
Towards Automated Checking of Input Data Usage with
Facebook Infer

Rui Filipe da Silva Ferreira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Fernando Peixoto Ferreira
Prof. Rui Filipe Lima Maranhão de Abreu

Examination Committee

Chairperson: Prof. António Manuel Ferreira Rito da Silva
Supervisor: Prof. João Fernando Peixoto Ferreira

Member of the Committee: Prof. José Faustino Fragoso Femenin dos Santos

January 2021

Acknowledgments

I would like to thanks my parents and my sister for the endless wisdom, guidance and motivation

through my academic life. In every moment of struggle they were there with words of encouragement

and ready to listen to my complaints, fears and doubts. This project could not have been done without

their support.

I would also like to thank my dissertation supervisors Prof. João Ferreira and Prof. Rui Maranhão

for the motivation to keep going when I had doubts and for the different perspective they gave to this

project.

Last but not least, to all my friends and previous colleagues that helped me grow in the face of

adversity and for their patience and wisdom in the times I needed most.

To each and every one of you – Thank you.

Abstract

In modern, data-intensive applications the use and modification of input data is very frequent. During

the various transformations that the data suffers, parts can remain unused due to programming errors.

These errors can be hard to detect and locate due to the high amount of data transformations, and

can have real-life consequences. In this project we propose the implementation of a recent analysis

proposed by Urban and Müller as an analysis for Facebook Infer, a popular static program analyser

for Java, C, C++ and Objective C. We show that our prototype can effectively identify input data usage

errors in the same benchmark used by related work.

Keywords

Data Usage; Static Analysis; Abstract Interpretation; Software Reliability.

iii

Resumo

Em aplicações modernas e com uso intensivo de dados, o uso e modificação de dados de entrada é

muito frequente. Durante as várias transformações que os dados sofrem, partes podem permanecer

inutilizadas devido a erros de programação. Estes erros podem ser difı́ceis de detetar e localizar dado

o elevado número de transformações de dados, podendo ter consequências na vida real. Neste projeto

propomos a implementação de uma análise recente proposta por Urban e Müller na forma de uma

análise no Facebook Infer, um popular analisador de programas estático para Java, C, C++ e Objective

C. Demonstramos que o nosso protótipo deteta com eficácia erros de utilização de dados de entrada

no mesmo benchmark usado no trabalho relacionado.

Palavras Chave

Uso de Dados; Análise Estática; Interpretação Abstrata; Fiabilidade de Software.

v

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Hypothesis . 3

1.3 Research Questions . 3

1.4 Contributions . 4

1.5 Organization of the Document . 4

2 Related Work 5

2.1 Data Debugging for Spreadsheets . 7

2.2 Static Analysis of Spreadsheet Applications . 8

2.3 Input Data Usage in Python . 8

3 Solution 11

3.1 Overview . 13

3.2 Infer Framework . 14

3.3 Abstract Domain . 17

3.3.1 MapArray . 17

3.3.2 MapCall . 18

3.4 Transfer Functions . 19

3.4.1 Load . 20

3.4.2 Store . 22

3.4.3 Call . 24

3.4.4 Prune . 26

3.5 Implementation . 27

3.5.1 Limitations . 29

4 Evaluation 31

4.1 Experimental Setup . 33

4.2 Artificial Benchmark . 33

4.3 Non-Controlled Benchmark . 34

vii

5 Conclusion 37

5.1 Conclusions . 39

5.2 Future Work . 39

viii

List of Figures

3.1 Input Usage Errors Found by Our Implementation . 28

3.2 Graphical Interface . 29

3.3 Single Instruction in Graphical Interface . 29

ix

x

List of Tables

4.1 Detailed Artificial Benchmark Results . 34

1

1
Introduction

Contents

1.1 Motivation . 3

1.2 Hypothesis . 3

1.3 Research Questions . 3

1.4 Contributions . 4

1.5 Organization of the Document . 4

2

1.1 Motivation

Data science applications normally deal with considerable amounts of input data that go through long

pipelines of processes such as data acquisition, data cleansing, and data preparation. As data is pro-

cessed, programming errors can cause parts of the input data to remain unused, leading to incorrect

or unexpected outputs. The presence of such errors is difficult to detect because the errors are usually

subtle and do not raise any compilation errors or warnings. Moreover, the results produced by these ap-

plications are usually plausible. The large amount of data transformations that can occur during program

execution also hinders detection of these errors.

As pointed out by Urban and Müller [1], a real-world example that shows how input data usage errors

can have nefarious societal consequences is that of the paper “Growth in a Time of Debt”, published by

economists Reinhart and Rogoff in 2010. This paper analyzed the correlation between economic growth,

inflation and external debt, using data from forty four countries across two hundred years. However, it

was later found by economists Herndon, Ash and Pollin that data from five countries was unintentionally

excluded from the analysis due to a programming error [2]. It is worth noting that critics of this paper

believe that it has led to unnecessary adoption of austerity policies in several countries [3].

To address this, Urban and Müller recently proposed the first static analysis, based on abstract

interpretation, capable of detecting input data usage errors [1]. They implement their analysis in a

research prototype, Lyra, that supports a subset of Python. We propose to adapt and implement their

analysis for Facebook Infer’s Intermediate language SIL. Infer is an industrial-strength static program

analysis tool for Java, C, C++, and Objective C [4].

1.2 Hypothesis

Our main hypothesis is that we can develop an input data usage analysis, similar to Urban and Müller’s

analysis [1], that works for Infer’s intermediate language SIL. Implicit in the main hypothesis are the sub-

hypotheses that we can create an analysis that is useful in finding input data usage errors in real-world

programs.

1.3 Research Questions

The main research questions addressed by our work are:

RQ1. Is it possible to implement an input data usage analysis similar to Urban and Müller’s analy-

sis [1] that works with the static analysis tool Infer?

RQ2. Can such an analysis work for several programming languages?

3

RQ3. Can such an analysis be used to analyze real code and find potential errors?

1.4 Contributions

The contributions of this paper are the following:

• Definition of an input data usage analysis similar to Urban and Müller’s analysis [1] for Infer’s

intermediate language SIL.

• Implementation of the analysis as an Infer checker. At the time of writing, our implementation

only supports the analysis of Java programs. Java is extensively used in data analysis programs

[5–8] and has the potential to be used in data science programs since it is one of the most used

programming languages 1.

• Evaluation of the analysis with a benchmark specifically created to test data input usage analyses

and with real-world Java programs.

1.5 Organization of the Document

This thesis is organized as follows: Chapter 2 reviews the research done revelant to our work, and the

projects aiming to solve the problem that we address.

Chapter 3 presents the solution that we developed, starting with an overview of our approach in

Section 3.1, proceeding into the more technical details in Sections 3.2, 3.3, and 3.4. The chapter ends

with the details of the implementation and its limitations.

Chapter 4 shows the results of our implementation for a benchmark specifically created to test input

usage analyses. We also present results of executing our analysis in real-world Java programs.

Chapter 5 gathers our concluding thoughts about the implementation of this analysis, its usefulness,

and the prevalence and effects of input data errors in real-world programs.

1Tiobe Programming Community Index: https://www.tiobe.com/tiobe-index/

4

https://www.tiobe.com/tiobe-index/

2
Related Work

Contents

2.1 Data Debugging for Spreadsheets . 7

2.2 Static Analysis of Spreadsheet Applications . 8

2.3 Input Data Usage in Python . 8

5

6

The work already done in this field is short since, to the best of our knowledge, only one program was

developed that focuses specifically in input data usage errors in programs analyzing data. Another two

tools were developed but are focused towards spreadsheet applications and on errors in the data, rather

than the code that analyzes the data. We are going to start with by reviewing the two tools developed

for spreadsheets, and conclude with the tool which our approach is based on.

2.1 Data Debugging for Spreadsheets

Barowy et al. [9] developed a data debugging tool, CHECKCELL, that “combines program analysis

and statistical analysis to automatically find potential data errors”. Barowy focused this tool on spread-

sheets programs because of their intensive data use, and their extensive use of formulas that propagate

an input error into possibly multiple other variables. The tool works as a Microsoft Excel add-in and

works by identifying “cells that have an unusually high impact on the spreadsheet’s computations”.

The basis for this tool is that if some input data has a “disproportionate impact on the computation”,

then it is either wrong or very important data. Barowy explains that “a computation is not likely to

be correct if the input data is not correct”, and that even though there are a plethora of tools to find

programming errors, there are few that look for data errors. The tools traditionally used by programmers

to validate input are precise specifications, which are hard to define and fail to detect subtle errors, data

cleaning which “copes with errors via cross-validation with ground truth data, which may not be present”,

and statistical outlier detection which typically “reports data as outliers based on their relationship to a

given distribution (e.g., Gaussian)”, considering that a valid input distribution is hard to find. Additionally

a input data error does not need to have a different distribution for it to cause program errors.

Input data errors have 3 main types [10]:

• Data Entry Errors: Typographical and transcriptions errors.

• Measurement Errors: Data source error or malfunction.

• Data Integration Errors: Inconsistencies due to mixing of different data, for example unit of mea-

surement mismatch.

This tool ranks inputs by the degree to which they influence the output. The author calls this approach

“Data Debugging”. One disadvantage of this approach is that the tool does not focus on finding small

errors that do not cause a major effect on the output, instead focusing only on the big impact errors.

More specifically this tool starts by building a data dependence graph for the computations, and then

analyzes data impact by “randomly re-sampling data items with data chosen from the same group (e.g.,

a range in a spreadsheet formula) and observing the resulting changes in computations that depend on

7

that data”. In other words, CHECKCELL tests if the replacement of a value by other in the same input

vector causes big changes to the output.

2.2 Static Analysis of Spreadsheet Applications

Rival and Cheng et al. [11] created a static analysis in order to detect type-unsafe operations, like

comparing integer values with string values in spreadsheets at run-time. The author concluded that

this happens because spreadsheets use a weak type system, which mostly does not consider a type

mismatch an error and because “data and formulas can be dynamically set, read or modified”, allowing

for this errors to happen while not generating an error for the user.

The analysis uses abstract interpretation to reduce the spreadsheet information (for example content

types) into only the necessary properties and ties them into zones in spreadsheet tables. This “infers

invariants by conservative abstract interpretation of spreadsheet applications”. It also lets users choose

which behaviors are deemed unsafe and should be reported, making it a more flexible tool.

Abstract Interpretation is a:

“theory of semantics approximation that is used for the construction of semantic-based pro-

gram analysis algorithms” [12].

In practice it abstracts a concrete set of properties (concrete domain) from a program into an abstract

set of properties (abstract domain), reducing the amount of information used in an analysis. The state of

the program at any point is called abstract state, which changes via a set of transfer functions, according

to the program instructions.

2.3 Input Data Usage in Python

Urban and Müller et al. [1] developed a tool, Lyra1 that uses static analysis based on abstract inter-

pretation [13] to detect unused input in Python programs, a language extensively used in Data Science

applications. The tool has two ways of analysing programs. One is based on Syntactic Dependencies

Between Variables, and the other is based on Strongly Live Variable Analysis. Both analyses works

backwards, starting the analysis in the last line of code of a program.

Strongly Live Variable Analysis is reliable for data usage in both terminating and non-terminating

programs. Its downfall is that it is imprecise in terms of implicit dependencies between program variables.

This analysis determines that a variable is strongly live if used in a statement other than an assignment,

or if used to define other strongly live variables in an assignment.

1Lyra’s webpage:https://caterinaurban.github.io/project/lyra

8

https://caterinaurban.github.io/project/lyra

Syntactic Dependencies between Variables is more precise than the previous method. This method

is based on monitoring if a variable influences another variable. For this the program examines the

possible interactions between variables and gives them a classification, so that in the end of the analysis,

the classification of the input variables determines if those have been used. Additionally, to capture

implicit dependencies between program variables “...from variables appearing in boolean conditions

of conditional and while statements, we track when the value of a variable is used or modified in a

statement based on the level of nesting of the statement in other statements.” [1]. In other words, the

idea behind using the syntactic dependency between variables is to examine the possible interactions

between variables and give them a classification, so that in the end of the analysis, the classification of

the input variables determines if those have been used.

The analysis abstract state consists of a classification for each variable in the program. The possible

classifications in Urban and Müller’s analysis are: “Used” (U), “Not Used” (N), “Overwritten” (W) and

“Below” (B). “Overwritten” signifies a variable that was previously used but was re-written, and “Below”

a variable that was used at a lower nesting level.

Taking into account the classifications of all variables inside an instruction, the interaction between

variables and the type of instruction being executed, the analysis will update each variable classification

according to the transfer function ΘQ that transforms an abstract state q as follows:

ΘQJskipK(q) def
= q

ΘQJx = eK(q) def
= ASSIGNJx = eK(q)

ΘQJif b : s1 else: s2K(q)
def
= POP ◦ FILTERJbK ◦ ΘQJs1K ◦ PUSH(q)
tQPOP ◦ FILTERJbK ◦ ΘQJs2K ◦ PUSH(q)

ΘQJwhile b : sK(q) def
= lfpvQ

q ΘQJif b : s else : skipK(q)
ΘQJs1 s2K(q)

def
= ΘQJs1K ◦ΘQJs2K(q)

The rule for assignments stipulates that a variable is considered “U” if it is utilized inside an assign-

ment to another variable already considered “U” or “B”. In that case, the second variable classification

changes to “W” unless it is also present in the first variable, in which case it remains with the same

classification. More formally, it is defined as:

ASSIGNJx = eK(m)
def
= λy.


W y = x ∧ y 6∈ VARS(e) ∧m(x) ∈ {U,B}
U y ∈ VARS(e) ∧m(x) ∈ {U,B}
m(y) otherwise

Note that if the variable being assigned does not have one of these classifications, then both variables

remain unchanged.

Another way a variable can be classified as “U” is if it appears in the Boolean condition of a statement

that uses or modifies another variable already classified as “U”. This is captured in the definition of the

FILTER function, where X is the set of all variables:

9

FILTERJeK(m)
def
= λy.

{
U y ∈ VARS(e) ∧ ∃y ∈ X : m(y) ∈ {U,W}
m(y) otherwise

Informally, the FILTER function searches the domain for variables that are classified as “U” or “W”.

If it finds any variables in those conditions, then the variables present on the conditional statement get

classified as “U”. Otherwise, the current classifications remain unchanged.

Because of the nesting level changes and in order to detect classification changes inside them, the

analysis maintains a stack of maps that “... grows or shrinks based on the level of nesting of the currently

analyzed statement” [1]. In words, the PUSH function changes the classification of all variables “U” or

“W” so that the FILTER function can capture any new variables being classified as “U” or “W” inside a

conditional set of instructions.

PUSH(〈m0,m1, ...,mk〉)
def
= 〈INC(m0),m0,m1, ...,mk〉

INC(m)
def
= λy.


B m(y) ∈ {U}
N m(y) ∈ {W}
m(y) otherwise

The POP function reverses the changes that PUSH does, but only to the variables that have not

been changed since. It is defined as:

POP (〈m0,m1, ...,mk〉)
def
= 〈DEC(m0,m1), ...,mk〉

POP (m, k)
def
= λy.

{
k(y) m(y) ∈ {B,N}
m(y) otherwise

Note that the POP function is used to return the variable classifications to a regular state, after an

analysis of a conditional set of instructions finishes.

The results from the analysis are presented in a Control Flow Graph that presents the abstract

domain (composed of every variable present in the program and its classification) in each node with the

classification of each variable after each instruction analyzed.

10

3
Solution

Contents

3.1 Overview . 13

3.2 Infer Framework . 14

3.3 Abstract Domain . 17

3.4 Transfer Functions . 19

3.5 Implementation . 27

11

12

In this Chapter, we describe the approach that we followed to implement an analysis that detects input

data usage errors. We start with an overview and then: we describe SIL, the intermediate language of

Infer on which we defined the analysis; we describe the abstract domain used and the transfer functions

defined; and we present relevant details of our implementation.

3.1 Overview

Our work is based on the analysis originally developed by Urban and Müller [1]. Their analysis is im-

plemented in a tool called Lyra1. The analysis is based on syntactic dependencies between variables

and abstract interpretation, and it works backwards, starting the analysis in the last line of code of a

program. The idea behind using the syntactic dependency between variables is to examine the possible

interactions between variables and give them a classification, so that in the end of the analysis, the

classification of the input variables determines if those have been used.

Possible variable classifications. The analysis classifies program variables into different categories.

The possible classifications in Urban and Müller’s analysis are: “Used” (U), “Not Used” (N), “Overwrit-

ten” (W) and “Below” (B). “Overwritten” signifies a variable that was previously used but was re-written,

and “Below” a variable that was used at a lower nesting level. Our work introduces two additional

classifications: “Below (Used before Push)” (BU) and “Not Used (Overwritten before Push)” (NW). We

describe in Section 3.4 the reason for the creation of these new classifications and what they represent.

Abstract domain. To simplify presentation, in this Chapter we use as abstract domain a map that

associates the name of each variable in the program with its classification and its location (for error mes-

sage purposes). Later, we discuss how we extended the abstract domain to simplify the implementation

of the analysis. At the start of the program analysis, the abstract domain consists of every input variable

being classified as “N”, and the output variables “U”. The additional variables used during the program

are added to the domain when they are first encountered by the analysis with the classification of “N”.

Programming language. Urban’s approach, as presented in Section 2.3, tracks instructions for as-

signment, conditional method bodies and composition of instructions. Since Infer translates the program

being analyzed into SIL intermediate language our analysis needs to focus on how each instruction for

assignment, conditional method bodies and composition of instructions are translated into SIL.

Chapter organization. In the Section 3.2 we discuss how Infer converts the program being analyzed

and what are the main structures of SIL. Some changes to the Abstract Domain used were done to
1Lyra’s webpage: https://caterinaurban.github.io/project/lyra

13

https://caterinaurban.github.io/project/lyra

overcome Infer’s limitations and are explained in Section 3.3. The resulting transfer functions in Section

3.4 represent a way to accurately detect the same types of instructions that Urban’s solution does, based

on the structure of the converted SIL code. Finally, in Section 3.5 we will look into the specifics of the

analysis implementation.

3.2 Infer Framework

We implemented the analysis as a checker for Facebook’s Infer2, which is a static analysis tool that

currently supports Java, C, C++ and C-Objective [4]. The implementation is written in OCaml. Infer

supports javac and clang compilers, as well as ant, buck, cmake, gradle, make, maven, xcodebuild

and xctool build systems. Additionally Infer supports the gcc compiler, but it will use clang internally to

compile the code.

Infer provides a framework, Infer.AI3, that enables the creation of analyses based on abstract inter-

pretation. This framework substantially simplifies the task of creating analysis for different programming

languages. As Infer translates the code analyzed into its Intermediate Language SIL, which is used in

the analysis instead of the original code, one only needs to create one checker for all the languages

supported by Infer. Moreover, the checker will be readily available to any new language supported by

Infer.

Infer’s workflow has two main phases:

1. Capture Phase: In this phase Infer translates the files under analysis into Infer’s internal interme-

diate language, SIL;

2. Analysis Phase: This is the phase where each function and/or method is analyzed.

During the analysis phase, Infer uses Pure Variables, which only appear in the SIL representation,

and Program Variables, which are the variables that appear in the source program under analysis. This

means our analysis needs to register the relations between them in order to understand, for example,

which Program Variable is being used in an assignment that has Pure Variables. Because of this the

execution of some instructions may need to be delayed, and the structures to support this are shown in

Section 3.3 as well as some examples.

As mentioned previously, Infer converts the program being analyzed into an Intermediate Language

called SIL, by capturing commands during compile time. Additionally, it generates a Control Flow Graph

whose information is used in the abstract domain of our solution. The SIL code is then analyzed by

Infer’s checkers, creating the possibility that a single analysis can work for all languages currently and

future supported by Infer. Depending on the specifics of the analysis and how Infer works, not every
2Facebook Infer: https://fbinfer.com.
3Building checkers with the Infer.AI framework: https://fbinfer.com/docs/absint-framework.

14

analysis can support all languages Infer supports without adapting the analysis for each language. Our

analysis does not support all languages that Infer supports because it requires explicit support to detect

each type of input and output for each language.

The intermediate language SIL. In order to understand what instructions SIL translates the programs

to, and what these do, there is a need to understand the mains structures of SIL:

• Ident: Pure Variables used in instructions, carrying information from Program Variables.

• Pvar: Program Variables that correspond to variables used in the original code being analyzed.

Also mentioned as Lvar in Expressions.

• Var: Single abstraction for all variable types in SIL.

• Exp: Expressions in SIL that contain a sequence of variables, either Program Variables or Pure

Variables

• Typ: Types of variables in SIL.

• Location: Location of an instruction. Carries the line, columns and file from the original program

being analyzed.

The programs analyzed and translated into SIL are converted into five types of instructions, each

specified as follows:4

Load: Load of {id: Ident.t; e: Exp.t; root_typ: Typ.t; typ: Typ.t;

loc: Location.t}

The definition states the name of the variable, followed by the type of its variable (e.g., id: Ident).

Please note that even though it is still included in the definition, “root typ” is deprecated and will be

removed in future versions of Infer.

The Load instruction loads a value (carried inside the expression “e”) into an Identifier (“id”). The

instruction also detects the type of the expression and the identifier (in “typ”), as well as the root type

of the expression (in “root typ”) and location of the instruction (in “loc”).

Store: Next is the definition of the Store instruction:

Store of {e1: Exp.t; root_typ: Typ.t; typ: Typ.t; e2: Exp.t; loc: Location.t}

The Store instruction stores the value on an expression “e2” into another expression “e1”.

Like the Load instruction it also detects the type of both instructions and its location.

4Infer SIL Github: https://github.com/facebook/infer/blob/master/infer/src/IR/Sil.mli

15

Prune: Prune of {exp: Exp.t; loc: Location.t; bool: Boolean; if_kind: if_kind}

The Prune instruction prunes the state of the expression “exp” based on if the boolean “bool” is True

or False. It also detects the type of prune instruction it is “if kind” (for example “for”, “if”, “while”).

Call: Call of {(ret_id: Ident.t; ret_typ: Typ.t); e_fun: Exp.t;

arg_ts: (Exp.t; Typ.t) list; loc: Location.t; call_flags: CallFlags.t}

The Call instruction represents a [ret id = e fun(arg ts)]instruction, that calls a function in “e fun”,

whose arguments are “arg ts”, and stores its value in “ret id”.

Metadata: Metadata of {instr_metadata}

The Metadata instruction carries additional information, not strictly necessary for understanding the

program semantics, like information about the original syntactic structure.

In order to understand how Infer translates programs into SIL, consider the following Java example from

our set of benchmarks, created to test the analysis functioning with array accesses:

1 class Dict_single_case {

2 int[] test1 (){

3 int v1 = 0;

4 int[] d = new int[5];

5 d[1] = v1;

6 return d;

7 }

8 }

Infer translates the instruction in line 6 into the following SIL instructions, which are shown backwards,

which is the order the analysis evaluates them:

INSTR= *&return:int[_*_](*)=n$3 [line 6];

INSTR= n$3=*&d:int[_*_](*) [line 6];

The first SIL instruction is a Store instruction between the Program Variable “return” and the Pure

Variable “n$3”. The second instruction is a Load instruction of the Program Variable “d” into the Pure

Variable “n$3.

Infer translates a single instruction being analyzed into several instructions. It creates Pure Variables

as value holders until the Program Variables are loaded. Our analysis has to keep this in consideration,

and keep track of the association between Pure Variables and Program Variables in order to analyze an

instruction correctly.

The transfer functions defined for each of these instructions are presented in Section 3.4, with the

exception of the Metadata instruction which does not carry information necessary to the creation of this

analysis.

16

3.3 Abstract Domain

The abstract domain used in our implementation is different from the one of Lyra, being composed of

three main structures:

• Map (m) is the main structure, which holds the information about all the variables in the program

regarding its current classification and location. The classifications change during the analysis but

the location remains the latest appearance of the variable in the code.

• MapArray (a) is used when there is an assignment that accesses an array (e.g., a=b[c]). This

is needed because the variable being assigned (a) is only declared after the assignment, and its

classification is needed to determine the classification of the other variables being used (b,c). This

occurs because the analysis is backwards.

• MapCall (c) is used when there is an assignment that contains a Call instruction. This is needed

because, given the backwards nature of the analysis, the variable being assigned appears before

the assignment and before the Call instruction. This map registers the variable being assigned,

and the Pure Variables being assigned to that variable through the program. This ensures that

when the assignment arises, the analysis knows what variable is being used.

Additionally, a structure called cfg node (node) is also present in the abstract domain, holding in-

formation about the node currently being analyzed, that is used to detect nesting level changes in the

following instruction.

3.3.1 MapArray

Considering the example code given in the previous Section 3.2, we are going to analyze the line 5 in

order to understand the creation and function of MapArray (a):

d[1]= v1;

Infer translates the instruction into the following SIL instructions:

INSTR 1= *n$1[1]:int=n$2 [line 5];

INSTR 2= n$2=*&v1:int [line 5];

INSTR 3= n$1=*&d:int[_*_](*) [line 5];

In “INSTR 1”, SIL represents a Store instruction between two pure variables (“n$1” and “n$2”), while

“INSTR 2” and “INSTR 3” represent Load instructions from the program variables (in this case “v1” and

“d”) to the pure variables used in the previous instruction.

17

In order for the analysis to execute the assignment of this array access, the relations between the

Program Variables “n$1” and “n$2” are stored in MapArray (a), being “n$1” the key and “n$2” the corre-

sponding value. When the analysis evaluates the second instruction, it replaces the value “n$2” for “v1”.

Finally when the third instruction is evaluated, the analysis now associates the Pure Variable “n$1” with

the Program Variable “d”, and executes the necessary instruction for the assignment between “d” and

“v1”.

If the instruction was to use another variable to determine which part of the array to access (e.g.,

d[a]=v1) then the array associates the same “n$1” as key to both Pure Variables representing “a” and

“v1”.

Another use for MapArray (a) is presented in the next subsection 3.3.2, as part of the solution to

interpret function calls correctly.

3.3.2 MapCall

In order to understand how MapCall (c) functions, consider now the following example from the bench-

mark “Dict example container ”:

1 import java.util.HashMap;

2 class Dict_example_container {

3 int test1 (int value){

4 HashMap <String, Integer> example = new HashMap <String, Integer>();

5 example.put ("a", 0);

6 example.put ("b", 1);

7 example.put ("c", 2);

8 String key = "b";

9 example.put (key, value);

10 int i = example.get("a");

11 return i;

12 }

13 }

The instruction in line 9 of the code is translated into SIL instructions that follows, displayed in the reverse

order, as the analysis evaluates them:

INSTR= *&$irvar7:java.lang.Object*=n$23 [line 9];

INSTR= n$23=_fun_Object HashMap.put(Object,Object)(n$19:java.util.HashMap*,

n$21:java.lang.Object*,n$22:java.lang.Integer*) virtual [line 9];

INSTR= n$22=*&$irvar6:java.lang.Integer* [line 9];

18

INSTR= n$21=*&key:java.lang.Object* [line 9];

INSTR= _=*n$19:java.util.HashMap*(root java.util.HashMap) [line 9];

INSTR= n$19=*&example:java.util.HashMap* [line 9];

INSTR= *&$irvar6:java.lang.Integer*=n$18 [line 9];

INSTR= n$18=_fun_Integer Integer.valueOf(int)(n$17:int) [line 9];

INSTR= n$17=*&value:int [line 9];

As this example demonstrates, a single Call instruction can generate several instructions in SIL. The

analysis needs to go through each instruction and maintain an updated list of associations between Pure

Variables and Program Variables. In this particular case, the SIL Call instruction is the second one, but

there is a Store instruction before that, with the Program Variable “irvar7 ” that SIL creates. In this first

instruction the analysis will add to MapCall (c) “irvar7 ” as key and “n$23” as value.

After that, in the second instruction, the analysis checks MapCall (c) to see if “n$23” is a value and,

if so, the key associated with it is classified as “U” in Map (m). Finally, it uses MapArray (a) in order to

keep the information of the relation of “n$19”, “n$21” and “n$22” until the Program Variable associated

with “n$19” is loaded so the assignment can be executed properly.

This approach helps differentiate between an instruction like in line 9 and an instruction like in line 10,

because in that case the first instruction is not called “irvar ” but rather “i” which is the Program Variable

that is going to store the result from the execution of the Call instruction. It is important to distinguish

between these two types of calls because in the case of line 9 the analysis treats it like an assignment

between “example” and the variables used inside the function call (“key ” and “value”), all of which are

present inside “arg ts”, but in the case of line 10 the assignment is between “i” (outside of “arg ts”) and

“example” and its variables used inside.

Additionally, MapCall (c) is used in instructions like v1=d[a] where there is an assignment and an

array access on the right side. This is needed because the instruction that associates “v1” with a Pure

Variable appears before the assignment instruction (that used the Pure Variable). In this case MapCall

(c) stores the relation between “v1” and a Pure Variable, and checked for matches when an assignment

with array access is detected.

3.4 Transfer Functions

Taking into account the classifications of all variables inside an instruction, the interaction between vari-

ables and the type of instruction being executed, the analysis will update each variable classification

according to the transfer function ΘQ that we define in this Section. The function is defined by cases

on SIL instructions and it transforms the abstract state q. Each abstract state is tuple (m, c, a, node),

where m is Map that contains the classification of each variable, c is MapCall that contains the relation

19

between variables in a Call instruction, a is MapArray that contains the relation between variables in

an assignment with access to an array, and node is cfg node that contains the information needed to

detect changes in nesting levels.

3.4.1 Load

For the Load instruction, the transfer function is defined as:

ΘQJLoad id : eK(q) def
=

ASSIGNJKOVJidK(c) = eK ◦ CKJidK ◦ CKJeK(m) e ∈ LINDEX
LOAD PVARJid, eK(q) ◦ CKJidK ◦ CKJeK(m) e ∈ PVAR ∧ id ∈ a
LOAD GENERALJid, eK(q) ◦ CKJidK ◦ CKJeK(m) otherwise

The Load instruction has different approaches depending on the type of the variable “id” and the

variables inside expression “e”. In every Load instruction the analysis starts by executing the function

CK (CHECK), defined in Equation 3.1, that verifies if both variables are present in Map (m), and if they

are not it adds them to Map (m) with the classification “N”. This also happens with Store and Call

instructions.

CKJeK(m)
def
= λy.

{
N x 6∈ m ∧ y ∈ VARS(e)

m(y) otherwise
(3.1)

Case 1. If the variable “e” is an Array Index Offset (LINDEX) the analysis performs an assignment

between the key matching the “id” value in MapCall (c), and the variable “e”; this assignment is achieved

using the function ASSIGN , defined in Equation 3.2. These instructions capture an instruction a=b[c]

that accesses an array during a Load instruction.

The rule for assignments stipulates that a variable is considered “U” if it is utilized inside an as-

signment to another variable already considered “U”, “B” or “BU”. In that case, the second variable

classification changes to “W” unless it is also present in the first variable, in which case it remains with

the same classification. More formally, it is defined as:

ASSIGNJx = eK(m)
def
= λy.


W y = x ∧ y 6∈ VARS(e) ∧m(x) ∈ {U,B,BU}
U y ∈ VARS(e) ∧m(x) ∈ {U,B,BU}
m(y) otherwise

(3.2)

Note that if the variable being assigned does not have one of these classifications, then both variables

remain unchanged.

KOV JxK(c) def
= λy.

{
z y = x ∧ c(z) = y

y otherwise
(3.3)

20

The function KOV (Equation 3.3) (key of value) accesses MapCall (c) and returns the key variable

assigned to variable “x”. If there is no key associated to the variable “x”, then it returns that variable.

Case 2. If the variable “e” is a program variable and “id” is in MapArray (a), then the function LOAD PV AR

is executed which, depending if the variable “id” is one of the keys of MapArray (a), either executes the

ASSIGN function or the UPDT KEY function.

LOAD PVARJid, eK(q) def
=

{
ASSIGNJe = a(id)K(m) id ∈ a.keys
UPDT KEYJid, eK(a) otherwise

The presence of “id” in the keys of MapArray (a) determines that the analysis located the Load

instruction for the key present in MapArray (a), which is the last instruction in an assignment with an

array access, like in the example presented before in the beginning of this Chapter. This triggers an

assignment between the variable “e” and the values in MapArray (a) whose key is “id”.

If “id” is not in the keys of MapArray (a) then it updates the value from “id” into “e” via UPDT KEY

(UPDATE KEY). This happens to update from Pure Variables that the assignment uses to Program

Variables, which are the real variables used in the assignment, but that are loaded after the assignment

instruction is called.

UPDT KEY Jx, eK(a)
def
= λy.

{
e a(z) = x

a(y) otherwise
(3.4)

Case 3. If none of the previous conditions are verified then, if the length of expression “e” is not 1, the

program updates the classification of “e” with the same classification of “id” (transferring the classification

that the pure variable “id” carried into the program variable that it represents “e”) using the function

UPDT C (UPDATE CLASS), defined in Equation 3.5.

UPDT CJx, eK(m)
def
= λy.

{
m(x) y ∈ VARS(e)

m(y) otherwise
(3.5)

This corresponds to the second case of the following definition:

LOAD GENERALJid, eK(q) def
=

{
UPDT CJid, eK(m) ◦ UPDT VALJid, eK(c) length(e) = 1

UPDT CJid, eK(m) otherwise

On the other hand, if the length of expression “e” is 1, then it also updates the classification as described

above, but before doing it, it updates the value that matched “id” to “e” using the function UPDTE V AL

(UPDATE VAL), defined in Equation 3.6. This happens to follow the associations between Pure Variables

and Program Variables that happen after a Call instruction, like showed in the beginning of this Chapter.

21

UPDT V ALJx, eK(c) def
= λy.

{
e c(z) = x

c(y) otherwise
(3.6)

3.4.2 Store

The Store instruction stores an expression “e2” into another “e1”. The transfer function for the Store

instruction is defined as follows:

ΘQJStore e1 : e2K(q) def
=

ASSIGN HASHJe1, e2K(a) ◦ CKJe1K ◦ CKJe2K(m) e1 is LINDEX ∧ e2 is VAR ∧ e1 6∈ m ∧ e2 6∈ m
STORE RETURNJe1, e2K(q) ◦ CKJe1K ◦ CKJe2K(m) e1 is LVAR ∧ e1 is RETURN
STORE LVARJe1, e2K(q) ◦ CKJe1K ◦ CKJe2K(m) e1 is LVAR ∧ e2 is VAR ∧ e1 not RETURN
STORE GENERALJe1, e2K(q) ◦ CKJe1K ◦ CKJe2K(m) otherwise

Just like Load, the analysis starts by executing a CK (CHECK) that verifies if both variables are

present in Map (m), and if they are not it adds them to Map (m) with the classification “N” (see Section

3.1). The Store instruction has four cases that are described below.

Case 1. If expression “e1” is an Array Index Offset (LINDEX), then this is the first instruction of an

assign with an array on the left side and a Pure Variable “e2” on the right. When this is detected the

analysis uses the function ASSIGN HASH, defined in Equation 3.7, to add to MapArray (a) the first

variable in expression “e1” as key and the remaining variables of “e1” and “e2” as values.

ASSIGN HASHJx, eK(a)
def
= λy.

{
a(x) = y y ∈ VARS(e) ∧ x 6∈ a ∧ e 6∈ a ∧ x 6∈ y
a(y) otherwise

(3.7)

Case 2. If during the Store instruction the expression “e1” is a return expression (“return” is considered

a Program Variable by Infer) then the analysis executes the function STORE RETURN defined below.

STORE RETURNJe1, e2K(q) def
=

{
PUSH(m) ◦ PUT USEDJe2K(m) PREDS(node) = 2

PUT USEDJe2K(m) otherwise

The first step is to execute the function PUT USED, defined in Equation 3.8, that changes the classifi-

cation of all variables contained in the expression “e2” to “U”. If the node (that represents a single Java

instruction) has two predecessors (“PREDS”) then it means that the instruction before (that is going to

be analyzed after this because the analysis is backwards) is the beginning of a conditional method body.

22

If this is the case, then the analysis will also apply the function PUSH, defined in Equation 3.9, that

changes the classification of all variables “U” or “W” so that the function FILTER, defined in Equation

3.11, can capture any new variables being classified as “U” or “W” inside a conditional set of instructions.

PUT USEDJxK(m)
def
= λy.

{
U y ∈ VARS(x)

m(y) otherwise
(3.8)

PUSH(m)
def
= λy.


BU m(y) ∈ {U}
NW m(y) ∈ {W}
m(y) otherwise

(3.9)

A remark on using a single map. In order to facilitate our implementation, we deviate sligthly from Ur-

ban and Müller and, instead of keeping a stack of maps, we use a single map that is updated throughout

the analysis. This changes the possible classifications of a variable, introducing the two new classifi-

cations “BU” and “NW”, as discussed above. The classification “BU” is used when a variable that was

classified as “U” suffers a PUSH. The classification “NW” is used when a variable that was classified

as “W” suffers a PUSH.

We do this because the array introduced by Urban and Müller is only used for the PUSH and POP

functions, so the analysis ends up only using the last two classifications of a variable. This change saves

the program from having to go through and modify an array for every variable.

Case 3. When a value is stored from a Pure Variable into a Program Variable we apply the function

STORE LV AR defined below.

STORE LVARJe1, e2K(q) def
={

PUSH(m) ◦ UPDT CJe1, e2K(m) ◦ CK VARSJe1, e2K(c) ◦ UPDT VALJe1, e2K(c) PREDS(node) = 2

UPDT CJe1, e2K(m) ◦ CK VARSJe1, e2K(c) ◦ UPDT VALJe1, e2K(c) otherwise

The first step is to execute the function UPDT V AL, defined in Equation 3.6, that changes the value in

MapCall (c) associated with “e1” and replaces it with “e2”. This happens in order to keep track of the

association between Pure Variables and Program Variables in a Call instruction that may have been

done previously.

Next, the analysis executes the function CK V ARS (CHECK VARS), defined in Equation 3.10, which

checks if “e2” is associated with a key in MapCall (c) and if it is not, then it adds “e1” as a key and “e2”

as a value.

CK V ARSJx, eK(c) def
= λy.

{
e ∃z ∈ X : c(z) = e ∧ y ∈ VARS(x)

c(y) otherwise
(3.10)

23

Finally the program executes the function UPDT C (UPDATE CLASSIFICATION), defined in Equation

3.5, that changes the classification of “e2” into the same classification of “e1”. This happens to keep

track of the association between Pure Variables and Program Variables in terms of classification. Just

like STORE RETURN , in case the previous instruction has two predecessors (“PREDS”), meaning

that the instruction before is the beginning of a conditional method body, the analysis executes a PUSH

instruction.

Case 4. If none of the previous conditions are true, then the function STORE GENERAL is applied:

STORE GENERALJe1, e2K(q) def
={

PUSH(m) ◦ ASSIGNJe1 = e2K(m) ◦ UPDT VALJe1, e2K(c) PREDS(node) = 2

ASSIGNJe1 = e2K(m) ◦ UPDAT VALJe1, e2K(c) otherwise

In this case, the analysis updates the value in MapCall (c) associated with “e1” and replaces it with

“e2” with the instruction UPDT V AL (defined in Equation 3.6). After that, the analysis executes an

assignment between “e1” and “e2”. Once again the analysis performs a PUSH instruction if the previous

instruction has two predecessors (“PREDS”).

3.4.3 Call

The Call instruction represents the call to a function e fun with the arguments arg ts. The result from

this call is stored in ret id. The transfer function for this instruction is defined as follows:

ΘQJCall ret id, e fun, arg tsK(q) def
=

CALL OBJECTJret id, arg tsK(q) ◦ CKJidK ◦ CKJeK(m) e fun is Object
CALL ARRAYJret id, arg tsK(q) ◦ CKJidK ◦ CKJeK(m) e fun is ArrayList
CALL PRINTJret id, arg tsK(q) ◦ CKJidK ◦ CKJeK(m) e fun is PrintStream ∧ ret id is IRVAR
CALL GENERALJret id, arg tsK(q) ◦ CKJidK ◦ CKJeK(m) otherwise

As before, the transfer function checks a series of conditions, starting with the instruction CK

(CHECK) like in Store and Load. There are four cases, which we describe below.

Case 1. If e fun is an object then the analysis executes the function CALL OBJECT :

24

CALL OBJECTJret id, arg tsK(q) def
=

PUT USEDJarg tsK(m) KOVJret idK(c) ∈ c ∧m(KOVJret idK(c)) ∈ U
ASSIGN HASHJarg ts[0], arg tsK(a) KOVJret idK(c) ∈ c ∧m(KOVJret idK(c)) 6∈ U
ASSIGNJKOVJret idK(c), arg tsK(m) otherwise

CALL OBJECT verifies if a key associated with the value ret id in MapCall (c) exists, and if that key

is classified as “U”. This would indicate that a function was called inside a prune condition, and would

execute PUT USED in order to change the classification of all variables inside the function called into

“U”, in order to follow the same procedure as FILTER (defined in Equation 3.11).

If on the other hand the analysis detects that a key corresponding to the value ret id in MapCall (c)

but the classification of this key is not “U”, then the analysis considers that this is the instruction of a call

to a function (e.g.: text.put(input1, input2)), and then associates the first variable in arg ts (as key)

with the other variables in arg ts (as values) in MapCall (c), with the instruction ASSIGN HASH.

If none of the above conditions verify, then the analysis executes an ASSIGN between the key as-

sociated with ret id and the variables of arg ts, to account for code like “int i = example.get("a");”.

Case 2. If the analysis verifies that e fun is an Arraylist then it executes CALL ARRAY :

CALL ARRAYJret id, arg tsK(q) def
={

PUT USEDJarg tsK(m) KOVJret idK(c) ∈ c ∧m(KOVJret idK(c)) ∈ U
ASSIGN HASHJarg ts[0], arg tsK otherwise

CALL ARRAY , like CALL OBJECT also analyzes if a key associated with the value ret id in

MapCall (c) exists and if that key has a classification of “U”, and if confirmed, also executes PUT USED.

However, if this condition is not met, then it executes an ASSIGN HASH between the first variable of

arg ts and the other variables of the same variable.

Case 3. If the analysis verifies that e fun is an Printstream then it executes CALL PRINT :

CALL PRINTJret id, arg tsK(q) def
=

{
PUSH(M) ◦ PUT USEDJarg tsK(m) PREDS(node) = 2

PUT USEDJarg tsK(m) otherwise

25

CALL PRINT turns the classification of the variables in arg ts to “U” with PUT USED, and if the

analysis detects that the next instruction has 2 predecessors then the analysis performs a PUSH in

the end, to account for a new conditional method body. This function adds support for variables being

printed to be counted as output, and so its classification becomes “U”.

Case 4. If none of the previous clauses are verified for CALL then the analysis applies the function

CALL GENERAL:

CALL GENERALJret id, arg tsK(q) def
= ASSIGNJret id, arg tsK(m) ◦ UPDT VALJret id, arg ts[0]K(c)

CALL GENERAL performs a UPDT V AL that changes the value in MapCall (c) associated with

“ret id” and replaces it with “arg ts[0]”. This happens in order to keep track of the association between

Pure Variables and Program Variables in a Call instruction that may have been done previously. Addi-

tionally it performs an ASSIGN between ret id and arg ts.

3.4.4 Prune

The Prune instruction represents the beginning of a conditional method body with an expression exp as

the condition and the boolean bol indicating which branch is being analyzed. The transfer function for

this instruction is defined as follows:

ΘQJPrune exp, bolK(q) def
=

{
PRUNE TRUEJexpK(q) bol = TRUE
PRUNE FALSEJexpK(q) otherwise

Case 1. If bol is TRUE then the analysis executes the function PRUNE TRUE.

PRUNE TRUEJexpK(q) def
=

{
PUSH(m) ◦ POP(m) ◦ FILTERJexpK(m) PREDS(node) = 2

POP(m) ◦ FILTERJexpK(m) otherwise

The first function to be applied is FILTER, defined in Equation 3.11, which searches the domain for

variables that are classified as “U” or “W”. If it finds any variables in those conditions, then the variables

present on the conditional statement get classified as “U”. Otherwise, the current classifications remain

unchanged.

FILTERJeK(m)
def
= λy.

{
U y ∈ VARS(e) ∧ ∃x ∈ X : m(x) ∈ {U,W}
m(y) otherwise

(3.11)

26

After that the analysis executes the POP instruction, defined in Equation 3.12, that returns the

variables in Map (m) with the classification “BU” or “NW” to the previous “U” and “W” respectively. This

returns to normal the alterations that PUSH (defined in Equation 3.9) executed in the beginning of a

conditional method body, because FILTER, defined in Equation 3.11, already detected if any new

variables were transformed to “U” during the conditional method body. Once again, if the next instruction

has 2 predecessors then the analysis performs a PUSH in the end, to account for a new conditional

method body.

POP (m)
def
= λy.


U m(y) ∈ {BU}
W m(y) ∈ {NW}
m(y) otherwise

(3.12)

Case 2. If bol is FALSE then the analysis applies the function PRUNE FALSE:

PRUNE FALSEJexpK(q) def
=

{
PUSH(m) ◦ POP(m) PREDS(node) = 2

POP(m) otherwise

The first instruction to be executed is POP , which returns the variables classifications in Map (m) into

the previous classifications that PUSH instruction changed.

Just like PRUNE TRUE, here the analysis also checks for the number of predecessors the in-

structions has, in order to verify if a new conditional method body starts in the next instruction being

analyzed.

3.5 Implementation

The analysis presented in the previous sections is implemented as an Infer check, it works, and it is

available online.5

The analysis was implemented in the language Ocaml, which is the language Infer was develop in,

and registered as a checker in Infer configuration files. At the time of writing, the analysis only works for

Java programs, because the analysis needs explicit support for each type of inputs and outputs specific

to each language. The analysis was given an id (data-usage-check), which is used to call the analysis

on the command line. A new error type was created and registered (“VARIABLE UNUSED”) in Infer,

that represents a variable not used.

The analysis works backwards, starting to analyze the program from the last instruction and working

its way up. In the beginning of the analysis the abstract domain only contains the variables that were

passed as input into a function with the classification “N”. In the following instructions the analysis

checks if each variable is in the abstract domain, and if not introduces it with the classification of “N”.
5Data Usage Check: https://github.com/Rui1995/DataUsageCheck-FBInfer

27

This happens because the analysis does not have the ability to know beforehand all of the variables

used during the program.

The output of the program is detected if a variable is either returned or printed, in which case it is

added to the abstract domain with the classification “U”. These are the first variables not classified as “N”

and the starting point for all the other variables to change classification, by interacting with the outputted

variables.

All variables, Pure Variables and Program Variables, are added to the abstract domain, but only the

Program Variables are evaluated in the end of the analysis (because those are the ones corresponding

to the actual variables in the program analyzed) where all variables with the classification “N” launch an

error on the console, showing the line where the variable last appeared and the name of the variable.

An example of this is presented in Figure 3.1, with the results of one of the analysis of the benchmark

suite.

Figure 3.1: Input Usage Errors Found by Our Implementation

Additionally, Infer has a graphical interface that opens in a web browser, showing the code analyzed,

errors detected, and SIL instructions for each Java instruction. An example of that follows in Figure 3.2.

This interface shows the code with proper indentation, followed by a link to each particular instruction,

that shows the SIL instructions that it was converted to, and the evaluation for that line of each analysis

running. An example of that is showed in Figure 3.3 for the instruction in line 9 in the code of Figure 3.2.

In Figure 3.3 the abstract domain is showed before the analysis and after each SIL instruction. This is

highlighted inside the blue boxes. Each SIL instruction is highlighted inside the green boxes.

The way this analysis works it not only reports input variables that were not used, but also other

variables that were not used during the execution of the program. This is in line with Lyra’s approach

which does the same.

28

Figure 3.2: Graphical Interface

Figure 3.3: Single Instruction in Graphical Interface

3.5.1 Limitations

The analysis created has some limitations. It is necessary to implicitly add support for each type of inputs

and outputs, making the adaptation to support other languages not trivial or automatic (for example the

analysis needs to detect “scanf()” and classify its variables as inputs for a C program).

In case of functions that modify objects and do not return variables the analysis will consider all vari-

ables inside as not used. In case of packages in Java that either produce some input (e.g.: Java.Util.Scanner)

or output, it is also needed to add explicit support for it in the analysis. This happens because Infer does

not detect automatically all inputs and outputs of a program.

Some packages being imported and used in the code being analyzed also may need added explicit

support (to classify the variables correctly) because it can be translated by Infer in a different way than

29

the previously supported functions (e.g.: some expressions may appear in different order and additional

information may need to be stored).

In order to install Infer from source in order to analyze C and Objective-C programs, Infer compiles a

custom version of Clang that may take a long time 6. In our machine it took around two hours to compile

in a Quad-Core 3.2Ghz computer. Programs compiled with gcc need to compile with clang too.

6Infer Installation Guide: https://github.com/facebook/infer/blob/master/INSTALL.md

30

4
Evaluation

Contents

4.1 Experimental Setup . 33

4.2 Artificial Benchmark . 33

4.3 Non-Controlled Benchmark . 34

31

32

In order to test the effectiveness of the analysis, we have done a series of tests that verify the

effectiveness of the tool created. First, the set of benchmarks that Lyra uses were manually converted

from Python into Java so that there is a basis for comparison between the two tools. Next we chose two

data science and data analysis open-source projects in order to test the tool’s capabilities in real-world

applications.

4.1 Experimental Setup

The analyses were done in a Quad-Core 3.2Ghz system with 8GB of RAM, running Ubuntu 18.04.4 LTS

stored on an SSD. The Infer version used to implement our analysis was v1.0.0-1e990455f. The Java

version used was v11.0.9.1, except for the second Non-Controlled Benchmark in Section 4.3 that used

Java version v1.8.0 275. The first program in Section 4.3 used Gradle version v6.6.1, while the second

program used v5.4.1.

Infer was run with the flag “–data-usage-check-only ” in order to disable the default analyses of Infer.

Lyra’s version used was v0.1, requiring Python v3.6.

4.2 Artificial Benchmark

In order to evaluate the effectiveness and accuracy of our implementation compared to Lyra, we as-

sessed it with the same input data usage benchmark used to evaluate Lyra1. The benchmark contains

10 programs written in Python; since Infer does not support Python, we manually converted it to Java.

The benchmark is specifically designed to test the detection of unused input data, ranging from simple

examples with only variables containing Booleans as input and a single conditional set of instructions,

to tests containing dictionaries as input.

It is important to notice that the files related to CodeJam in Lyra’s repository were not evaluated as

they did not focus on testing the input data usage analysis.

The benchmark suite, averaging 25 lines of code (min:12, max:39), included tests where inputs

were not used and the analysis correctly caught those. There are also tests containing dictionaries

(HashMaps in Java) that were dealt with correctly, and tests with nested conditional sets of instructions

to check if the modification to the way the analysis dealt with them is valid, which it was. Additionally

there are tests with no output, which made the analysis assume no variables were used, creating false-

positives. These false-positives were expected since the analysis depends on the variables from the

output to classify the rest of the variables.

1Lyra benchmark: https://github.com/caterinaurban/Lyra/tree/master/src/lyra/tests

33

https://github.com/caterinaurban/Lyra/tree/master/src/lyra/tests

Table 4.1: Detailed Artificial Benchmark Results

Artificial Benchmark
File Name #Lines Errors False-positives True-positives Time to analyze
BRCA example 25 0 0 0 0,175s
Dict descr example 39 1 0 1 0,350s
Dict example 26 6 0 6 0,091s
Dict example container 13 0 0 0 0,059s
Dict if example 18 0 0 0 0,062s
Dict simple example 12 0 0 0 0,058s
Esop2018 17 2 0 2 0,054s
Larger expressions 36 6 0 6 0,367s
Running example 32 1 0 1 0,335s
Three dict example 30 0 0 0 0,335s
TOTAL 248 16 0 16 1,886s

Our implementation behaved similarly to Lyra on the 10 programs: both our analysis as well as

Lyra’s presented no false-negatives or unexpected false-positives. In terms of performance, Lyra takes

on average 0.0802s±0.0820s and our implementation takes 0, 1886s±0, 1336s. The performance penalty

was expected, since Infer has to build the intermediate representation before starting the analysis. In

Table 4.1 we present the more detailed results from the benchmark.

4.3 Non-Controlled Benchmark

In order to test the real capabilities of the analysis we chose to run it in two data science and data anal-

ysis Java software packages. We focused our tests in open source packages created by experienced

programmers.

First package. The first package analyzed was Neo4j Graph Data Science Library2, a plugin for Neo4j

graph database that consists of a library with graph algorithms. The analysis took on average 15, 67s±

0, 23s to package the library with gradle and convert the instructions into intermediate language SIL, plus

an additional 21, 29s± 0, 13s on average to analyze the intermediate language.

The analysis evaluated 40 Java files with an average of 120 lines of code (min:44, max:260). The

analysis identified 371 false-positives and 0 true-positives. The analysis raised a substantial amount of

false-positives due to external packages being imported and utilized in the code. As mentioned before,

one of the disadvantages of this analysis is that some additional packages in the code being analyzed

need to get additional explicit support. Additionally some false-positives were also caused by methods

that altered objects but did not return variables. One example of this is showed in the next example:

2Neo4j Graph Data Science Library: https://github.com/neo4j/graph-data-science

34

https://github.com/neo4j/graph-data-science

1 private CypherMapWrapper(Map<String, Object> config) {

2 this.config = config;

3 }

Second package. The second package analyzed was Ananas Desktop3, an open source data inte-

gration and analysis tool that allows non technical users to edit data processing jobs and visualize data.

Unfortunately, because the analysis launches an error that does not allow the program to compile, only

three files were able to be analyzed individually.

The analysis took on average 1, 94s ± 1, 38s to compile each Java file, convert the instructions into

intermediate language SIL and to analyze the intermediate language.

The analysis evaluated three Java files with an average of 83 lines of code (min:69, max:103). The

analysis identified 25 false-positives and 0 true-positives. Most of the false-positives were generated by

methods that altered objects without returning any variables, with the remaining errors related to imports

that were not handled properly by the analysis. As mentioned in “Limitations”, some imports may need

added support for the analysis to work properly.

3Ananas Desktop: https://github.com/ananas-analytics/ananas-desktop

35

https://github.com/ananas-analytics/ananas-desktop

36

5
Conclusion

Contents

5.1 Conclusions . 39

5.2 Future Work . 39

37

38

5.1 Conclusions

In conclusion we were able to adapt Lyra’s approach to work in Infer by converting the transfer functions

to Infer’s Intermediate Language SIL. For this adaptation we created two additional support structures

in order to properly evaluate the SIL instructions.

The analysis proved to have some limitations, more specifically the need for added support for each

inputs and output for each program language supported, since Infer does not detect automatically all

inputs and outputs. Additionally the analysis may need support for certain packages in order to work

properly.

Given the results obtained, we answer the proposed research questions as follows:

RQ1: Is it possible to implement an input data usage analysis similar to Urban and Müller’s

analysis that works with the static analysis tool Infer? We were capable of adapting Lyra’s analysis

and implement it with Infer’s framework, proving accurate in the same set of benchmarks that Lyra uses.

RQ2: Can such an analysis work for several programming languages? The analysis as of writing

supports only Java programs, but support for the other languages supported by Infer can be extended

in the future by adding support to the different inputs and outputs of each language.

RQ3: Can such an analysis be used to analyze real code and find potential errors? The analysis

created can be used to analyze real code but it does not run in every real program and in the ones that

it ran there were no potential problems detected.

5.2 Future Work

As part of our future work, we plan to:

1. Improve the analysis in order to analyze any Java program, more specifically improve how the

analysis handles imported functions.

2. Add support to other languages supported by Infer by adding support for its input and output

instructions.

3. Evaluate the analysis in wider benchmark samples, which was not possible due to the limitations

of the current implementation.

39

40

Bibliography

[1] C. Urban and P. Müller, “An abstract interpretation framework for input data usage,” in European

Symposium on Programming. Springer, 2018, pp. 683–710.

[2] T. Herndon, M. Ash, and R. Pollin, “Does high public debt consistently stifle economic growth? a

critique of reinhart and rogoff,” Cambridge journal of economics, vol. 38, no. 2, pp. 257–279, 2014.

[3] J. Mencinger, A. Aristovnik, and M. Verbic, “The impact of growing public debt on economic growth

in the european union,” Amfiteatru Economic Journal, vol. 16, no. 35, pp. 403–414, 2014.

[4] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. O’Hearn, I. Papakon-

stantinou, J. Purbrick, and D. Rodriguez, “Moving fast with software verification,” in NASA Formal

Methods Symposium. Springer, 2015.

[5] P. Rahkila, “Grain—a java data analysis system for total data readout,” Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment, vol. 595, no. 3, pp. 637–642, 2008.

[6] K. Mikolajczyk, M. Szabatin, P. Rudnicki, M. Grodzki, and C. Burger, “A java environment for medical

image data analysis: initial application for brain pet quantitation,” Medical Informatics, vol. 23, no. 3,

pp. 207–214, 1998.

[7] B. Dysvik and I. Jonassen, “J-express: exploring gene expression data using java,” Bioinformatics,

vol. 17, no. 4, pp. 369–370, 2001.

[8] A. J. Saldanha, “Java treeview—extensible visualization of microarray data,” Bioinformatics, vol. 20,

no. 17, pp. 3246–3248, 2004.

[9] D. W. Barowy, D. Gochev, and E. D. Berger, “Checkcell: Data debugging for spreadsheets,” ACM

SIGPLAN Notices, vol. 49, no. 10, pp. 507–523, 2014.

[10] J. M. Hellerstein, “Quantitative data cleaning for large databases,” United Nations Economic Com-

mission for Europe (UNECE), vol. 25, 2008.

41

[11] T. Cheng and X. Rival, “Static analysis of spreadsheet applications for type-unsafe operations de-

tection,” in European Symposium on Programming Languages and Systems. Springer, 2015, pp.

26–52.

[12] P. Cousot and R. Cousot, “Abstract interpretation and application to logic programs,” The Journal

of Logic Programming, vol. 13, no. 2-3, pp. 103–179, 1992.

[13] ——, “Abstract interpretation: a unified lattice model for static analysis of programs by construction

or approximation of fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages. ACM, 1977, pp. 238–252.

42

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Research Questions
	1.4 Contributions
	1.5 Organization of the Document

	2 Related Work
	2.1 Data Debugging for Spreadsheets
	2.2 Static Analysis of Spreadsheet Applications
	2.3 Input Data Usage in Python

	3 Solution
	3.1 Overview
	3.2 Infer Framework
	3.3 Abstract Domain
	3.3.1 MapArray
	3.3.2 MapCall

	3.4 Transfer Functions
	3.4.1 Load
	3.4.2 Store
	3.4.3 Call
	3.4.4 Prune

	3.5 Implementation
	3.5.1 Limitations

	4 Evaluation
	4.1 Experimental Setup
	4.2 Artificial Benchmark
	4.3 Non-Controlled Benchmark

	5 Conclusion
	5.1 Conclusions
	5.2 Future Work

	Bibliography

