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Abstract

Trying to mimic natural olfactory systems, by achieving the perfect combination between chemical sensing and artificial
intelligence, has been an important task among the science community. Over the last decade, e-nose technologies have undergone
important developments on their way to be implemented in real life situations such as food monitoring, air quality monitoring,
etc. In order for that to be possible, e-noses need to possess a very efficient and highly accurate pattern recognition component.
In this work we will investigate how CNN based algorithms can be implemented in these devices in order to help them achieve
good results. With deep learning being a hot topic nowadays, and with the advance in computational hardware, plenty of
very good architectures have emerged that can achieve outstanding results in pattern recognition tasks. Different architectures
are approached, from simple 3 dimension CNNs to a object detection algorithm (YOLO) and recurrent algorithms capable of
handling sequencial data (LSTM). Since this work focuses solely on the pattern recognition side of e-noses, it will work on top
of an already produced dataset. At first, an hybrid gel was exposed to 11 different volatile organic compounds and its reaction
to them was recorded in the format of image sequences. The objective is to find the algorithm capable of classifying the image
sequences corresponding to the the 11 VOC classes with the highest possible score. On the second task, this gel was exposed
to the same compound but with different concentrations in the exposed gas. Thus, the second goal is to find the model best
capable of predicting the actual exposed concentration, also based on the recorded image sequences.
Keywords: E-nose, CNN, LSTM, YOLO, VOC, Object Detection, Concentrations.

I. INTRODUCTION

A. Motivation

The olfactory sense is considered to be the oldest out of
all senses. This is a sense that even bacteria have in order
to react and adapt to the chemicals around it. Some of these
bacteria were already around ages before creatures with the
ability of hearing, touching or seeing started to exist [1].
On a more actual context, lots of different animals, not so
much humans, still put too much trust on their smelling
sense since it is used to find food, avoid danger, track their
mates and their preys, etc.. This sense plays a vital role in
their existence and capacity to understand the surrounding
environment.

This unique capacity of detecting different smells/odors is
continuously being a subject of study and plenty of advances
have been made in this field. One of the ideas that came
out from it was the possible development of some kind of
artificial olfactory system able to identify substances in the
air. Having the possibility of mimicking this highly complex
and powerful system in various situations can be game
changing. Electronic based devices are being developed to
serve this exact purpose, which are called E-noses. These
devices contain an array of sensors that, in contact with
VOCs, generate signals that can later be analyzed in order
to characterize and identify these same compounds. The
odors present in the air are composed by mixtures of these
VOCs. E-noses aim to be the perfect combination between
chemical sensing, signal processing and pattern recognition
inside the brain, in order to achieve high performances in
odor recognition tasks.

Several of these devices are already being successfully
put into practice. E-noses are already being implemented

in several areas such as disease detection [2, 3, 4], quality
control in laboratories [5], food quality control [6], air quality
monitoring [7], security systems [8] and many more.

B. Objectives

Over the past few decades, the development in the field
of AI has been astronomical. All the hype around it and
perception of its immense potential led loads of people to
spend their time and money towards investigation in this
field. This, together with the advance in computing hardware,
such as GPU, enabled fields like Machine Learning (ML)
to rise and offer a whole new set of solutions to problems
that once seemed unsolvable. The whole idea behind ML is
to teach a computer how to perform a certain task without
having the need to provide exact instructions every step
of the way. Basically ML algorithms learn the underlying
relations among data to then make decisions without being
programmed to. One of the ways to do that is through the use
of ANNs which are based on the biological neural networks
that compose animal brains.

These networks later evolved to new sub-fields of ML
like Convolutional Neural Networks (CNN) that managed to
tackle a new set of problems with great performances. CNNs
have been proven to be a very successful neural network to
process image data. They have shown state-of-the-art results
in many image related tasks such as recognition, detection
and segmentation. CNNs are a hot topic inside the ML
community that is using it for every imaginable task possible.
CNNs have shown very good results in problems like Facial
Recognition [9], Action Recognition [10], Cancer Detection
[11] and many more.

The pattern recognition in a real olfactory system is
performed by the brain that takes as inputs the electrical



signals generated when VOCs bind to the chemoreceptors in
the nose. The brain has a huge pattern recognition capacity
as it can easily match stimulus produced by the outside
world with data stored in memory. This work focuses on the
pattern recognition section of the olfactory system, not really
targeting the stimulus acquisition and transducing parts. In
an artificial olfactory system, many different methods can
work as this pattern recognition element but in this work,
CNN based systems will serve this purpose. So, the main
objective of this work is to investigate how can these systems
be implemented in an E-nose system by making use of their
pattern recognition capabilities. CNNs have already been
used in E-nose systems to predict odor pleasantness [12] or
to identify a specific type of tea [13] for example. However,
these works do not use CNN as feature extractors in image
sequences, but in other types of signals. In both these works,
the reactions to the odors were captured by Metal-Oxide
and/or Quartz Microbalance sensors that record data in only
one dimension. Two dimensional CNNs were still used but,
in order for that to be possible, several sensor responses were
put together into 2D matrices or a response was multiplied
by its transpose to again obtain data in two dimensions.

The Biomolecular Engineering Group, UCIBIO, RE-
QUIMTE, FCT/UNL developed sensors (gas-sensitive gel)
that generate a distinct optical response according to the
VOC they are being exposed to. This optical response can
be filmed, and through its pattern variations, in theory, it is
possible to identify the exposed VOC (fingerprint). In order
to do that, CNN based systems will be applied to these
recorded responses (image sequences).

This work can be divided into 2 different parts. The first
one consists in trying to predict which VOC the gas-sensitive
gel is being exposed to. On the second one, the goal is to
predict the concentration of a specific VOC (Acetone) to
which the gel is being exposed. For both these experiences,
the results will be achieved always resorting to CNN based
systems that take as input the recorded reactions of the gel
(more specifically, the reaction of the droplets present in this
gel). Another goal, besides trying to find the models that
work better on solving these tasks, is to check whether the
size of these droplets has influence on the results.

II. THEORY

A. Convolutional Neural Network (CNN)

A CNN is a special type of Neural Network usually
applied to computer vision tasks. CNN based algorithms have
been showing great performances in several image related
tasks, such as image classification, segmentation or detection,
where they are able to produce state-of-the-art results.

Usually, a CNN is formed by 3 main types of layers.
These are the Convolutional Layers, the Pooling Layers and
the Fully Connected Layers. A typical CNN is normally
composed by alternating convolutional and pooling layers,
finishing with at least a fully connected one (Figure 1).

A convolutional layer is usually composed by several ker-
nels/filters, each one useful for different analysis of nearby
pixels. The fact that the set of weights in a kernel is shared

Fig. 1: Typical CNN architecture (taken from [14])

for the whole image is a huge advantage compared to a
simple MLP since the amount of parameters to train de-
creases drastically. Besides that, if a certain feature changes
its location in the image, it can still be detected given this all
round spatial property. The convolution is an operation where
the kernel slides horizontally and vertically over the entire
image. In each position, the sum of every multiplication of
a kernel element by its corresponding element in the image
is stored in an output image/feature map. The dimensions of
this layer’s output image will depend on the original image
size, on the kernel size, the stride applied on the convolution,
padding, etc.. As soon as the convolutions of every kernel
are done, a feature map is generated for each one of them.

Normally, every convolutional layer goes hand in hand
with an activation function. Every produced value by the con-
volutional operation is still subject to a non linear function
known as activation function. Without signal activation, the
output signal of this layer would merely be a linear function.
In this scenario, the neural network would become a simple
linear regression model that would not be able to handle
complex data and would not perform well enough most of
the times. Knowing this, adding non-linearities to the system
makes it more robust and capable of tackling more difficult
problems. The most popular activation functions nowadays
are the Sigmoid, Tanh and ReLu. The last one has been
showing better performances compared to the others and it
is the most used nowadays [15].

The second main type of layers used in CNNs are the
Subsampling/Pooling Layers. The main reason for using
these types of layers is to reduce the system dimensionality,
which consequently reduces the amount of parameters to
train in the process. To do that, it combines the values of
a certain region in the feature map into a single value. This
operation sums up the information in this region, outputting
one single value, according to the used function. This is also
done using the sliding window technique. By decreasing the
dimensionality of the network, the amount of parameters to
train decreases which can help avoid overfitting.

Another also very commonly used layer in CNNs is the
Fully Connected Layer. These layers usually appear at the
end of the CNN. They work as a traditional MLP where every
neuron in the previous layer is connected to every neuron in
this layer. Their goal is to take the feature maps outputted
by the previous layers, flattened, and predict the final result.
In a classification task, the output layer usually has the same
amount of neurons as the number of classes. To assign to
each class its own probability, this last layer normally takes
the softmax function as its activation function. In a regression

2



task, where the goal is not to predict a class but a numeric
score, the output layer is normally a single neuron with no
activation function.

There are also regulatory layers, like Batch Normaliza-
tion and Dropout layers, that help optimizing the network
performance. Batch normalization layers [16] can adaptively
normalize data during training, by keeping track of two
additional parameters (moving average of the batch-wise
mean and variance), which helps mitigating the vanishing
gradient problem allowing networks to get deeper. Besides
that, they also add a bit of noise to hidden layers, reducing
overfitting slightly and helping in the quest for generaliza-
tion. Then, Dropout layers set to zero random entries of
the output feature map of the previous layer, depending
on the chosen dropout rate. By setting a neuron to 0, the
cost function becomes more sensitive on how neighbouring
neurons change their weights during backpropagation, also
helping the model to generalize.

Even knowing all this, to build a network capable of
solving a certain problem with a high performance is not a
straight forward task. Having these notions can help getting
a starting point for a Network but the odds of it generating
the best possible results at its first try are slim. In order
to achieve better and better performances, one needs to get
past the exhaustive and slow process of parameter tuning.
The problem of this process is that sometimes to train and
test one version of a network can take long periods of time
and the great amount of parameters to tune does not help.

B. Recurrent Neural Network (RNN)

Unlike vanilla ANNs or CNNs, RNNs (Figure 2) are
able to capture information over time. These networks can
remember the past and base their current decisions on what
they previously learned. They are able to do this by keeping
a state containing information regarding what they have
learned until a certain moment. Between different sequences
this state is reset since sequences are single inputs to the net-
work. These networks are able to capture the time dynamics
of a sequence hence they can input or output sequences of
data that are not independent from each other.

Fig. 2: Simple RNN architecture (taken from [17])

Due to the completely different architecture of RNNs
compared to the previously mentioned ones, the standard
method for network training can no longer be used. The
recurrent loops present in these types of networks do not
allow the simple backpropagation to update the weights.
Backpropagation Through Time (BPTT) [18] was developed
to train this type of networks but as the number of timesteps
increased, the vanishing gradient problem started to emerge.

A tweak to this method was made, appearing the Truncated
Backpropagation Through Time (TBPTT) [19]. Although
more effective in solving the vanishing gradient problem,
it is not able to learn dependencies between timesteps more
than a certain number of units apart. But this was not the
only way found to alleviate the vanishing/exploding gradient
problem. A new architecture called Long Short-Term Mem-
ory (LSTM) allowed to soften this problem and consequently
to implement deeper networks capable of dealing with larger
sequences.

This new model resembles a typical RNN where every
hidden layer is replaced by a memory cell. Unlike a simple
RNN which has a single neural network layer in its hidden
block, these memory cells are composed by several of them
(Gates) that control the information that flows through the
sequence chain.

C. Object Detection

Object Detection is an area that falls into the Computer
Vision field, which deals with the identification and localiza-
tion of objects in images. This can be done either by drawing
a bounding box that contains the object or by selecting every
pixel in the object (segmentation).

You Only Look Once (YOLO) is one of the established
object detections algorithms and has as its biggest advantage
the superb speed at which it can perform this task (45 frames
per second). While other object detection algorithms need to
go through an image several times before being able to detect
an object, YOLO [20] only has to look at it once, hence
the name You Only Look Once. The YOLO developer team
reframed object detection as a single regression problem
capable of extracting bounding box coordinates and class
probabilities straight from image pixels.

At first, an image is divided into a 7x7 grid. If the center
of a certain object falls into a specific cell, it becomes
responsible for detecting that same object. The problem
with this approach is that any grid cell can detect only one
object. This means that only a maximum of 49 objects can
theoretically be detected and if a cell contains more than one
object it will not be able to correctly detect all of them. These
problems were solved in future versions of YOLO. Each
one of the 7x7 grid cells predicts 2 bounding boxes. Every
bounding box is subject to the IoU method to compared them
to the ground truth boxes. Boxes with a score higher than a
certain are kept and the remaining ones are rid of. The model
also outputs 4 numbers that represent the location of the box
relative to the bounds of its corresponding cell. To obtain
the bounding box predictions and their class probabilities,
YOLO uses only a single CNN.

Although the speeds obtained for the first model were
incredibly fast, allowing the algorithm to be used in real time
applications, the number of localization errors was significant
and the network presented a relatively low recall. So to try
and achieve a better performance, a new YOLO version was
developed (YOLOv2) [21]. In this new architecture, batch
normalization layers were added after every convolutional
layer and the resolution for detection was increased. But the
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main introduction was the use of Anchor Boxes which allows
multi-object prediction per grid cell. The fully connected
layers previously used on YOLO to predict bounding boxes
were removed and replaced by anchor boxes. Anchor boxes
are a set of predefined bounding boxes with certain values of
height and width. They are chosen according to the typical
ground truth boxes present in the dataset to use. These anchor
boxes are tiled across the image, and the predicted bounding
boxes are basically refinements of these original boxes.

III. DATA

Since this work is focused on the pattern recognition side
of an e-nose it has to work on top of an already produced
dataset. The Biomolecular Engineering Group, UCIBIO,
REQUIMTE, FCT/UNL developed a gas-sensitive gel which
can be used for odor detection [22]. It contains droplets that,
when exposed to a VOC, show a certain dyanimc pattern
(Figure 3 and 4). A full exposure consists on the exposure
cycle (gas gets pumped into the chamber containing the gel)
and the recovery cycle (clean air removes the gas from the
chamber).

Fig. 3: Excerpt of a collected Acetone image sequence in recovery cycle

Fig. 4: Acetone droplet evolution in a full cycle

For the first task, where the goal is to identify the exposed
VOC, the reactions of 11 different gels were recorded to
the exposures of 11 different VOCs (Acetone, Acetonitrile,
Chloroform, Dichloromethane, Diethylether, Ethanol, Ethy-
lacetate, Heptane, Hexane, Methanol, Toluene). Each VOC
was exposed to the same gel 5 times (55 total exposures).

On the second task, where the goal is to predict the
concentration of the VOC exposed, 6 gels were exposed 11
times to Acetone with increasing concentrations (66 total
exposures).

IV. APPROACH

A. General Overview

Given that the ultimate goal of this project is to develop
a device capable of identifying substances/find their concen-
trations in the air, according to the visual reaction of small
droplets over time, two main tasks have to be performed: De-
tection and Classification/Regression. Correctly detecting

the droplets is the target for the first task and it is shared for
both problems of this Thesis. The idea was to train a model
(YOLO) capable of mastering droplet detection and that was
able to perform this action on a very short period of time so
it could eventually be implemented on a real time system.
It is crucial for this model to obtain spot on detections in
order to take full advantage of the models that follow. Every
frame in a sequence is subject to the YOLO network and,
based on a Intersection over Union method applied in every
detected bounding box, the droplet sequences are built. The
second task was to develop a system that, given these droplet
sequences, would be able to make predictions regarding the
VOCs present in the air or their concentration. Given the
theme of this thesis, both these tasks were performed having
CNNs at their core. For the classification/regression part
several different methods were tested, such as 2 dimensional
CNNs plus voting system, 3 dimensional CNNs, LSTMs
with 2 dimensional CNNs as feature extractors and stacking
ensembles. Figure 5 presents a scheme of the overall system
architecture.

Fig. 5: Full system architecture

B. Models

Every test performed at the classification/regression stage
was based on two different CNN models. The first one
(Baseline Model 1) was inspired by the LeNet-5 network
[23] (Fig 6). Some tweaks were applied to this model like
changing all the tanh activation functions to ReLU ones,
replacing average pooling layers for max pool ones, adding
a Batch Normalization layer between the Convolution layers
and their activation functions and adding dropout layers after
these activation functions. Depending on which task this
model was applied on, the last layer was either a 11 unit one
paired with a softmax activation function (Classification) or
a single neuron without any activation function (Regression).

Fig. 6: LeNet-5 architecture [23]

The second CNN model (Baseline Model 2) (Figure 7),
a deeper one, is composed by a total of 10 layers. The
convolutional section of the model is composed by three sets
of two convolutional layers followed by a max pooling one
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and at the end, again, depending on what kind of problem
the model is being applied on, there is a specific output layer.
In this model, padding is applied in the convolutional layers
in opposition to what happens with Baseline Model 1. Only
one regulator layer (Dropout) was inserted in the architecture,
just before the output one. For both models, no parameters
were fixed since lots of variations of parameters are tested
in the training stage. Also worth mentioning that both these
models can be applied in a 2d or 3d setup by only changing
the input size and convolutional parameters.

Fig. 7: CNN2D (Baseline Model 2) architecture

Given that this problem is based on time series data, at
any point in the experiments, LSTMs would have to be
used given their proven effectiveness on problems with these
kinds of data. The type of LSTM applied was of the type
Many to One since its input is a sequence of data and the
output is a class/VOC or concentration, obtained through
the returned values of the last cell. The amount of cells
that compose the LSTM is the same as the sequence length.
These are image sequences so they are not fed directly to the
LSTM cells without any prior pre-processing due to the high
complexity of the feature space. Instead, each image goes
through a CNN2D (same for all timesteps), and the output
features are then fed to the respective LSTM cells. The output
returned from the last LSTM cell, that is already influenced
by every timestep, is connected to the output layer. The
only regularization used here is a dropout layer between the
CNNs and the LSTM. The experiences that follow, besides
using unidirectional LSTM, also employ BiLSTMs where
the inputs are also managed from the future to the past.
Instead of only one, these LSTMs have two hidden states
and they use the combination of both of to produce the
end result which can be beneficial given the additional data
’perspective’. Figure 8 presents a scheme on how the LSTM
and CNN models work together.

Fig. 8: LSTM + CNN2D architecture scheme

C. YOLO Droplet Sequence Building

The YOLO network produces bounding boxes around
droplets on single images and not on 3D images/image

sequences. In both parts of this Thesis, the goal is to produce
a result based on an entire droplet sequence so a simple
strategy was developed in order to build these sequences
from the detections performed on all the frames. The YOLO
detections on the first frame could simply extend to every
other frame but this could prove to be very error prone.
Instead, droplet bounding boxes are predicted for every
frame. Since every droplet has a shape very similar to a
circle, the bounding boxes, in theory, should all be squares in
order to circumscribe them perfectly. Thus, bounding boxes
with a dimension that exceeds the other by more than 20%
are discarded right away. Another performed inspection is
to check for overlapping bounding boxes. If two bounding
boxes present an IoU score over 0.3 they are considered
to be detecting the same droplet so only one can remain.
The image is turned into black and white and the bounding
box containing more white pixels inside it is kept since it
probably contains a bigger portion of the droplet, with the
other being discarded. In order to put together bounding
boxes from different frames and associate them to the same
droplet, it is used once again the IoU metric. Bounding
boxes from the first frame are set as reference. Then, every
bounding box in the remaining frames that achieves an IoU
score above 0.5 with one of the reference ones is associated
with it, meaning that it is very likely to be circumscribing
the same droplet on a different frame. With this strategy, if
a certain bounding box on the first frame does not have a
very good set of coordinates, it may not be associated with
other ones and a droplet sequence might be missed. However,
since the first frame is the one where the droplets are still
idle and in a more ’clear’ form, it is in theory the frame
less prone to substantial errors. After doing this association,
sequences that contain very few bounding boxes, less than
25% of the sequence size, were also discarded. Finally, the
mean coordinates values are computed to obtain the final
ones. In order to feed these sequences to certain CNN
classification/regression models, the droplets are cropped
from every frame, resized to the model’s input size, and put
together to form a sequence. Every time a model evaluates
its performance on the test set using the YOLO detections,
this is the approach used to assemble the droplet sequences.

V. EXPERIMENTS & RESULTS

A. 11 VOCs Experiment

In this experiment, 11 VOCs were exposed to 11 different
gels 5 times each. The 3 first exposures of every VOC
were selected for the training set, the fourth exposures for
the validation set and the last ones for the test set. Every
exposure is kept in the form of an image sequence formed
by 32 frames with 1936x1460 resolution.

1) Object Detection (YOLO): The YOLO network used
to perform the droplet detection was an implementation
developed by wizyoung made available on GitHub 1. As
mentioned in Section IV, the YOLO network is in charge
of detecting the droplets in the gel.

1https://github.com/wizyoung/YOLOv3 TensorFlow
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TABLE I: YOLO parameters during training

Parameters Value
Batch Size 5
Image Resize 416x416
Keep Aspect Ratio True
Batch Norm Decay 0.99
L2 Weight Decay 0.0005
Optimizer Momentum
Learning Rates 0.0001, 0.00003, 0.00001
Fine Tuning Whole Model
NMS Threshold 0.5
mAP Threshold 0.5

With the set of parameters in Table I, and after 2000
epochs of training, the model stagnated on the validation
set. On this set, it was able to achieve a mAP of 0.94, a
Recall around 0.95 and a Precision around 0.91. Figure 9
represents the predictions of the trained YOLO network on
an image from the test set, ’unseen’ by the model, on top of
the ground truth bounding boxes.

Fig. 9: Ground truth bounding boxes (White) vs YOLO detected bounding
boxes (Red) - Left: Whole Frame Right: Frame Zoomed In

2) Droplet Sequence Classification: While the inputs of
the YOLO network are single full frames, the models in
this section will make the predictions on the VOC taking as
inputs droplet sequences. Since CNN models have fixed input
sizes and the droplets have a wide range of sizes, they all had
to be resized to a specific dimension. At first every droplet
was resized to dimensions of the biggest droplet observed in
the dataset (148x148 pixels). This decision was taken since
bigger droplets seem to have a more distinct dynamic pattern
than smaller ones and, by doing that, they were not going
to lose much resolution. On the other hand, smaller droplets
would get blured. Midway through model testing, in order
to speed up training, every droplet started to get resized to
(75x75 pixels), since it did not seem to affect the predictions
on the bigger droplets.

The models tested in order to predict the VOC associated
to a droplet sequence can basically be divided in two different
categories: 3 dimensional CNNs (CNN3D) and LSTMs with
2 dimensional CNNs (CNN2D) working as feature extrac-
tors. Every model was trained with the ’Adam’ optimizer
and using Categorical Crossentropy as the loss function.

CNN3Ds were trained for both Baseline Models, with
both the original and smaller input sizes and also a One vs
Rest (OvR) strategy was tested. In terms of performance on
the validation set, every strategy (with exception to CNN3D
BM2) was able to achieve a macro F1-score (metric selected
to evaluate the models’ performance) above 0.95. Even

TABLE II: CNN3D (BM1) vs CNN3D (BM1) Ensemble - F1-score on
test set

F1-Score Test (YOLO)
VOC CNN3D (BM1) CNN3D (BM1) Stacking

Acetone 1 1
Acetonitrile 0.57 0.732
Chloroform 0.807 1
Dichloromethane 0.167 0.467
Diethylether 0.876 1
Ethanol 0.965 0.972
Ethylacetate 0.465 0.191
Heptane 1 1
Hexane 0.978 1
Methanol 0.951 1
Toluene 0.451 0.889
Macro 0.748 0.841

though the models worked on a level close to perfection on
the validation set, when evaluated on the test set (through the
YOLO generated sequences) the achieved F1-scores always
took a significant dip. The best single model (CNN3D BM1)
was only able to reach a macro F1-score of 0.748. Given that
for each strategy many different models were trained, with
different parameters, by only picking the best performing
one to operate on the test set, all the remaining ones were
being wasted. The best model, despite presenting the highest
macro F1-score, gets outperformed by some of the remaining
ones on some classes. Stacking ensemble was applied on the
CNN3D trained models, as in other strategies, to try to take
advantage of this situation. By training a model (meta-model)
to make the final prediction based on predictions performed
by many different models with different strengths, it is
possible to get more accurate predictions. Different classifiers
were trained (on the validation set) to step in as this meta-
model. In this particular case of the 3 dimensional CNNs
(BM1), the Gaussian Naive Bayes was the one achieving a
better macro F1-score (0.984). The difference in performance
on the test set of this ensemble compared to the performance
of the single best model was significant, with an increase
on the macro F1-score from 0.748 to 0.841 (Table II). The
overall positive effect of the ensemble technique on the
predictions was clear with every class improving its results,
except for Ethylacetate that registered a significant decrease
F1-score.

Regarding the effect of droplet diameters on the quality of
predictions, it could clearly be observed that with an increase
in size, there is also an increase in accuracy. This conclusion
was taken from Figure 10 that shows a diameter based
histogram, with the droplets detected on the test set, where
the bin colour is associated to the accuracy in predictions
of the droplets in that diameter range. While sequences of
smaller droplets (<20µm) only achieve accuracies below
65%, with the increase in diameter, the accuracy increases
with it until it reaches the 100% mark for droplets with a
diameter bigger than 42µm.

After 3 dimensional CNNs, on a second phase, LSTMs
paired up with 2 dimensional CNNs were tested. The
main difference between these two types of networks is
on how they both approach the third dimension. Again,
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Fig. 10: Droplet Sequence Accuracy by Diameter - CNN3D (BM 1)
models Stacking Ensemble - Test Set

the LSTM models were trained using both CNN models
(BM1 and BM2) as feature extractors. Since the stacking
ensemble worked pretty well in the first phase, it was applied
again to improve the performance on single models. Every
experiment using LSTMs outperformed all the ones with
3 dimensional CNNs. Even before applying any kind of
stacking ensemble, single models were already achieving
better results, on the test set, than the best ones obtained
using CNN3D models, including the ensemble one (Table
II). The best results were reached by using the 2 dimensional
CNN (BM2) as feature extractor on every timestep frame
with the results getting a boost when all the trained models
got put together in an ensemble. The best LSTM (BM2)
model got a macro F1-score of 0.908 while the ensemble
was able to achieve 0.932 which is the best recorded result.
Table III shows the results of this ensemble on the test set.
Only the Dichloromethane and Ethylacetate classes presented
an F1-score below 0.95. This happened since only 42% of
the Ethylacetate sequences were correctly predicted and the
remaining ones were wrongly classified as Dichloromethane.
This decreases the Dichloromethane precision which is re-
flected in its F1-score, even though all of its sequences
were correctly labeled. These mistakes in the Ethylacetate
sequences happen for droplets on the lowest side of the
diameter spectre (<24µm), while bigger ones are classified
correctly, which helps to prove the point that smaller droplets
have a lesser ability to retain the essence of a VOC.

To wrap up this 11 VOC experiment, and in order to have
an overview of which strategies worked better on this task,
Table IV shows the F1-scores obtained for all of them.

B. Concentrations Experiment

In this experiment, the goal is to predict the concentration
of Acetone exposed to the gel. 11 different concentrations
were exposed to 6 different gels. The exposures on 4 of
the gels were selected for the training set, one for the
validation set and other for the test set. Now, every exposure
is composed by 78 frames with 1936x1460 resolution.

1) Object Detection (YOLO): Given the good results
achieved on the first YOLO implementation, the same set

TABLE III: LSTM+CNN2D(BM2) Ensemble - F1-score on test set

F1-score (YOLO)
VOC LSTM+CNN2D (BM2) Stacking

Acetone 1
Acetonitrile 0.962
Chloroform 1
Dichloromethane 0.763
Diethylether 0.96
Ethanol 0.991
Ethylacetate 0.594
Heptane 1
Hexane 1
Methanol 1
Toluene 0.982
Average 0.932

TABLE IV: Validation and Test F1-Scores for different strategies
approached in the 11 VOCs experiment

F1-SCORE
Strategy Val Test(YOLO)

CNN2D + Voting System 1 0.974 a 0.727
CNN3D (BM 1) 1 0.962 0.748
CNN3D (BM 1) – Stacking 1 0.984 0.841
CNN3D (BM 1) – OvR 1 - 0.745
CNN3D (BM 1) – Smaller Input 2 0.950 -
CNN3D (BM 1) – Smaller Input Stacking 2 0.979 0.816
CNN3D (BM 2) 2 0.848 -
CNN2D + LSTM (BM 1) 2 0.987 0.888
CNN2D + LSTM (BM 1) – Stacking 2 0.991 0.910
CNN2D + LSTM (BM 2) 2 0.977 0.908
CNN2D + LSTM (BM 2) – Stacking 2 0.992 0.932
1 Original Input Size: 148x148
2 Smaller Input Size: 75x75
a Voting System not applied

of parameters was used to train the new network. On the
validation set, the YOLO achieved a mAP of 0.87, a Recall
around 0.90 and a Precision around 0.70. Even though
these evaluation metrics are a bit lower than the same
ones recorded on the YOLO network trained for the 11
VOCs experiment, as it is possible to observe on Figure 11,
the detections are still very accurate. These are detections
performed on a frame from the test set.

Fig. 11: Ground truth bounding boxes (White) vs YOLO detected
bounding boxes (Red) - Left: Whole Frame Right: Frame Zoomed In

2) Concentration Regression: Again every droplet se-
quence had to be resized to a specific dimension in order
to be fed to the different models. This time every droplet
was resized to 100x100 pixels instead of being resized to the
biggest dimension recorded in the dataset (237x237 pixels).
Even though on the 11 VOcs experiment, the LSTM models
outperformed, significantly, every CNN3D based models,
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both variations were tested. A total of 4 different methods
were tried, both CNN3D and LSTM networks with both
CNN baseline models (BM1 and BM2). This time, instead of
the Categorical Crossentropy, the Mean Squared Error loss
function was used since this is now a regression problem.
The optimizer was kept the same.

The target values for the models should be the concen-
trations of Acetone exposed to the gels. Instead, due to a
small mistake, the targets were set to be the volumetric flow
rates of Acetone. This is not problematic at all since both the
concentrations and the flow rates are related in a linear way.
Nevertheless, these values will still be referred to as concen-
trations for an easier understanding. The concentration/flow
values selected for the 11 exposures were: 0.2, 0.28, 0.36,
0.44, 0.52, 0.6, 0.68, 0.76, 0.84, 0.92 and 1 (difference of
0.08 between consecutive exposures).

Out of the 4 tested models, curiously, the LSTM ones
completely underachieved compared to the CNN3D ones
which is the opposite of what happened in the 11 VOCs
experiment. While the best CNN3D model (BM1) achieved
a Mean Absolute Error (MAE) of 0.0993 for the droplet
sequences on the test set, the best LSTM model (BM1)
was only able to achieve a MAE of 0.1638. Since the
difference in concentration between exposures was 0.08,
both the achieved MAEs are definitely too far from what
is considered acceptable. Figure 12 presents the predictions
on the test set by the best CNN3D (BM1) model. There
is a high fluctuation in predictions for droplet sequences
belonging to the same exposure which shows that is very
risky to guess the concentration based on a single droplet.
Overall, there is a trend for the predictions to be below the
expected values which happened in every tested model, both
CNN3D and LSTM. In regards to the influence of the droplet
size in the results, there wasn’t a consistent trend throughout
every experiment which is probably due to the very erroneous
predictions.

Fig. 12: CNN3D (Baseline Model 1) test set predictions

One of the decisions taken, coming into this problem, was
not to perform any kind of cross validation in order to be
able to experiment with different model architectures without
the need of spending huge amounts of time on training.
On the other hand, this implies a lesser level of confidence
on the performance of the different models since only one
evaluation is performed on each model. If by any circum-
stance, the data on the test set happens to have features that
digress significantly from the data in the train and validation

sets, the results might come out influenced by a high chance
factor. Having extensive datasets is the most obvious solution
to this problem since the data is more likely to cover a
higher range of possibilities, decreasing the chance of already
trained models facing new data with completely different
characteristics. In this problem, as mentioned before, out
of the 6 recorded videos, 5 were selected for the training
stage of the models (4 for training and 1 for validation) and
the remaining one for testing. This cannot be considered
a extensive dataset, very far from it, so the bad results
registered on the previous sections may be related to this
fact and not to the inability of the different models to solve
this task. To check whether this was or not the case, a new
distribution of the videos across the different sets of data
(train, validation and test) was randomly made, only making
sure that the video that was previously selected for the test
set was not selected again.

Two different networks were tested before for both the
CNN3D and CNN2D + LSTM architectures (BM1 and
BM2). The models that best performed on the validation set
of each of these architectures were trained and tested again
for these new sets of data, which are both coincidentally
the implementations involving Baseline Model 2. Figure 13
presents the predictions of both these models on the test set.
Again, the CNN3D model ended up performing better on the
test set than the LSTM + CNN2D model, with these models
achieving MAEs of 0.0490 and 0.0711. This represents a
decrease of more than a half of the original values for both
models. The main difference found on these results when
compared to the original ones, besides the obvious increase
in performance, is also the significant decrease in variance
of the values predicted byboth models, specially the LSTM
one. While before the predictions seemed to be a little bit
all over the place, now they are definitely more compact and
more centered on the true concentration values. This helped
the mean predictions to follow more closely the true values.

Fig. 13: CNN3D and CNN2D+LSTM new test set predictions

Now, with a more consistent set of predictions it was
possible to get more conclusive results on the influence of
the droplet size in the prediction error. Figure 14 presents
these results. For both models, with the increase in droplet
diameter it is registered a decrease in concentration error with
an exception for the bigger droplets on the LSTM model, for
which the reason is unknown.

Again, to wrap up the experiment, all results were put
together. This time the results are presented in the form
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Fig. 14: CNN3D (Baseline Model 1) test set errors in function of the
droplets diameters

TABLE V: Validation and Test MAE for different strategies approached in
the Concetrations experiment

MAE
Strategy Validation Test (YOLO)

CNN3D (BM 1) 0.0546 0.0993
CNN3D (BM 2) 0.0418 0.1038
CNN2D + LSTM (BM1) 0.0553 0.1638
CNN2D + LSTM (BM2) 0.0514 0.1684
CNN3D (BM 2) 1 0.0489 0.0490
CNN2D + LSTM (BM2) 1 0.0605 0.0711
1 Redistributed Dataset

of the mean absolute error and can be observed in Table
V. As previously mentioned, for this experiment, the three
dimensional CNNs were able to achieve significantly better
results than the LSTMs on the test set. Even when it was
thought that the dataset distribution could be affecting the
final results, after the redistribution, the CNN3D network
still managed to pull ahead and produce better results.

VI. CONCLUSIONS

In this work, the use of CNN based systems was explored
in two different E-nose applications, one with the goal of
detecting the substance exposed to the gel and the other
with the goal of predicting the concentration of Acetone
in the exposed gas. It was observed on both tasks that
these systems were able to accomplish the objectives with
satisfactory results.

In the 11 VOCs experiment, firstly the focus was around
the CNN3D (Baseline Model 1) and trying to make it
work by exploring many different strategies and parameter
variations. Although the results overall were not bad, a
few classes were constantly underachieving no matter what
strategy was used so the focus had to be turned to another
direction. A second deeper model (Baseline Model 2) was
used and LSTM networks were tested. After a few tests it
was soon realized that the results produced by the LSTM
models were significantly better than all the ones achieved
by the 3 dimensional CNNs. The reason behind this was
probably the different way on which the LSTMs approach
the temporal component of the data, which should be more
suitable to this specific data/problem. By putting together
several of these models under a stacking ensemble, close to
perfection predictions on all classes were achieved, except
for one (Ethylacetate) that missed about half of the times.
Regarding the influence of the droplet diameters on the
models’ performance, it was acknowledged that the bigger
droplets are capable of producing more accurate results on

a more regular basis. Since relying on a single droplet to
predict the VOC might be a bit risky, if all the detected
droplets contributed to the final prediction, and by assigning
a bigger weight to the bigger droplets, it seems that it should
be possible to achieve very consistent results.

For the Concentrations experiment, curiously, the model
that achieved better performance on the 11 VOCs experi-
ment, was not the one that obtained the best ones here. For
both the original and changed data distribution, the (Baseline
Model 2) CNN3D was the model that achieved the lowest
error values. In this experience, the impact that a different
distribution in data, in a small dataset, can have in regards
to the final results was noticed. While the predictions on the
original test set were all over the place, mostly below the true
values, on the second distribution the predictions were way
more accurate and centered on the real values. Given this, it is
very unlikely to get accurate results based on the predictions
of singular droplets given the volatility presented on their
predictions. Regarding the influence of the droplet size on
this task, it is not 100% clear but it seems that the bigger
ones are also able of giving more accurate predictions. This
is mostly based on the results obtained on the last experience,
with the changed sets, since the results on the original ones
were disappointing and no assertive conclusions could have
been made from them. So again, in order to get better results,
bigger droplets should have a higher influence on the final
prediction.

In terms of the YOLO networks used, they were always
capable of identifying the droplets in images with great
precision. During the testing phase, when some results were
below expectations on the test set, they were compared with
the ones obtained with the ground truth test sequences to
check if the YOLO detections were having a big impact on
the predictions. The ground truth results were always very
similar to the ones obtained through YOLO detections so it
can be concluded that this network was definitely a good
choice to perform the droplet detection.
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