
MCTS-based Planning for Grand Strategy Games
Manuel António Felizardo Roxo

Abstract
Using planning in grand strategy video games is a difficult

task. These games are characterized by having a sizeable

and complex search space and many other constraints. In

contrast, there is not much computational budget available

for running an AI in this setting as many resources are spent

on running the game itself. The purpose of this thesis is

to conceive and design different planning systems based

on state-of-the-art planning algorithms, mostly based on

Monte Carlo Tree Search (MCTS), as well as domain specific

pruning strategies, and apply them to a grand-strategy video-

game. We will focus on TripleA [5], an open source grand

strategy video game engine which features a number of

different maps. We implemented different MCTS variants,

Bridge Burning MCTS [4] and Non Exploring MCTS [4] , as

well as an evolutionary algorithm called Online Evolutionary

Planning [4]. These agents were tested against each other as

well as against the game’s current AI solutions. Our results

show that in the practical setting used, our agents are able

to beat the game’s AI solutions consistently.

Keywords: MCTS, Grand-Strategy, AI, Evolutionary algo-

rithms

1 Introduction
Grand strategy video-games focus on the management of

an entire nation state, where the player has to direct all its

resources and coordinate its military strategy in order to

achieve a goal, including political, economic and military

conflict. These video-games usually focus on war, typically

over a long period of time. Some examples of these video-

games are The Hearts of Iron, Europa Universalis, Supreme

Ruler Ultimate and Total War series. These games usually

feature a discretized map. Some games focus on real life

events, and feature real geographical maps, like Hearts of

Iron, whose map features the entire world, and where re-

gions are divided into areas of different granularities, with

provinces being the lower-granularity type, and then making

up states and countries. Other games, like some entries in the

Total war series, are based on fictional environments, and

feature made-up locations, but usually maintain a similar

discretized type of representation. Some games might have

an hexagonal representation, like the Civilization series, or

even a grid like one. Over the course of the game, the player

has to make important political decisions that have impact

on different scopes of the game, influence the production of

resources and manage them, and interact with combat by

deploying units and planning combat, ultimately deciding

the outcomes of war.

Using planning in the context of strategy games, such

as the grand strategy games mentioned, raises a series of

problems, mostly due to the sizeable processing time that is

required for such tasks, because the significant number of

actions causes a big branching factor, and the contrasting

small computational budget that is available. This thesis aims

to design a system capable of providing intelligent decisions

for grand-strategy games, and apply it.

For the implementation, we decided to focus on TripleA,

a grand strategy game based on the board game Axis and

Allies. This game is a good candidate for this thesis because

it presents all the challenges inherent to the thesis’ objective

and motivation, while also being open source, and highly

adaptable to different scenarios. This facilitates the develop-

ment of the algorithms and also provides a good test bed for

different scenarios. It’s a turn-based game, and being a grand

strategy game, it is characterized by a large action space

and branching factor. Additionally, the outcome of combat

in the game is influenced by dice rolls, granting stochastic

outcomes and randomness to the game.

Approaches based onMonte Carlo Tree Search (MCTS) [1]

present a good approach to handling planing in this case, as

it provides good characteristics for dealing with the issues

presented.

Some MCTS variants have been developed to target turn-

based adversarial games specifically [4], and have been proven

to increase the performance of the algorithm by a big margin

under these conditions. While turn based adversarial games

have a smaller branching factor compared to grand strategy

games, the use of pruning strategies can lower the game’s

branching factor and adapt the algorithms to better suit our

scenario.

2 Related Work
2.1 Real-world implementations of MCTS in

TOTAL WAR- ATTILA
Total War: Attila is the ninth standalone game in the Total

War series, released by creative assembly, in 2015. For this

game, an AI approach using MCTS was implemented, which

was described in the nucl.ai 2015 conference, on the "Op-

timizing MCTS Performance for Tactical Coordination in

TOTAL WAR- ATTILA" presentation [3].

This is a grand strategy video game with a mix of real time

battles and turn based strategy. The implementation focuses

on the campaign side of the game, where the player has

to manage the economy by managing construction, taking

care of public order in their settlements, establish alliances

and trade agreements, pursue wars, recruits new forces and

conquer new regions. Each game has a large dimension, with

Trovato and Tobin, et al.

many factions and regions, making decision making in its

context a complicated problem with a big search space. Each

army can move only a set distance per turn on the hex based

map, that becomes increasingly complicated by featuring

different terrain features.

The purpose behind using MCTS in this game comes from

its ability to handle the large search space, to allow for fine-

grained control of performance, and the fact that it’s easily

extensible. This allows MCTS to perform even in future it-

erations of the game, and be used as a tool in future games

with minimal effort. In this implementation the standard

UCT algorithm is used as its basis, using a set of different

domain specific alterations that are explained further ahead,

and are applied in order to make the use of MCTS viable.

The solution developed focuses on the tactical coordination

sub-problem. It takes as input the set of units, and outputs

an ordered list of actions to be performed, tying to protect

its assets and maximize enemy casualties while minimizing

its own.

Due to the complexity of the search space, it would be too

costly to search more than one turn ahead of the current one

because of the available execution time for the algorithm. Be-

cause of this constraint, the developers developed a solution

which is able to look at most one turn ahead.

2.1.1 Pruning Strategies. Unwinnable battles, which al-

most always lead to bad outcomes, were seen as an opportu-

nity to prune, in this case the action space. If an army target

can’t be defeated, then it can be safely pruned away as no

optimal action comes from targeting it.

Actions where the likelihood of success is below a certain

threshold are also pruned away.

There are alsomany sub-trees that result in identical world

states. An example might be plans that include actions that

are unrelated to each other (independent effects), which can

be ordered in any way, and still produce the same outcome

in the final state. The search tree was divided to reduce the

number of these equivalent tree paths. An arbitrary ordering

scheme was implemented to prevent duplicates, by using a

unique character index, specific to each unit, and prohibiting

characters with a lower index from acting against someone

if a character with a larger index has already moved against

it. This change removes multiple sub-trees for the same set

of actions.

2.2 Playing Multi-Action Adversarial Games [4]
J.Togelius et al addressed the problem of playing turn based

multi-action adversarial games [4]. This type of games in-

clude many strategy games with extremely high branching

factors as players take multiple actions each turn. While

Go and Chess have a branching factor of 300 and 30 respec-

tively, most turn-based multi-action adversarial games have

a branching factor with way higher magnitude since these

games have multiple actions and multiple units.

In this paper three new algorithms which target the these

types of games are introduced. The performance of different

MCTS based algorithms is studied, as well as the introduction

of two newMCTS variant, as well as the Online Evolutionary

Planning algorithm.

The testbed game used for testing the performance of the

different algorithms studied in [4] is the gameHero Academy.

Hero Academy is a two player turn based tactics game in-

spired by chess. Each player has a number of units and spells

which can be deployed and used on grid-shaped map of 9×5
squares. There are different class of units which feature dif-

ferent roles in the game and have access to different actions.

Additionally, the game map also features special cells which

unlock certain actions. The most central mechanic of the

game if the usage of action points (AP). Each turn the player

is given 5 AP, which can be spent to perform actions in the

respective turn.

In this paper, Hero Academy itself serves as the forward

model and the fitness of an action sequence is calculated

as the difference between the values of both players’ units.

Both the units on the game board as well as those still at

the players’ disposal are taken into account. The assumption

behind this particular fitness function is that the difference

in units serves as a good indicator for which player is more

likely to win.

Complexity analysis. The action point mechanic of Hero

academy causes the number of future game states to be

significantly higher than in most other games, which makes

the game challenging for decision making algorithms. The

branching factor of the game is hard to calculate precisely,

but is estimated by the authors, counting the number of

possible actions in a recorded game. The branching factor is

estimated to be 60 per action on average, which results in

60
5
=7.78× 10

8
branching factor per turn. Additionally, using

the average game round duration of 40 rounds, the game-tree

complexity is estimated to be ((605)2)40= 1.82 × 10
711

. The

state space of the game is estimated to be 1.5 × 10
199

.

2.2.1 Non-exploring MCTS. The first Monte Carlo tree

search variant adapted for multi-action adversarial games

introduced in [4] is the NE-MCTS. This variant uses a non ex-

ploring policy in the tree search, and deterministic playouts,

while still ensuring that each children of a node is still visited

at least once before any of them is expanded further. Due

to the complexity of multi-action adversarial games, vanilla

MCTS isn’t able to expand further than the current turn in

the search tree. By removing exploration in the search phase,

the resulting tree is more unbalanced and guided into better

performing actions more heavily. A limited form of explo-

ration is still present, since all children of a node are visited

before a new one is expanded.

Since playouts are deterministic, the fact that some nodes

might be visited only once has no impact on the result. The

result obtained can not be corrupted by bad luck outcomes.

MCTS-based Planning for Grand Strategy Games

2.2.2 Bridge-burning MCTS (BB-MCTS). BB-MCTS is

anotherMCTS variant introduced in [4]. Contrary to the Non

Exploring MCTS variant, and similarly to vanilla MCTS, this

variant makes use of exploration, both during the playout

and the tree search phases. Playouts are ran using an e-

greedy policy with e=0.5 and the exploration factor in the

tree search is C=1/2. In this variant, in order to guide the

tree efficiently enough for multi-action adversarial games,

the time budget is split into a number of sequential phases

equal to the number of actions in a turn, with each phase

locking a new move. In the end of each phase, all but the

most promising node from the root are pruned and will never

be added again, and the most promising node from the root

acts as the root node for the next phase. The search behaves

similarly to MCTS during each phase. This approach can be

seen as an aggressive progressive pruning strategy, which

ignores parts of the search space in order to enable the search

to reach deeper plies of the tree. The name Bridge Burning

emphasizes that the nodes are aggressively pruned and can

never be visited again.

Figure 1. Tree structure as evolved by the Bridge Burning

algorithm [4]

Fig. 1 illustrates how nodes are pruned by the Bridge burn-

ing algorithm in a multi-action game with 5 actions in a

turn.

2.2.3 Online Evolutionary Planning (OEP). The main

algorithm proposed in [4] is an evolutionary algorithm called

OEP, which aims to evolve optimal action sequences every

turn.

An exhaustive search is not able to explore the entire space

of action sequences within a reasonable time frame and may

miss many interesting choices. Evolutionary algorithms iter-

atively optimize an initially randomized population of can-

didate solutions. Because of this, an evolutionary algorithm

can explore the search space in a very different way.

In this algorithm, each genome represents action sequences

equal to an entire turn. In the paper’s practical setting a

genome is modeled to have five actions, which are described

by type and one or more locations.

The initial population is composed of random genomes,

which are created by repeatedly selecting random actions

based on the given forward model. This process is repeated

until no more action points are left. After the creation of

the initial population, the population is improved over a

large number of generations until a given time budget is

exhausted.

Algorithm1Online Evolutionary Planning (OEP) algorithm
pseudocode

1: function OnlineEvolutionaryPlanning(State 𝑠)

2: Genome[] 𝑝𝑜𝑝 = ∅
3: INIT(𝑝𝑜𝑝 , 𝑠)

4: while time left do
5: for w in evo.CurrentGeneration() do
6: State 𝑐𝑙𝑜𝑛𝑒 = CLONE(𝑠)

7: 𝑐𝑙𝑜𝑛𝑒 .update(𝑔.actions)

8: if g.visits = 0 then
9: 𝑔.value = EVAL(𝑐𝑙𝑜𝑛𝑒)

10: 𝑔.visits++

11: sort 𝑝𝑜𝑝 in descending order by value

12: 𝑝𝑜𝑝 = first half of 𝑝𝑜𝑝

13: 𝑝𝑜𝑝 = PROCREATE(𝑝𝑜𝑝)

14: return 𝑝𝑜𝑝[0].actions

15:

16: function INIT(Genome 𝑝𝑜𝑝 , State 𝑠)

17: for 𝑥 = 1 to POP SIZE do
18: State 𝑐𝑙𝑜𝑛𝑒 = CLONE(𝑠)

19: Genome 𝑔 = new Genome()

20: 𝑔.actions = RANDOMACTIONS(𝑐𝑙𝑜𝑛𝑒)

21: 𝑔.visits = 0

22: 𝑝𝑜𝑝 .add(𝑔)

23: return 𝑝𝑜𝑝[0].actions

24:

25: function RANDOMACTIONS)(State 𝑠)

26: Action[] 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 = ∅
27: Boolean 𝑝1 = 𝑠 .𝑝1 ⊲ Who’s turn is it

28: while 𝑠 is not terminal 𝑠 .𝑝1 = 𝑝1 do
29: Action 𝑎 = random available action in 𝑠

30: 𝑠 .update(𝑎)

31: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 .push(𝑎)

32: return 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

After the evaluation, the genomes with the lowest scores

are removed from the population. The remaining genomes

are used for procreation, generating new genomes. To achieve

this, each one of the remaining genomes is paired with an-

other randomly selected genome and the new genome is

created through uniform crossover. Crossing two genomes

randomly can lead to illegal action sequences. To avoid this

problem, the crossover checks for legality of eachmovewhen

combining the two sequences.

The heuristic function used to calculate the fitness of

genomes in OEP was based on playouts. This was done

Trovato and Tobin, et al.

with the intent of incorporating information about possi-

ble counter moves. Due to the large branching factor of the

game, stochastic playout evaluations were tested and deter-

mined to be unreliable, so deterministic playouts were used

instead.

3 Case Study - TripleA game
TripleA is a turn-based grand strategy game engine based

on the Axis and Allies board game. The game features multi-

player and several AIs for single-player mode.

TripleA presents a great test bed for the development of

this thesis. All of the game’s characteristics align with the

performance challenges that we aim to target. The flexibility

of the game, by being more of an engine, and not a game,

allows for the adaptation of test scenarios, and we can create

our own game map and gameplay adapted to our case. From

the pool of available open source grand strategy games, it

presented the best characteristics for our goal.

3.1 Map
Each game features a discrete map divided into areas, or

territories, and units are moved around the map between

adjacent areas.

Fig. 2 demonstrates one of the default game maps avail-

able. Each land territory is always controlled by some player,

and can change hands if an enemy land unit conquers and

occupies it. The color of the territory on the map indicates

who controls it.

Each territory has a production value which determines

how many units can be produced there per turn and deter-

mines how much income that territory provides per turn to

the player controlling it.

Figure 2. TripleA standard map

Each of the nations in TripleA has a capital territory. If

an enemy player captures one of these territories, there are

drastic consequences, and conquering an enemy capital is

even a win condition in some games.

3.2 Units
By general rule, each unit’s actions are limited to movement

during the unit movement phases. If a unit moves to an

enemy territory while in the combat phase, then that unit

also attacks the enemy territory. There are some special units,

such as factories, which behave differently.

Each TripleA unit has certain properties, which are ex-

pressed as a set of numbers. These properties are:

• Attack - Firepower when a unit is attacking. The unit

gets one hit by rolling that number or less on a 6-sided

die.

• Defense - Firepower when a unit is defending. The

unit gets one hit by rolling that number or less on a 6-

sided die.

• Movement - The number of map territories that the

unit can move each turn. A unit with a Movement of

1 can move to one adjacent area, and so forth.

• Cost (PUs) - Cost is how many production units (PUs)

must be spent to produce one of that unit.

• Hit-Points - Howmany hits this unit must suffer before

it dies. Almost all units in TripleA have only 1 hitpoint

• In some cases, special properties.

3.3 Sequence of play
Each game features two or more players, and the game is

sequenced into rounds. During every round each player has

a turn, which is composed of steps. The standard sequence

of steps for each player turn is:

• Purchase - The player purchases units using his Pro-

duction values

• Combat Move - The player moves his units offensively,

allowing him to attack enemy territories

• Battle (resolving combat) - Pending battles from the

combat move phase are resolved

• Non-Combat Move - The player moves his units with

movement left after the combatmove phase. The player

isn’t allowed to move offensively and attack enemy

territories

• Placement - The player places the units acquired dur-

ing the purchase phase.

• End of Turn

Normally “Victory” is determined by one player surren-

dering the game once they believe it is impossible for them

to win. However, most maps include default ‘victory con-

ditions’, which the players can play too if no surrender is

forthcoming. Normally victory is determined by controlling

a certain number of strategically important territories, called

“Victory Cities”.

3.3.1 Combat. When the player moves into an enemy ter-

ritory with defending units during the combat movement

phase, it results in a battle between both set of units. Combat

is resolved in the following way:

MCTS-based Planning for Grand Strategy Games

• Dice are rolled for attacking units.

• Defender selects casualties. If all defending units die,

then automatically all defending units are selected.

• Dice are rolled for defending units.

• Attacker selects casualties.

• Selected casualties are removed for both attacker and

defender.

3.4 Game characterization
During gameplay, the entire map and placed units are visible

to all players at all times, and there is no information about

a player that is hidden from other players, the game is fully-

observable.

As described in the sequence of play section, players take

multiple actions in turns, and a player knows the previous

moves taken by other players when he is taking his actions,

so the game is also sequential and multi-action.

In the scope from which we approach the game, focus-

ing on combat, the outcome of most actions is known, but

some actions are stochastic. Actions like movement and de-

ployment of units have clear outcomes with no uncertainty,

the unit simply moves to its assigned position. The combat

outcomes are not certain, however. As explained in the se-

quence of play section, battles are decided using dice rolls to

calculate successful and failed hits, resulting in an outcome

that can be predicted to be in a given window, but still not

certain.

3.5 Existing AI in the game
When starting a game, one can pick between controlling each

player manually, or alternatively, there are three AI choices

available, easy, fast and hard AI. Each AI has a different

performance level, with easy AI being the weakest and fast

AI being a weaker and faster version of the hard AI, which

is the best performing alternative.

3.5.1 Fast and Hard AI. The Fast and Hard AIs follow a

number of iterative steps in order to decide which actions

to take in the movement phase. These AIs use calculators

to estimate the total unit value of taking actions. The dif-

ference between the two is that the fast AI uses a simpler,

faster calculator, while the hard AI uses a more costly and

more effective calculator. The Fast AI’s calculator predicts

the outcome of the battle directly, based on the strength of

both the defending and the attacking units. The Hard AI’s

battle calculator simulates the battle a number of times, us-

ing the game’s battle mechanics, and returns the average

result across all executions as the battle result.

4 Implementation
The algorithms proposed in [4] are state-of-the-art for multi-

action adversarial games, which, in away, our test bed tripleA

can be seen as. The main difference between tripleA and the

testbed in [4] is the considerably higher branching factor

per turn of tripleA, since grand strategy games tend to deal

with a considerable amount of game units, as well as the

stochasticity of the game. If we remove those factors from

play, then tripleA can also be seen as a turn based multi-

action adversarial game, similar to Hero Academy.

We adapted our problem, using action pruning strategies,

and implemented the algorithms present in [4], the Non-

Exploring MCTS (NE-MCTS) algorithm, the Bridge Burning

MCTS (BB-MCTS) algorithm, and the Online Evolutionary

Planning (OEP) algorithm, which are described in the related

work section.

The forward model was implemented making use of most

of the game’s data structures, adjusting and optimizing the

source code where we could, and adding new code where

needed.

We decided to run combat deterministically in our model,

always getting the most likely outcome, which allows for

quality single execution playout results, and saves computa-

tional budget for the algorithms to run more iterations.

Figure 3. How algorithms interact with the forward model

Fig 3 is a high level illustration of how algorithms interact

with the forward model. The forward model is used to apply

action’s effect to game states, to generate possible actions

for states and also to generate the best deterministic action

sequence for the playout phase. In order to optimize the

execution of algorithms, both the pruning of actions and the

action selection for deterministic playouts is handled by the

forward model directly. The pruning of actions as well as

the playout heuristic are described next.

4.1 Pruning strategies
One of the main differences between the test beds of the

different algorithms reviewed and our case is the extremely

high branching factor and the number of possible game states

in our scenario. Without action pruning, the number of pos-

sible actions is too large for the algorithms to be able to

effectively explore search space in a realistic time frame, not

Trovato and Tobin, et al.

even coming close to exploring an entire turn in the search

phase, for tree search algorithms

By making use of domain-specific knowledge for TripleA,

as well as some of the techniques introduced in [3], we will

try to adapt the search problem in order to prune the ac-

tion space as heavily as possible, thus making the game’s

setting one that can be effective explored by the algorithms

introduced in [4], and implement them.

Next we describe in detail the pruning strategies and deci-

sions made.

4.1.1 Action generation and pruning. The generation
of actions for game states was developed with the purpose of

reducing complexity as well as we could, eliminating redun-

dant game states and ineffective actions, based on strategies

employed in [3].

We consider an action to be ineffective if it leads to an in-

stantaneous disadvantage for the player, such as attacking an

enemy territory with a small number of units relative to the

defender, resulting in a great loss of units. This happens be-

cause units tend to have better attacking stats and deal more

damage when defending. Because of this, when attacking, its

best to overpower enemy units and take them out as soon as

possible by having strength in numbers, since the dice rolls

favor the defending units. In order to improve the quality

of the algorithm, action sequences leading to these types of

results will be considered illegal and effectively pruned. This

is similar to the pruning of unwinnable battles used in [3].

We consider redundant game states to be game states that

are similar to others that can be obtained via different action

sequences. Even though the action sequence is different,

the resulting game state is equal, and there is no interest in

exploring more than one of them. Pruning these states is also

a strategy used in [3], where sub-trees leading to identical

world states were pruned.

Territory action generation. Our approach to action gen-

eration is to generate actions for each territory iteratively

and generate a possible action for each possible set of units

that can move to it.

Using this approach, territories will be ordered and the

tree search will generate possible actions for each node based

on a single territory, which will change as the tree progresses.

For example, on the root node, actions correspond to the first

territory. On nodes with depth 2, actions correspond to the

second territory, and so on.

With this approach, the pruning of ineffective actions be-

comes much more manageable. When generating an action

we can tell immediately if that action leads to an ineffec-

tive action sequence or not. By calculating the strength of

defending units, it is possible to assess if an attack will fail

(because we have access to all the units that will move to

the territory), and not generate actions that lead to a combat

loss.

Additionally, since all units moving to a territory are con-

sidered simultaneously, it becomes possible to further cut

down on redundant game states, as we can choose not to

generate actions with similar sets of units moving to the

same territory.

Combatmovement phase. Action generation for the com-

bat movement phase generates possible actions for one ter-

ritory at a time. Given a state and a territory, it returns a set

of different actions corresponding to attacking the territory

with different sets of units. It works in the following way:

• Territory t corresponds to the target territory that was

selected for movement/attack in the current node.

• All allied units that can attack this territory are se-

lected, and subsequently the firepower of these units,

as well as the firepower of the enemy units that de-

fend territory t, is calculated. Based on the estimated

firepower, if the firepower of the defending units is

greater than the firepower of attacking units, then the

territory is considered unable to be conquered, and a

single action is generated for t, with a list of empty

units. This represents skipping the territory since it

can’t be attacked successfully.

• If the territory is able to be attacked successfully, ac-

tions are generated for t. Each action has a different

subset of all the units that can move to t, which can

vary in size, with the condition that each subset must

also be able to successfully attack the territory.

By creating multiple actions with different sets of units

varying in size, the search space explores multiple op-

tions. If a territory is attacked with few units, then it

leaves some units open to attack other territories. If

the territory is attacked by an overwhelming number

of units, then the attack will be efficient and cost a

minimal amount of casualties, but there may be no

additional units to attack other territories. Generating

actions in this way ensures that the tree search can

explore the effects of these choices and have alterna-

tives.

Additionally, an action with an empty set of units is

also generated, corresponding to ignoring the territory,

which can also be an optimal decision, even if the

territory is able to be conquered.

Non combat movement phase. During this phase, there

is no obvious pruning strategy that can be implemented. One

thing that was concluded from playing the game was that

usually it was a good idea to move all units in a territory

together. Unless units from one territory must be split in

order to defend two or more adjacent territories, this is the

case. Because of this, and in order to reduce the branching

factor of actions in this phase, actions are generated in the

following way.

MCTS-based Planning for Grand Strategy Games

• Territory t corresponds to the to the territory which

actions must be generated for in the current node.

• For each allied territory t2, a set S with all units placed

on t2 that can move to t, is generated. This set is then

split into two sets, each containing half of the units

in S. This is done so because sometimes it might be a

good idea to split forces in order to defend more than

one territory. By doing this, forces in a territory are

split in half and considered independently (both halves

can still move to the same territory).

• After this phase, all sets created are placed in a list

L, and a new action is created for each permutation

of L from size 0 to size(L) (represents each possible

combination of units that can be moved to t, based on

the sets created).

Normally, the order in which actions are generated for

different territories would be irrelevant. However, it was

noted that sometimes, when the execution time was not long

enough to check all tree nodes across all depths, territories

for which actions were generated first were explored more

extensively, and obtained better quality actions.

For this reason, an ordering scheme was implemented in

this phase. During this phase, territories are ordered based

on proximity to enemy territories, with the exception of

capitols, which are always first in the list. The logic behind

this ordering schema is that capitols and territories bordering

enemy lands are more sensitive and prone to enemy attacks,

and thus deserve more attention.

4.2 Playout phase heuristic
The heuristic function used to guide actions during the play-

out phase of the algorithms is based on the weak AI imple-

mentation on the game’s source code. The playouts used in

the implemented algorithm’s description are deterministic,

which means the same actions are always selected for each

state. Because of this, after testing the performance of the

game’s Weak AI and noticing that it was quite fast, we saw

an opportunity to use it as the basis for our own playout

heuristic. This method does not attribute a value for each

different possible action, and instead generates the actions

to take on each state directly. It can be seen as an heuristic

that attributes value 1 to actions that should be taken, and

value 0 to actions that shouldn’t be taken. Since playouts are

deterministic, there’s no point in considering and attributing

values to actions that won’t be taken either way.

Using this heuristic increases the overhead of running the

algorithms, but increases the quality of the rewards obtained

for states after the playout phase. Since most of the algo-

rithms implemented use deterministic playouts and have

no exploration during this phase, we see this as a positive

trade-off.

4.3 State reward function
When running playouts, one important thing to note is that

sometimes a terminal state might take too long or even be

impossible to reach. Taking this into account, playouts are

ran for a maximum depth of 10 rounds, simulating turns until

the current state is terminal, or until that depth is reached.

Because of this, it is important that our reward function is

able to properly evaluate the quality of both terminal and

non-terminal states, since we might not always obtain a

terminal state by running playouts. When the resulting state

is obtained, reward function 2 is used.

Algorithm 2 Reward function

1: function Reward(State 𝑠 , int depth)

2: create root node 𝑣𝑜 with state 𝑠0
3: if 𝑠 .isTerminal() then
4: if 𝑠 .isWin() then
5: return (0.6+0.4×(10-depth)/10)
6: else
7: return (-0.6-0.4×(10-depth)/10)
8: else
9: alliedUnitN=state.getAlliedUnits().size()

10: enemyUnitN=state.getEnemyUnits().size()

11: totalSize=alliedUnitN+enemyUnitN

12: return (alliedUnitN-enemyUnitN)/(totalSize×2)

4.4 OEP
Generation of actions for OEP works similarly to the other

implemented algorithms, being generated based on terri-

tories. This means that when adapted to TripleA, an OEP

genome will be composed by a set of actions corresponding

to a different territory each, and the units that will be moved

there. The population size was set to 50, with a survival rate

of 0.5 and a mutation probability of 0,1.

4.4.1 Genome creation. When creating a new genome,

actions should be generated randomly. To achieve this, the

list of possible move territories is ordered randomly, and

actions are generated for each of the territories sequentially.

For each territory, a random action from the list of possible

actions (generated by the forward model) for that territory is

added to the action sequence. It is important to randomize the

order of the territories because territories for which actions

are generated first might have access to a higher number

of units. This happens because the territories added latter

cannot use units that are already contained within actions

in the sequence.

After generating the action sequences for each genome,

the state resulting from applying the actions in the genome

to be evaluated to the current game state, is obtained from

the forward model.

Trovato and Tobin, et al.

4.4.2 Evaluation. In order to evaluate the quality of a

genome, an evaluation function is used on the state result-

ing from applying the actions in the genome. This evalua-

tion function works similarly to a deterministic playout in

the MCTS algorithm. Playouts are guided using the playout

phase heuristic described in this section, and ran for a maxi-

mum depth of 10 rounds or until a terminal state is reached.

After this, the reward function described is used to calculate

the value of the state.

Algorithm 3 Procreate

1: function Procreate(genes)

2: actions = {}

3: newGenes = {}

4: for gene g: genes do
5: actions.add(new Action(t,set))

6: gene g2 = genes.random()

7: newGenes.add(g.procreate(g2))

8: genes.addAll(newGenes)

9: return genes

=0

4.4.3 Procreate. Offspring between two genomes is gen-

erated in the following way:

• Randomly order actions corresponding to each terri-

tory.

• Iterate over the territories, randomly selecting one of

the two genome’s action corresponding to the current

territory, and adding that action to the new genome.

• When a selected action leads to an illegal sequence of

actions (Some of the units corresponding to the new

action are already used), then a new random action cor-

responding to the same territory is generated instead,

using units from the pool of available units.

4.4.4 Mutation. Each newly created genome is replaced

based on probability E, in our case 0.1, with a randomly

generated action (obtained from the forward model) corre-

sponding to the same territory.

4.5 BB-MCTS and NE-MCTS
The Bridge Burning and the Non Exploring MCTS variants

are implemented as described in the original paper [4]. When

obtaining possible actions for each state, actions are obtained

from the forward model, which employs the pruning strate-

gies directly. Similarly, the forward model handles the de-

terministic playout actions. The reward function used in

playouts is the one mentioned.

The Bridge Burning algorithm does not have deterministic

playouts, containing exploration in this phase. Because of

this, and due to our action generation and playout schema,

the exploring factor for playouts in this algorithm works in

the following way: For each move step, with probability E,

instead of the playout action being determined determinis-

tically by our heuristic, the action sequence in the current

turn is performed randomly instead. These random actions

are still selected from a pool of actions generated using our

action pruning strategies.

5 Results
In this section we present the performance results obtained

for the different agents implemented and described in the

implementation setting, as well as against the game’s existing

AI. An analysis of the performance of the forward model as

well as of the pruning strategy is also performed.

5.1 Experimental setup
5.1.1 Practical setting. To simplify the development of

the forward model, as well as the algorithms, the imple-

mented agent’s area of effect was limited to the unit move-

ment, which includes the Combat and Non Combat move-

ment phases, ignoring the placement and purchasing of units.

The air and amphibious combat units were also removed

from consideration. Additionally, the game will be played

on a map featuring two players in order to get the win rates

between different agents. This decision simplifies the devel-

opment of the forward model for the game significantly, and

eases the development and implementation of the algorithms

and agents as well. While this abstraction removes some com-

plexity from the game, the resulting complexity is still in

alignment with the target problem, being characteristic of

most grand strategy games, and significantly higher than

more common multi-action adversarial turn based games.

The algorithms were implemented and tested on a custom

map, designed to cater to our practical setting. The map fea-

tures 14 territories, and each player starts the game with 28

units, 19 infantry, 6 artillery and 3 tanks. Each territory had

its production value set to 0, which means that no player will

be able to produce units. The implemented algorithm’s deci-

sion making is thus limited to the combat and non combat

movement phases.

We compare the performance of each agent against each

other, as well as against the game’s most complex AI option,

the Hard AI. We ran tests for different computational time

budgets of 1 and 5 seconds per move and for each different

match up 200 games were ran, 100 for each agent starting

on different sides. Even though the vanilla game doesn’t

have draws, games that lasted for more than 35 rounds were

counted as a draw, as when the game got to this phase, it

usually meant that neither player would be able to come out

victorious. These test were ran on 16 GB of ram and on an

AMD Ryzen 5 3600X 6-core processor with 3.80Ghz.

MCTS-based Planning for Grand Strategy Games

5.2 Win rates and agent performance
Results. Table 1 presents the results obtained for eachmatchup

between the agents OEP, Non exploring MCTS, Bridge burn-

ingMCTS and also TripleA’s Hard AI. 200 games were played

for each matchup, 100 with each agent on the starting side.

The first line represents the win rate when counting a tie

as 0.5 wins for each agent, and below is the percentage of

wins, ties and losses, respectively, for each match up. We

display the results in this way in order to facilitate the anal-

ysis, because we consider presenting the number of ties to

be important, while the results in the first column give us a

more explicit win rate. For tests with 1 second of execution

time, the agents were also compared against the game’s Hard

AI, as this execution time is similar to it’s execution time.

Table 2 presents the results of a similar test setting, but for

an agent execution time of 5 seconds.

Table 1. Win rates of agent on the left most column vs

the agents on the top row. 1 second of execution time. For

each match up, the top row represents the win rate when

counting a tie as 0.5 wins for each player, and the bottom row

contains the number of win, ties and losses for that match

up, respectively

OEP Non Exploring MCTS Bridge Burning MCTS Hard AI Average

OEP 37.75% 47.5% 60.5% 48.58%

32.5% / 10.5% / 57% 42.5% / 10% / 47.5% 49% / 23% / 28%

Non Exploring MCTS 62.25% 51% 72,25% 61.92%

57% / 10.5% / 32.5% 48.5% / 5% / 46.5% 61% 22.5% 16.5%

Bridge Burning MCTS 52.5% 49% 72.75% 58.1%

47.5% / 10% / 42.5% 46.5% / 5% / 48.5% 62% 21.5% 16.5%

Hard AI 39.5% 27,75% 27,25% 31.5%

28% / 23% / 49% 16.5% 22.5% 61% 16.5% 21.5% 62%

In 1, between all implemented agents, the most noticeable

difference is present in the Non Exploring MCTS vs OEP

match up, with the Non exploring algorithm achieving a

win rate of 62,5% and winning almost twice as many games

as OEP. The Bridge burning algorithm does not show any

clear advantage or disadvantage over any of the other agents,

having a win rate of 49% against Non exploring MCTS and

51% against OEP. Taking these results into account, it can

be noted that in this scenario, the best performing agent is

the Non exploring variant, followed by Bridge Burning and

lastly the OEP algorithm.

In 2, the results obtained for running agent for a longer

period of time of 5 seconds, differ noticeably from the results

in 1. By increasing the execution time, the perfomance of

both the Bridge burning and the OEP algorithm increases

when compared to the Non exploring MCTS. The win rate

of Bridge Burning over the other agents increases, especially

against OEP, and while the performance of OEP decreases

against the Bride Burning variant, it increases drastically

against the Non exploring variant.

Analysis.

Table 2.Win rates of agent on the left most column vs the

agents on the top row. 5 seconds of execution time. For

each match up, the top row represents the win rate when

counting a tie as 0.5 wins for each player, and the bottom row

contains the number of win, ties and losses for that match

up, respectively

OEP Non Exploring MCTS Bridge Burning MCTS Average

OEP 46.5% 38.25% 42.4%

43% / 7% / 50% 33.5% / 9.5% / 57%

Non Exploring MCTS 53.5% 47% 50.25%

50% / 7% / 43% 44% / 6% / 50%

Bridge Burning MCTS 61.75% 52% 56.88%

57% / 9.5% / 33.5% 50% / 6% / 44%

1 second of execution time. These results contrast the re-
sults obtained in [4] slightly. Compared to the results in [4],

the results we obtained show an improvement in perfor-

mance for the BB MCTS, and a a decrease for OEP. In the

result section of [4], it is observed that the performance of

the OEP algorithm against other algorithms is improved for

longer action sequences. One of the strong aspects of this

algorithm is the rapid creation of complete action sequences.

While the tree search algorithms have to explore a lot of

intermediate nodes in order to reach the end of a round,

OEP creates complete sequences on the get go. The action

abstraction used when testing these algorithms, as described

in the implementation setting, is based on territories, and

increases the branching factor while decreasing the number

of actions required per action sequence. Taking into account

the underlying behaviour of the algorithms, this action se-

quence length property can explain the difference in results

obtained, as the action abstraction used here plays to the

strengths of BB and NE MCTS, when compared to OEP.

5 second of execution time. The changes in performance

observed in 2 make sense, given the impact that the increase

in execution time has on the algorithms. The Non exploring

algorithm has no real advantage over running for 1 or 5

seconds. Since the tree search has no exploration factor in

the Non Exploring algorithm, the tree search will almost

always only expand child nodes for one node per depth,

even though it visits all child nodes of expanded nodes at

least once. This happens because the tree search will always

select the most promising node in the tree search when in the

selection phase. The only exception to this effect, is when the

value of a node decreases due to backpropagation of child

nodes, and is then lower than one of its sibling nodes, in

which case the sibling node will be chosen in further tree

searches instead.

Because of this, if the search is able to get to the end of the

action sequence with 1 second of execution, the same nodes

will be visited when the algorithm is executed for 5 seconds.

Trovato and Tobin, et al.

One change to the algorithm that may increase the perfor-

mance of the algorithm in these scenarios is the progressive

introduction of some exploration in the tree search once

all action sequence ending nodes have been explored. This

change would work similarly to the progressive unpruning

MCTS variant described in the related work section, by intro-

ducing new areas of the tree to the search space that would

be unexplored otherwise, if there is available computation

time.

Since the Bridge Burning algorithm splits search of differ-

ent depths of the tree based on the total time budget, it can

benefit from the increased execution time, unlike the Non

Exploring algorithm. This is proven by the results obtained.

5.2.1 Agents vs Hard AI.

Results. Across the board in 1, all developed agents show

high win rates against the game’s Hard AI, with the Bridge

Burning and Non Exploring MCTS variants displaying a

significantly higher win rate than OEP. These results were

obtained from running the agents with computational budget

similar to the one used by the Hard AI.

The Bridge Burning and Non Exploring MCTS variants

won 4 times more games than the Hard AI in their match

up against it, with ties making up approximately 20% of all

games, while OEP won approximately twice as many games

as the Hard AI in that match up, with similar number of ties.

Analysis. The experimental setting used abstracts some el-

ements of the game, such as air and amphibious combat

and the placement of units, which are game aspects that

the game’s AI takes into consideration. For this reason, this

setting may reduce the effectiveness of the game’s AI, and

the win rates achieved and the performance of the agents

developed could be significantly weaker when playing in a

different setting featuring those elements. However, as ex-

plained when describing the experimental setup, the game’s

Hard AI takes the production value of a territory into consid-

eration when deciding to try to conquer it or not, so, while

our setting may reduce the effectiveness of the AI, it does

not cause it to make decisions that are inherently bad. Addi-

tionally, our setting is comprised of only two players, while

most games are comprised of a significantly higher number

of players. Such a setting increases the complexity of the

problem, and may cause further decreases in performance

for the implemented algorithms.

Even when taking all these factors into consideration, the

win rate of the developed agents over the game’s AI can still

be considered significant, and is of a higher degree than ex-

pected. Even with the presence of these factors, these results

still highlight the possibility for these types of algorithms to

outperform existing AI implementations in the industry. It

shows that MCTS and other search algorithms, when paired

with powerful pruning strategies and domain knowledge,

have the potential to outperform hard coded and rigid video-

game AIs, which is the case for many of the current AI

solutions in grand strategy video games.

6 Conclusion
Using planning in grand strategy video games is a difficult

task, especially due to the complex search space and the small

computational budget available for decision-making in this

setting. In this thesis we planned and implemented different

state-of-the-art algorithms based on MCTS over the setting

of a grand strategy video game. In order to make the large

search space of grand strategy video games approachable

for the implemented algorithms, different pruning strategies

using domain knowledge were employed. These pruning

strategies were effective and were able to reduce the size

of the search space significantly, being a key aspect in the

performance of the agents.

The implemented algorithms performed differently un-

der varying conditions and execution times, with the Non

Exploring MCTS algorithm performing better under higher

time constraints, while the Bridge Burning MCTS algorithm

was the best performing with higher computational budget.

The pruning strategies employed gave an edge to both Bridge

Burning MCTS and Non Exploring MCTS over OEP, but the

latter still performed considerably well.

All implemented algorithms outperformed the testbed’s

existing AI when running with a similar computational bud-

get in the experimental setting. These results highlight the

possibility of search algorithms as the basis of AI agents for

these types of games.

References
[1] Kocsis, Levente and Szepesvári, Csaba. (2006). Bandit Based

Monte-Carlo Planning. Machine Learning: ECML. 2006. 282-293.

10.1007/11871842_29.

[2] Gelly, Sylvain and Silver, David. (2007). Combining Online and Offline

Knowledge in UCT. ACM International Conference Proceeding Series.

227. 10.1145/1273496.1273531.

[3] Andruszkiewcz, P. Nucl.ai (2015). Optimizing MCTS Performance for

Tactical Coordination in Total War: Attila.

[4] N. Justesen, T. Mahlmann, S. Risi and J. Togelius, "Playing Multiaction

Adversarial Games: Online Evolutionary Planning Versus Tree Search,"

in IEEE Transactions on Games, vol. 10, no. 3, pp. 281-291, Sept. 2018,

doi: 10.1109/TCIAIG.2017.2738156

[5] TripleA contributors 2001-20019,<https://triplea-game.org/>

	Abstract
	1 Introduction
	2 Related Work
	2.1 Real-world implementations of MCTS in TOTAL WAR- ATTILA
	2.2 Playing Multi-Action Adversarial Games ref17

	3 Case Study - TripleA game
	3.1 Map
	3.2 Units
	3.3 Sequence of play
	3.4 Game characterization
	3.5 Existing AI in the game

	4 Implementation
	4.1 Pruning strategies
	4.2 Playout phase heuristic
	4.3 State reward function
	4.4 OEP
	4.5 BB-MCTS and NE-MCTS

	5 Results
	5.1 Experimental setup
	5.2 Win rates and agent performance

	6 Conclusion
	References

