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Resumo

No século XXI, todos os anos, na Europa, 880 mil pessoas sofrem um acidente vascular cerebral

isquémico. Prever a evolução e desfecho do paciente é crucial aquando da escolha do tratamento.

Nesta tese de mestrado foram criados vários modelos de modo a prever o desfecho do paciente através

da versão binária da escala de Rankin modificada em dois momentos no tempo: três meses e um ano

após a ocorrência do derrame.

É comum que os dados providenciados pelas entidades de saúde para a realização destes es-

tudos estejam incompletos comprometendo os resultados. Torna-se então necessário escolher uma

maneira apropriada de lidar com os dados omissos neste trabalho, optou-se por testar seis métodos de

imputação diferentes e, com os dados completos, treinar classificadores com sete modelos de apren-

dizagem automática distintos.

Conclui-se que a área sob a curva caracterı́stica de operação do recetor, para o melhor classifi-

cador, a prever a escala a três meses e um ano foi 0.8217 e 0.7537, respetivamente. Ademais, não

foram encontradas diferenças, com significância estatı́stica, no desempenho dos distintos métodos de

imputação quando avaliados para cada um dos modelos de aprendizagem automática.

Palavras-chave: Acidente Vascular Cerebral Isquémico, Dados Omissos, Técnicas de Imputação,

Aprendizagem Automática
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Abstract

In the 21st century, every year, approximately 880 thousand people living in Europe suffer an ischemic

stroke. Predicting the patient’s outcome is key to choosing the course of treatment. In this master thesis,

it was predicted the functional outcome, by the binary version, of the modified Rankin Scale at two points

in time: three months and one year after the stroke took place.

Often, data provided by health organisations to conduct these studies is incomplete which can impair

the results. Thus the need arises to choose a proper way to handle the missing data. Here missing

values were imputed with six different methods and the classifiers were then trained with seven distinct

machine learning models.

It was shown the area under the receiver operating characteristic curve for the best classifiers, at the

three months and one-year marks, are 0.8217 and 0.7537, respectively. Moreover, it was not found a

statistically significant difference between the performance of the distinct imputation methods for each

machine learning model.

Keywords: Ischemic Stroke, Missing Data, Imputation Techniques, Machine Learning
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Chapter 1

Introduction

1.1 Motivation

A cerebrovascular accident (CVA), or stroke, results from ischemia caused by thrombosis, malformation,

stenosis, or a haemorrhage from a ruptured aneurysm [32]. Roughly, 1.1 million people living in Europe

suffer a stroke yearly in the 21st century, ischemic strokes accounting for approximately 80% of cases

and this number is expected to rise to 1.5 million because of the ageing population [6, 101]. Furthermore,

ischemic stroke incidence is also increasing in young adults in high-income countries, including Europe

[5, 7, 27, 35, 67].

In the year 2013, 11.8% of all deaths were attributed to stroke making it the second main cause

of death in the world (half of these were from ischemic strokes). Furthermore, in 2013, a CVA is also

the third most common cause of disability (4.5%) being responsible for 113 million disability-adjusted

life-years globally [26].

The primary goal of stroke rehabilitation is improving the survivors’ independence, not only for the

patients’ well being, but because most indirect stroke-related costs come from compromised physical

functioning and the need for a caregiver involvement [53].

The course of treatment is highly dependable on the predicted outcome of the patient meaning that

any tool created to help predict the patients’ functional outcome are immensely useful. Moreover, it is

common for both the patient and the family to ask for a long term prognosis which is an answer that is

neither immediate nor straightforward [69].

Over the last decade, the medical community has been searching for the best scores to predict

the patients’ functional outcome using data available at admission, making it possible to have a more

informed treatment decision. Among them, the Acute Stroke Registry and Analysis of Lausanne (AS-

TRAL) [75], the DRAGON [99] and the Totaled HealthRisks in Vascular Events (THRIVE) [29] scores.

Currently, the modified Rankin Scale (mRS) is the gold standard used scale for ”measuring the

degree of disability or dependence in the daily activities of people who have suffered a stroke or other

causes of neurological disability” [88, 105]. The scale goes as follows (the physician should choose the

best fit of the patients’ ability) [88]:
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i Score 0: No symptoms.

ii Score 1: No significant disability. Able to carry out all usual activities, despite some symptoms.

iii Score 2: Slight disability. Able to look after own affairs without assistance, but unable to carry out

all previous activities.

iv Score 3: Moderate disability. Requires some help, but able to walk unassisted.

v Score 4: Moderately severe disability. Unable to attend to own bodily needs without assistance,

and unable to walk unassisted.

vi Score 5: Severe disability. Requires constant nursing care and attention, bedridden, incontinent.

vii Score 6: Dead.

Some of this scale’s major strengths are: i ) it covers the full range of functional outcomes, from no

symptoms to death [10] ii ) its categorization is intuitive and easily understood by clinicians and patients

[10] iii ) its concurrent validity is demonstrated by strong correlation with measures of stroke pathology

and agreement with other stroke scales [42]. The main criticisms from the scientific community to mRS

has been its subjectivity when determining between categories and its reproducibility by examiners and

patients [42].

When the goal is the prediction of patients’ functional outcome, to simplify, a binary version of the

mRS with only two classes (good outcome vs poor outcome) is usually used. Additionally, it is also

common to measure the mRS at three months and one year after the stroke [69].

1.2 Topic Overview

The term Artificial Intelligence (AI) was used for the first time in a conference in 1956 at Dartmouth

[85]. Scientists soon realized medicine was a promising application area leading to the development

of many clinical decision support systems [68, 71]. Rule-based models had a lot of success in the

next few years across several areas such as helping to make diagnoses [18], choosing appropriate

treatments [95] and interpreting electrocardiograms [52]. Nonetheless, these systems are costly and

require knowledge updates as new relations are discovered. Moreover, their performance is limited by

the comprehensiveness of prior medical knowledge [8].

As stated in 1987 at a Sounding Board article, the field of medicine is “so broad and complex that

it is difficult, if not impossible, to capture the relevant information in rules.” [91]. Nowadays, AI is com-

prised, for example, of machine learning (ML) methods able to identify patterns and account for complex

interactions within the data [21].

ML methods can be categorized as supervised or unsupervised. Supervised models require ‘training’

cases, i.e. which contain inputs and the correct output labels, and learn by analysing the patterns in the

provided labelled input–output pairs and, afterwards, minimizing the difference between its predictions

for the training cases and its observed outcomes. On the other hand, unsupervised models deduce the

2



underlying patterns of data not containing output labels trying to find outliers, identify sub-clusters or

produce low-dimensional representations of the data [109].

The amount of large-scale annotated clinical data is increasing due to the adoption of electronic

health record (EHR) systems, ML methods are also getting better every year and are readily available

in opensource packages. These along with the rapidly growing computational power and cloud storage

have contributed to the current growth in AI which, in turn, is expected to alter the landscape of medical

practice in the close future [46, 109].

Nowadays, AI systems have already specialist-level performance in a wide range of medical tasks

[25, 41]. They are applied across several areas: image-based diagnosis (radiology [55, 103], derma-

tology [25], ophthalmology [41], pathology [4, 58]), genome interpretation [77, 78], biomarker discovery

[43], clinical outcome prediction and patient monitoring [12, 19], inferring health status with the help of

wearable devices [56, 65] and autonomous robotic surgery [64, 92], to name a few. Furthermore, they

also allow physicians to be in contact with areas they haven’t been able to before, as AI enables remote

healthcare services for rural and low-income zones [76].

In order for this change in the landscape of medical practice to happen, several challenges are yet to

be met:

i Availability of Good Quality Data: ML requires clear data, preferably labelled, which isn’t always

available. Class imbalanced datasets are quite common and may create biased results. Data

sparsity is another problem affecting the model’s performance (some models can’t handle missing

values at all) [76].

ii Lack of Data Standardization and Exchange: healthcare information technology systems don’t

tend to follow data exchange standards for healthcare thus affecting data’s efficacy and quality

[76].

iii Safety Challenges: models are ought to perform well on subtle outliers, edge cases and hidden

strata to ensure the safety of already implemented systems [76].

iv Privacy Challenges: the individuals’ identification should not be possible as such the data should

be anonymized to prevent privacy breaches [1]. This would enable secure data sharing through

cloud services [72].

v Ethical Challenges: targeted user population and their sociological aspects should be understood

before the collection of data as well as how this might impact a patient’s well-being and dignity [76].

vi Understandable algorithms: several ML methods are still ”black boxes” making it hard to interpret,

both its conclusion and created biological insights, and identify its weaknesses [109].

vii Integration into clinical workflows: consequences such as interference in interpersonal communi-

cation styles, additional workloads for physicians, generation of new hazards [2] and alert fatigue

[13] should be dealt with.
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viii Regulatory Challenges: there is still a lot of questions regarding how models should be regulated

by the competent agencies given its fast evolvement as it is fed with new data and user feedback.

It is also unclear how updates should be evaluated [109].

ix Legal Challenges: it is yet to be decided how medical negligence attributed to complex decision

support systems should be handled. When malpractice cases including AI systems arise, the legal

system must provide clear guidance as to what entity holds the liability [94].

As said above, missing data is a problem present in EHR and, given that a lot of ML models only

work on complete datasets, it is a problem that needs to be dealt with either by deleting incomplete

observations or by imputing it, i.e., replacing any values that are missing with a value estimated by the

remaining available information [87].

When choosing between the various approaches one should take the source of missingness into

evaluation [16]:

i Is the value lost or forgotten? The value was measured but not recorded due to e.g sensors

disconnected, accidental human omission.

ii Is the value not applicable to the instance? The value was not measured due to an identifiable

reason e.g physicians decided to disconnect the patient from the ventilator.

iii Is the value not of interest to the instance? The value was not measured due to its unusefulness

in providing clinical information.

In the cases where missing data is a consequence of identifiable reasons, imputation might not be

the best choice as it will add bias to the dataset. This data is then referred to as non-recoverable. On

the other hand, data missing for unidentifiable reasons, also called recoverable data, is presumed to be

missing as a result of unintended and random causes and can therefore be imputed [16].

1.3 Objectives

Our work aims to use machine learning techniques to predict the functional outcome of a patient using

the binary version of the modified Rankin Scale: good outcome for scores 0 to 2 and poor outcome for

scores 3 to 6. This is done at two points in time: three months and one year after the initial stroke.

In addiction, we are also interested in studying the impact of missing data and the choice of the data

imputation technique in machine learning models.

We start by performing the imputation using six distinct approaches: mode/median according to

the quantitative/qualitative nature of the variables, mode/median according to the quantitative/qualitative

nature of the variables and taking into account the dependence of a few variables, hotdeck, k-nearest

neighbours, decision trees and multiple imputation with posterior predictive distribution/conditional mean

imputation once again according to the quantitative/qualitative nature of the variables.
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We then compare the impact of the different imputation methods in each machine learning model

(L1 regression, Support Vector Machines, Random Forest, Xgboost, Neural Networks, Classification

And Regression Trees and k-Nearest Neighbours).

To our knowledge, similar work has only been done by Woźnica et al. [107] who analysed different

imputation methods for a collection of datasets and a collection of machine learning algorithms. Similarly,

Jadhav et al. [44] and Kyureghian et al. [54] have evaluated some of the existing imputation techniques,

yet not in the same way. They focused on the quality of imputed data, by assessing the accuracy of

predicting the missing values to fully known simulated data.

1.4 Thesis Outline

This thesis is divided into the following chapters:

• Chapter 2. Background - In this section, the existent missing data mechanisms are presented as

well as different ways to handle missing data. Basic concepts about some supervised machine

learning models and cross validation are shown along with a few performance metrics.

• Chapter 3. Implementation - In this section, an overview of the dataset is presented. Afterwards,

the methods used for data cleaning, manipulation and imputation are enumerated. Finally, the

different machine learning models applied and how their evaluation and training was conducted is

shown.

• Chapter 4. Results and Discussion - Here the results of the training and model evaluation for the

different imputation approaches to predict the binary version of the mRS, at both three months and

one year after the initial stroke, are shown.

• Chapter 5. Conclusions and Future Work- Here we present an overview of the results obtained

and leave some remarks regarding future work.
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Chapter 2

Background

2.1 Missing Data Mechanisms

It is important to understand the mechanisms by which the data is missing before addressing the issue

of imputation since it will have an impact on some of the assumptions made. Little et al. [60, 82]

formulated three possible missing data mechanisms taking into account the relation between the missing

(unobserved) and the available (observed) data.

For simplicity’s sake, let’s consider missingness in the univariate case. To define missingness, in

mathematical terms, a dataset X can be divided into two parts:

X = {X0, Xm} (2.1)

Being X0 the observed data and Xm the missing data in the dataset.

For each observation we define a binary response:

R =

1 if X observed

0 if X missing
(2.2)

The missing value mechanism can be understood in terms of the probability that an observation is

missing Pr(R) given the observed and missing observations, in the form:

Pr(R | x0, xm) (2.3)

The three possible missing data mechanisms are then defined as follows [87]:

i Missing Completely at Random (MCAR): the probability of an observation being missing depends

only on itself, i.e., equation (2.3) takes the form:

Pr(R | x0, xm) = Pr(R) (2.4)

7



MCAR is the highest level of random given that the missingness does not depend on any infor-

mation in the dataset. In a medical setting, this might correspond to a doctor forgetting to record

the gender of a couple random patients that come in the emergency room - there is no hidden

mechanism related to any variable and it does not depend on any characteristic of the patients.

ii Missing at Random (MAR): the probability of a value being missing is related only to the observ-

able information, i.e., some statistical relationship exists between the observed and the missing

variables meaning the missing data may be traceable from the observed values in the dataset.

Mathematically, the probability of missing, equation (2.3), reduces to:

Pr(R | x0, xm) = Pr(R | x0) (2.5)

As a medical example, let’s assume elderly people are less probable to notify the physician they

have had pneumonia before, the response rate of the variable ”pneumonia” will be correlated to

the variable ”age”.

iii Not Missing at Random (NMAR): the probability of a value being missing depends both on missing

and observed values. It refers to the case when neither MCAR nor MAR holds, the pattern of

missing data is not random and non predictable from available values.

NMAR is usually regarded as the worst type as it might lead to bias whereas MCAR and MAR may

lead to loss of statistical power [37, 90]. Determining the missing mechanism is usually impossible, as

it depends on unseen data. A t-test comparing the characteristics of the groups’ missing values and

observed values on a certain variable will yield different characteristics if the data is not MCAR yet the

result is merely indicative since it always depends on the sample size of the data. Additionally, there is

no method for distinguishing between MAR or NMAR data [60]. Given this impossibility we must rely on

sensitivity analyses and testing how the inference holds under different conditions, e.g. diabetic patients

will have their blood sugar measured more often than non diabetic patients meaning the variable ”blood

sugar” depends on the variable ”diabetic” [44].

Brown et al. [11] add outliers treated as missing data to the above list of standard types of missing

data. The authors deem necessary the deletion of set values as their stay may skew test results.

2.2 Handling Missing Values

Various machine learning models cannot handle missing data so when presented with it the analyst has

a choice: ignoring it or using imputation, i.e., replacing the missing value with plausible ones.

The goal of the various imputation methods is the accurate estimation of population parameters in

order to keep the power of the following data analysis and data mining techniques. There is no rule as to

what method should be chosen to handle the missing values of a given dataset yet there is a common

agreement that imputation should be used with care in datasets with over 25% of the data missing [44].
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2.2.1 Ignoring Missing Values

The easiest way to handle missing data is to omit the observations or cases that have missing values.

Although this is often the standard method, it reduces the dataset. Therefore should only be used when

a small amount of missing values is present [44]. Moreover, usually, deletion methods lead to valid

inferences only for MCAR data [89]. There are two general approaches:

• Complete-Case Analysis / Listwise Deletion: observations with one or more missing values are

discarded. It is assumed that the sample is representative of the whole population meaning the

analysis will not be biased towards a subgroup. Indeed, it has been shown that when the rela-

tionships within a dataset are strong and do not include the outcome variable, the method often

produces unbiased regression slope estimates [87].

Therefore listwise deletion might be used for large datasets having a low percentage of missing

data yet always keeping in mind it reduces statistical power (a smaller number of samples lead to

estimates with larger standard errors), wastes information and it can create a possible bias of the

analysis especially if data is not MCAR [90].

• Available-Case Analysis/ Pairwise Deletion: observations with one or more missing values are

only discarded if they are being analysed, e.g. two analysis are being conducted: the first with

variables A and B and the second with variables A and C; if pairwise deletion is chosen then the

observations in variable C with missing data will be kept for the first analysis and the observations

in variable B with missing data will be kept for the second analysis. Consequently, sample sizes

will be different making it impossible to make a statistical comparison of the results [87].

2.2.2 Single Imputation

Single imputation fills missing values with a predicted value all the while ignoring uncertainty resulting

often in the underestimation of variance [87]. Similarly to the deletion methods, several approaches can

be taken. Below is a non-comprehensive list:

• Imputation with a constant: the missing values are replaced with a constant. When dealing with a

categorical variable one might replace it with “Missing” or a value of no significance, e.g., “999”.

• Mode, Mean and Median Imputation: the categorical and numerical missing values are replaced by

the variables mode or mean/median, respectively. The mean should only be used for populations

which have a normal distribution, otherwise the median should be used [87]. The latter is also

more robust to outliers.

There are disadvantages [11]: i ) The new variance understates the true variance. ii ) The new

distribution has more values under the category containing mean/median/mode than the true pop-

ulation. iii ) The correlations between variables are diminished.

Studies show this imputation method yields highly biased parameter estimates [38–40], yet this

effect is almost dissipated if less than 10% of the data is missing and the correlations between the
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variables are low [79, 102].

A special case can be used, conditional mode/mean/median. Here a variable is grouped according

to a second variable and the mode/mean/median is computed for every unique value of the second

variable. It might be useful when a known relation exists, e.g., sportsmen usually have lower blood

pressure thus we impute the missing observations in ”blood pressure” with two different medians

depending on whether or not our patient is a ”sportsman”. The method is not recommended when

analyses of correlations or covariances are to take place given that one of the consequences of

this is the overstatement of the strength of the relationship between the two variables [90].

• Hot Deck Imputation: the missing values are replaced with a value from the known data’s estimated

distribution. The implementation is done in two steps, first the data is grouped in clusters and each

missing value is attributed to a cluster. Then a distribution for the variable with the missing values

is created for each cluster and the missing value is filled. This simple approach allows for the

variable distribution’s preservation however it underestimates the variability [81]. Moreover, the

definition of ”similar” for the creation of clusters is not straightforward, several metrics can be used

which will result in different imputations [11].

• Model-Based Imputation: the missing values are replaced by values estimated by a predictive

model. The complete data will be used to create a model, e.g., regression, logistic regression,

neural networks or other (non) parametric modelling techniques. Due to its characteristics, the

model won’t have high accuracy when the data is MCAR. When rightly applied, its estimated

values are usually more well-behaved than the true values [87].

• Regression Imputation: the missing values are replaced by values estimated by a regression model

(a particular case of a Model-Based Imputation). This imputation method, like the Hot Deck, is able

to preserve the distribution shape however it might produce biased results when applied to NMAR

and MAR data.

There are disadvantages since it does not take into account the uncertainty in the missing data

[11]: i ) It assumes the estimated variable correlates with the remaining variables in the dataset.

ii ) It reinforces relationships already existent in the dataset reducing its generalization capability.

iii ) It understates the distribution’s variance. iv ) The estimated value is not constrained and

may consequently be outside predetermined boundaries for set variable thus requiring additional

adjustment.

• k-Nearest Neighbours Imputation: the missing values are replaced by the mean of the k values

coming from the k most similar complete observations. There are several ways to compute this sim-

ilarity (distance functions, e.g., Euclidean, Manhattan, Mahalanobis, Pearson, etc) notwithstanding

it is very time consuming for a large dataset. Moreover, the value given to k should be thoroughly

investigated, the value should be large enough to encompass all significant attributes yet not as

large that would include attributes which significantly differ from our target observation [87]. Its
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main advantage is the fact that the correlation structure of the data is taken into consideration.

Additionally, it can handle both discrete and continuous variables [87].

2.2.3 Multiple Imputation

Single imputation tends to underestimate the variance and ignores uncertainty [87] while multiple im-

putation incorporates uncertainty into its methods [59]. Rubin [83] created a method which takes the

average of the outcome across multiple imputed datasets. The imputation of multiple plausible values

allows the model to account for uncertainty. This Monte Carlo technique consists of three steps:

i Imputation: missing values are replaced, using a method of choice, M times (5–10 is generally

sufficient) [89].

ii Analysis: every M completed dataset is analysed (e.g. it is built a logistic regression classifier for

outcome prediction), resulting in M analyses [87].

iii Pooling: the M analysis and results are consolidated into one final one, e.g., by computing the

mean and the 95 % CI of the M analyses [87].

The above three steps make multiple imputation a very time consuming step, which is why many

analyst opt not to choose set imputation.

2.3 Machine Learning Models

Over the last few decades dozens of different machine learning models have been developed by scien-

tists for multiple applications. Below are seven supervised models briefly explained.

2.3.1 Logistic Regression: L1-regularised

Belonging to the generalized linear models’ family, logistic regressions (LR) are commonly used in

datasets with both numerical and categorical features where the outcome is a binary categorical vari-

able. It works by assigning weights to each input feature and outputting a value between 0 and 1, which

can be understood as a probability of ”success” regarding the target variable. Any probability over 0.5 is

considered a “success” [3].

The Least Absolute Shrinkage and Selection Operator (Lasso) regression, regression with L1 regu-

larization, shrinks data values towards a central point, e.g. mean, and is particularly relevant for models

with high levels of multicollinearity or when the automation of variable selection or parameter elimination

is the goal [49]. Given a set of instance-label pairs (xi, yi) of size p, where x ∈ Rn, i = 1, 2, ...l and

y ∈ {+1,−1}, the goal of the logistic regression (L1-regularised) algorithm is to minimize [31]:

n∑
i=1

(yi −
∑
j

xijβj)
2 + λ

p∑
j=1

|βj | (2.6)
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The parameter λ controls the strength of the penalty, the amount of shrinkage: i ) λ = 0, no param-

eters are eliminated and the estimate coincides with the one by linear regression. ii ) λ increases, an

increasing number of coefficients are set to zero/eliminated (theoretically, when λ = ∞ , all coefficients

are eliminated). Bias also increases. iii ) λ decreases, variance increases.

This regularization may result in sparse models which have few coefficients, as some coefficients, λj

may reduce to zero and be eliminated from the model [49].

2.3.2 Support Vector Machines

A Support Vector Machines (SVM) classifier uses a collection of the training points, named support

vectors, in the decision function in order to define the decision boundary between classes. Its goal,

as training happens, is to find the optimal hyperplane for classifying the testing dataset based on the

referred support vectors and some constraints. Given a training dataset, D = (xi, yi) of size p with

xi = (xi,1, xi,2, ..., xi,p) and label yi = −1 or +1, formally, the classifier can be defined as a quadratic

optimization problem solving the following equation:

min ‖w‖2 s.t. yi(w
Txi + b) ≥ 1 for all i (2.7)

where w = (w1, w2, ..., wp) represents the weight vector and b the bias. An important point to be

noted when training an SVM model is the parameter C which controls the trade-off between having a

wide margin and correctly classifying training data.

min ‖w‖2 + C

m∑
1

ξi s.t. yi(w
Txi + b) ≥ (1− ξi), ξi ≥ 0 for all i (2.8)

A larger value of C corresponds to a smaller number of misclassified training samples and is susceptible

to overfitting [57, 108].

2.3.3 Random Forest

A Random Forest (RF) is a supervised ensemble method consisting of a number of decision trees [9].

A Decision Tree (DT) consists of the following structures, as shown in fig. 2.1: i ) Root node, has no

incoming edges and one to multiple outgoing edges. ii ) Internal nodes, have exactly one incoming

edge and multiple outgoing edges. iii ) Edges/Branches, connect between nodes. Typically represent

conjunctions of features that lead to those class labels. iv ) Leaf/Terminal Nodes, have exactly one

incoming edge and no outgoing edges. Typically represent class labels.

The non-terminal nodes (root and internal nodes) contain attribute test conditions based on which

data is split or separated due to different characteristics. The criteria for separation can be calculated

through information gain or entropy calculation, e.g., using the following equations:

Entropy =

C∑
j=1

pj log
1

pj
(2.9)
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Figure 2.1: Diagram showing the three types of nodes in a decision tree [66].

Gini Index = 1−
C∑

j=1

p2
j (2.10)

where C is the set of classes and pj is the fraction of items labelled with class j.

Random Forests aggregate the votes from several decision trees to determine the final classes of

the test dataset as to improve the accuracy and control the well known tendency of decision trees to

overfit. Individual DT commonly tend to overfit and show high variance, in order to control these, each

tree is built from a sample drawn with replacement from the training set. Additionally, when splitting the

nodes when building a tree, the best split is found either from all input features or a random subset of

maximum features. This process of injecting randomness yields individual decision trees with disasso-

ciated prediction errors and by taking an average of the predictions, some errors cancel out, providing a

better model [3, 9].

2.3.4 Extreme Gradient Boosting

Contrary to RF, where an ensemble of independent recursive trees of unlimited depth is built, Gradient

Boosting creates a sequential series of smaller trees by correcting the residuals from one tree to the

next [93].

The Extreme Gradient Boosting (Xgboost) also works by an additive strategy. Given a training

dataset, D = (xi, yi) with xi = (xi,1, xi,2, ..., xi,q) and label yi = −1 or +1, a tree ensemble model

uses K additive functions to predict the output:

ŷl = φ(xi) =

K∑
k=1

fk(xi), fk ∈ F , (2.11)

being F the set of every possible regression trees. Xgboost aims to minimize the regularized objective

using the following equations:

L(φ) =
∑
i

l(ŷl, yi) +
∑
k

Ω(fk) (2.12)
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where

Ω(f) = γ T +
1

2
λ ‖ω‖2, (2.13)

being l a differentiable and convex loss function. The second term in equation (2.13) is used to penalize

the model’s complexity (number of leaves in the tree T and vector of scores on leaves ω) thus helping to

smooth the final learned weights, avoiding overfitting.

Furthermore, after every step, the newly added weights are scaled by a factor η. This technique,

named shrinkage, helps to reduce each tree’s impact and to slow the learning stage (in an assumption

that this will result in a better model) [15, 61, 62].

2.3.5 Neural Networks

Neural Networks (NN) were made to imitate the neuronal structure of the human brain being the most

popular the feed-forward multilayer perceptron (MLP). Normally, the MLP network contains multiple lay-

ers that define the information transfer between the input and the response layers. Every hidden layer

is composed of nodes having weighted connections defining the strength of the information which flows

between layers. The training goal is to identify the optimal weights that result in a lower prediction error

for a training dataset. The MLP is usually trained by the backpropagation algorithm [84], it starts by

assigning a random weighting scheme to all the network’s connections and then the following steps are

repeated: i ) Estimating the output in the response variable via the forward-propagation of information

through the network. ii ) Calculating the difference between the response’s predicted value and true

value. iii ) Changing the weights through a backpropagation step beginning at the output layer followed

by the remaining hidden layers.

A fitted MLP neural network with two layers can be represented as [104]:

yk = f0

(∑
h

whkfh

(∑
i

wihxi

))
(2.14)

where the estimated value of the response variable yk is a sum of products between the respective

weights w for i input variables x and h hidden nodes, mediated by the activation functions fh and fo for

each hidden and output node, respectively.

2.3.6 Classification And Regression Trees

Classification And Regression Trees, commonly known as CART, is a term introduced by Breiman [36]

to refer to DT algorithms that can be used for classification problems. The representation for the CART

model is a binary tree, i.e., the algorithm works by repeatedly finding the best predictor variable to split

the data into two subsets. To select the input variable to be used and the specific split point, a greedy

algorithm (e.g. the Gini index in equation (2.10) ) is used to minimize a cost function (e.g. sum squared

error). Tree construction ends utilizing a predefined stopping criterion, such as a minimum number of

training instances assigned to each leaf node of the tree [36].
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2.3.7 k-Nearest Neighbours

The k-Nearest Neighbours (KNN) algorithm [80, 104] used for classification is the same as the one

described above for imputation. The algorithm works at it follows: i ) Initialize k, i.e., the number of

neighbours to be considered ii ) For each observation in the test dataset, calculate the distance between

the test observation and the remaining observations in the train dataset. Then, for each observation in

the test dataset: iii ) Sort the distances from smallest to largest iv ) Pick the first k entries v ) Get the

labels of the selected k entries vi ) If regression, return the mean of the k labels vii ) If classification,

return the mode of the k labels.

2.4 Cross Validation

In ML it is customary to divide the dataset into three [45]: i ) Training dataset: used to train the model,

estimate the model parameters, typically composed of 60% of the available data. ii ) Validation dataset:

used to provide an unbiased evaluation of the model’s fitness. The model which performs well on training

data is then run on the validation dataset and if the error on this dataset increases then we can conclude

we have an overfitting model. It is typically composed of 10% to 20% of the available data. iii ) Test

dataset/ Holdout dataset: used to perform the final model evaluation. This dataset contains data that

has never been used in training. Typically composed of 5% to 20% of the available data.

When a dataset is large enough it is possible to split it accordingly. Unfortunately, this is not always

the case, when enough data is not available one might opt for having only a training and a test dataset

and no validation set yet this comes with a few downsides. Sample variability between the train and the

test dataset leads to the models yielding a good prediction on the train dataset but failing to generalize

on the test dataset, i.e., having a low training error rate and a high test error rate. Moreover, when

splitting the dataset into three (train, test and validation datasets), only a subset of the data is used to

train the model meaning the model is likely to not perform well and overestimate the test error rate for

the model to fit on the complete dataset [45].

Therefore, when the dataset is not large enough to deem the last two disadvantages irrelevant, one

may choose to use an approach called cross validation. This statistical technique consists of dividing the

data into two subsets, one for training and the other for evaluating the model’s performance. In order to

reduce variability, this technique is performed multiple times using different subsets of the same dataset.

In the end, the validation results of the multiple rounds are combined and a more accurate estimate of

the model’s predictive performance is obtained [45].

There are several cross validation approaches, the two most used are:

• Leave one out cross validation (LOOCV): when dividing the data into two subsets, the test dataset

has only one observation while the training dataset has the remaining. Thus if a dataset has n

observations, the technique is repeated n times and n performance metrics are generated which

makes execution expensive. Additionally, being the test dataset composed of a single observation,

if this observation is an outlier then the variability will be much higher. On the other hand, it is a
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better approach than the validation set where only a subset of the data is used for training, and it

is obtained a less biased model [45].

• k Fold: the dataset is randomly divided into k groups/folds of equal size. The model is trained

on k-1 folds and afterwards tested on the first one, this is repeated k times using a different test

fold every time. The value of k is usually 10 as extensive studies show this value gives the best

estimate of error [106]. Although being computationally intensive, it presents improvements in time

when compared to LOOCV. Likewise, the bias is reduced and, with the increase of k, it is obtained

a reduction in variance [45].

2.5 Performance Metrics

In order to evaluate the classification performance, several metrics must be known:

(i) Accuracy (Acc) - the proportion of true results, both true positives (TP) and true negatives (TN),

among the total number of examined cases (n).

Accuracy =
TP + TN

n
(2.15)

(ii) Sensitivity/ Recall/ True Positive Rate (TPR) - the proportion of positives, both TP and false nega-

tives (FN), that are correctly identified.

Sensitivity =
TP

TP + FN
(2.16)

(iii) Specificity - the proportion of negatives, both TN and false positives (FP), that are correctly identi-

fied.

Specificity =
TN

TN + FP
(2.17)

(iv) Precision - ratio of correctly predicted positive observations to the total predicted positive observa-

tions.

Precision =
TP

TP + FP
(2.18)

(v) F1score - weighted average of Precision and Recall. Should be used in the case of an uneven class

distribution.

F1score = 2
Precision . Recall

Precision+Recall
(2.19)

2.5.1 Receiver Operating Characteristic Curves

Binary imbalanced classifications often make use of Receiver Operating Characteristic (ROC) Curves

and Precision-Recall curves to help with its interpretation, namely, to understand the trade-off in per-

formance for different threshold values. These curves are particularly useful in imbalanced datasets
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because they are not biased to the majority or minority class. In order to directly compare classification

models, it is common to use the area under the ROC curve (AUC) which can be interpreted as ”the

probability that the scores given by a classifier will rank a randomly chosen positive instance higher than

a randomly chosen negative one” [28].

The ROC curve is plotted with true positive rate (as in equation (2.16) ) against the false positive rate

(FPR, as in equation (2.20) ) where TPR is on y-axis and FPR is on the x-axis. It is built by calculating

the TPR and FPR for different thresholds that separate two binary classes at different points.

FPR = 1− Specificity =
FP

FP + TN
(2.20)

AUC

The AUC is a measure of separability, it gives information regarding how well a model is able to distin-

guish between classes. An AUC of 0.5 translates to an incapacity of the model to distinguish between

classes and, from this value up, the higher the AUC the better the distinction between positive class and

negative class [73].

In order to better understand these concepts, a ROC curve and its underlying probability distributions

were plotted, being the red distribution curve the positive class and the green distribution curve the

negative class. Fig. 2.2 shows a perfect situation where there is no overlap between the two curves

meaning the models is able to distinguish perfectly between the two classes [73].

(a) (b)

Figure 2.2: Receiver Operating Characteristic Curve (a) and its underlying probability distributions (b)
for an ideal model, AUC=1 [73].

The contrary case to Fig. 2.2 is Fig. 2.3, which shows the worst situation, i.e., when the AUC is

close or equal to 0.5. Here the model has no discriminatory power thus there is a total overlap of the

positive and the negative distributions [73].

Typically, the two distributions partially overlap. In Fig. 2.4 we see an example where the AUC is 0.7

meaning there is a 70% chance that the model will be able to distinguish between both classes.

Theoretically, the AUC can be zero which would mean the model was predicting negative class as a

positive class and vice versa. This situation is depicted in Fig. 2.5.

The partial AUC can also be computed for a given sensitivity or specificity interval [min,max]. It

is common for a standardized version to be presented being the McClish one of the most common
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(a) (b)

Figure 2.3: Receiver Operating Characteristic Curve (a) and its underlying probability distributions (b)
for the worst model, AUC=0.5 [73].

(a) (b)

Figure 2.4: Receiver Operating Characteristic Curve (a) and its underlying probability distributions (b)
for a typical model, AUC=0.7 [73].

(a) (b)

Figure 2.5: Receiver Operating Characteristic Curve (a) and its underlying probability distributions (b)
for a model reciprocating classes, AUC=0 [73].

corrections:

Corrected Partial AUC =
1 + AUC−min

max−min

2
(2.21)

Fernández et al. [28] defend ROC AUC may be misleading when computed for an imbalanced

dataset with a small minority class and a severe skew. They have shown how a small variation in the

number of correct and incorrect predictions results in a large change in the ROC curve and, conse-

quently, in the ROC AUC score providing an excessively optimistic value for performance. It is proposed

the use of the precision-recall (PR) curve and PR AUC when these conditions apply. Similar studies
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were conducted by Saito [86] which support this conclusion.

2.5.2 Precision-Recall Curves

A precision-recall curve, as the name suggests, is plotted with precision (as in equation (2.18) ) against

recall (as in equation (2.16) ) where precision is on y-axis and recall is on the x-axis. Both these metrics

focus on the minority (positive) class and are indifferent to the majority (negative) class.

Fig. 2.6 shows the PR curve for the perfect model, i.e., 100 % precision and 100 % recall, every

observation is correctly classified.

Figure 2.6: Precision-Recall Curve for the perfect model [86].

The contrary case to Fig. 2.6 is Fig. 2.7, the worst situation, i.e., there is a complete overlap of

results between the two classes, where the PR curve lies over the ratio between the positive (Y) and the

negative (N) groups. Fig. 2.7 shows an imbalanced dataset with the ratio Y:N equal to 1:9 therefore,

being X the number of people in the positive group, equation (2.22) shows the precision will remain the

same through every value of recall as 0.1 [86].

Precision =
TP

TP + FP
=

X

X + 9X
= 0.1 (2.22)

Figure 2.7: Precision-Recall Curve for the worst model - imbalanced distribution Y:N equal to 1:9 [86].

Typically, there is a partial overlap of results between the two classes, as seen in curves represented

in Fig. 2.8 The rule is, the closer the curve is to the upper right corner, the better the model [86].
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Figure 2.8: Precision-Recall Curve for the worst model [86].

2.5.3 DeLong’s Test

DeLong’s test [20] is a method for comparing the AUC of different machine learning models.

Being θ̂(A) the AUC of model A, θ̂(B) the AUC of model B, V and C the variance and covariance,

respectively, the z-score is calculated as described in equation (2.23).

z
∆
=

θ̂(A) − θ̂(B)√
V[θ̂(A) − θ̂(B)]

=
θ̂(A) − θ̂(B)√

V[θ̂(A)] + V[θ̂(B)]− 2 C [θ̂(A), θ̂(B)]
(2.23)

This value, z-score, will correspond to a p-value in a table for two-tailed test for z statistics [20, 100].

Commonly, a t-test is used to make the comparison between two machine learning models however

the use of k-fold cross validation invalidated that option. A key assumption of the paired Student’s t-test

is that the observations in each sample are independent yet when using k-fold cross validation a given

observation is used in the training dataset k-1 times meaning the estimated skill scores are dependent

[22].
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Chapter 3

Implementation

3.1 Database: Precise Stroke

The dataset used in this study results from a collaboration, between investigators from Instituto de

Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento in Lisbon (INESC-ID) and

from the Santa Maria Hospital in Lisbon, in the project Precise. Our original dataset was comprised of

536 patients however the mRS three months and one year after the event was only recorded for 243 and

234 patients, respectively. This database has data collected at admission, follow-up data, data collected

on discharge, three months and one year after the initial stroke.

Before data pre-processing 93% of the dataset features had more than 30% of its data missing, 90%

of the dataset features had more than 50% of its data missing and 64% of the dataset features had more

than 70% of its data missing. Further research was not done given the elevated number of features in

the dataset, 393 and 466 for the mRS three months and one year, respectively. For more information

regarding missing data exploration in R the work by Ghazali et al. should be consulted [34].

3.2 Data Cleaning and Manipulation

Data cleaning was performed for both predicted outcomes in the same manner by deleting features that

contained more than 90% of missing values and features which were meta-data, e.g. record number.

Variables that record times were converted into time differences between variables, e.g. time of the

initial event and time of arrival at the hospital becomes time between the event and arrival. Variables

consisting of a true/false list were used to create a column for each list entry. Furthermore, observations

having a field ”Unknown” or ”Untested” were set to ”NA” whereas the field ”Not Applicable” was kept.

Patients for which the mRS was not recorded or were dead by the time of its assessment were removed.

Moreover, using the caret package [51], features with zero variance and near-zero variance (the feature

must have a ratio of the most common value to the second most common value lower than 95:5) were

removed as well as features with a correlation higher than 85%. These last features were removed in

order to enable the use of multiple imputation.
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After cleaning the data, the resulting dataset had 138 features and 243 patients for the mRS three

months and 192 features and 234 patients for the mRS one year.

The target variable was the mRS three months and one year after the event. To turn the problem into

a binary classification problem the mRS was discretized into two classes:

• Good outcome: defined by mRS ≤ 2

• Poor outcome: defined by mRS > 2

This particular discretization is of medical relevance because it separates the patients who will be able

to live a rather normal independent life from the ones who will require significant assistance.

3.3 Data Imputation

The database Precise Stroke has a number of dependent fields, i.e. fields which can only be filled when

a third field has a pre-determined answer, as is shown in Fig. 3.1: ”Idade” can only be filled when the

previous field’s (”Hipertensão Arterial” or ”Diabetes Mellitus”) answer is ”Sim”. In this cases primal data

imputation was performed, single value imputation was used with the value ”9999” or ”0” depending on

the variable’s quantitative or qualitative nature, respectively.

Figure 3.1: Example of two dependent fields on the database Precise Stroke.

After data cleaning, manipulation and a primal data imputation, 6 experiments were designed that

aimed to assess with what precision we could predict the patient’s mRS three months and the mRS one

year after admission. Each experiment corresponds to a different imputation method:

• Mode/Median Imputation (Imp. 1), according to the quantitative/qualitative nature of the variables.

Done by using the default settings of the imputeTS package in R [70].

• Mode/Median Imputation (Imp. 2), according to the quantitative/qualitative nature of the variable

and taking into account the dependence of a few variables. Done by using the default settings of

the imputeTS package in R for each pair dependent/independent variable [70].

• Hotdeck Imputation (Imp. 3). Done by using the default settings of the VIM package in R [50].

• k-Nearest Neighbours Imputation (Imp. 4). Done by using the default settings (k=5 and a variation

of the Gower Distance) of the VIM package in R [50].
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• Decision Trees Imputation (Imp. 5). Done by using the default settings of the missForest package

in R [97, 98].

• Multiple Imputation (Imp. 6) with posterior predictive distribution or conditional mean-imputation,

according to the quantitative or qualitative nature of the variables. Done by using the default

settings (maximum number of iterations=30 and number of chains=4) of the mi package in R [33].

3.4 Machine Learning Models

For each experiment we used the following classifiers:

• Logistic Regression: L1-regularised. Done by using the default settings of the caret method ”re-

gLogistic” provided by the R package LiblineaR [14, 31].

• Support Vector Machines. Done by using the default settings of the caret method ”svmPoly” pro-

vided by the R package kernlab [57, 108].

• Random Forest. Done by using the default settings of the caret method ”rf” provided by the R

package randomForest [9].

• Extreme Gradient Boosting. Done by using the default settings of the caret method ”xgbLinear”

provided by the R package xgboost [15, 61, 62].

• Neural Network. Done by using the default settings of the caret method ”nnet” provided by the R

package nnet [80, 104].

• Classification And Regression Trees. Done by using the default settings of the caret method ”rpart”

provided by the R package rpart [36].

• k-Nearest Neighbours. Done by using the default settings (distance = Euclidean) of the caret

method ”knn” provided by R itself [80, 104].

3.5 Evaluation and Training

To measure the performance of the models it was used the AUC. To train and validate the model it was

used 10-fold cross validation, using the caret package [51]. ROC and PR curves were created, using

the mLeval R package [47], to further compare the models.

In order to determine if the differences observed between the different classifiers’ AUC were statisti-

cally significant the DeLong’s test was applied, using the pROC R package, and a p-value threshold of

0.05 was chosen.

To determine the best parameterization for each model a grid search was performed over a set of

reasonable values. For the LR classifier, the search was over the regularization cost parameter and

tolerance. For the SVM classifier, the search was over the cost parameter, the scale and polynomial
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degree. For the RF classifier, the search was over the number of randomly selected predictors. For the

Xgboost classifier, the search was over the learning rate, the L1 and L2 regularization cost parameter

and the number of boosting iterations. For the NN classifier, the search was over the number of hidden

units and the weight decay. For the CART classifier, the search was over the complexity parameter. For

the KNN classifier, the search was over the number of neighbours.
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Chapter 4

Results and Discussion

4.1 Modified Rankin Scale at Three Months

From table 4.1 it can be seen how there is no one better imputation method, it greatly depends on

the model being used to train the classifier. Woźnica et al. [107] arrived at the same conclusion, more

complex methods aren’t always the best option. Here the combination which achieved the best results

was performing hotdeck imputation and using neural networks as the classification model with an AUC

of 0.8217.

In Figure 4.1 can be found the twenty most important variables and its relative importance (scale

of 100%) for the best modified Rankin Scale classifier at three months (the most important features

for the remaining classifiers can be found in Appendix A). 13 out of the 20 variables are all known

predictors that are used by traditional scores (National Institutes of Health Stroke Scale/Score (NIHSS)

[63], Hospital Anxiety and Depression Scale (HADS) [96], Mini-Mental State Examination (MMSE) [30]

and the Montreal Cognitive Assessment (MoCA) [74]) also appear in the most important features list of

the classifiers. The major presence of the NIHSS score comes as no surprise given its metrics measure

the symptoms’ severity and there is a direct correlation between the severity of the symptoms and the

patient’s likelihood to recover [69]. Interestingly, features related to recovery are also represented, and

ranked fourth and fifth nonetheless, highlighting the importance of physical therapy and speech therapy.

In a medical context, a classifier which has an 80% sensitivity, i.e. is able to predict eight in every ten

patients who will require significant assistance (positive class), is considered a good model [23]. Looking

at table 4.2, the partial AUC values for an 80% sensitivity were computed and the correction by McClish

was applied. The best imputation method is the same as when the total AUC is computed, table 4.1, as

well as the best pair imputation method/classification model.

Furthermore, the different metrics AUC, AUC-PR, F1score and accuracy in tables 4.1, 4.3, 4.4

and 4.5, respectively, are not in agreement when electing the best imputation method and classification

model pair. For AUC-PR, F1score and accuracy the best imputation method would be decision trees

paired with a random forest classifier for AUC-PR, extreme gradient boosting for F1score and support

vector machines for accuracy. These results show how important it is the choice of the evaluation
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metric.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.7665 + 0.0218 0.7615 + 0.0219 0.8004 + 0.0209 0.7754 + 0.0216 0.7979 + 0.0208 0.6250 + 0.0230 0.7110 + 0.0219
Imp. 2 0.7705 + 0.0217 0.7589 + 0.0219 0.8001 + 0.0209 0.7566 + 0.0220 0.7984 + 0.0207 0.6433 + 0.0235 0.6919 + 0.0218
Imp. 3 0.7815 + 0.0214 0.7730 + 0.0216 0.7998 + 0.0209 0.7737 + 0.0216 0.8217 + 0.0198 0.6456 + 0.0225 0.7061 + 0.0218
Imp. 4 0.7760 + 0.0216 0.7811 + 0.0214 0.7916 + 0.0212 0.7818 + 0.0214 0.7945 + 0.0209 0.6218 + 0.0233 0.7071 + 0.0220
Imp. 5 0.7891 + 0.0212 0.7672 + 0.0217 0.7876 + 0.0213 - 0.7365 + 0.0224 0.7087 + 0.0230 0.7303 + 0.0220
Imp. 6 0.8014 + 0.0209 0.7791 + 0.0214 0.7972 + 0.0210 - 0.7768 + 0.0215 0.6768 + 0.0228 0.7314 + 0.0220

Table 4.1: AUC results for six imputation methods and seven different models predicting the modified
Rankin Scale at three months. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 -
Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp.
6 - Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.8708 0.8670 0.9114 0.8819 0.8979 0.6819 0.8045
Imp. 2 0.8759 0.8640 0.9104 0.8590 0.8967 0.7065 0.7783
Imp. 3 0.8885 0.8805 0.9110 0.8791 0.9151 0.7119 0.7981
Imp. 4 0.8825 0.8918 0.9027 0.8895 0.8930 0.6769 0.7989
Imp. 5 0.9006 0.8739 0.8978 - 0.8320 0.7948 0.8295
Imp. 6 0.9129 0.8896 0.9086 - 0.8794 0.7548 0.8311

Table 4.2: Partial AUC results, 80% sensitivity, for six imputation methods and seven different models
predicting the modified Rankin Scale at three months. The six different imputations used: Imp. 1 -
Mode/Median Imputation, Imp. 2 - Mode/Median Imputation taking into account the dependence of a
few variables, Imp. 3 - Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision
Trees Imputation, Imp. 6 - Multiple Imputation. The best imputation method for each model is highlighted.

Figure 4.1: The twenty most important variables and its relative importance (scale of 100%) for the best
model predicting the modified Rankin Scale at three months: hotdeck imputation and neural network
classification.

In chapter 2 it was discussed how the metric AUC could be misleading when computed for an imbal-

anced dataset as a small variation in the number of correct and incorrect predictions resulted in a large

change in the ROC curve and, consequently, in the AUC score providing an excessively optimistic value

for performance [28]. Fernández et al. advise the reader to, in this situation, use the precision-recall

curve and AUC-PR.
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Figure 4.2 shows the ROC curves for the six imputation methods and seven different models pre-

dicting the modified Rankin Scale at three months. Analysing each model individually it is possible to

see the curves overlap several times and there is no clear distinction between them which is expected

considering the close AUC values in table 4.1 and the statistical tests performed, table 4.8.

Coherently, the precision-recall curves are zigzagged, figure 4.3. It is common to have noisy curves

for small recall values however when this tendency persists for higher recalls, curves for different classi-

fiers crossing each other very frequently, it makes it hard to choose the best classifier by analyzing set

curves. It is, however, possible to see two uncommon situations in subfigures 4.3b and 4.3e, a curve not

starting at coordinates (0,1) and a curve not starting at recall zero.

Regarding the uncommon start place, the first point of the precision-recall curve is usually estimated

based on its second point since the precision value is undefined when the number of positive predictions

is 0. This estimation is done taking into consideration the second point’s true positive. Whenever the

number of true positives, for the second point, is zero then the first point is also (0,0). However, if TP

is not zero the first point is estimated by drawing a horizontal line from the second point to the y-axis.

Here, the classifier with the decision tree imputation, represented in red in subfigure 4.3b, is not able to

avoid false positives at any level of probability threshold, at the lowest level of probability there is one

false positive, meaning the first point does not need to be estimated and corresponds to (0.077, 0.500).

This situation happens when a classifier is trained with imbalanced data and isn’t able to achieve good

results, i.e., it is considered a poor classifier [17, 48].

On the other hand, when a precision-recall curve does not start at recall zero then the classifier with,

for example, the decision tree imputation, represented in red in subfigure 4.3e, is not able to avoid true

positives at any level of probability threshold, at the lowest level of probability there are nine true positives

meaning there are no values for precision at lower recalls than 0.692. No reasons were found to explain

set situation, one can only assume a larger number of patients would allow the model to develop better

distinctions thus improving the precision-recall curve.

Looking at tables 4.1 and 4.3, AUC and AUC-PR, the range of values is bigger for AUC-PR than for

AUC, as expected, thus helping to better distinguish between the classification models and imputation

methods. Contrary to what happens when using the AUC metric, table 4.1, when the AUC-PR is

chosen as an evaluation metric there is clearly one best imputation method, decision trees, yielding best

result for four out of the seven models. However, the best pair imputation method/classification model

is hotdeck/random forest supporting the first conclusion: there is no one better imputation method, it

greatly depends on the model being used to train the classifier.

Kendall’s correlation between the different evaluation metrics can be seen in table 4.7. Contrary to

what was expected, AUC-PR and F1score have a smaller correlation than AUC-PR with the remaining

evaluation metrics. Additionally, the correlation between accuracy and AUC was also smaller than the

correlation of accuracy with the remaining evaluation metrics which was also unexpected. Knowing the

pair AUC and accuracy give equal importance to the positive and the negative classes while the pair

AUC-PR and F1score give greater importance to the positive class, it was expected to see a greater

correlation among the metrics in these two pairs which has shown not to be true.
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Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.470 0.640 0.630 0.650 0.550 0.140 0.500
Imp. 2 0.440 0.630 0.630 0.600 0.550 0.100 0.520
Imp. 3 0.400 0.600 0.610 0.600 0.550 0.400 0.400
Imp. 4 0.480 0.600 0.600 0.600 0.530 0.130 0.480
Imp. 5 0.600 0.640 0.660 - 0.530 0.130 0.600
Imp. 6 0.600 0.620 0.590 - 0.570 0.390 0.600

Table 4.3: AUC-PR results for six imputation methods and seven different models predicting the modified
Rankin Scale at three months. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 -
Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp.
6 - Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.538 0.667 0.688 0.750 0.571 0.645 0.621
Imp. 2 0.562 0.667 0.710 0.636 0.571 0.645 0.621
Imp. 3 0.583 0.643 0.690 0.595 0.571 0.621 0.583
Imp. 4 0.667 0.621 0.688 0.667 0.583 0.621 0.667
Imp. 5 0.588 0.720 0.710 - 0.640 0.625 0.588
Imp. 6 0.600 0.636 0.667 - 0.621 0.667 0.600

Table 4.4: F1score results for six imputation methods and seven different models predicting the modified
Rankin Scale at three months. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 -
Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp.
6 - Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.7292 0.8333 0.8333 0.8125 0.6667 0.7917 0.8125
Imp. 2 0.7292 0.8125 0.8333 0.8125 0.6667 0.7708 0.8125
Imp. 3 0.6875 0.8125 0.8125 0.7708 0.7292 0.7500 0.7917
Imp. 4 0.7708 0.7917 0.7917 0.8333 0.6875 0.7708 0.7708
Imp. 5 0.7917 0.8542 0.8333 - 0.8125 0.7708 0.7708
Imp. 6 0.7500 0.8333 0.7917 - 0.7917 0.8333 0.7917

Table 4.5: Accuracy results for six imputation methods and seven different models predicting the modi-
fied Rankin Scale at three months. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hot-
deck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6
- Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.538 0.615 0.846 0.692 0.462 0.769 0.692
Imp. 2 0.692 0.615 0.846 0.538 0.462 0.769 0.692
Imp. 3 0.538 0.692 0.769 0.846 0.615 0.692 0.538
Imp. 4 0.692 0.692 0.846 0.846 0.538 0.692 0.692
Imp. 5 0.769 0.692 0.846 - 0.615 0.769 0.769
Imp. 6 0.462 0.538 0.769 - 0.692 0.615 0.462

Table 4.6: Sensitivity results for six imputation methods and seven different models predicting the modi-
fied Rankin Scale at three months. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hot-
deck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6
- Multiple Imputation. The best imputation method for each model is highlighted.

For the same reasons, the correlation between AUC-PR and F1score with sensitivity was also ex-

pected to be bigger than the correlation between AUC and accuracy with sensitivity. While this was true

to F1score, AUC-PR had the worst correlation with sensitivity.

Given that the observed performances were so close to each other, paired DeLong’s tests using a

p-value of 0.05 were performed to determine whether the observed differences were statistically signif-

icant. Table 4.8 and 4.9 show the results among each classification model and imputation method,

respectively. For readability reasons, the p-value was omitted and a check-mark was placed instead

when the difference between the classifiers are statistically significant. Models which did not show any
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F1 score Accuracy Precision-Recall AUC AUC Sensitivity
F1 score 0.728 0.233 0.025 0.525
Accuracy 0.260 0.111 0.485
Precision-Recall AUC 0.774 0.036
AUC 0.070
Sensitivity

Table 4.7: Kendall correlation between evaluation metrics calculated for six imputation methods and
seven different models predicting the modified Rankin Scale at three months.

significant difference were also omitted.

Taking a closer look at each model in table 4.8 it can be concluded that the great majority of impu-

tation methods are statistically equivalent. To the best of our knowledge, this can be explained by two

facts: the elevated amount of missing values (93% of the dataset features had more than 30% of its data

missing) and the small number of patients used to conduct this study. Previous studies [44, 54, 107]

have shown the difference between the performance of the several imputation methods is small and

small sample sizes only allow large differences to be detected [24]. Moreover, it is known imputation

should be used carefully in datasets with over 25% of the data missing [44], the high proportion of

missing data may introduce considerable bias resulting in too similar imputations.

On the other hand, in table 4.9, it can be concluded that the great majority of classification models

are statistically different.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6
Imp. 1 X
Imp. 2 X
Imp. 3
Imp. 4
Imp. 5
Imp. 6

(a) Logistic Regression L1-regularised.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6
Imp. 1 X
Imp. 2 X
Imp. 3 X X
Imp. 4 X
Imp. 5 X
Imp. 6

(b) Neural Network.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6
Imp. 1 X X
Imp. 2 X X
Imp. 3 X
Imp. 4 X X
Imp. 5
Imp. 6

(c) Classification And Regression Trees.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6
Imp. 1
Imp. 2 X X
Imp. 3
Imp. 4
Imp. 5
Imp. 6

(d) k-Nearest Neighbours.

Table 4.8: Paired DeLong’s test results for each model - prediction of modified Rankin Scale at three
months. Note: The following models are not presented since there were no significant differences
present: Support Vector Machine, Random Forest, Extreme Gradient Boosting. The six different impu-
tations used: Imp. 1 - Mode/Median Imputation, Imp. 2 - Mode/Median Imputation taking into account the
dependence of a few variables, Imp. 3 - Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation,
Imp. 5 - Decision Trees Imputation, Imp. 6 - Multiple Imputation.
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KNN CART NN Xgboost RF SVM LR
KNN X X X X X X
CART X X X X X
NN X X
Xgboost
RF X X
SVM
LR

(a) Mode/Median Imputation (Imp. 1).

KNN CART NN Xgboost RF SVM LR
KNN X X X X X X
CART X X X X X
NN X X
Xgboost X
RF X
SVM
LR

(b) Mode/Median Imputation taking into account the dependence
of a few variables (Imp. 2).

KNN CART NN Xgboost RF SVM LR
KNN X X X X X X
CART X X X X X
NN X X X
Xgboost
RF
SVM
LR

(c) Hotdeck Imputation (Imp. 3).

KNN CART NN Xgboost RF SVM LR
KNN X X X X X X
CART X X X X X
NN
Xgboost
RF
SVM
LR

(d) K-Nearest Neighbours Imputation (Imp. 4).

KNN CART NN RF SVM LR
KNN X X X
CART X X X
NN X X
RF
SVM
LR

(e) Decision Trees Imputation (Imp. 5).

KNN CART NN RF SVM LR
KNN X X X X X
CART X X X X
NN
RF
SVM
LR

(f) Multiple Imputation (Imp. 6).

Table 4.9: Paired DeLong’s test results for each imputation method - prediction of modified Rankin
Scale at three months. The seven different methods used: KNN - k-Nearest Neighbours, CART -
Classification And Regression Trees, NN - Neural Network, Xgboost - Extreme Gradient Boosting, RF -
Random Forest, SVM - Support Vector Machines, LR - Logistic Regression.
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(a) k-Nearest Neighbours. (b) Neural Network.

(c) Logistic Regression L1-regularised. (d) Random Forest.

(e) Classification And Regression Trees. (f) Support Vector Machines.
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(g) Extreme Gradient Boosting.

Figure 4.2: Receiver Operating Characteristic Curves presenting six imputation methods for seven
different models predicting the modified Rankin Scale at three months. The colour scheme for the six
different imputations used: Mode/Median Imputation - Yellow, Mode/Median Imputation taking into
account the dependence of a few variables - Orange, Hotdeck Imputation - Purple, K-Nearest
Neighbours Imputation - Grey, Decision Trees Imputation - Red, Multiple Imputation - Green.
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(a) k-Nearest Neighbours. (b) Neural Network.

(c) Logistic Regression L1-regularised. (d) Random Forest.

(e) Classification And Regression Trees. (f) Support Vector Machines.
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(g) Extreme Gradient Boosting.

Figure 4.3: Precision-Recall Curves presenting six imputation methods for seven different models
predicting the modified Rankin Scale at three months. The colour scheme for the six different
imputations used: Mode/Median Imputation - Yellow, Mode/Median Imputation taking into account the
dependence of a few variables - Orange, Hotdeck Imputation - Purple, K-Nearest Neighbours
Imputation - Grey, Decision Trees Imputation - Red, Multiple Imputation - Green.
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4.2 Modified Rankin Scale at One Year

Contrarily to the results for the models predicting the modified Rankin Scale at three months, from table

4.10 the best imputation model can be chosen, hotdeck, which yields the best results for four out of the

seven models supporting the previous conclusion that more complex methods aren’t always the best

option [107]. Here, similarly to the results at three months, the combination which achieved the best

results was performing hotdeck imputation and using neural networks as the classification model with

an AUC of 0.7537.

It was expected an increase in performance for the models predicting the modified Rankin Scale at

one year when compared to predicting the modified Rankin Scale at three months since stroke symp-

toms are maximal on onset and decrease in severity with time. Moreover, as time goes by, the patients’

state is less likely to significantly change, meaning, it was expected to be easier to predict the patients’

functional outcome at one year based on their state at three months than their functional outcome at

three months based on the patients’ state a few days after stroke (when the symptoms are more likely to

vary greatly on a daily basis) [69]. Comparing the AUC for both three months and one year, tables 4.1

and 4.10 respectively, it is seen this is not true. A possible explanation is that the added features have a

portion of missing data too big that, when completed with the different imputation techniques, add noise

rather than any relevant information resulting in the worsening of the AUC.

In Figure 4.4 can be found the twenty most important features and its relative importance (scale of

100%) for the best modified Rankin Scale classifier at one year (the most important features for the

remaining classifiers can be found in Appendix B). The tendency seen at three months of variables

corresponding to known predictors that are used by traditional scores is still present as anticipated. Only

4 of the 20 features were recorded at three months which is a lower number than expected given that, as

mentioned above, the patients’ situation is less likely to significantly change the more time has passed

since the stroke occurred [69]. This corroborates the above hypothesis, data recorded at three months

added more noise than information. Although the majority of the most important variables at one year

were present at three months, the overlap between the variables at the two dates is very small.

Looking at table 4.11, the partial AUC values for an 80% sensitivity were computed and the correction

by McClish was applied. As for the three months mark, the best imputation method is the same as when

the total AUC is computed, table 4.10, as well as the best pair imputation method/classification model.

Furthermore, the different metrics AUC, AUC-PR, F1score and accuracy in tables 4.10, 4.12, 4.13

and 4.14, respectively, are again not in agreement when electing the best imputation method and

classification model pair. For AUC-PR, F1score and accuracy the best imputation method would be

k-nearest neighbours.

Looking at the ROC curves for the six imputation methods and seven different models predicting

the modified Rankin Scale at one year, in figure 4.5, the same conclusion can be drawn as at three

months: there is no clear distinction between them, the different classifier for each classification method

are equivalent which is supported by the AUC values in table 4.10 and the statistical tests performed,

table 4.17.
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Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.7140 + 0.0244 0.7166 + 0.0239 0.6756 + 0.0231 0.7092 + 0.0244 0.7254 + 0.0241 0.6680 + 0.0247 0.6982 + 0.0235
Imp. 2 0.7103 + 0.0244 0.7188 + 0.0239 0.6632 + 0.0230 0.7067 + 0.0243 0.7488 + 0.0235 0.6341 + 0.0242 0.6989 + 0.0235
Imp. 3 0.7295 + 0.0242 0.7296 + 0.0239 0.6683 + 0.0230 0.7320 + 0.0242 0.7537 + 0.0232 0.6739 + 0.0247 0.6966 + 0.0233
Imp. 4 0.7236 + 0.0243 0.7236 + 0.0239 0.6802 + 0.0233 0.7075 + 0.0244 0.7358 + 0.0238 0.6297 + 0.0241 0.6989 + 0.0235
Imp. 5 0.7278 + 0.0242 0.7233 + 0.0241 0.6826 + 0.0232 - 0.6857 + 0.0248 0.6782 + 0.0247 0.6885 + 0.0238
Imp. 6 0.7171 + 0.0242 0.6959 + 0.0239 0.6687 + 0.0231 - 0.7146 + 0.0244 0.6861 + 0.0245 0.6950 + 0.0240

Table 4.10: AUC results for six imputation methods and seven different models predicting the modified
Rankin Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation, Imp.
2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hotdeck
Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6 -
Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.8062 0.8117 0.7564 0.7999 0.8078 0.7427 0.7877
Imp. 2 0.8013 0.8147 0.7388 0.7970 0.8357 0.6957 0.7888
Imp. 3 0.8264 0.8288 0.7460 0.8298 0.8374 0.7508 0.7857
Imp. 4 0.8187 0.8211 0.7626 0.7973 0.8186 0.6894 0.7888
Imp. 5 0.8247 0.8198 0.7662 - 0.7663 0.7569 0.7735
Imp. 6 0.8108 0.7837 0.7465 - 0.8065 0.7679 0.7822

Table 4.11: Partial AUC results, 80% sensitivity, for six imputation methods and seven different mod-
els predicting the modified Rankin Scale at one year. The six different imputations used: Imp. 1 -
Mode/Median Imputation, Imp. 2 - Mode/Median Imputation taking into account the dependence of a
few variables, Imp. 3 - Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - De-
cision Trees Imputation, Imp. 6 - Multiple Imputation. The best imputation method for each model is
highlighted.

Figure 4.4: The twenty most important variables and its relative importance (scale of 100%) for the best
model predicting the modified Rankin Scale at one year: hotdeck imputation and neural network
classification.

As at the three-month timeline, the precision-recall curves are zigzagged, figure 4.6, complicating the

choice of the best classifier. As before, uncommon situations are presented, for example, in subfigure

4.6a where a curve starts at coordinates (0,0). The situation is similar to the one at three months, again

the classifier with the decision tree imputation, represented in red in subfigure 4.6a, is not able to avoid

false positives at any level of probability threshold, at the lowest level of probability there is one false

positive, meaning the first point does not need to be estimated and corresponds to (0.0, 0.0) [17, 48].

Looking at tables 4.10 and 4.12, AUC and AUC-PR, the range of values is bigger for AUC-PR than
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for AUC, as expected alike the results at three months. Contrary to what happens when using the AUC

metric, table 4.10, which has hotdeck as the best imputation method, when the AUC-PR is chosen

multiple imputation is the best method, yielding best results for three out of the seven models.

Like at three months, the best pair imputation method/classification model also differ. Here, for the

AUC-PR evaluation metric, there is a tie for the best pair: multiple imputation/logistic regression and

mode/median imputation with dependent variables/extreme gradient boosting.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.560 0.610 0.670 0.590 0.080 0.340 0.590
Imp. 2 0.610 0.600 0.690 0.710 0.100 0.340 0.580
Imp. 3 0.680 0.540 0.580 0.620 0.120 0.430 0.460
Imp. 4 0.630 0.630 0.700 0.600 0.250 0.340 0.650
Imp. 5 0.520 0.520 0.610 - 0.480 0.250 0.530
Imp. 6 0.710 0.640 0.670 - 0.550 0.380 0.370

Table 4.12: AUC-PR results for six imputation methods and seven different models predicting the mod-
ified Rankin Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hot-
deck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6
- Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.769 0.750 0.727 0.769 0.741 0.513 0.571
Imp. 2 0.741 0.750 0.667 0.759 0.696 0.513 0.571
Imp. 3 0.688 0.720 0.690 0.710 0.645 0.593 0.600
Imp. 4 0.741 0.720 0.690 0.769 0.741 0.621 0.643
Imp. 5 0.667 0.692 0.688 - 0.640 0.571 0.516
Imp. 6 0.733 0.611 0.727 - 0.571 0.583 0.552

Table 4.13: F1score results for six imputation methods and seven different models predicting the modified
Rankin Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation, Imp.
2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hotdeck
Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6 -
Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.8478 0.8261 0.8261 0.8696 0.7609 0.7174 0.8043
Imp. 2 0.8696 0.8261 0.8261 0.8261 0.6957 0.7174 0.8043
Imp. 3 0.8478 0.8043 0.8261 0.8043 0.7609 0.7826 0.8261
Imp. 4 0.8913 0.8261 0.8478 0.8043 0.8043 0.8261 0.8261
Imp. 5 0.8261 0.8261 0.8261 - 0.7826 0.8043 0.7826
Imp. 6 0.8478 0.8261 0.8261 - 0.8478 0.7174 0.8043

Table 4.14: Accuracy results for six imputation methods and seven different models predicting the mod-
ified Rankin Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hot-
deck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6
- Multiple Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours
Imp. 1 0.909 0.818 0.727 0.909 0.909 0.909 0.909
Imp. 2 0.909 0.818 0.909 1.000 0.727 0.909 0.909
Imp. 3 1.000 0.818 0.909 1.000 0.909 0.727 0.545
Imp. 4 0.909 0.818 0.909 0.909 0.909 0.818 0.818
Imp. 5 1.000 0.818 1.000 - 0.727 0.727 0.727
Imp. 6 1.000 1.000 0.727 - 0.545 0.636 0.727

Table 4.15: Sensitivity results for six imputation methods and seven different models predicting the
modified Rankin Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 -
Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp.
6 - Multiple Imputation. The best imputation method for each model is highlighted.
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Kendall’s correlation between the different evaluation metrics can be seen in table 4.16. As expected

AUC-PR and F1score have a higher correlation than AUC-PR and AUC, however, an unanticipated lower

correlation than AUC-PR and accuracy. Additionally, as in the results for the models predicting the

modified Rankin Scale at three months, the correlation between accuracy and AUC was also smaller

than the correlation of accuracy with the remaining evaluation metrics which was also unexpected.

Finally, the correlation between AUC-PR and F1score with sensitivity was also expected to be bigger

than the correlation between AUC and accuracy with sensitivity. While this was not true for the results at

three months, at one year these correlations are now as anticipated.

F1 score Accuracy Precision-Recall AUC AUC Sensitivity
F1 score 0.488 0.307 0.478 0.362
Accuracy 0.720 0.115 0.211
Precision-Recall AUC 0.100 0.286
AUC 0.167
Sensitivity

Table 4.16: Kendall correlation between metrics calculated for six imputation methods and seven differ-
ent models predicting the modified Rankin Scale at one year.

Table 4.17 and 4.18 show the results of the paired DeLong’s tests, using a p-value of 0.05, among

each classification model and imputation method, respectively.

Taking a closer look at each model in table 4.17 it can be concluded that the great majority of

imputation methods are statistically equivalent. The same happened for the results at three months and

both outcomes can be explained by the facts enumerated before: the elevated amount of missing values

and the small number of patients used to conduct this study.

On the other hand, in table 4.18, contrarily to what happens for the results at three months, it is

seen greater statistical equivalence between classification models. Again, a possible explanation lies in

the added features: adding it, with its big portion of missing data might have resulted in the addiction of

noise rather than any relevant information.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6
Imp. 1 X
Imp. 2 X X
Imp. 3 X X
Imp. 4 X
Imp. 5
Imp. 6

(a) Neural Network

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6
Imp. 1 X
Imp. 2 X X X
Imp. 3 X
Imp. 4 X X
Imp. 5
Imp. 6

(b) Classification And Regression Trees

Table 4.17: Paired DeLong’s test results for each model - prediction of modified Rankin Scale at
one year. Note: The following models are not presented since there were no significant differences
present: Logistic Regression, Support Vector Machine, Random Forest, Extreme Gradient Boosting and
k-Nearest Neighbours. The six different imputations used: Imp. 1 - Mode/Median Imputation, Imp. 2 -
Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hotdeck Impu-
tation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6 - Multiple
Imputation.
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KNN CART NN Xgboost RF SVM LR
KNN
CART X X X X
NN X
Xgboost
RF X X
SVM
LR

(a) Mode/Median Imputation (Imp. 1).

KNN CART NN Xgboost RF SVM LR
KNN X X X
CART X X X X
NN X X X
Xgboost X
RF X X
SVM
LR

(b) Mode/Median Imputation taking into account the dependence
of a few variables (Imp. 2).

KNN CART NN Xgboost RF SVM LR
KNN X X
CART X X X X
NN X
Xgboost X
RF X X
SVM
LR

(c) Hotdeck Imputation (Imp. 3).

KNN CART NN Xgboost RF SVM LR
KNN X X
CART X X X X X
NN X
Xgboost
RF X X
SVM
LR

(d) K-Nearest Neighbours Imputation (Imp. 4).

KNN CART NN RF SVM LR
KNN X X
CART X X
NN X X
RF X X
SVM
LR

(e) Decision Trees Imputation (Imp. 5).

KNN CART NN RF SVM LR
KNN
CART
NN X
RF X
SVM
LR

(f) Multiple Imputation (Imp. 6).

Table 4.18: Paired DeLong’s test results for each imputation method - prediction of modified Rankin
Scale at one year. The seven different methods used: KNN - k-Nearest Neighbours, CART -
Classification And Regression Trees, NN - Neural Network, Xgboost - Extreme Gradient Boosting, RF -
Random Forest, SVM - Support Vector Machines, LR - Logistic Regression.
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(a) k-Nearest Neighbours. (b) Neural Network.

(c) Logistic Regression L1-regularised. (d) Random Forest.

(e) Classification And Regression Trees. (f) Support Vector Machines.

40



(g) Extreme Gradient Boosting.

Figure 4.5: Receiver Operating Characteristic Curves presenting six imputation methods for seven
different models predicting the modified Rankin Scale at one year. The colour scheme for the six
different imputations used: Mode/Median Imputation - Yellow, Mode/Median Imputation taking into
account the dependence of a few variables - Orange, Hotdeck Imputation - Purple, K-Nearest
Neighbours Imputation - Grey, Decision Trees Imputation - Red, Multiple Imputation - Green.
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(a) k-Nearest Neighbours. (b) Neural Network.

(c) Logistic Regression L1-regularised. (d) Random Forest.

(e) Classification And Regression Trees. (f) Support Vector Machines.
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(g) Extreme Gradient Boosting.

Figure 4.6: Precision-Recall Curves presenting six imputation methods for seven different models
predicting the modified Rankin Scale at one year. The colour scheme for the six different imputations
used: Mode/Median Imputation - Yellow, Mode/Median Imputation taking into account the dependence
of a few variables - Orange, Hotdeck Imputation - Purple, K-Nearest Neighbours Imputation - Grey,
Decision Trees Imputation - Red, Multiple Imputation - Green.
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Chapter 5

Conclusions and Future Work

The quality of data is one of the main concerns of data scientists as the quality of the results of a machine

learning algorithm depend on it. Missing data introduces ambiguity and most algorithms are not robust

enough to handle it thus producing misleading conclusions. A common technique when dealing with

missing values is data imputation, i.e., replacing it with most plausible values.

In this master thesis it was predicted the functional outcome, by the binary version of the mRS at two

points in time. Missing data was imputed with six different methods and the classifier was trained with

seven distinct machine learning models.

It was possible to conclude that machine learning can indeed effectively predict the functional out-

come of an ischemic stroke patient. The AUC for the three months and one-year mark are 0.8217 and

0.7537, respectively meaning more data does not necessarily imply better results. Moreover, although

there is a clear distinction between classifiers trained with only different machine learning methods, the

same cannot be said for classifiers trained with only different imputation methods. Finally, it was high-

lighted how important it is to choose the right evaluation metric according to the problem’s specificity.

In the future we wish to improve our performances by using more and richer records from the Precise

Stroke Database. By adding more patients and with less missing data we hope to be able to answer

the question: which imputation method results better for electronic health records and does this answer

depend on the machine learning method being used for training.
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2010. Privacy preserving ehr system using attribute-based infrastructure. In Proceedings of the ACM

Conference on Computer and Communications Security, Pp. 47–52.

[73] Narkhede, S.

2018. Understanding AUC - ROC Curve.
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Appendix A

Modified Rankin Scale at Three

Months

The twenty most important variables and its relative importance (scale of 100%) for each imputation

method and for each model predicting the modified Rankin Scale at three months.

57



(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure A.1: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model k-Nearest Neighbours predicting the modified Rankin Scale at three
months.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) K-Nearest Neighbours Imputation (d) Decision Trees Imputation

(e) Multiple Imputation

Figure A.2: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Neural Network predicting the modified Rankin Scale at three months.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure A.3: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Logistic Regression L1-regularised predicting the modified Rankin
Scale at three months.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure A.4: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Random Forest predicting the modified Rankin Scale at three months.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure A.5: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model CART predicting the modified Rankin Scale at three months.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure A.6: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Support Vector Machines predicting the modified Rankin Scale at
three months.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

Figure A.7: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Extreme Gradient Boosting predicting the modified Rankin Scale at
three months.
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Appendix B

Modified Rankin Scale at One Year

The twenty most important variables and its relative importance (scale of 100%) for each imputation

method and for each model predicting the modified Rankin Scale at one year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure B.1: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model k-Nearest Neighbours predicting the modified Rankin Scale at one
year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) K-Nearest Neighbours Imputation (d) Decision Trees Imputation

(e) Multiple Imputation

Figure B.2: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Neural Network predicting the modified Rankin Scale at one year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure B.3: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Logistic Regression L1-regularised predicting the modified Rankin
Scale at one year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure B.4: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Random Forest predicting the modified Rankin Scale at one year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure B.5: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model CART predicting the modified Rankin Scale at one year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

(e) Decision Trees Imputation (f) Multiple Imputation

Figure B.6: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Support Vector Machines predicting the modified Rankin Scale at one
year.
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(a) Mode/Median Imputation (b) Mode/Median Imputation taking into account the dependence
of a few variables

(c) Hotdeck Imputation (d) K-Nearest Neighbours Imputation

Figure B.7: The twenty most important variables and its relative importance (scale of 100%) for each
imputation method for the model Extreme Gradient Boosting predicting the modified Rankin Scale at
one year.

72


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives
	1.4 Thesis Outline

	2 Background
	2.1 Missing Data Mechanisms
	2.2 Handling Missing Values
	2.2.1 Ignoring Missing Values
	2.2.2 Single Imputation
	2.2.3 Multiple Imputation

	2.3 Machine Learning Models
	2.3.1 Logistic Regression: L1-regularised
	2.3.2 Support Vector Machines
	2.3.3 Random Forest
	2.3.4 Extreme Gradient Boosting
	2.3.5 Neural Networks
	2.3.6 Classification And Regression Trees
	2.3.7 k-Nearest Neighbours

	2.4 Cross Validation
	2.5 Performance Metrics
	2.5.1 Receiver Operating Characteristic Curves
	2.5.2 Precision-Recall Curves
	2.5.3 DeLong’s Test


	3 Implementation
	3.1 Database: Precise Stroke
	3.2 Data Cleaning and Manipulation
	3.3 Data Imputation
	3.4 Machine Learning Models
	3.5 Evaluation and Training

	4 Results and Discussion
	4.1 Modified Rankin Scale at Three Months
	4.2 Modified Rankin Scale at One Year

	5 Conclusions and Future Work
	Bibliography
	A Modified Rankin Scale at Three Months
	B Modified Rankin Scale at One Year

