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Abstract

Many indoor environments have objects with planar proprieties and are arranged as
propitious to exploit their planes’ normals alignment. These scenarios are ideal for a
Manhattan World assumption, stating that all planes in a scene are aligned with one of
the three dominant directions. In this master thesis, we propose a novel deep Neural
Network, called MW-Net, for Manhattan planes detection and reconstruction, receiving
a single RGB image as input. The end-to-end network learns to predict a rotation from
the camera to the MW coordinate system, probabilistic segmentation masks, and an
offset /depth map. The proposed method does not have a restriction on the number
of planes that can predict. MW-Net was trained on ScanNet, and we extracted over
45000 ground-truth data. It uses a Dilated Residual Network for feature extraction,
followed by two ramifications i) Global pooling for rotation prediction; ii) Pyramidal
pooling for image segmentation and offset /depth map. MW-Net outperforms PlaneNet
on segmentation accuracy, using less architectural complexity, since we do not use a
DCRF, unlike PlaneNet.

Keywords: Manhattan World, Manhattan planes reconstruction, MW-Net, deep
Neural Network, plane detection, Dilated Residual Network.
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Resumo

Muitos ambientes interiores sao constituidos por objectos com propriedades planares
e a sua disposicao é propicia a explorar os alinhamentos das normais dos planos. Estes
cenarios sao ideais para a Manhattan world assumption, que afirma que todos os planos
numa determinada cena estao alinhados com uma das trés dire¢oes dominantes. Nesta
tese de mestrado, apresentamos uma nova rede neuronal profunda, chamada MW-Net,
para detecao e reconstrucao de planos Manhattan recebendo unicamente uma imagem
RGB como entrada. A rede "end-to-end" aprende a estimar uma rotagao do referen-
cial camera para o referencial Manhattan World, uma segmentacao de imagem e um
mapa offset /profundidade. O método proposto nao tem qualquer restricdo quanto ao
numero de planos que pode deduzir. A MW-Net foi treinada no dataset ScanNet, e
foram extraidos mais de 45000 dados ground-truth. Foi usada uma Dilated Residual
Network para extragao de "features", seguida de duas ramificagoes i) Global pooling
para prever a rotacao; ii) Pyramidal pooling para a segmentacdo da imagem e mapa
offset /profundidade. MW-Net supera o PlaneNet, um método estado de arte, e faz-lo

com uma arquitetura menos complexa.

Palavras-chave: Manhattan world, reconstrucao planar, MW-Net, rede neuronal

profunda, detecao de planos, Dilated Residual Network.
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Chapter 1

Introduction

Computer vision (CV) is one of the most active research topics in computer science.
In the early 2000s, several Machine Learning approaches to CV problems brought some
impressive results (see [57, 9, [13]). These results sparked the interest in ML methods
such as Support Vector Machines [26] and, in particular, on neural network architectures
[32, 25]. With Deep Learning (DL) emergence in [32], many works have exploited these
methodologies, achieving remarkable improvements |20} 19, [44] 43]. Indeed, DL methods
applied to CV topics have been trending, and this relationship translated in many state-
of-the-art methods on Object Detection [47, [44] 37], 3D Vision [43] 39, 51], and Tracking
(54 [41].

Works [32, 25] in deep neural network architecture have been an essential role in the
success of many recent methods, like [44, 47, 24]. Residual networks [25] (or Resnets)
made it possible to increase the number of convolution layers, making the neural net-
works deeper while avoiding the undesirable vanishing gradient problem [3, 21]. This
improvement on deep architectures lead to the development of state-of-the-art frame-
works for object detection, e.g. R-CNN [20], Fast R-CNN [19], Faster R-CNN [47],
YOLO [44] or YOLO 9000 [45].

This thesis focuses on the Planes’ reconstruction problem, which has been exten-
sively studied in recent works (see [36] B35, 58]). Although numerous works exploit new
DL approaches, non-deep methods use more traditional approaches on Plane Detection
topics, such as 3D Piecewise Planar Reconstruction [52] or Semantic Segmentation [62].
One example of a more classical approach is the Manhattan-world Stereo [16], which

works under the Manhattan World (MW) constraints, an approach that we also follow.
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Concerning DL approaches to Plane detection, methods like PlaneNet [36], PlaneR-
CNN [35] or PlaneRecover [58] brought significant improvements in terms of accuracy

and run-time performance.

Usually, the Human being tends to build objects with planar surfaces on their struc-
tures. Many Deep Learning architectures (|44, 47, 24, 45]) can detect these objects,
and, consequently, one can use these architectures developed for object detection and
extend it to planar surfaces [35, [36]. Although many plane detection methods share
some architectural similarities with object detection ones, they also share some problems.
For instance, PlaneNet [36] struggles on small plane identification in a crowded planar
scene. This difficulty increases with the restriction on the number of planes predicted
(PlaneNet only estimates ten planes). Still, PlaneRCNN [35] is an example of signifi-
cant improvement, having no restriction on the number of planes predicted, allied to an
increase on accuracy/time performance. PlaneRCNN uses a more complex architecture
than PlaneNet to achieve this purpose. In this master thesis, we propose a novel method

that tries to overcome PlaneNet’s problems with less complexity than PlaneRCNN.

Therefore, we propose the MW-Net, a novel deep neural network for detecting planes
that satisfy the MW constraints. The MW Assumption states that all planes in a scene
must be parallel or orthogonal between each other. These planes, Manhattan planes,
have their normals aligned with one of the MW coordinate system dominant directions
(basis vectors). We are aware that this approach will not recognize some planar surfaces
whose normals do not respect the MW constraints. However, since many indoor scenes
are composed of a large set of planes aligned with one of the dominant directions, it is
possible to reconstruct almost the full planar scene with this approach, trying to neglect
the less significant planes. An MW approach gives some flexibility to the proposed
method by eliminating any restriction of having a pre-declared number of planes to be

predicted.

MW-Net receives an RGB image and outputs: i) a rotation, represented by a quater-
nion, from the camera to the MW world; ii) probabilistic segmentation masks of each
plane; iii) and an offset and depth maps for planar and non-planar, respectively. The
quaternion is further converted to a rotation matrix 3 x 3 and it is constituted by the
MW dominant directions. Since planes’ normals are aligned with MW axis, this rotation

is used to identify the planes’s normal parameters.



CHAPTER 1. INTRODUCTION

(a) Input (b) Segmentation-gt (c) Segmentation

Figure 1.1: Example of MW assumption on an indoor scene. In figure @ is possible
to see the RGB image of an indoor scene, and in the respective ground-truth
segmentation from the input figure. The indoor scene is full of planar regions and an
entire scene can be modelled using plane reconstruction. In figure it is shown an
example of the MW-Net’s performance.

1.1 Motivation

Indoor scenes are human-made environments built, in general, using planar surfaces.
Besides, since we tend to build regular structures, it is usual to find a large number
of planes that are orthogonal or parallel to each other. Also, many objects arranged
in a room align with the room’s layout. Figure [1.1] is an example of this property.

Figure [l.1(a)| shows an indoor scene where one can notice the planar and non-planar

surfaces. The planes segmented in Figures [1.1{c)| and [1.1(b)| show the MW constraints

explained before in a real-world scenario.

MW-Net is a deep neural network that receives an RGB image and outputs a rotation
from the camera to the MW reference frame, four probabilistic segmentation masks (one
for each MW dominant directions and one for non-planar region), and an offset/depth
map. Planar reconstruction can be useful in diverse domain topics, such as robots
navigation or augmented reality. It can: i) identify planar surfaces, and deliver tools for
robot navigation; ii) help place objects on planar surfaces and orient them in regular

spaces on augmented reality applications.

1.1.1 Contributions

One of the major difficulties of reconstructing a planar scene is the number of differ-
ent planes in the environment, with different orientations and dimensions. Our method

tries to overcome this problem by applying a Manhattan World approach to the scene.
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1.2. THESIS OUTLINE

Despite neglecting some planes, this approach tries to identify the most significant ones
by defining MW dominant direction as propitious to it. This way, MW-Net can re-
construct almost the full planar scene. In the experimental results, we show that the
proposed architecture is able to estimate the mapping of the planes more accurately
than the state-of-the-art PlaneNet method. PlaneNet uses a Dense Conditional Ran-
dom Field for segmentation results refinement, while MW-Net does not. MW-Net can
predict Manhattan planes without any restriction and does it with less complexity than
PlaneNet.

1.2 Thesis Outline

The present master thesis has five sections. Chapter |2 describes related work. It
describes methods for object detection, and plane detection approaches. Chapter
describes the methods used, i.e., Dataset preparation, in order to allow the network’s
training. Also, Chapter [3| describes how planar reconstruction can be achieved through
the network’s output. Chapter 4| focuses on MW-Net architecture and training. Chapter
describes the results and compares the MW-Net with the PlaneNet [36]. Chapter [0]

presents the final conclusions.



Chapter 2

Related Work

This chapter describes recent developments in object detection using Deep and Non
Deep learning methods. It presents the state-of-the-art methodologies for Plane Detec-
tion in section Finally, section [2.3] presents Manhattan World approaches on several

topics, aiming at showing their utilities.

2.1 Object detection

Object Detection is one of the topics of great interest in Computer Vision. Usually,
most Object Detection methods use bounding boxes to predict the object location on
the image. Most of these also determine image segmentation masks, assigning a value
per class for each pixel. The class with the most significant probability is the one that
pixel belongs. The bounding box prediction is a regression problem (it computes a fixed
number of parameters per box, from a set of features). The image segmentation is a
classification problem (for each pixel it is assigned a class).

There are tons of detection methods in the Computer Vision research community,
such as Object Detection (see [44], 20]), which usually is a general detection, i.e., identifies
objects as well as pedestrians and animals. Some methods focus on a particular kind
of detection, such as Pedestrian detection (see [6, [I2]) or Plane Detection (see [36], 35]).
These topics have attracted diverse industries, recognizing the potential of its use as
propitious to the development of their fields. On car industries, Object Detection can
deliver tools to achieve desirable results on Autonomous Driving (see [34]). Tesla is

a great example of a car enterprise involvement in significant research works exploiting



2.1. OBJECT DETECTION

Computer Vision topics (see [28]), being their Autonomous Driving work on the spotlight
for the last years. Their cars have cameras for object and pedestrians recognition. They
also use them for video surveillance guaranteeing the cars’ security. However, most of
their works are not publicly available due to car industry competitiveness. It is evident
how Artificial Intelligence systems can benefit from exploiting these topics.

In the last two decades, we faced significant developments in Object Detection. For
example, in the 2000s, with the development of Support Vector Machines (SVM), [26],
machine learning approaches introduced SVMs in their architectures, as classifiers, lead-
ing to state-of-the-art results (see [9, [13]).

Although having great results at the time, developments on neural network archi-
tectures had a significant impact, for example by changing the way the features were
extracted; the previous methods use handcrafted ones such as Histogram of Oriented
Gradient (HOG) [40], [15] or SIFT [38]. Convolution Neural Network (CNN) [33] started
as a trend when AlexNet [32] presented outstanding results, competing on ImageNet
Large Scale Visual Recognition Challenge [48], with a top-5 test error rate of 15.3%.

Since then, several works have followed this approach and added significant contri-
butions to the topic (see [50, 20]).

In the following sections, this evolution is further described. Section reports Non
Deep learning methods for object detection. Section describes the state-of-the-art
methods using DL approaches.

2.1.1 Non Deep methods

This section describes Non Deep approaches to object detection and in this section,
it is included the Machine Learning ones. Some of the most effective methods use HOG,
a feature descriptor, often used in Computer Vision. HOG descriptors are mainly used
as features for object detection such as pedestrian detection [9, [13]. These descriptors
usually feed a Support Vector Machine for classification. In another significant study,
back in 2010, [I2] claims to be the fastest detector with 6 fps, on high accuracy rates.
There is also Scale Invariant Feature Transform (SIFT) [38], which descriptors can feed
a classifier for object detection, as an alternative to HOG.

In face detection, several works are presenting remarkable results. For example, [27]

uses two layers for classification; the first layer with component classifiers that identify
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parts of the face, and the second layer with a classifier that combines the first layer’s
output and makes a final face detection. The method uses Support Vector Machines
classifiers.

Template Matching [4] uses a template image containing one example of the desired
object and slides it over the source image to detect identical ones in it. During this
process, it compares the template with the patch of the source image under the template
image. It uses a compare method, e.g. Minimum Square Difference, to evaluate the
similarities, and if this difference is under a given threshold, it will consider the patch
as containing a object equal or similar to the one in the template.

The evolution in the 2000s was evident, and for the last five years, significant devel-
opments were using DL. The next section describes the current state-of-the-art methods

using Deep Learning.

2.1.2 Deep methods

As stated in section [I], in the last decade, DL approaches to Computer Vision prob-
lems have been seen in several works (e.g., [32, 20, 136]).

R-CNN [20] takes an RGB image as input and extracts 2000 region proposals, using
Selective Search [56]. Each region proposal feeds a CNN for feature extraction, and
a class-specific linear SVMs classifies the existence of an object. It also estimates four
parameters for bounding box regression. R-CNN method improves the accuracy compar-
ing to other State-Of-The-Art algorithms, but it has run-time problems, namely when
training.

Instead of extracting 2000 proposal regions and feed each one to a CNN for feature
extraction, without sharing computation, Fast R-CNN [19] feeds the entire image to
a CNN, making a single feature extraction for the whole image, then extracts region
proposals. This change improved R-CNN’s run-time drastically, fixing time performance
issues.

Faster R-CNN [47], removes the selective search algorithm for region proposal com-
putation, and replaces it with a Region Proposal Network (RPN). Faster R-CNN initially
takes an image and feeds it to a CNN, obtaining a feature convolution map. Then, the
RPN slides through the feature map, receiving n x n windows as input and outputs a

pre-determined number of region proposals for each window. The second stage is sim-
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2.2. PLANE DETECTION

Table 2.1: Methods performance comparison taken from [37]

Method ‘ FPS ‘ mAP
Faster-RCNN [7] | 7 | 73.2%
YOLO [44] 45 | 63.4%
SSD [37] 59 | 74.3%

ilar to Fast R-CNN, where is applied to a region of interest, ROI pooling, and finally,
performs classification and bounding box regression.

YOLO [44] algorithm receives an RGB image and can detect objects, just resorting to
a single neural network. For this purpose, YOLO divides the input into several grids, and
each grid is responsible for predicting a fixed number of bounding boxes and confidence
scores for each box. YOLO overcomes R-CNN and its variants in run-time performance.
Further developments on YOLO, resulted in some variants, where YOLO 9000 [45] and
YOLOV3 [46] are included.

In its turn, SSD [37] is a real-time object detector that uses a single network for
object detection, does not need any region proposal network. It is simpler to train than
Faster-RCNN, and significantly improves the speed for high-accuracy detection. Table
compares Faster-RCNN [47], YOLO [44], and SSD [37] in accuracy and run-time.

Mask R-CNN [24], that inspired PlaneRCNN’s method [35], is an extension of Faster
R-CNN. At first, it shares Faster R-CNN’s main ideas, CNN for feature extraction and
RPN for region proposal. The modifications occur on the second stage, where Mask R-
CNN adds a binary mask for each ROI to the outputs of the Faster R-CNN, maintaining

architecture similarities with it.

2.2 Plane detection

Object detection inspired other research works to focus on a more restricted kind
of detection. Plane Detection is one of them. Plane detection is a research topic way
before DL became a trend. Many research works applied a more traditional approach
to this problem [16] 18, (2] 53]. Manhattan-world stereo (MWS) [16], working within
the constrained space of Manhattan-world scenes, uses Multi-view Stereo (MVS) [49]
to reconstruct a set of oriented 3D points (positions and normals). These Normals

extract the dominant axis, and the positions generate axis aligned candidate planes.
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CHAPTER 2. RELATED WORK

Candidate planes are going to be used as hypotheses on Markov Random Fields depth-
map reconstruction. "NYU-Toolbox" [52] is similar to MWS but does not works within
the MW constrained space, and extracts its planes hypotheses using RANSAC [14].

Despite the outstanding results, there was the need to simplify the input require-
ments, since most of these methods require multiple views or depth information to
work.

With the emergence of Deep learning, Plane detection research works [36], 35] 60]
start to exploit deep neural architectures, obtaining remarkable results.

PlaneNet [36] uses a single RGB image as input and predicts plane parameters,
segmentation masks, and a non-planar depth map. The network architecture consists of
a Dilated residual Network [61, [5] for feature extraction, followed by two ramifications.
The first ramification has a Global pooling followed by a fully connected layer for plane
parameter’s regression. The second ramification has a pyramidal pooling followed by a
convolution layer for image classification and another convolution layer for non-planar
depth map modelling. PlaneNet outputs a non-planar depth map, being the planar
depth map determined using the plane parameters, only possible knowing the camera
intrinsic parameters [23]. Due to its simplicity and results, our method builds on top of
PlaneNet. Our network architecture differs in the output prediction from theirs, leading
to changes in training. Our purpose is also different from theirs. MW-Net reconstructs
Manhattan planes without any pre-declared number of planes, while PlaneNet detects
unconstrained planes needing a pre-declared number of planes predicted.

PlaneRecover [58] also uses a single network for plane detection. It receives an RGB
image as input and outputs a planar segmentation map, that segments the input in
several planes and non-plane objects and the plane’s parameters in 3D space. Similar
to PlaneNet it predicts a limited number of planes, only estimating five planes per
scene. PlaneRecover distinguishes from the other methods by approaching the problem
with unsupervised learning, led by difficulties on dataset’s ground-truth extraction. A
piecewise planar 3D model of the scene can be built, using the network’s output.

PlaneRCNN [35] differs from PlaneNet by using a variant of Mask R-CNN [24] for
detection, and a refinement network for segmentation Mask improvement. Plane detec-
tion is made by predicting each plane parameters and segmentation mask. PlaneRCNN
presents a novel loss function, which improves plane-parameter and depth map accuracy

via end-to-end training. The referred method presents state-of-the-art results, overcom-
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2.3. MANHATTAN WORLD ASSUMPTION

ing PlaneNet’s limitation related to the restriction of the number of planes that can be
predicted per scene.

Finally but not least, [60] is divided into two stages. In a first stage, it trains a
CNN to obtain planar/non-planar segmentation map and pixel embeddings, followed by
a mean shift clustering algorithm to generate plane instances. On the second stage, a
network branch is trained to predict pixel level plane parameters. It also does not have
a restricted number of planes that can be detected.

Both PlaneRCNN and [60] do not have any restriction on the number of planes but

they achieve this using a more complex architecture than PlaneNet.

2.3 Manhattan World assumption

Exploiting environment geometry is not a novel approach, and a MW can take
advantage of these characteristics. On 3D reconstruction, there are many MW ap-
proaches [16, [I7], [10], but this topic is not the only taking advantage of it.

There are research studies using the MW constraints, for instance in navigation
[7, IT], where indoor and outdoor scenes are designed on a Manhattan three-dimensional
grid. In [7], they state that the important signs for navigation are aligned with one of

the directions of MW, and facilitate navigation.
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Chapter 3

Dataset Creation

Many objects are made of planar surfaces, and most of the time, they are arranged
with other planar surfaces. An indoor environment layout usually is composed of six
planes orthogonal or parallel to each other. Frequently, these planar objects are arranged
according to the layout, and many times their planes are aligned with one of the three
dominant directions. Situations like these attract MW approaches, which can detect a
significant set of planes that have their normals aligned with MW base vectors. The MW
base vectors were computed considering the most significant planes, to avoid neglecting

many non-constraint planar surfaces.

The MW assumption assumes that all planes in a scene are aligned to one of the three
dominant directions. If the plane’s normal is aligned, then the plane will be detected.
On the other hand, if the plane’s normal is not aligned with one MW axis, the plane

will be detected but as part of the non-planar region, not being counted as MW plane.

PlaneNet [36] detects planes unconstrained by the Manhattan World restrictions. For
PlaneNet training, their authors extracted ground-truth data from the ScanNet dataset,

such as the planes’ parameters, image segmentation, and the image depth map.

This ground-truth data is not suitable for our network’s training since it does not
respect the MW constraints. Working over the extraction mentioned, we defined the MW
dominant directions to distinguish the Manhattan planes from the non-planar region, in
each scene. With this in mind, it is possible to adapt the dataset to our purpose, and

this Chapter presents it.
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3.1. NOTATION DESCRIPTION

3.1 Notation description

In this section it is explained the elements representation through the present Chap-
ter.

Let us consider the plane equation
axr + by + cz = d, (3.1)

where (a,b,c) are the elements of the plane normal and d the offset. A plane can be
represented by three parameters, d x (a, b, ¢). Vectors are represents with capital letter,
and their scalars are with minor letter. Consider the 3D vector X,
Ty
X = ol , (32)
L3
where x; is the i** scalar from the respective vector. Rotation quaternions are rep-
resented as %, being the rotation from a to b. The same logical is applied to the 3 x 3

rotation matrices represented as R?.

3.2 ScanNet dataset

The ScanNet [§] is a large-scale RGB-D video database of indoor environments.
For each scene, this dataset makes available annotations with estimated calibration
parameters, camera poses, 3D surface reconstructions, textured meshes, dense object-
level semantic segmentations, and aligned CAD models.

For PlaneNet purpose, it was extracted 51000 ground-truth piecewise planar data
(50000 for training and 1000 for testing) from ScanNet. For this process, they directly
fit planes to 3D points, using RANSAC with replacement, and project them to images.
The resulting dataset will make available for each RGB image the image segmentation,
plane parameters, image depth, and intrinsic camera parameters.

The resulting planes are not under the MW constrains. For each scene, it becomes
necessary to extract the MW planes. With this in mind, it was extracted a rotation from
the camera to the MW coordinate frame. This rotation is composed of three dominant
directions, and the MW planes’ normals are aligned with one of those directions. Section
explains this extraction and the modifications made to the ScanNet dataset after

PlaneNet’s processing.
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CHAPTER 3. DATASET CREATION

Algorithm 1 MW dominant directions for each ScanNet dataset scene. PlaneNet au-
thors extracted planes’ parameters, image segmentation, and image depth map for Scan-
Net dataset. For our purpose, we need to distinguish Manhattan from non-Manhattan
planes. For this process, we estimate MW base vectors, using normals from planes that
contribute to reconstructing almost the full planar scene. Planes not aligned with any
of the dominant directions are going to be considered non-planar regions.

Number of Planes < 20

P < Planes’ normals

Largest P < None

for i in Number of Planes do

if (Size(P[i]) > Size(Largest P) A (P[i] has at least one orthogonal Plane)) then
Largest P « Pli]
end if

end for

X ¢ Largest P

Y < Largest plane from the list of orthogonal planes to Largest P

Z+—XxY

R «+ [X Y Z}

[U D V} +— SVD(R)

RSy + Udiag(1,1,det(UVT))VT

RMW « Ry, Y

Distinguish Manhattan from non-Manhattan planes

3.2.1 Manhattan World Assumption & Dataset

The MW assumption states that all planes in a specific scene are orthogonal or
parallel to each other, thus planes’ normals must be aligned to one of the three dominant
directions. The MW coordinate frame defines these dominant directions. The MW base
vectors can be arranged to obtain a rotation matrix from the MW coordinate frame to
the camera coordinate frame.

To compute the MW base vectors that better suits a specific scene, we had in con-
sideration a similar process as the one presented in [22], and Algorithm (1| shows the
process. When choosing the MW base vectors, it is desirable to have ones that capture
the most significant planes. These planes have the largest number of pixels assigned in
the image segmentation. For instance, considering a room, and having a broader view

of the division, these planes are usually a wall or the floor.

Considering that, after the PlaneNet’s dataset processing, we have access up to

13



3.2. SCANNET DATASET

twenty planes per scene, a planar segmentation of the image and the image depth map.
The MW base vectors were computed as follows.

From Algorithm [1] initially, it was computed how many pixels were assigned to the
i'" plane, using the image segmentation, and the inner products between it and all the
others 19 planes. Notice that this process is made to all the planes in the list P. From
the inner products, we obtain the orthogonal planes to each plane.

The first base vector determined is the one associated with the MW X-axis. It is
set with the normal of the most significant plane in the scene, i.e. with more pixels
assigned, under the condition of having at least one orthogonal plane on the scene’s
image segmentation. If the condition is not fulfilled, this process is repeated to the
second largest plane and so on. The MW Y-axis is the second base vector defined,
and it assigned the normal of the largest plane from the list of planes whose normal are
orthogonal to the MW X-axis. Finally, MW Z-axis is defined by the cross vector between
the MW X-axis and Y-axis base vectors. As it is possible to realize, these scenes must
have at least two orthogonal planes; otherwise, they are discarded.

The X and Y planes’ normals are not strictly orthogonal since we gave a threshold to
the inner product, 0.1, below which two planes are considered orthogonal. With this in
mind, if we organize the base vectors X,Y and Z as columns, we obtain a pseudo-rotation
matrix RMY = [X|Y, Z] which points to the need of projecting it to the closest matrix
on the SO(3) group.

A SO(3) matrix must respect the following conditions,

RTR=RR' =1

det(R) = 1, (3:3)

and in order to do it, we applied the Singular Value Decomposition (SVD) to the
pseudo-rotation RMY = [X|Y, Z],

[USVT] = SV D(RMW). (3.4)
Now it is trivial to obtain the rotation from the camera to the MW coordinate frame,
RS, = Udiag(1,1,det(UVT)VT (3.5)
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where U and V7 are unitary matrices. Notice that from Section , RSy is the rotation
from the Manhattan World to the camera coordinate frame.
Once having the R}y, is now easy to find the rotation from the camera to MW

coordinate frame, which is given by its inverse,
MW c 1

It is now possible to apply the MW constraints on each scene, and distinguish which
surface is planar or non-planar. This data treatment was made as follows.

At this stage, the planes’ parameters available are represented regarding the camera
coordinate system’s origin. To verify if a plane’s normal is aligned to one of the MW
base vectors, we need to have the planes’ parameters seen by the origin of the MW
frame’s origin. We can easily achieve this by applying the rotation R¥". Considering a

plane’s normal seen by the came