Value Imputation
In this step, algorithms are applied to the dataset
in order to generate values to replace any miss-
ing data. The existence of missing data within
a dataset can heavily affect the results of some
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classifiers, making this an important step in the
classification process. There are several models
to address MVI, which can be divided into two
categories: Discriminative and Generative [10].
Discriminative Models merely model the decision
boundaries between the different classes while
Generative Models focus on learning the probabil-
ity distribution of the individual classes. For this
paper we selected the following Discriminative MVI
methods: Overall Sample Mean (OSM); MissFor-
est (MF) [15]; And Multiple Imputation by Chained
Equations (MICE) [13]. We also selected the fol-
lowing Generative MVI methods: Denoising Au-
toencoder (DAE); Variational Autoencoder (VAE);
And Generative Adversarial Network (GAN).

2.4. Handling Class Imbalance
A class imbalance exists when the final classifica-
tions for all samples in the dataset are not propor-
tionally distributed. Most classifiers excel with a
balanced dataset. To address this issue we can
utilize class balancing methods, that can be clas-
sified as undersampling or oversampling methods.
The process of undersampling can be simply de-
scribed as the removal of instances belonging to
the majority class of the dataset until class bal-
ance is reached, while oversampling consists of
adding new (synthetic) data instances to the mi-
nority class. For this paper we considered the fol-
lowing undersamping methods: Random Under-
sampling (RU); Tomek Links [5]. As well as the
following oversampling methods: Synthetic Minor-
ity Oversampling Technique (SMOTE) [4]; Adaptive
Synthetic (ADASYN) [8]; MAHAKIL [2].

2.5. Classification
This is the process that takes our modified datasets
and attempts to extract patterns from them. The
process of assigning a class to an observation is
described as classification, i.e., through the appli-
cation of algorithms that perform supervised learn-
ing on a set of data and then use the learned model
to predict the classes of other data instances.
The classifiers that are explored in this paper are
the following: Naive Bayes (NB); Decision Trees
(DT); Random Forests (RF); K-Nearest-Neighbour
(KNN); Logistic Regression (LR); Support-Vector
Machine (SVM); Neural Networks (NN).

2.6. Evaluation
In order to determine the best technologies to use
and the overall best configuration, all results need
to be compared and evaluated. Any model will
have no value without a relevant accuracy assess-
ment.

In order to compare the different MVI methods
tested we selected the Root mean square error
(RMSE) measurement, which quantifies the differ-

ence between expected and obtained values. And
to compare the classification results we chose to
use the following set of metrics: Accuracy; Sensi-
tivity; Specificity; Area under ROC (ROC AUC).

The accuracy measure gives us the ratio of cor-
rect predictions to the size of the dataset, and is
the easiest to understand. On the downside, ac-
curacy returns less differentiated values than other
metrics do. By grouping false positive and false
negative values, it does not provide enough infor-
mation on the classifier’s behaviour. Sensitivity (or
true positive rate) and specificity (or true negative
rate) make up for this by providing more differenti-
ated results and by presenting constant results re-
gardless of the dataset being balanced or not. Fi-
nally the ROC AUC measure computes the sensi-
tivity against the false positive rate (1−Specificity)
so as to help compare the two measurements si-
multaneously.

3. Implementation
The experimental components of this paper are di-
vided into two groups. The first deals with MVI
methods and pits the selected methods against
each other in order to determine the best ones.
The second set deals with a complete data min-
ing pipeline capable of classifying data instances
from the CCC-3 dataset.

3.1. Missing Value Imputation
The MVI methods were implemented in python,
with OSM, MICE and MF methods being imported
from default statistics libraries. The DAE’s archi-
tecture was taken from the MIDA paper [7], the
VAE’s from the MIWAE paper [9] and the GAN’s
from the GAIN paper [18]. Each method’s specific
parameters were determined through grid search
performed on the datasets reserved for testing.

The three generative methods (MIDA, MIWAE
and GAIN) were modified to include an early stop-
ping criterion. Each training process utilizes 95%
of the training data provided for actual training, sav-
ing the remaining 5% as a validation set. With each
training epoch, the model attempts to generate val-
ues for the validation set, after which the respec-
tive RMSE is computed and stored. The training
process reaches an early stop if 30 epochs elapse
without the validation error decreasing.

We selected ten training datasets that range
from sets high numbers of observations and at-
tributes to sets with very few observations. No-
tably, we selected datasets of greater, smaller and
similar sizes to the Alzheimer’s Disease prediction
datasets, on which this paper focuses. All these
datasets are complete, with the majority contain-
ing a mix of continuous and categorical data. They
contain real data and were obtained from public on-
line platforms. The names, initialisms and dimen-
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sions of the 10 datasets utilized are present in Ta-
ble 2

Table 2: Datasets utilized for testing with their respective num-
ber of observations and attributes. Datasets initialisms are dis-
played in parenthesis, for future references

Datasets Obs Att
World Happiness Report (WH) 156 10
Heart Disease UCI (HD) 303 14
Boston Housing (BH) 506 14
Pima Indians Diabetes (PI) 768 9
Breast Cancer Wisconsin (BC) 569 30
Red Wine Quality (RW) 1599 12
Gender Recognition by Voice (GR) 3168 20
Predicting a Pulsar Star (PS) 17898 8
House Sales in King County (KC) 21613 17
UFC-Fight Historical Data (UF) 3582 158

3.2. Classification
Before beginning the experimental work, we deter-
mined a pipeline setup. The setup needed to be
versatile and allow for swapping methods at any
point along the classification pipeline. Assuring
this allowed us to compare different techniques at
each step, while maintaining an otherwise identical
setup. To determine the final pipeline’s configura-
tion we would need to perform several tests on the
different state of the art technologies explored pre-
viously. Figure 2 illustrates the proposed classifi-
cation pipeline.

The first step in the pipeline is to split the dataset
into a Training dataset and a Validation dataset,
where the goal is to correctly classify the valida-
tion set. After the split, both datasets go through a
data cleaning step, where attributes with more than
70% missing data are eliminated.

This setup utilizes 5-Fold Cross Validation with
fold randomization which is repeated 10 times. The
remainder of the data pre-processing steps are
performed within each iteration of the cross vali-
dation process. After the train/test division in the
CV process, the selected MVI and FS methods are
performed consecutively on the training dataset.
The trained MVI methods are then used to impute
the testing and validation datasets based on the
training data. The features determined by the FS
methods are selected from the training and val-
idation sets as well. The order in which these
two steps are performed is not a consensual topic
within the scientific community. In T. Pereira’s PhD
dissertation [6], FS was performed before MVI.
Considering that a substantial part of our work was
performed on the MVI step, we opted to perform it
first so as to allow the MVI methods to potentially
highlight the importance of some features.

Afterwards, class balancing is performed exclu-
sively on the training dataset ahead of the learn-
ing process, completing the data pre-processing
steps. The selected classifier is used to learn the

training data and then classify both the test and
validation sets. To assess the results, one or more
evaluation metrics are selected and used to com-
pare the predicted values to the expected ones.
The final results presented are averages of all the
results obtained during the CV process.

The methods selected to be tested on this
pipeline were the ones presented in section 2, with
the addition of a specific set of features to the
FS step. This set of features will be referred as
“T. Pereira’s FS” (or simply TP), and it consists
of the best features chosen for classification in
Telma Pereira’s PhD dissertation [6]. Each model’s
specific parameters were determined through grid
search performed on the CCC-3 datasets.

4. Results & discussion
4.1. Missing Value Imputation
In order to evaluate the performance of the dif-
ferent methods for missing value imputation pre-
viously explored, we opted to setup three different
experiments. These experiments were structured
as follows:

4.1.1 Influence of the Initial Imputation

All the generative models were described in their
respective papers as utilizing Zero-Imputation.
Meaning that, during the imputation process, all
missing values are initially replaced by zero. With
this information, we saw an opportunity to test
whether using Mean-Imputation initially would pro-
vide better results.

To test this hypothesis, the three generative
methods were utilized as well as the ten testing
datasets. For each method-dataset pairing, eight
measurements were performed, with the amount
of missing data in the range of 10% to 45%, with
intervals of 5%. In each of these measurements,
both Zero-Imputation and Mean-Imputation were
performed, and the RMSE value for each imputa-
tion was stored. For each of these measurements
5-Fold Cross-Validation was used.

The results obtained allowed us to withdraw the
following conclusions:

• Dataset Size - The size of the dataset did not
appear to have any major influence on the re-
sults observed. Even so, it is possible to note
that, as the dataset’s dimensions increase, the
difference in the error obtained from using ei-
ther of the methods decreases.

• Missing Rate - The Zero-Imputation method’s
results, when compared to the Mean-
imputation ones, improved as the missing rate
increased. This means that, in test cases
where the Mean-Imputation method provided
overall better results, the difference in error
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Figure 2: Pipeline for the entire classification process, including the evaluation of the obtained results

would decrease with the increase of miss-
ing data. Or in the case that both meth-
ods performed comparably overall, the Zero-
Imputation method would have the better re-
sults for higher values of missing data.

Overall, the difference in results was never over-
powering, nevertheless both the MIWAE and MIDA
methods performed better with the use of Mean-
Imputation,on average. The GAIN method, on the
other hand, performed identically with either of the
initial imputation methods. Considering this, from
this test onward, the MIWAE and MIDA methods
will utilize Mean-Imputation while the GAIN method
will utilize Zero-Imputation.

4.1.2 Influence of Dataset Size

In the second set of experiments we aimed to
understand how the dimensions of the dataset
being used can influence the MVI methods ex-
plored. To measure that we decided to pick a single
dataset and divide it into progressively bigger sub-
sets, for each experiment. The datasets with the
highest amount of observations (House Sales in
King County) and the highest amount of attributes
(UFC-Fight Historical Data) were chosen for ex-
periments varying the amount of observations and
attributes respectively. The subsets were created
according to an exponential scale. The first test
had subsets created from the KC dataset with the
amount of observations equal to 2n, n ∈ [7, 14].
The second test had subsets created from the
UF dataset with the amount of attributes equal to

2n, n ∈ [3, 7]. We evaluated the three generative
methods described previously (MIWAE, MIDA and
GAIN), as well as the state-of-the-art discriminative
methods (MICE and MF) and also OSM for refer-
ence.

Figure 3: RMSE for imputation performed by all the MVI meth-
ods (MF, MICE, MIDA, GAIN, MIWAE, OSM) on the House
Sales in King County Dataset (KC) with 20% missing data, for
different numbers of observations.

First, we test how the length of the dataset can
affect the imputation process. In figure 3 we can
see the results for the imputation performed on the
exponentially increasing subsets of the KC dataset.
As was expected, an increase in the amount of ob-
servations results in a decrease in RMSE for all
of the MVI methods. The increase in the num-
ber of observations affected all the MVI methods
similarly, with the exception of the MIDA and MI-
WAE methods. These two methods struggled with
the increase in the dataset’s size, with their error
values eventually stagnating, while the others kept
decreasing. In this experiment the MICE and MF
methods still performed the best out of all.
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Figure 4: RMSE for imputation performed by all the MVI meth-
ods (MF, MICE, MIDA, GAIN, MIWAE, OSM) on the UFC-Fight
Historical Data Dataset (UF) dataset with 20% missing data, for
different numbers of attributes.

Figure 4 presents the results for the imputation
performed on the subsets of the UF dataset with an
exponentially increasing number of features. We
can note that the OSM method used for reference,
resulted in fairly consistent RMSE values, which
was to be expected. Again, as was expected, an
increase in the amount of features resulted in a
slight decrease in RMSE for all of the MVI methods,
with the exception of the MIWAE method which re-
turned somewhat constant values. The increase in
the number of features affected all other MVI meth-
ods in a comparable manner. Similarly to the pre-
vious test, in this one the MICE and MF methods
still performed the best out of all methods, with the
MIDA and GAIN presenting promising results.

4.1.3 Comparison of MVI methods

In the final set of experiments we aimed to com-
pare the overall performance of all MVI methods
explored so far, in order to determine which mod-
els perform the best. To perform this experiment,
all the imputation methods previously described
were used, on the ten datasets. For each imputa-
tion method-dataset pairing, eight measurements
were performed, with the amount of missing data
∈ [0.1, 0.45]. For each of these measurements 5-
Fold Cross-Validation was used.

Figure 5: RMSE for imputation performed by all the MVI meth-
ods (MF, MICE, MIDA, GAIN, MIWAE, OSM) on the Breast
Cancer Wisconsin Dataset (BC) for values of missing data
∈ [0.1, 0.45].

In figure 5 we can see the RMSE for each of the
MVI methods on the BC dataset. Out of the 10

datasets utilized, the BC dataset is the most sim-
ilar in size to the CCC-3 datasets explored in this
paper. From the obtained results we can note the
following conclusions:

• Dataset Size - The MICE and MF methods
were the clear best performers in the larger
datasets, confirming what we observed previ-
ously. The MIDA method had the worst drop
in performance as the datasets increased in
size. Although it was one of the best per-
formers in datasets of smaller size, along with
MICE and MF. The GAIN and MIWAE methods
had rather consistent results, independently of
the amount of observations in the dataset uti-
lized. MIWAE had worse results in datasets
with more features.

• Missing Rate - Compared to the remaining
methods, MF, MIDA and MIWAE presented ex-
tremely consistent results as the rate of miss-
ing data increased. On the other hand, the
GAIN and MICE methods sometimes strug-
gled as the amount of missing data neared
50%. Overall, the MF, MICE and MIDA meth-
ods performed the best, regardless of miss-
ing rate. GAIN performed better than MIWAE
for smaller missing rates, and the reverse was
true for larger missing rates.

Overall, MF performed better than the remain-
ing methods in the majority of the experimental se-
tups. Immediately following it, the MICE and MIDA
methods were consistently among the best meth-
ods. The GAIN method had situational setups that
allowed it to outperform some of the other meth-
ods. It presented particularly good results in larger
datasets with smaller miss rates. Inversely, MI-
WAE’s best performing test scenarios were those
with smaller datasets and larger amounts of miss-
ing data.

4.2. Classification
The goal in this section was to determine the com-
bination of methods that would allow us to achieve
the best classification results possible for each
dataset. Considering the amount of variables at
play, our tests were performed according to a fun-
neling strategy, where some of those variables are
eliminated with each test that is performed.

4.2.1 Previous Result Recreation

First, since this paper aims to build upon the work
performed on Telma Pereira’s PhD dissertation [6],
we decided to replicate T. Pereira’s pipeline config-
uration to use as a baseline for our results. The
pipeline was set up using the SMOTE method for
handling class imbalance, the OSM method for
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missing value imputation and seven different clas-
sifiers: NB, DT, SVM RBF, SVM Poly, KNN, RF and
LR.

Figure 6: Comparison of the ROC AUC score between results
presented on Telma Pereira’s PhD dissertation (dark grey) and
results obtained for this thesis (light grey), while using compa-
rable pipeline setups, for the 5Y dataset.

The results obtained with our replicated setup
lagged behind those of T.Pereira, albeit not by an
insurmountable amount. Regrettably, the datasets
seem to have suffered some reorganization, which
means that not all the features utilized in T.
Pereira’s dissertation seem to be present in the
latest version of the datasets. The most notable
differences come when using the DT and KNN
classifiers, which consistently presented worse re-
sults for all datasets. On the other hand, the SVM
Poly classifier returned identical results to the ones
expected. Overall, the NB, RF and LR classi-
fiers, which were consistently the best performers
in Pereira’s work, present some of the most simi-
lar results. This similarity allows us to have some
confidence in emulated pipeline setup.

4.2.2 Determining the best Classifiers

In the first set of experiments our aim was to re-
duce the list of potential classifiers available. The
tests were performed on the eight classifiers de-
scribed in section 2, after grid search was per-
formed to tune their respective parameters. All
tests were performed exclusively on the CCC-3 Lis-
bon datasets, utilizing 10×5-Fold Cross Validation,
with an 80/20 train/validation split.

The features in T. Pereira’s FS were utilized and
the SMOTE method was picked to address class
imbalance. These methods were chosen accord-
ing to the previous replica. For MVI we opted to
use the MissForest method, as we concluded in
section 4.1 that it was the one that provided us with
the best results.

The classification scores obtained on the 4Y
testing dataset are available in table 3. From the

Table 3: Classification results of 10×5-Fold Cross Validation on
the 4Y dataset.

Classifier Accuracy AUC
NB 0,81 ± 0,03 0,81 ± 0,03
DT 0,65 ± 0,04 0,65 ± 0,05
SVM RBF 0,73 ± 0,06 0,73 ± 0,06
SVM Poly 0,76 ± 0,04 0,75 ± 0,04
kNN 0,69 ± 0,05 0,68 ± 0,05
RF 0,77 ± 0,03 0,77 ± 0,03
LR 0,75 ± 0,05 0,75 ± 0,05
NN 0,75 ± 0,04 0,75 ± 0,04

obtained results some patterns can be noted, such
as the Naive Bayes classifier consistently return-
ing better Accuracy and ROC AUC results than the
remaining classifiers. Nonetheless, this test was
not aimed at selecting the single best classifier, as
other variables that were not yet tested can have di-
rect impact on the classifier’s performance. There-
fore, four classifiers were selected as the best per-
formers: NB, SVM Poly, RF and NN.

4.2.3 Determining the best method for Class
Balancing

Having reduced the number of classifiers, the next
step is to do the same with the proposed methods
for class balancing. To do so, the same classifica-
tion setup was utilized for the five class balancing
methods being tested.

Figure 7: Comparison of the ROC AUC score obtained while
using five different methods for class balancing (respectively
Random Undersampling, SMOTE, ADASYN, TOMEK Links and
MAHAKIL). The results were obtained using the four best per-
forming classifiers mentioned previously on the 2Y dataset.

The ROC AUC scores, grouped according to the
classifiers that were utilized, are available in figure
7. The obtained results allow for some immediate
observations:

• The Random Undersampling method is clearly
inefficient and significantly worse than others.

• Even though the TOMEK Links method was
overall one of the best, the Neural Network
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classifier performs worse on average when
being paired with this method.

• The overall best ROC AUC scores for each
dataset were obtained with the SMOTE
method (for datasets 2Y, 3Y and 4Y) and with
the TOMEK Links method (for the 5Y dataset).

In conclusion, barring the RU method, all other
methods result in fairly comparable scores. Moving
forward we decided to reduce the list of Class Bal-
ancing methods to SMOTE and TOMEK Links, for
the following reasons: On average, both of these
were among the three best performing methods.
Furthermore, since the TOMEK Links method per-
forms undersampling, choosing it allows for more
diversity in future testing scenarios.

4.2.4 Determining the best Missing Value Im-
putation method

In this set of experiments, our aim is to apply some
of the research performed regarding MVI. A similar
pipeline setup to the ones utilized previously was
selected. The MIWAE method was not tested due
to it being the worst performer in the last section for
similar datasets.

Figure 8: Comparison of the ROC AUC score obtained while
using five different methods for MVI (respectively Overall Sam-
ple Mean, MICE, MissForest, MIDA and GAIN). The results
were obtained using the four best performing classifiers (NB,
SVM Poly, RF and NN) and the SMOTE method for class bal-
ancing on the 4Y dataset.

Some of the ROC AUC scores, grouped accord-
ing to the classifiers that were utilized, are available
in figure 8. The obtained results allow for some im-
mediate observations:

• The MIDA method was the worst performer,
seemingly struggling more with the more un-
balanced datasets (2Y and 3Y).

• The MICE method performed significantly bet-
ter when paired with the NB classifier than with
any other classifier.

Figure 9: Comparison of the ROC AUC score obtained while
using four different methods for FS (respectively MIM, CS, SVM
RFE and the features used in T. Pereira’s dissertation). Each
FS method was tested in four setups that result of a combina-
tion of two CB methods (SMOTE and TOMEK) and two MVI
methods (MF and GAIN). Each column contains the average
of the scores obtained with the four best performing classifiers
(NB, SVM Poly, RF and NN) on the 4Y dataset.

• The RF classifier had the most consistent re-
sults, with relatively small variations for the dif-
ferent MVI methods.

Further analysing the results, we can note that
the class balancing method seemed to have mini-
mal impact on the performance of the different MVI
methods. Overall setups with SMOTE method re-
turned better results than ones with TOMEK, and
the best ROC AUC result for each dataset was al-
ways obtained utilizing SMOTE.

Overall, the two best performing MVI methods
were MF and GAIN. Not only did these contribute
to some of the best results for each dataset, but
they were also consistently among the best meth-
ods regardless of the classifier being used. Since
there is a need to further restrict the amount of vari-
ables being used for testing, we chose to use those
two methods in the following testing scenarios.

4.2.5 Determining the best method for Feature
Selection

Finally, in this section, several methods for Feature
Selection are compared. Again, the pipeline fol-
lows a similar setup to the previous ones. Consid-
ering all the variables being tested, this resulted in
a total of 64 setups to compare the performance
of the FS methods. With this amount of informa-
tion, we redirected our goals to group some of the
results in order to find correlations or patterns, as
well as having as many variables as possible so as
to find the best setup configuration for each of the
datasets.

Figure 9 contains a graph with the results for the
4Y dataset. In order to ease understanding, each
column contains the average of the scores ob-
tained with the four different classifiers (NB, SVM
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Poly, RF and NN) for that exact setup. While it
may ease the illustration of the results, grouping
the data in such a manner can “dilute” the results,
occluding some important outlier cases. Knowing
this, all the following conclusions were drawn from
the original data collected. Some of the conclu-
sions noted, organized by the different variables
tested, were:

• Classifier - The NB classifier was consistently
worse when paired with the SVM RFE method.
The same relation was noticeable between the
NN classifier and the set of features used in T.
Pereira’s work (which can be relevant seeing
as NNs were not utilized in T. Pereira’s work).

• MVI Methods - GAIN was significantly more
consistent than MF, and setups with GAIN pre-
sented smaller variability when swapping be-
tween datasets. The different FS methods did
not seem to have a big impact on the perfor-
mance of the MVI methods, with the notable
exception being CS which returned signifi-
cantly better results when paired with GAIN.

• CB Methods - Generally the SMOTE method
was the ideal choice for the more unbalanced
datasets (2Y and 3Y), while TOMEK per-
formed better with the more balanced ones
(4Y and 5Y). SMOTE performed consistently
regardless of the FS method. TOMEK always
performed better when paired with CS, and
worse when paired with SVM.

With every experiment performed so far, the dif-
ference in scores tends to be smaller and less no-
ticeable, and that is evident in this set of measure-
ments. Overall the four different techniques for FS
performed comparably to each other, with only the
SVM RFE performing slightly worse than all other
methods.

While there was no clear best performing tech-
nique for FS, it was evident that some combina-
tions of different parameters work significantly bet-
ter than others, as was noted before. It is also rele-
vant to point out the impact that each of these tech-
niques had on the size of the datasets being tested.
On average, the CS method resulted in datasets
with the highest amount of features, while the fea-
tures from T. Pereira were the smallest group (al-
ways 42 features).

4.2.6 Selecting the best Setup

The last set of experiments allowed us to test 64
different setups for each of the four datasets. Hav-
ing all these measurements allows us to finally
compare complete setups and determine the best

ones. Table 4 contains the configurations of the se-
tups that resulted in the highest ROC AUC scores
for each of the datasets.

Dataset Classifier CB MVI FS
T. Pereira NB SMOTE OSM TP
2Y NN SMOTE GAIN CS
3Y NB SMOTE MF MIM
4Y RF TOMEK MF CS
5Y NB TOMEK GAIN CS

It is also relevant to point out that the best setup
for all the datasets on average is the setup that re-
turned the best results for the 5Y dataset (utilizing
NB, TOMEK, GAIN and CS). In table 5 it is pos-
sible to compare the original results to the ones
obtained with these setups. The original results
were obtained in section 4.2.2 with the replica of
T. Pereira’s setup (utilizing NB, SMOTE and OSM).
These can be compared with our two proposed se-
tups: The first proposal being the best individual
setup for each of the years, i.e., the setups de-
scribed in tab:BestSetups for each of the datasets;
The second proposal being the best overall setup
for all the datasets (NB, TOMEK, GAIN and CS).

Table 5: Comparison between the original results obtained in
section 4.2.2 and results obtained with two different proposed
setups (best individual setup for each year and best overall
setup, respectively).

Dataset Setup ROC AUC Accuracy

2Y
Original 0.73 0.75
Proposal #1 0.79 0.78
Proposal #2 0.75 0.76

3Y
Original 0.77 0.76
Proposal #1 0.79 0.78
Proposal #2 0.79 0.78

4Y
Original 0.76 0.72
Proposal #1 0.81 0.81
Proposal #2 0.79 0.79

5Y
Original 0.76 0.71
Proposal #1 0.82 0.81
Proposal #2 0.82 0.81

Finally we decided to return to the testing sce-
narios utilized in T. Pereira’s work, described in
section 4.2.1. In these scenarios the entire Lis-
bon CCC-3 dataset is utilized for training, while the
Coimbra CCC-3 dataset is used as validation. Ta-
ble 6 and table 7 contain the Cross-Validation re-
sults obtained from the Lisbon dataset, and the val-
idation results obtained from the Coimbra dataset,
respectively. In the Lisbon CV results (table 6)
we can note a small improvement from the results
obtained with replicated setup, although even the
improved results lag behind those obtained in T.
Pereira’s dissertation. Nonetheless, as there is no
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way for us to recreate an exact replica of that setup,
T. Pereira’s results can only be used as a reference
and not as direct comparison.

In the Coimbra results (table 7) however, the
results obtained from the proposed setups were
equal or worse than those obtained with the replica
setup. This discrepancy in results could suggest
that our proposed setups are over-fit to the train-
ing dataset, but the fact that all the measurements
were obtained using Cross Validation and an addi-
tional Validation set eliminates some of those con-
cerns. Another possibility could be that the meth-
ods explored in this thesis managed to bring out
more information from the features that are present
in the Lisbon dataset but are entirely missing from
the Coimbra dataset.

Table 6: Comparison between the results presented on Telma
Pereira’s PhD dissertation (T. Pereira), the results obtained
while replicating that setup (Replica), and results obtained from
the two best setups proposed in this thesis (Proposal #1 and
Proposal #2). These scores were obtained from the CV pro-
cess performed on the CCC-3 Lisbon dataset.

AUC
2Y 3Y 4Y 5Y

T. Pereira 0.83 0.85 0.86 0.87

Replica 0.77 0.80 0.81 0.82
Proposal #1 0.78 0.80 0.82 0.84
Proposal #2 0.78 0.80 0.81 0.83

Table 7: Comparison between the results presented on Telma
Pereira’s PhD dissertation (T. Pereira), the results obtained
while replicating that setup (Replica), and results obtained from
the two best setups proposed in this thesis (Proposal #1 and
Proposal #2). These scores were obtained from the validation
dataset (CCC-3 Coimbra).

AUC
2Y 3Y 4Y 5Y

T. Pereira 0.66 0.67 0.64 0.63

Replica 0.68 0.66 0.61 0.59
Proposal #1 0.63 0.66 0.61 0.53
Proposal #2 0.65 0.62 0.60 0.53

5. Conclusions
In this work we studied the prognosis and evolu-
tion of Alzheimer’s Disease in patients initially diag-
nosed with Mild Cognitive Impairment. Being able
to correctly diagnose AD at early stages and being
able to predict its evolution can have significant so-
cial and economic impacts globally. To tackle this
issue, we utilize data collected from Neuropsycho-
logical tests. This data comes with some down-
sides, such as incongruities based on the collec-
tion sites and responsible teams, small sample
sizes and unbalanced datasets. Our approach to
overcome these problems was to research and im-

plement state-of-the-art techniques and algorithms
that address areas like Missing Value Imputation,
Class Balancing, Feature Selection and Classifica-
tion.

Initially we implemented six different algorithms
to address MVI in datasets. In order to test those
algorithms, we collected 10 datasets of diverse
real-world data and set up a series of experiments.
Each of those experiments allowed us to com-
pare the different algorithms and draw conclusions
based on their performance.

Afterwards we constructed a modular data min-
ing pipeline, capable of swapping between differ-
ent methods at each stage. Before performing any
tests, we had implemented a total of eight classi-
fiers, five CB methods, six MVI methods and four
FS techniques. In order to establish a baseline, we
attempted to replicate the pipeline setup present
in T. Pereira’s work [6]. After that, we recorded
Accuracy, Sensitivity, Specificity and ROC AUC
scores obtained on two different configurations of
the datasets: The first where only the Lisboa CCC-
3 dataset was used for both training and validation,
and the second where the Lisboa CCC-3 set was
used for training and the Coimbra CCC-3 for vali-
dation.

Having acquired baseline scores, we could now
attempt to determine the best pipeline setup. To
do so we adopted an incremental testing approach
where, at each stage, all but one steps in the
pipeline would be fixed so that the remaining step
could be tested with the different methods available
for it. After each testing iteration the worst perform-
ing methods would be discarded. By the final set of
tests, the available methods had been restricted to
four classifiers, two CB methods, two MVI meth-
ods and four FS techniques. Pipelines with ev-
ery possible combination of these methods were
tested, allowing us to choose the combinations that
resulted in the highest classification scores. From
those scores we proposed two solutions to the orig-
inal problem: The first proposal consists of the best
setup for each individual dataset; the second pro-
posal consists of the setup that resulted in the high-
est score on average for all the datasets.

Both proposed setups ended up returning equal
or higher scores than the established baseline.
This is true for the validation scores in the first
dataset configuration (only using the Lisbon CCC-
3 dataset) as well as the cross-validation testing
scores in the second dataset configuration (using
Lisbon and Coimbra CCC-3 datasets). However,
the proposed setups were not able to overcome
the baseline validation scores (Coimbra CCC-3
dataset) of the second configuration.
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