
Implementing Bioinformatics Pipelines and User Interfaces
for Selection of Immunotherapeutic Targets in Colorectal

Cancer

António Manuel Farinha Gabriel Correia do Paulo

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Dr. João André Nogueira Custódio Carriço
Dr. Dina Ruano

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Dr. João André Nogueira Custódio Carriço

Member of the Committee: Prof. Susana de Almeida Mendes Vinga Martins

January 2021

Acknowledgments

I would like to start by thanking my mother for giving me all I have today. Without your care, worry

and guidance I know I would not be where I am today. I was born with a special advantage, and that was

given to me by you mom. On the same note, thank you Ana. When I was little you were my personal

teacher (a very demanding one!). You also gave me a head start in life and with you I can always spend

some time talking about whatever it is that is on my mind. You are always ready to help me and that is

invaluable. Talking about always being there to help, thank you João for always being there to solve the

unsolvable and to support me. I’ve always admired your outside the box thinking and felt the care you

had for me.

Thank you Dina for the availability you showed to teach me and to help me, even outside LUMC.

Remember those pesky Dutch bedbugs? I sure do! Your passion for bioinformatics is admirable. It

was that passion that caught my attention in your presentation at Bioinformatics Open Days in Minho.

The way you talked and the clearness with which you explained concepts that were totally new to me is

something I will never forget. Thank you for the opportunity, for being my teacher and for becoming my

friend.

Thanks João Carriço for giving me my first opportunity to get into the Bioinformatics world and for

accepting to accompany me in this thesis adventure! I always enjoyed our meetups at iMM where you

added a bit more knowledge to my compendium. You were possibly the first piece of the puzzle in this

bioinformatics journey.

Thank you Noel for accepting me into the Immunogenomics group for a semester and for the warm

welcome you gave me when I arrived to the group. You showed me that above being the group leader

you were a kind person that would treat me as equal.

I would like to acknowledge the SASC team at LUMC for helping me in technical aspects and leave

a special thanks to Davy Cats. You were always available to answer my questions, even if at times they

were a bit more on the “philosophical” side of things. You made things considerably smoother, thanks!

A warm and very fuzzy thank you to Sofia and Nuno for being a big part of my life. You two taught

me a lot throughout the years, namely when it comes to being a better person. Also thank you Martim

for being just the way you are, a friend that truly cares.

Thank you Sı́lvia and Cruz. To this date I still feel very lucky to have come across you two in my

academic life. I get quite nostalgic when I remember taking the Metro back home with you Sı́lvia. Keep

on smiling the way only you know how to do. Cruz, thank you for teaching me to find and understand

things on my own. I use that lesson everyday. I will never forget trying not to burst in laughter with you

at the most inadequate of times.

Also a big thanks to all the anonymous people that created the support material I had access to

all these years. Learning makes more sense when knowledge isn’t hidden away. Thanks to Instituto

Superior Técnico for providing invaluable opportunities for their students. I owe a lot to that.

And of course, the love of my life, Filipa. You are always there for me and helped me more than I

could ever ask for. I love your creative thinking and the ability you have to come up with ideas like it is

second nature. With you, I will never stop learning.

ii

Abstract

With the advent of Next-Generation Sequencing (NGS), tumor tissue can be characterized much faster

and at a lower cost than before, opening the way for personalized treatments such as cancer vaccines. A

key aspect in creating these vaccines is identifying the tumor-specific mutations of a given patient, known

as neoantigens. Identifying neoantigens from patient samples involves processing a great amount of

NGS data efficiently so that therapies can be developed timely. In this work, we present a neoantigen

identification bioinformatics pipeline that is capable of leveraging High-Performance Computing clusters.

The pipeline was developed with the purpose of analyzing low-mutation colorectal cancer but is not

restricted to this type of cancer. Contrary to other pipelines, ours is complete in the sense that it covers

all the steps required to turn sequenced tissue samples into ranked neoantigen predictions. Moreover, it

makes use of RNA data to confirm that the tumor-specific mutations are being expressed. The pipeline

is open-source, freely available and was designed with reproducibility, modularity and collaboration in

mind. Additionally, this work includes a data visualization module through which users can visualize

the pipelines’ results. The pipeline was developed as an overhaul to a previously used pipeline by the

Immunogenomics group at the Leiden University Medical Center, managing to reduce the execution time

from days to hours, while keeping neoantigen prediction in line with previous results.

Keywords

Neoantigen identification; Bioinformatics pipeline; Personalized cancer vaccine; Next-generation se-

quencing; High-Performance Computing

iii

Resumo

Com o advento da sequenciação de nova geração (NGS), é possı́vel caracterizar as amostras de tecido

tumoral mais rapidamente e a um custo inferior, abrindo o caminho para tratamentos personalizados

como as vacinas contra o cancro. Um aspecto chave na criação destas vacinas é a identificação de

mutações especı́ficas nos tumores dos pacientes, conhecidas como neoantı́genos. A identificação de

neoantı́genos a partir de amostras de pacientes envolve o processamento eficiente de uma grande

quantidade de dados NGS, de modo a que as terapêuticas possam ser desenvolvidas atempadamente.

Neste trabalho, apresentamos um pipeline bioinformático de identificação de neoantı́genos capaz de

utilizar clusters de computação de alto desempenho. O pipeline foi desenvolvido para analisar cancro

colorectal de baixa mutação, mas não está restrito a este tipo de cancro. Contrariamente a outros

pipelines, o nosso abrange todos os passos necessários para transformar amostras de tecido sequen-

ciado em previsões de neoantı́genos. Além disso, este usa a informação do ácido ribonucleico para

confirmar que as mutações especı́ficas do tumor são expressas. O pipeline é de código aberto, gratuito

e foi desenhado com reprodutibilidade, modularidade e colaboração em mente. Adicionalmente, este

trabalho inclui um módulo de visualização de dados através do qual é possı́vel visualizar os resultados

do pipeline. O pipeline apresentado é uma revisão integral do pipeline previamente utilizado pelo grupo

de Imunogenómica do Centro Médico Universitário de Leiden, alcançando uma redução do tempo de

execução de dias para horas e mantendo a identificação de neoantı́genos em linha com os resultados

anteriores.

Palavras Chave

Identificação de neoantı́genos; Pipeline bioinformático; Vacina personalizada contra o cancro; Sequenciação

de nova geração; Computação de alto desempenho

v

Contents

1 Introduction 1

1.1 Context and Motivation . 3

1.2 Problem Formulation . 6

1.3 Contributions . 7

1.4 Thesis Outline . 8

2 Background: Typical Neoantigen Identification Workflow 9

2.1 Overview . 11

2.2 Turning Tissue into Strings . 11

2.2.1 Sequencing . 13

2.2.2 Quality Control and Adapter Trimming . 14

2.2.3 Read Mapping (Alignment) . 16

2.3 Somatic Variant Calling: Finding Nucleotide Differences in Tumors 17

2.4 Predicting Mutant Proteins from Somatic Variants: Finding Tumor-specific Proteins 21

2.5 HLA Typing: Different Patients React Differently . 22

2.6 Predicting Peptide Immunogenicity: Will the Peptides Bind? 22

2.6.1 Predicting HLA Binding . 23

2.6.2 Predicting Post-HLA Binding Events . 24

2.6.3 Prioritizing Neoantigens . 24

2.7 Information Visualization . 25

2.8 Related Pipelines . 25

2.9 Previously used Pipeline at LUMC . 26

3 Methods: Developed Neoantigen Identification Pipeline 29

3.1 Overview . 31

3.2 Shark High-Performance Computing Cluster . 33

3.3 Workflow Description Language . 33

3.3.1 Workflows . 34

3.3.2 Tasks . 37

vii

3.3.3 Structs . 38

3.4 Cromwell WFMS . 39

3.5 Singularity Container Platform . 41

3.6 Integrated Pipeline Code Structure . 41

3.7 Running the Integrated Pipeline . 42

3.7.1 Environment Configuration . 42

3.7.2 Pipeline Inputs . 42

3.7.2.A Inputs Definition File . 42

3.7.2.B Sample Configuration File . 43

3.7.3 Womtool Input Generation . 44

3.7.4 Running the Pipeline . 45

3.8 Integrated Pipeline Modules . 46

3.8.1 Quality Control and Adapter Trimming . 47

3.8.2 Read Mapping (Alignment) . 48

3.8.3 Somatic Variant Calling . 49

3.8.3.A Mutect2 . 51

3.8.3.B Strelka2 . 53

3.8.3.C VarDict . 53

3.8.3.D Combining Variant Calls . 53

3.9 Standalone Pipeline Modules . 54

3.9.1 Mutant Protein Prediction . 54

3.9.2 HLA Typing . 54

3.9.3 HLA Binding Prediction . 55

3.9.3.A Dividing Input Proteins into Short Peptides surrounding Mutations 56

3.9.3.B Querying Protein Database for Exact Peptide Matches 57

3.9.3.C Filtering Exact Matches . 58

3.9.3.D Running Binding Prediction Software . 58

3.9.3.E Outputs . 59

3.10 R Shiny Result Analysis . 60

3.11 Continuous Integration and Testing . 60

4 Problems and Validation 63

4.1 Problems and Noteworthy Aspects . 65

4.1.1 Cromwell Filling Cluster’s Storage Space . 65

4.1.2 BWA Intricacies . 65

4.1.3 VarDict Memory Usage . 65

viii

4.1.4 R Shiny Module Error Finding . 67

4.2 Validation . 67

4.2.1 Validation with ICGC-TCGA DREAM Synthetic Data 67

4.2.1.A Methodology . 68

4.2.1.B Results . 68

4.2.1.C Remarks . 71

4.2.2 Validation with Generated Synthetic Data . 71

4.2.3 Validation with Previous Results . 71

4.2.3.A Methodology . 72

4.2.3.B Results . 72

4.2.3.C Remarks . 72

5 Conclusions and Future Work 75

5.1 Conclusions . 77

5.1.1 Main Goals . 77

5.1.2 Further Validation . 78

5.1.3 Integrated Pipeline . 79

5.1.4 Standalone Pipeline Modules . 80

5.1.5 User Interface . 80

5.2 Future Work . 80

5.2.1 Results Database . 80

5.2.2 User Interface . 81

5.2.3 Benchmarking Performance . 82

5.2.4 Integrating Standalone Modules . 82

5.2.5 Tracking Code Coverage . 82

A Cromwell Pipeline Files 101

A.1 Cromwell Shark Cluster Configuration . 101

A.2 User-defined Pipeline Input Files . 106

A.2.1 Input Definition File . 106

A.2.2 Sample Configuration File . 109

B MultiQC Plots 111

C ICGC-TCGA DREAM Synthetic Dataset Validation 117

C.1 Detailed Results . 117

C.2 Conversion to hg38 . 119

ix

x

List of Figures

1.1 DNA molecule structure . 3

1.2 Transformation of DNA into protein through transcription and translation 4

1.3 Sequencing read and depth concepts . 4

1.4 Elimination of a tumor cell with a non-synonymous coding mutation by a CTL 5

1.5 Melanoma cells before and after neoantigen vaccination 6

1.6 Example process flow of a pipeline executing in an HPC cluster 7

2.1 Typical neoantigen identification workflow . 12

2.2 DNA fragment with an insert size longer than the length of both reads 13

2.3 DNA sequencing steps . 14

2.4 Example FastQC report for Illumina sequence data . 15

2.5 Short reads aligned to a reference genome . 17

2.6 The idea behind somatic variant calling . 18

2.7 IGV variant visualisation example . 26

3.1 Neoantigen identification pipeline developed for LUMC . 32

3.2 Cromwell’s cache subsystem . 40

3.3 Cromwell’s log output example . 46

3.4 QC and Adapter Trimming workflow (UML sequence diagram) 47

3.5 MultiQC’s “FastQC: Mean Quality Scores” plot with samples highlighted 48

3.6 Read Mapping workflow (UML sequence diagram) . 50

3.7 Somatic Variant Calling workflow (UML sequence diagram) 52

3.8 Isovar tool overview . 55

3.9 R Shiny module’s results tab overview . 61

3.10 R Shiny module plot showing the number of (non-)expressed protein changing variants

per sample . 61

3.11 R Shiny module plot showing the number of occurrences for a set of variant types 62

xi

4.1 Variant callers’ TP, FP, FN and TN counts for synthetic data 70

B.1 MultiQC’s “Observed Quality Score counts” plot generated from GATK’s data 112

B.2 MultiQC’s “Alignment Summary” plot generated from Picard’s data 112

B.3 MultiQC’s “Base Distribution” plot (Thymine selected) generated from Picard’s data 113

B.4 MultiQC’s “Lengths of Trimmed Sequences” plot generated from Cutadapt’s data 113

B.5 MultiQC’s “Sequence Counts” plot generated from FastQC’s data 114

B.6 MultiQC’s “Per Sequence Quality Scores” plot generated from FastQC’s data 114

B.7 MultiQC’s “Per Sequence GC Content” plot generated from FastQC’s data 115

B.8 MultiQC’s “Sequence Length Distribution” plot generated from FastQC’s data 115

B.9 MultiQC’s “Adapter Content” plot generated from FastQC’s data 116

C.1 ICGC-TCGA DREAM challenge synthetic dataset detailed validation results 118

xii

List of Tables

2.1 Phred’s base-specific quality scores . 16

3.1 Variant types called by Mutect2, Strelka2 and VarDict . 49

4.1 Representation of a confusion matrix . 69

4.2 Sensitivity and specificity values of Mutect2, Strelka2 and VarDict running on synthetic data 69

4.3 New pipeline’s validation results relative to the expressed protein changing variants iden-

tified by the previous pipeline . 73

xiii

xiv

Listings

2.1 FASTQ file excerpt representing a read sequence. Description by line number: 1) se-

quence identifier; 2) nucleotide sequence; 3) optional quality score identifier (not present)

preceded by a “+” sign; 4) quality score of each nucleotide. 14

2.2 Adapted excerpt of a VCF file output by Mutect2. The metadata header lines are preceded

by “#”. In the body, the variant call with a “PASS” filter is predicted by Mutect2 to be a true

variant, whereas the others are considered filtered. The “FORMAT” column – AD:AF:DP

– indicates the format of the columns that follow it. 20

2.3 Makefile rule example . 26

3.1 WDL imports . 34

3.2 WDL workflow inputs . 35

3.3 WDL workflow task calling . 35

3.4 WDL workflow scattering a task call . 36

3.5 WDL workflow outputs . 36

3.6 WDL task inputs . 37

3.7 WDL task command section . 37

3.8 WDL task output and runtime sections . 38

3.9 WDL struct grouping a file and its indices . 39

3.10 Pipeline’s user-defined input file example excerpt . 43

3.11 Pipeline’s YAML sample configuration file example . 44

3.12 Womtool “inputs” example command, taking the main pipeline script, “pipeline.wdl”, as the

source workflow. The command is followed by an excerpt of its output, which by default

includes optional inputs. 45

3.13 Example Cromwell command, running the pipeline’s main WDL workflow 45

3.14 Bind-pred protein input file example. It contains shorter proteins than usual for increased

legibility (usually 51 amino-acid long, not 25 as shown). 56

3.15 Gap function used in aligning the input protein sequences (WT and MUT) 57

xv

3.16 Alignment of two protein sequences printed to the log of bind-pred. On the top is the WT,

and on the bottom the MUT. A 6 nucleotide deletion occurred (indel variant), leading to a

2 amino-acid gap in the middle of the MUT sequence. 57

3.17 Bind-pred binding predictions output file (example excerpt). We show the same 3 peptide

sequences for each binding prediction function call – netMHCpan-BA, netMHCpan and

netMHC. The “Bind Level” column indicates the predicted binding strength. Lines 3, 4 and

7 show a weak binding (WB) prediction, line 10 shows a strong binding (SB) prediction,

and the remaining lines show a no-binding prediction (N/A). 58

3.18 Example excerpt of output file for use in mass spectometry 59

3.19 Example excerpt of output file for use in peptide reactivity testing 59

4.1 Example BED file (“regions.bed”) with differently sized genome segments, both for chro-

mosome 1 . 66

4.2 Chunked-scatter genome region division into 1 Mbp chunks 66

4.3 Scatter-regions genome region division using 1 Mbp as the scatter parameter (-s). 67

A.1 Import of default application values and definition of the Cromwell’s server webservice

bind port . 101

A.2 Beginning of the SGE backend-specific configuration . 101

A.3 SGE’s general job configuration . 102

A.4 SGE’s job submission commands for both standard and docker jobs (using SGE’s “qsub”

command) . 102

A.5 SGE’s specification of how to kill a job (kill and kill-docker), how to check if a job is still

running during a cromwell restart (check-alive), and how to read a job identifier from the

standard output of the submission (job-id-regex) . 103

A.6 SGE’s file system duplication strategies when localizing a file (sorted first-to-last). Cached-

copy helps save space when using docker containers in shared file systems as hard-links

do not work between physical disks and soft-links do not work with docker. With cached-

copy, files are copied once to the physical disk where the workflow is running and then

hard-links are used. 103

A.7 SGE’s file system duplication strategies when copying a cached file (sorted first-to-last).

Also includes file hashing parameters. 104

A.8 End of SGE backend-specific configuration with number of task retries after transient failures104

A.9 General system configuration, focused on limiting the number of I/O requests 104

A.10 Call caching configuration . 105

A.11 Database configuration . 105

A.12 Workflow options . 105

xvi

A.13 Akka-http [1] (used to serve requests) configuration that limits the load exerted on the

HPC node responsible for job submission (head node) . 106

A.14 Beginning of the complete user-defined input file example with general parameters 106

A.15 QC and Adapter Trimming parameters . 107

A.16 Read Mapping parameters (the sample configuration file used is shown in Listing A.20) . 107

A.17 Somatic Variant Calling parameters – Strelka2 . 108

A.18 Somatic Variant Calling parameters – VarDict . 108

A.19 Somatic Variant Calling parameters – Mutect2 . 108

A.20 Sample configuration file . 110

xvii

xviii

Acronyms

A Adenine

ANN Artificial Neural Network

API Application Programming Interface

AUC Area Under the Curve

BAM Binary Alignment Map

BLAST Basic Local Alignment Search Tool

bp base pair

BQSR Base Quality Score Recalibration

C Cytosine

cDNA complementary DNA

CI Continuous Integration

CLI Command-Line Interface

CPU Central Processing Unit

CRC Colorectal Cancer

CTL Cytotoxic T Cell

CWL Common Workflow Language

DB Database

DNA Deoxyribonucleic Acid

EMBL-EBI European Bioinformatics Institute

xix

FFPE Formalin-Fixed Paraffin-Embedded

FN False Negative

FP False Positive

G Guanine

GATK Genome Analysis Toolkit

GB Gigabyte

GRC Genome Research Consortium

GRCh37 Genome Research Consortium human build 37

GRCh38 Genome Research Consortium human build 38

GUI Graphical User Interface

hg19 Human genome build 19

hg38 Human genome build 38

HLA Human Leukocyte Antigen

HOCON Human-Optimized Config Object Notation

HPC High-Performance Computing

HTML Hypertext Markup Language

IGV Integrative Genomics Viewer

I/O Input/Output

JRE Java Running Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

KB Kilobyte

LUMC Leiden University Medical Center

MHC Major Histocompatibility Complex

MNV Multi-Nucleotide Variant

xx

MUT Mutant

NFS Network File System

NGS Next-Generation Sequencing

OGS/GE Open Grid Scheduler/Grid Engine

OS Operating System

PGV-001 Personalized Genomic Vaccine 001

PPV Positive Predictive Value

QC Quality Control

REST Representational State Transfer

RNA Ribonucleic Acid

RNA-Seq RNA-Sequencing

ROC Receiver Operating Characteristic

SASC Sequencing Analysis Support Core

SGE Sun Grid Engine

SNV Single Nucleotide Variant

SSH Secure Shell

SV Structural Variant

T Thymine

TCR T Cell Receptor

TN True Negative

TP True Positive

TPR True Positive Rate

TNR True Negative Rate

U Uracil

UI User Interface

xxi

UML Unified Modeling Language

URL Uniform Resource Locator

VAF Variant Allele Frequency

VEP Variant Effect Predictor

VCF Variant Call Format

WDL Workflow Description Language

WES Whole-Exome Sequencing

WFMS Workflow Management System

WGS Whole-Genome Sequencing

WT Wild Type

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

xxii

1
Introduction

Contents

1.1 Context and Motivation . 3

1.2 Problem Formulation . 6

1.3 Contributions . 7

1.4 Thesis Outline . 8

1

2

1.1 Context and Motivation

Computational methods aid researchers in finding new therapeutics for cancer treatment. Next-Generation

Sequencing (NGS) allows the sequencing of Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA)

much faster and cheaper than was previously possible [2]. Sequencing is the process of determining

the nucleotide order of DNA or RNA extracted from cells, which in our context are human cells. Nu-

cleotides are the building blocks of DNA and RNA and consist of a sugar molecule (either ribose in RNA

or deoxyribose in DNA) attached to a phosphate group and a nitrogen-containing base. There are 5 nu-

cleotide bases which give nucleotides their name: Guanine (G), Cytosine (C), Adenine (A), Thymine (T)

and Uracil (U); T is specific to DNA and U to RNA. When these bases bind to each other they form

base pairs. The entire set of an individual’s DNA constitutes their genome. Figure 1.1 is a high-level

representation of the structure of DNA molecules using the previous concepts.

Figure 1.1: DNA molecule structure, where S and P represent sugar molecules and phosphate groups, respectively.
Adapted from [3].

Inside our cells DNA is transcribed into RNA, which in turn is translated into a protein. During

transcription RNA splicing occurs, in which introns are removed and exons remain. Because introns are

excluded before the creation of proteins, they are non-coding parts of the genome as opposed to exons

which are coding. Being coding means that that portion of nucleotides generates a protein. Figure 1.2

summarizes the concepts in this paragraph.

Depending on factors such as the sequencing system used and the percentage of the genome cov-

ered, sequencing a human tissue sample can result in billions of reads [4,5] – sequences of nucleotides

3

Transcription

Translation

Gene (DNA)

Transcript (RNA)

Protein

Exon

Intron

Figure 1.2: Transformation of DNA into protein through transcription and translation.

each corresponding to some portion of the genome. An important concept is depth or coverage which

represent the number of unique reads that cover a given nucleotide at a certain position as shown in

Figure 1.3. These concepts can be generalized to have as a reference point a locus (a site on a chro-

mosome) or the whole genome instead of a single position. Having higher depth is desired as it helps

distinguish between sequencing errors and real nucleotide variation.

Read 1
Read 2
Read 3
Depth

ATCCTACTTATACTCCA
CTACTTATACTCCACGG

TTATACTCCACGGGCGT
111222233333333332221111

Figure 1.3: Example of an overlap of sequencing reads, with the depth indicated at each position.

Illumina’s NGS technologies [6] are currently the most widely used in sequencing due to having a

good balance between quality and cost. Illumina commercializes various models of sequencing plat-

forms, i.e., machines that run the sequencing analysis on the input samples, such as tumor tissue.

Based on the sequencing data of several individuals, a human reference genome was created by the

Genome Research Consortium (GRC) [7]. This reference genome is used by the scientific community as

a point of comparison in NGS analyses. The way nucleotides are arranged in each individual’s genome

determines their characteristics and a portion of the genome that codes for a protein is known as a

gene. Alleles are variations of a given gene that can range from single nucleotide differences to more

4

complex recombination events. Any change in the DNA sequence relative to a reference genome is a

variant. Variants in the coding part of a genome, i.e. genes, are known as coding variants. Mutations are

variants that have deleterious or advantageous effects in cells and are rare events. In cancers, mutations

on genes that control cellular growth often accumulate, leading to an uncontrolled proliferation of cancer

cells. Variants in tumor cells that change protein-coding sequences may generate neoantigens. Antigens

are substances that induce an immune response on our body, and neoantigens are antigens encoded

by tumor-specific variants, i.e, variants not present in normal (healthy) tissue. Neoantigens have been

shown to play a significant role in mediating the destruction of tumor cells by the immune system [8–10].

Tumors with a higher number of tumor specific-mutations, and consequently more neoantigens have a

better prognostic [11]. T cells are a type of white blood cells called lymphocytes and are fundamental to

the body’s immune response. Tumor cells are killed through the action of Cytotoxic T Cells (CTLs) that

recognize neoantigens that bind to the T Cell Receptor (TCR) and are presented by cell surface Major

Histocompatibility Complex (MHC) molecules in tumor cells (see Figure 1.4). As such, numerous studies

have targeted patient-specific neoantigens to clear tumors with promising results [12,13]; this treatment

can be done through the administration of neoantigen vaccines – see Figure 1.5 for a visualization of

the results in a melanoma patient. This type of customized treatment to patients fits into the category

of personalized medicine, to which the ever-decreasing time and sequencing costs have contributed to

making it more viable in medical practice. Furthermore, the specific region on an antigen that the CTLs

recognize is called an epitope, and a neoepitope is an epitope encoded by a tumor-specific variant.

MHC I
TCR

mutation

cell death

Tumor Cell Cytotoxic T Cell

binding leads to
neoantigen

Figure 1.4: Elimination of a tumor cell with a non-synonymous coding mutation by a CTL. This mutation originated a
neoantigen that is then presented by a cell surface MHC molecule. The CTL then specifically recognizes
the presented neoantigen and causes the tumor’s cell death.

In practice, to identify neoantigens NGS data must go through several steps of analysis and transfor-

mation which can be accomplished using a bioinformatics pipeline: a series of software steps, usually

chained together using a framework that controls the process flow. The framework can be as basic as

5

Figure 1.5: Computer visualization of melanoma cells, before and after the patient was treated with a neoantigen
vaccine. We can observe that after vaccination the majority of the cells were seen to be dying (necrosis).
Reproduced from [14].

a Unix shell script but preferably a Workflow Management System (WFMS) is used. A proper WFMS

enables the pipeline to continue where it left off if interrupted, has the ability to make use of multiple com-

puting nodes, and handles job scheduling without requiring modifications to the existing code. Another

good practice is to use containers to house the software being run at each step of the pipeline workflow,

which allows for reproducibility and portability of the pipeline, important aspects especially as its com-

plexity increases. Figure 1.6 represents an example flow of a pipeline executing in a High-Performance

Computing (HPC) cluster environment using a WFMS framework and software containerization.

As a final consideration, due to the complex nature of these pipelines in terms of the numerous

inputs and transformations that the data goes through, visualizing the outputs is valuable because it

helps detecting errors such as malformed or mismatching inputs, or incorrect bioinformatics software

configuration, thus avoiding drawing wrong conclusions about the processed data.

1.2 Problem Formulation

This dissertation presents an example of how the branch of bioinformatics can positively impact cancer

research with the development of a software pipeline that is capable of processing a large amount of

sequencing data from patients and with it identify neoantigens that can then be used by researchers to

develop targeted cancer vaccines. In particular, we will be analyzing sequencing data from Colorectal

6

Cluster Job Queue

Computing Resources

HPC Cluster

Submit Job

Pipeline Script

Job Scheduler

Workflow Management System

Execute

Container Repository

Figure 1.6: Example process flow of a pipeline executing in an HPC cluster following good practices. A WFMS is
used to create and submit the jobs to the cluster job queue without having to explicitly write code in
the pipeline script to do so. Also, containerization of the software, which provides reproducibility and
portability to the pipeline, is depicted in the upper right corner of the figure by a cloud with the Docker
logo [15]. It is depicted in this way to show that the containerized software executed by the pipeline is
fetched from a repository hosted in the cloud.

Cancer (CRC) with low mutation numbers, with the key aspect being the identification of all tumor-

specific variants that are coding non-synonymous, i.e., variants that cause changes to the proteins’

sequence. This analysis was already being done by the Immunogenomics group of the Department

of Pathology of Leiden University Medical Center (LUMC) [16], environment where and for which the

pipeline was developed. The main issue with the pipeline that was in place prior to the development of

the one presented in this dissertation was that its execution time was in the order of days, something that

could be vastly improved by leveraging the available computational power of the HPC cluster at LUMC.

However, the previous implementation of the pipeline was not deployable in the cluster, hence the need

for a complete overhaul.

1.3 Contributions

The main contributions of this work, put into context with the solution that was previously in place, are:

• An integrated pipeline [17] (currently in release 4.0.0 [18]) that adheres to recent standards in the

bioinformatics field, implemented to run using the Cromwell WFMS [19] as a way to utilize HPC

clusters.

7

• A reduction in the execution time from days to hours when compared to the previously used

pipeline.

• A readable, modular and reusable implementation of the integrated pipeline achieved with the

Workflow Description Language (WDL) [19] (see Sections 3.3 and 3.6).

• Reproducibility as a consequence of software being containerized in the integrated pipeline (see

Section 3.5).

• Improved filtering of the predicted variants using data from other patients by implementing more

recent variant calling software functionalities into the pipeline (see Section 3.8.3.A).

• An overhauled Human Leukocyte Antigen (HLA) binding prediction module with a novel method

for filtering predicted neoantigens by using data available in public and continuously updated

databases (see Section 3.9.3).

• A separate R Shiny [20] user interface for visualizing the results of a crucial step of the pipeline,

allowing to spot errors (see Section 3.10).

• Software that is open source, publicly available in GitHub and designed to be used by others.

1.4 Thesis Outline

Following this introductory first chapter, this dissertation begins by giving an overview of the typical

workflow for identifying neoantigens in Chapter 2. It comprises the pieces of available software and

their evaluation, alongside the necessary biological context to motivate each step of the workflow. In

the same chapter we also address data visualization and related pipelines, including the one that was

previously in use at LUMC.

Chapter 3 is dedicated to the developed pipeline, covering the technologies involved, such as the

containerization software used, the Cromwell WFMS, each pipeline module, visualization of the results

with R Shiny, and the Continuous Integration (CI) and testing methodologies.

In Chapter 4, we address some of the problems found and the validation of the results of the new

pipeline to guarantee at least the same predictive performance as the previous pipeline.

Finally, Chapter 5 is reserved to conclusions drawn from this work and possible improvements.

8

2
Background: Typical Neoantigen

Identification Workflow

Contents

2.1 Overview . 11

2.2 Turning Tissue into Strings . 11

2.3 Somatic Variant Calling: Finding Nucleotide Differences in Tumors 17

2.4 Predicting Mutant Proteins from Somatic Variants: Finding Tumor-specific Proteins 21

2.5 HLA Typing: Different Patients React Differently . 22

2.6 Predicting Peptide Immunogenicity: Will the Peptides Bind? 22

2.7 Information Visualization . 25

2.8 Related Pipelines . 25

2.9 Previously used Pipeline at LUMC . 26

9

10

2.1 Overview

In this chapter, we start by providing an overview of the computational methods and the typical work-

flow [21] for identifying neoantigens and then discuss it in more detail. Each step of the workflow is

accompanied by a basic biological context, since it helps to reason about the task at hand. Figure 2.1

summarizes the workflow: tumor and normal tissue have their DNA extracted (also RNA in the case

of the tumor) and sequenced. Then comes identification of the patient’s HLA type and, independently,

Quality Control (QC), adapter trimming and read mapping are performed. In the latter, we take millions

of independent nucleotide sequences (reads) and have them mapped to their corresponding position in

the reference genome. After the reads are aligned, variant calling is performed, i.e., nucleotide differ-

ences between the aligned tumor and normal reads are identified. Using the RNA mapping information

it is possible to confirm that a variant is expressed. Finally, for all tumor-specific variants present in the

RNA sequences, binding prediction to the patient’s HLA type is done.

2.2 Turning Tissue into Strings

Numerous steps are necessary to transform raw sequencing data into complete genes sequences or

genomes. While many tools are available, which ones to use depend on several factors, one being the

sequencing platform used.

On this project, we will focus only on Illumina’s platforms. Each platform has different technical

specifications such as accuracy and error rate, as well as read length which influences the amount of

nucleotides from a given DNA or RNA fragment that are sequentially read, i.e., that end up in the same

read. The read length has implications downstream in the analysis, particularly in the alignment step

as the precision of an alignment is generally better with longer reads because there is more contextual

information (more contiguous nucleotides) to help matching a certain read to a genome region. The read

length of a sequence platform has to be taken into account when creating the DNA or RNA fragments to

be sequenced. Otherwise, an inner portion of a given fragment will not be sequenced when paired-end

sequencing is done (see Figure 2.2). In paired-end sequencing, both ends of the fragment are read:

read 1 (R1) and read 2 (R2). This contrasts with single-end sequencing where only one end of the

fragments is sequenced.

Another factor that influences tool choice is the quality of the input material. There are different ways

to prepare and preserve samples, e.g., Formalin-Fixed Paraffin-Embedded (FFPE) and frozen fresh

tissue. In general, FFPE material has low quality which can result in a higher percentage of sequence

artifacts, i.e., DNA sequence changes that in reality are not present in the original material. Low quality

material is often more fragmented (smaller insert sizes) resulting in an inferior genome coverage. The

choice of tools to use depends as well on the portion of the genome targeted. This can be the entire

11

neoantigen

Tumor Tissue

Extract

Normal Tissue

Extract

Gly

A	C	G	T	C	A	A	G	T	A	G	T

T	G	C	A	G	T	T	C	A	T	C	A
Reference sequence

T	G	C	A	G	T	T	C	A	T	C	A

A	C	G	T	C	A	A	G	T	A	G	T
Normal Tissue

T	G	C	A	G	T	C	C	A	T	C	A

A	C	G	T	C	A	G	G	T	A	G	T
Tumor Tissue

Expressed PeptideThr Ser Ser

RNAA	C	G	U	C	A	G	G	U	A	G	UIdentify Expressed
Somatic Mutations

Neoantigen Binding Prediction

HLA Typing

Variant Calling

Quality Control and Adapter Trimming

Sequencing

Read Mapping (Alignment)

CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC
CAAGCAGACTACGTCAAGTAGTACGAGTAGTACGTCAATCTGTGTACGAGAGTACACATTGAATCGCATCCAGGATACGGC

Adapter

Trim

Adapter

Trim

DNA/RNA fragment

TCR
MHC I

Figure 2.1: Typical neoantigen identification workflow. The steps highlighted in green transform the tissue samples’
sequencing data into a format that is compatible with the tools capable of performing the analyses
required for neoantigen binding prediction, highlighted in blue.

12

R1 Adapter Insert R2 Adapter

Read 1

Read 2

Insert Size

Fragment Length

Not Sequenced

5'

5'3'

3'

Figure 2.2: DNA fragment with an insert size longer than the length of both reads.

genome, only the exome, only the transcriptome, or only a small portion of the genome such as a

single gene, which are called as Whole-Genome Sequencing (WGS), Whole-Exome Sequencing (WES),

RNA-Sequencing (RNA-Seq), and targeted-sequencing, respectively. Lastly, in our context of building

pipelines to run in HPC clusters, there are usually software or hardware resources restrictions in place.

Nowadays, the former can be overcome by using containerization tools and the latter usually tackled by

tuning the software parameters.

A useful and regularly updated resource to help deciding which tools to use is the Broad Institute’s

Genome Analysis Toolkit (GATK) Best Practices [22]. A complete resource not only for the steps in this

section, but also for variant discovery and filtering, which are covered later in this report. GATK Best

Practices focus largely on human (WGS and WES) samples sequenced with Illumina technology.

2.2.1 Sequencing

In the context of this work, sequencing is the process of determining the nucleotide order of a given

DNA or RNA fragment. The necessary steps to transform the biological material – in our case, normal

and tumor tissue – into DNA or RNA libraries are not the main focus of this report. Nevertheless, it is

important to briefly explain sequencing because the pipeline is dependent on its correctness. Generally,

the laboratorial steps (summarized in Figure 2.3 for DNA) are:

1. Extract genomic DNA or RNA from the source material and fragment it. Specifically for RNA,

generate complementary DNA (cDNA) through reverse transcription (refer back to Figure 1.2). In

sequencing, cDNA is then handled identically to DNA. Select fragments of the desired size and

add adapters. Adapters, shown at both ends of the DNA fragment in Figure 2.2, are predetermined

short synthesized nucleotide sequences that serve as markers to identify the DNA sequences of

interest, called the inserts, shown in Figure 2.2.

2. Amplify (create thousands of copies of) the fragments.

13

3. Finally, sequencing is done using an Illumina sequencing platform – in our case the HiSeq platform

was used.

Extract DNA Prepare Library

Sequence
Amplified Library

Amplify

Illumina Platform
Output Files for
Computational

Analysis

Figure 2.3: DNA sequencing steps

The resulting data from sequencing are FASTQ files, the standard format for storing biological se-

quences. These files (exemplified in Listing 2.1) consist of nucleotide sequences with their correspond-

ing quality scores, each represented by an ASCII character. They can be multiple GB in size, containing

millions of lines.

Listing 2.1: FASTQ file excerpt representing a read sequence. Description by line number: 1) sequence identifier;

2) nucleotide sequence; 3) optional quality score identifier (not present) preceded by a “+” sign; 4)

quality score of each nucleotide.

1 @K00296 :19: HC2YTBBXX :2:1101:1600:1103 1:N:0: ATCACG

2 NCTGCAGTGCAGTGACTATATTCTTCACAATAATCAAACNGGTCANTTATCGCCTACACCTCNTGTTTGACAAAG

3 +

4 #AAFFAAJJJJJFAJJFJFJJJJJFJJJJFJFFJJFJJJ#JFFJJ#7<JJJJJJJJFJJF -A#A7 <<<JJJJJJA

2.2.2 Quality Control and Adapter Trimming

After sequencing, it is necessary to remove potential biases and technical errors. FastQC [23] can be

used to assess the quality of the sequencing data, by providing an in-depth report on data quality, such

as base quality, GC content (i.e., percentage of bases that are G or C), and overrepresented sequences

such as adapters and primers used during preparation of DNA or RNA libraries. Figure 2.4 shows the

14

“Per base sequence quality” plot generated by FastQC. This plot allows the identification of poor libraries

as these will have reads with low quality.

Figure 2.4: Example FastQC report for Illumina sequence data with the “Per base sequence quality” plot in focus.
The vertical axis represents base quality measured in Phred quality scores and the horizontal axis
represents the nucleotide position in read. Green is considered good quality, yellow average and red
low. On the left, links to the other automatically generated plots are available.

Base quality is measured using Phred’s quality scores. These are calculated with:

q = −10× log10(p)

where q is the quality score and p the estimated error probability for that base (calculated by the program

Phred) [24]. Table 2.1 shows quality score values that translate to intuitive probabilities of incorrect

base identification. Although a Phred score of 30 might seem reasonable, taking into account that DNA

comprises around 3 billion bases, 99,9% base accuracy means we would be left with potentially 3 million

incorrect base calls in a WGS analysis.

Low-quality portions of reads, for instance, end-specific poor quality bases, can be trimmed. How-

ever, short reads result in lower mapping (covered in section 2.2.3) accuracy and sequencing depth. As

was shown in an extensive evaluation of read trimming effects [25], there is no definitive answer for what

the best trimming algorithm is since it is highly dependent on the dataset, downstream analysis, and

trade-offs resulting from the parameters chosen by the user. However, if the main purpose is adapter

15

Table 2.1: Phred’s base-specific quality scores

Phred Quality Score Probability of Incorrect Base Base Accuracy
10 1 in 10 90%
20 1 in 100 99%
30 1 in 1000 99.9%
40 1 in 10,000 99.99%
50 1 in 100,000 99.999%
60 1 in 1,000,000 99.9999%

contamination removal, the Cutadapt [26] tool provides a relatively conservative trimming feature. After

trimming, quality control should be run a second time to verify that sequence quality has improved.

2.2.3 Read Mapping (Alignment)

Upon removing low quality bases, reads are mapped against a reference genome. The commonly

used versions of the human genome reference are the Genome Research Consortium human build

37 (GRCh37) and Genome Research Consortium human build 38 (GRCh38), also referred to as Human

genome build 19 (hg19) and Human genome build 38 (hg38), respectively. Besides the latter being

more recent, a notable difference between these two versions is that the hg38 reference is comprised of

considerably more alternate contigs (contiguous nucleotide sequences, such as an entire chromosome).

Read mapping consists of aligning the reads to the reference genome using a read aligner, i.e., a

software that aligns nucleotide sequences as illustrated in Figure 2.5. Read mapping can be thought of

as assembling a puzzle of the reference genome, where the puzzle pieces are the sequenced reads.

The caveat is that, due to normal variation, the reads often do not exactly match the reference genome,

thus constituting a challenge for the mapping algorithms. Essentially, read alignment is an approximate

string matching problem.

There are two major algorithmic ideas to read alignment: filtering and indexing [27]. Filtering excludes

large regions of the reference genome that cannot contain an approximate match, usually resorting to

the pigeonhole or the q-gram lemma. Indexing comprises preprocessing the reference, the set of reads,

or both in an elaborate way that avoids scanning the entire reference, thus allowing for faster querying

at the expense of larger memory consumption. The string indices used are suffix arrays [28], enhanced

suffix arrays [29], and the FM-index [30] (based on the Burrows-Wheeler transform [31] and auxiliary

tables). The enhanced suffix array and FM-index can determine in linear time with respect to the length

of the query if a query sequence occurs in the reference.

For DNA sequence data, the most commonly used programs for read mapping are BWA [32] and

Bowtie 2 [33], whereas for RNA sequence data STAR [34], TopHat2 [35] and Kallisto [36] are com-

mon choices. The aforementioned aligners use the FM-index, except Kallisto which uses a colored de

Bruijn graph [37] as an index. Note that for RNA data, an aligner that is capable of handling splice

16

Reference ACGCTTACCTATGCGATATAGATGACCGTTATCG

ACGCT

CGCTT

GCTTA

Aligned
Reads

CTTAC

CTATT

TATTC

ATTCG

TTCGA

ATAGA

TAGAT

AGATG

TAGATGA

CGTTA

CTTATC

TATCG

CGTTATC

Figure 2.5: Short reads aligned to a reference genome. Variations are shown in red, exemplifying what could be a
SNV (from G to T) and a read error (C instead of G). The size of the reads is merely illustrative as their
sizes can vary greatly depending on the sequencing step of the pipeline.

junctions (exon-intron boundaries) is needed. A comprehensive list of read mappers from the European

Bioinformatics Institute (EMBL-EBI) [38] is available online [39]. Although it was last updated on the

27th December 2017, it is still relevant today. Lastly, read mapping software outputs files in the Binary

Alignment Map (BAM) format which can be inspected and post-processed using Command-Line Inter-

face (CLI) tools such as SAMtools [40], BAMtools [41] and Picard [42]. BAM files can be multiple GB in

size.

2.3 Somatic Variant Calling: Finding Nucleotide Differences in Tu-

mors

Variant calling is the process of identifying alterations in the genetic sequences, i.e., locating different

nucleotides other than the expected at a certain position relative to the reference. In somatic variant

calling, cancer and matched normal (derived from normal tissue of the same patient) sequences are

compared in order to detect somatic variants, i.e. variants present in the tumor but absent from normal

cells. This step is key to the success of the pipeline: each variant that goes undetected is a lost chance

to identify an altered peptide. These novel peptides, exclusive to cancer cells, may serve as neoantigens

mediating the destruction of tumor cells by the immune system.

Most current somatic variant callers are designed to analyze matched tumor and normal sequences

from the same patient simultaneously. The fundamental idea is to pinpoint potential variants in the tumor

sequence (by comparing it to the reference), while at the same time identifying whether they are somatic

or germline variants (present both in tumor and normal cells) by comparing them with the matched

normal sequence [43]. Figure 2.6 presents the latter idea by highlighting in red the variant nucleotides

17

in the tumor tissue sequence relative to the reference and that are not present in the normal tissue, i.e.,

that are not germline.

Gly

A C G T C A A G T A G T

T G C A G T T C A T C A
Reference sequence

T G C A G T T C A T C A

A C G T C A A G T A G T
Normal Tissue

T G C A G T C C A T C A

A C G T C A G G T A G T
Tumor Tissue

Expressed PeptideThr Ser Ser

RNAA C G U C A G G U A G U

Figure 2.6: The idea behind somatic variant calling is to compare the nucleotide sequence of the tumor with that of
the reference in order to find variations. Simultaneously, it is necessary to confirm that a given variant
is not germline by also taking into account the matched normal sequence.

Germline variants are inherited from parents, whereas somatic variants consist of acquired differ-

ences during cell division and can be caused due to environmental insults and lifestyle risk factors, such

as tobacco use [44]. There are a number of differences between somatic and germline variant calling.

Whereas germline variants are expected to have a frequency of around 50% or 100%, depending on

1 or 2 alleles being different relative to the reference sequence, respectively, in tumor tissue variant

frequency distribution falls in a continuous range. This is due to normal and tumor tissue admixture;

subclonal variations (as tumor cells replicate, they can produce clones that are further mutated); copy

number variations, the phenomenon in which sections of the genome are repeated resulting in variable

number of copies of that genome segment; or loss of heterozygosity, a common genetic event in cancer

by which at least one copy of the allele is lost, leading to part of the genome appearing homozygous in

the tumour where heterozygous in matching normal DNA [45]. To understand this concept we have to

take into account that humans are diploid organisms, which means that each cell contains two copies

of each chromosome. Consequently, humans also have two copies of each gene, one in each chro-

mosome. If the alleles corresponding to the same gene match in both chromosomes, the person is

homozygous, otherwise, heterozygous for that allele.

There are three categories of variants: Single Nucleotide Variant (SNV), insertion or deletion (indel),

and Structural Variant (SV). Few variant callers are versatile enough to call all three types because

18

fundamentally different algorithms are required for each [43].

There are three major strategies adopted by variant callers: 1) position-based: comprises heuristic,

joint genotype, and joint allele frequency analysis. 2) Haplotype-based: assembles reads locally in

a region and generates candidate haplotypes (linked SNVs that tend to always occur together). 3)

Machine learning based. Example tools that fit these three categories are Strelka [46], MuTect2 [47],

and SomaticSeq [48], respectively. To choose a variant caller (or a combination of them), there are a

number of factors to take into account [43].

The most important factor is the type of variants to be called: SNVs, indels or SVs. The majority of

the available variant callers report SNVs, yet only some report indels, SVs, or both. Hence, if besides

SNVs indels and SVs are of interest, for convenience, one can use all-around tools like Platypus [49],

Seurat [50], and VarDict [51]. However, the rationale for the choice of a variant caller should go beyond

convenience, as it is a crucial step for the success of neoantigen detection.

Another aspect in choosing a variant caller is the Variant Allele Frequency (VAF) threshold, i.e., the

minimum frequency to consider a variant true and not a sequencing artifact. Variant callers based on

joint genotype analysis, such as SomaticSniper [52], FaSD-somatic [53], Virmid [54], JointSNVMix2 [55],

SNVSniffer [56], and Seurat are not sensitive enough to detect low-frequency variants.

In case low-frequency variant calling is desired, particularly with high-coverage sequencing data, a

caller that directly models allele frequencies should be selected. Examples of such callers are: Strelka,

MuTect [57], LoFreq [10], EBCall [58], deepSNV [59], LoLoPicker [60], and MuSE [61].

Low-frequency variant calling accuracy has been analysed in Strelka and MuTect’s articles [46, 57],

and independently benchmarked [62, 63]. Xu et al. [62] compared sensitivity (true positive rate), and

specificity (true negative rate) between well-established somatic variant callers such as Strelka, MuTect,

and VarScan2 [64]. Strelka and MuTect were found to have achieved significantly higher sensitivity at the

lowest VAF with similar or lower false positive rates than the other methods. Moreover, Strelka achieved

considerably better sensitivity than MuTect under the recommended settings, but at the expense of a

much higher false positive rate [62]. It was not clear whether further tuning of these two algorithms

would change the latter observation’s validity. A relevant note is that a combination of different variant

callers resulted in more SNVs being detected. In Rubinsteyn et al. [65], an example of a computational

vaccine pipeline, MuTect and Strelka were used in conjunction. This pipeline is called the Personalized

Genomic Vaccine 001 (PGV-001) pipeline, and it shares many similarities with the steps and end goal of

the work here presented. Another point concerning low-frequency variant calling is that heuristic-based

analysis callers are also capable of achieving good accuracy if the VAF thresholds are carefully chosen,

e.g., 1% for VarDict [63] and less than 5% for VarScan2 [66].

Input data may also limit the choice of variant caller. Most callers take as input aligned reads of

matched tumor-normal samples in the BAM file format but some require additional data such as a cohort

19

of control samples to obtain site-specific error rates, e.g., LoLoPicker, a list of SNVs called by other

algorithms to perform haplotype analysis, e.g., LocHap [67], or variant calls from other somatic variant

callers, e.g., SomaticSeq [48].

Variants called are written into Variant Call Format (VCF) files. Being a verbose file format and

typically having thousands of lines, it is better handled with either a CLI tool such as VCFtools [68] or

BCFtools [69], or with a genome visualization tool such as IGV (covered in Section 2.7). Listing 2.2

shows a simplified excerpt taken from a VCF file generated by Mutect2. Essentially, VCF files are com-

posed by a header section with metadata, followed by a body – divided into (tab separated) columns –

that contains the information regarding the variants. The metadata in the header comprises, for exam-

ple, the description of the fields found in the body of the file, the variant calling software command that

was run to generate the file, and the regions of the genome where the variants were called.

Listing 2.2: Adapted excerpt of a VCF file output by Mutect2. The metadata header lines are preceded by “#”.

In the body, the variant call with a “PASS” filter is predicted by Mutect2 to be a true variant, whereas

the others are considered filtered. The “FORMAT” column – AD:AF:DP – indicates the format of the

columns that follow it.

1 ##fileformat=VCFv4.2

2 ##FILTER=<ID=germline ,Description =" Evidence indicates this site is germline ,

not somatic">

3 ##FILTER=<ID=panel_of_normals ,Description =" Blacklisted site in panel of

normals">

4 ##INFO=<ID=GERMQ ,Number=1,Type=Integer ,Description ="Phred -scaled quality

that alt alleles are not germline variants">

5 ##INFO=<ID=MBQ ,Number=1,Type=Integer ,Description =" median base quality">

6 ##INFO=<ID=PON ,Number=0,Type=Flag ,Description ="site found in panel of

normals">

7 ##INFO=<ID=SEQQ ,Number=1,Type=Integer ,Description ="Phred -scaled quality that

alt alleles are not sequencing errors">

8 ##FORMAT=<ID=AD ,Number=R,Type=Integer ,Description =" Allelic depths for the

ref and alt alleles in the order listed">

9 ##FORMAT=<ID=AF ,Number=A,Type=Float ,Description =" Allele fractions of

alternate alleles in the tumor">

10 ##FORMAT=<ID=DP ,Number=1,Type=Integer ,Description =" Approximate read depth

(reads with MQ=255 or with bad mates are filtered)">

11 ##contig=<ID=chr1 ,length =248956422 >

12 ##contig=<ID=chr2 ,length =242193529 >

13 #CHROM POS REF ALT FILTER INFO FORMAT NORMAL TUMOR

20

14 chr1 1312235 T G panel_of_normals GERMQ =93; MBQ =30; PON;SEQQ =64

AD:AF:DP 138 ,9:0.027:147 98 ,13:0.095:111

15 chr2 50531288 G T PASS GERMQ =93; MBQ =30; SEQQ =93 AD:AF:DP

161 ,0:6.142e -03:161 95 ,19:0.172:114

16 chr2 229271314 CGCG C germline GERMQ =1; MBQ =30; SEQQ=1

AD:AF:DP 11 ,0:0.071:11 3 ,1:0.323:4

Variant callers will unlikely achieve 100% accuracy because of the imperfect nature of sequencing

data: biases in library preparation, sequencing errors, and mismapped reads cause false-positive vari-

ants to be called as well as variants to go undetected. In this work the aim is to maximize the number

of variants detected even if that costs us a higher rate of false-positives. More variants detected will

increase the chance of finding a mutant peptide that triggers an immune response. False-positive calls

can later be filtered through downstream validation, both computational and laboratorial.

2.4 Predicting Mutant Proteins from Somatic Variants: Finding

Tumor-specific Proteins

The main aim of this work is detecting somatic variants restricted to the tumor that result in different

proteins than the ones produced by normal cells. For the purpose of identifying these proteins or their

short peptides, it is not enough to predict a DNA variant without considering the transcripts (coding

sequences) in which it occurs [65].

As shown in Figure 1.2, after DNA transcription to RNA, RNA splicing occurs leaving a sequence

of exons, which represents a coding sequence. Many genes have multiple isoforms, i.e., alternative

transcripts with potentially different functions. Furthermore, various somatic variants can co-occur in

the same sequence. As such, RNA sequencing data is valuable and can be analyzed using a program

such as Isovar [70], to determine the variant coding sequence, i.e., the novel coding sequence created

by tumor cells. This has two implications: first, the transcript in which the variant occurs is predicted

from the RNA-Seq data; and second, the adjacent variants are phased, i.e., variants that co-occur are

identified, information without which we could potentially select two different vaccine peptides, instead

of just the phased one.

In cases where RNA-Seq data is not available, the standard way to predict the altered protein se-

quence is to extract the sequence of the reference transcripts from a public database such as En-

sembl [71] or GENCODE [72], which can be accessed programmatically in various ways. For example,

using the Variant Effect Predictor (VEP) toolset [73] for Ensembl or the ANNOVAR [74] tool for both

databases. Such tools not only retrieve the reference transcripts, but also identify whether variants

21

cause protein coding changes and the amino acids that are affected.

2.5 HLA Typing: Different Patients React Differently

The Human Leukocyte Antigen (HLA) complex, part of chromosome 6, codes for several proteins in-

volved in immune system functions. The genes coding these proteins are categorized into HLA classes

I, II and III. The most studied belong to classes I and II. The proteins encoded by these genes interact

with immune cells to induce an immune response. Note that the HLA is equivalent to the MHC but is

specific to humans. This gene complex is the most polymorphic region in the human genome, which

means that it is rare to find the exact same alleles between two individuals. Approximately 40% of all

the registered HLA alleles have only been observed once (in a single individual), being considered “very

rare” [75]. Moreover, “common” alleles are those observed at frequencies greater than just 0.001 [76].

The homology and diversity observed in the HLA alleles makes HLA typing from sequencing data diffi-

cult. Nevertheless, typing is crucial in neoantigen binding prediction to enable assessing how strongly

variant peptides bind to the patient’s HLA molecule (see Section 2.6.1). Strong binders are more likely

to be recognized by the immune system (illustrated in Figure 1.4).

Various bioinformatics tools have been developed to type HLA alleles of which the most accurate in

typing HLA class I (and limited to it) is OptiType [77] [78]. However, when considering simultaneous HLA

class I and class II typing, the most accurate software depends on the type of sequencing data [78]. Fur-

thermore, to analyse the accuracy of different tools we have to take into account that some HLA typing

software outputs more than one HLA allele prediction when the typing confidence is low. Considering

only the top one prediction (the allele each software chose as most likely), for WGS HLA-VBSeq [79] is

the most accurate. For WES and RNA-Seq it is PHLAT [80]. When considering the top three predictions

for RNA-Seq data, Seq2hla [81] is as accurate as PHLAT. Moreover, Seq2hla was used in the aforemen-

tioned PGV-001 pipeline where its HLA typing output for tumor RNA across 10 samples only disagreed

on a single HLA allele when compared to validation data obtained from sequencing of normal sample

DNA. Although it can be noted that OptiType runs considerably slower than the other three tools, we

favor accuracy. Additionally, only HLA class I was typed.

2.6 Predicting Peptide Immunogenicity: Will the Peptides Bind?

Immunogenicity is the ability of a substance, such as a neoantigen, to provoke an immune response.

The recognition of a neoantigen by the immune system depends on several biological factors: peptide

preprocessing, transportation to cell surface, HLA binding, followed by recognition and binding by the

TCR on T cells (effector cells of the immune system). In this work, we do not need to go into the

22

biological details of these processes, but rather recognize their existence, so we can break down the

analysis in several steps.

We will now be taking a look at some of the best performing tools related to predicting peptide

immunogenicity. In the reviewed articles, the performance of prediction methods is usually assessed

with the value of the Area Under the Curve (AUC) of a Receiver Operating Characteristic (ROC) curve.

As such. to give a sense of prediction performance, the tool’s analysis that follows is accompanied

by AUC values – a value of 1.0 for the AUC represents a perfect prediction and 0.5 a performance

equivalent to random assignments.

2.6.1 Predicting HLA Binding

The immune system is more likely to recognize a variant peptide if it is strongly bound to the patient’s

HLA molecule. Figure 1.4 shows this binding occurring in a tumor cell: a neoantigen (variant peptide),

binds to the MHC molecule – the HLA in humans – and the immune system, of which the Cytotoxic T

Cell is part of, recognizes the neoantigen and causes the tumor’s cell death.

Binding affinity prediction to HLA class I is more accurate than for class II. The best perform-

ing algorithms for the former, NetMHC [82] and NetMHCpan [83], are based on Artificial Neural Net-

works (ANNs), both being able to achieve an AUC higher than 0.9 for common HLA alleles. NetMHCpan

better predicts novel HLA molecules when compared to NetMHC, due to using a broader training set.

Binding prediction to rare alleles is not as reliable because there is less data. The models are con-

tinuously retrained with the event of more experimental data being generated, thus fluctuations in per-

formance are observed. These and other HLA class I binding prediction algorithms are benchmarked

weekly on epitopes from the Immune Epitope Database (IEDB) [84] and made available online [85]. Also

benchmarked on IEBD is NetMHCcons [86], a consensus algorithm using NetMHC and NetMHCpan.

The authors of NetMHCcons concluded that their method yields the highest performance when certain

conditions are met, e.g., the allele in question being included in the training, otherwise NetMHCpan is

the best predictor. NetMHCpan is used in the aforementioned PGV-001 pipeline, due to its extensive

coverage of patient alleles.

Regarding HLA class II binding prediction algorithms, the most accurate with an AUC of 0.875 av-

eraged over 37 sequenced alleles [87] is NetMHCIIpan [87, 88]. Depending on the cell type, class II

molecules might not be expressed, making binding prediction superfluous. Consequently, most studies

focus on class I epitopes.

The mentioned algorithms are capable of predicting IC50 binding affinity, i.e., the concentration of

peptide binders where the binding is reduced by half. In general, thresholds of log(IC50) < 500nM

and log(IC50) < 50nM denote weak and strong binders, respectively [21], where M stands for molar

concentration, mol/L. Nevertheless, as shown by Paul et al. [89] (where HLA class I IC50 cutoffs are

23

listed), different HLA alleles bind at different log(IC50) values. Hence, the recommended practice is a

rank-based cutoff, where the top 1% of class I peptides and top 10% of class II peptides, based on the

predicted IC50, are considered binders to a given HLA allele [90].

2.6.2 Predicting Post-HLA Binding Events

Higher binding affinity of a peptide to the HLA increases the probability to activate an immune re-

sponse [91]. However, it is frequently observed that only some of the peptides with good affinity are

naturally processed to elicit a response [92]. This can be due to low stability of the peptide-HLA com-

plex. The longer a peptide is bound to an HLA molecule, the more likely it is that the complex leads to

the activation of T cells responsible for killing cancerous cells [93]. This stability can be predicted using

NetMHCstab [94], which on its own makes moderately good predictions (AUC of 0.86), but in combina-

tion with HLA binding predictions, performs slightly better than the individual tools in the predictions [21].

Another theory for the mentioned lack of immune response, is the weak ability of the TCR to bind the

peptide-HLA complex. Taking this into account, a learning algorithm [95] that showed prediction of im-

munogenicity to an extent (AUC of 0.61) was developed but it left ample room for improvement. Lastly,

NetTepi [96], combines HLA class I binding affinity predictions with predictions of stability and ability of

the TCR to bind the peptide-HLA complex.

2.6.3 Prioritizing Neoantigens

Some tumors have a large number of somatic variants and consequently give rise to many potential

neoantigens. In these cases it is relevant to rank the large numbers of epitopes to prioritize those that

are more likely to elicit an immune response. Without prioritization, the daunting task of screening all

epitopes in the laboratory would have to be realized.

An optimal method to model this phenomenon still does not exist. The standard procedure is to sort

potential neoepitopes by predicted HLA-binding affinity and possibly also sort by the frequency of HLA

alleles in the population as predictive performance for common alleles is generally higher than that for

rare alleles [97]. Also, the expression level of the gene is an important factor but it is not sufficient to

predict a protein’s ability to generate an immune response [98].

In addition, there are public repositories of reported neoantigens, the largest being TANTIGEN [99],

SYFPEITHI [100], and the database of T cell-defined tumor antigens [101]. These are good resources

for the exploration of known tumor T cell antigens.

24

2.7 Information Visualization

The field of information visualization is based on the idea that visually representing data facilitates users

to apprehend raw data values. This translates to more easily finding patterns or identifying unexpected

results (e.g., outliers or errors) in the data, when compared to analysing raw data files. In our context,

an example of these data files are the VCF files that contain the predicted variants. These files typically

contain thousands of rows and multiple verbose columns, consequently making it unpractical to analyse

them directly.

A commonly used, freely available, general purpose visualization tool is the Integrative Genomics

Viewer (IGV) [102]. It serves as a tool to manually review aligned reads, allowing for confirmation of

the variants called [103], thus helping in reducing the occurrence of false positives. This process of

visually inspecting variant calls, improves the ability to tune the parameters pertaining to the variant

calling software by understanding how it behaves. Besides its main purpose of visualizing the SNVs and

SVs called, IGV supports features for the identification of sequencing and analysis artifacts, that may

lead to errant SNVs calls, as well as large-scale SVs. The typical workflow is simple: the user loads the

reference genome, the resulting BAM file from read alignment and the VCF file with the variant calls to

IGV, and then visualizes the called variants. In our context of creating a therapeutic vaccine, discarding

false positive variant calls avoids predicting peptides for them. In conclusion, IGV’s purpose is two-fold:

remove false-positive variant calls and use the knowledge gained to better tune the callers. Figure 2.7

shows the visualization of a SNV using IGV.

2.8 Related Pipelines

With the successes achieved using cancer immunotherapy, there is an interest in neoepitope prediction,

which lead to the development of pipelines that accomplish just that, e.g., MuPeXi [104], pVAC-Seq [105],

PGV-001, and Epi-Seq [106]. In order to give a sense of the general flow of these pipelines, we analyze

MuPeXI: it is available as a web service (with a maximum of 6 HLA alleles per submission) that allows

to submit a job and get the results by email if desired, and as a portable (unrestricted) application. The

inputs to this pipeline are the somatic variant calls in a VCF file, patient HLA types, and optionally a

gene expression profile derived from RNA sequencing. MuPeXI returns a sorted list of tumor-specific

peptides by priority score, intended to predict the peptides’ immunogenicity. This score is dependent on

HLA binding affinity of mutant and normal peptides, gene expression level, and allele frequency.

25

Figure 2.7: IGV variant visualisation example. The tumor reads are represented by the many horizontal light blue
and light red lines in the bottom part of the picture. In some of the reads we see the variant in bright
red, the color code for a T in the software. The non-variant nucleotide was a C, color coded as blue.
The proportion of Ts and Cs in the reads at the variant position is given by the colored vertical bar in
the middle of the figure. Colored bright green, we can see what could be A artifacts.

2.9 Previously used Pipeline at LUMC

Before the development of this work, the pipeline that was used at Leiden University Medical Center

(LUMC) consisted of a single makefile script. Makefiles are usually used by the make utility [107] to

automatically determine which pieces of a large program need to be recompiled and then issue the

commands to recompile them. This can be generalized to describe any task where some files must be

updated automatically from others whenever these change. In its simplest form, a makefile consists of

rules in the following form:

Listing 2.3: Makefile rule example

1 target : prerequisites

2 recipe

A target is usually the name of a file that is generated by a program and depends on several files.

Examples of targets are executable or object files, or an action to execute, such as clean to delete files.

A prerequisite is a file that is used as input to create the target. A recipe is an action that make carries

out and may be comprised of several commands. All in all, a rule explains how and when to remake

26

certain files, based on the prerequisites, which are the targets of that particular rule. If a prerequisite gets

updated, make understands that the rule will have to be rerun. The rules present on the previous pipeline

makefile can be grouped to correspond to the typical neoantigen detection pipeline steps mentioned in

this chapter.

Makefiles scripts are powerful and descriptive for knowledgeable users. The syntax is compact but

it has a steep learning curve for the uninitiated, and in general makefile scripts do not favor readability.

This makes them harder to be maintained in a collaborative environment. Furthermore, unlike a script-

ing language such as WDL (described in Section 3.3), there is no well integrated WFMS – as Cromwell

(covered in Section 3.4) is for WDL – developed to handle job scheduling and parallelization, two im-

portant aspects to leverage the computing capabilities of an HPC cluster. Specifically at LUMC’s cluster

(detailed in 3.2), running complex makefiles is not supported. Finally, there is also not as finer and as

automated control to restart the pipeline’s execution from a certain failed point as in WDL with Cromwell.

All these factors made it so the previous pipeline could not execute in the LUMC cluster, taking it days

to complete running in single and dual CPU socket servers.

27

28

3
Methods: Developed Neoantigen

Identification Pipeline

Contents

3.1 Overview . 31

3.2 Shark High-Performance Computing Cluster . 33

3.3 Workflow Description Language . 33

3.4 Cromwell WFMS . 39

3.5 Singularity Container Platform . 41

3.6 Integrated Pipeline Code Structure . 41

3.7 Running the Integrated Pipeline . 42

3.8 Integrated Pipeline Modules . 46

3.9 Standalone Pipeline Modules . 54

3.10 R Shiny Result Analysis . 60

3.11 Continuous Integration and Testing . 60

29

30

3.1 Overview

This chapter concerns the architecture, context and implementation details of the bioinformatics pipeline

developed at and for the Cancer Immunogenomics research group of the Pathology department at Lei-

den University Medical Center (LUMC). This group specializes in handling large genomics data derived

from Next-Generation Sequencing (NGS) technologies. Furthermore, at LUMC there is an HPC Cluster

called the Shark cluster [108] (detailed in Section 3.2) where users can submit computational jobs that

go into a queue. In this work, the idea was to build an integrated pipeline, i.e., a pipeline comprised

of several modules that runs seamlessly after issuing a simple command from a Command-Line In-

terface (CLI). A module represents a part of the neoantigen detection workflow mentioned in the last

chapter, such as the Somatic Variant Calling module. The pipeline consists of six modules: the first

three modules of the pipeline are integrated, whilst the remaining three are not. As such, the latter have

to be run separately, not benefiting from the Cromwell Workflow Management System (WFMS) that is

covered in section 3.4.

The pipeline’s main goal is to identify neoantigens starting from tumor-normal matched tissue sam-

ples as illustrated in Figure 3.1. Succinctly, before running the pipeline, tumor-normal matched tissue

samples are collected and sent to a sequencing facility that sends back the files with the reads pertaining

to the samples. These reads are some of the pipeline’s inputs. Afterwards, while the user is connected

to the Shark HPC cluster (where the Cromwell WFMS is already setup), the pipeline is executed by

running its main script, written in WDL. This triggers Cromwell which is responsible for job scheduling.

Cromwell decides – based on the computing resources required and the dependencies between tasks –

and submits jobs to the cluster that correspond to modules’ tasks. The first three modules of the pipeline

– QC and Adapter Trimming, Read Mapping, and Somatic Variant Calling – pull container images from

the Docker Hub [109] or Quay [110] container registries, and then build Singularity container images.

Pulling and building are handled by the Singularity container tool [111]. Singularity is used due to the

safety concerns of HPC clusters. The remaining three pipeline modules – Mutant Protein Prediction,

HLA Typing and HLA Binding Prediction – are run separately as they are not yet implemented using

WDL. Note that, although this overview is given in the context of the Shark cluster, other HPC clusters

(possibly running other backend execution engines), or simpler execution environments (e.g., laptops)

can run the integrated pipeline provided they have Cromwell and Singularity adequately configured (de-

tailed in Section 3.7.1). In the coming sections, each step of the pipeline and the development aspects

surrounding them are detailed.

31

Start Cromwell
WFMS

User Connected to HPC Cluster

Cromwell
Job Scheduler

Inputs

Tumor RNA Reads

Normal DNA Reads

Sequencing Facility

Tissue Samples

Tumor DNA Reads

Sequencing

Run Pipeline (CLI)
WDL Script

Quality Control and
Adapter Trimming

HLA Binding
Prediction

Read Mapping
(Alignment) HLA Typing

Mutant Protein
Prediction

Somatic
Variant Calling

Pull and Build
Containers

Quay / Docker Hub

Analyze Results

Figure 3.1: Neoantigen identification pipeline in the context of LUMC’s Cancer Immunogenomics research group
which has access to an HPC cluster. The pipeline’s steps are highlighted in green, and inside the blue
dotted line is what concerns the HPC cluster environment where the pipeline is run.

32

3.2 Shark High-Performance Computing Cluster

The Shark cluster is an HPC cluster located at LUMC that runs with the Open Grid Scheduler/Grid

Engine (OGS/GE) [112], a free and open-source batch-queuing system for distributed resource man-

agement based on the Sun Grid Engine (SGE). In terms of computing power it has 51 execution nodes

totaling 800 CPU cores and 714 TB of raw storage. This is where the pipeline was tested and where it

will continue to be run, but its implementation is not bound to the Shark cluster.

The Shark cluster is set up to analyze NGS data coming from Illumina NGS technologies, and op-

timized to run some of the software mentioned in Chapter 2 – BWA, Bowtie and Tophat for read map-

ping, and Varscan for variant calling. However, it is not clear how this optimization was accomplished,

nor if it also affects software that is run using containers. Besides bioinformatics specific software,

the cluster also natively supports common execution and development tools with different versions

available: Python [113], R [114], OpenJDK Java Development Kit [115], Oracle’s Java Running En-

vironment (JRE) [116], and Git [117]. Moreover, the users can install software that provides virtual

environments, for example, anaconda [118]. Consequently, the users can have multiple development

environments with different package versions installed.

3.3 Workflow Description Language

The pipeline was implemented using WDL, which allows to specify data processing workflows. It is not

uncommon to see the word workflow used interchangeably with pipeline, as both can refer to the entire

sequence of processes used to accomplish some goal. With WDL, one can most notably: define tasks,

chain them together into workflows, and parallelize their execution (exemplified in sections 3.3.1 and

3.3.2). As users and organizations started using WDL, it became a community driven standard [119].

WDL strives to achieve portability across execution platforms like HPC clusters or cloud platforms. For

example, the DNAnexus [120] cloud platform, by using the dxWDL compiler [121], transforms WDL

pipelines into an equivalent workflow interpretable by the platform. Moreover, WDL was designed to

be accessible and easily understandable by most people that might be interested in building their own

workflow, not only by programmers.

WDL workflows are typically run using Cromwell, a WFMS geared towards scientific workflows whose

development is linked to the WDL and requires the JRE to run (further detailed in Section 3.4). WDL can

be used to write workflows that transparently use container technologies such as Docker, and is suited for

describing large-scale workflows in HPC clusters and cloud environments where tasks are scheduled in

parallel across numerous nodes. Unlike makefiles (discussed in Section 2.9), WDL’s syntax is verbose,

mostly due to inputs and outputs having to be explicitly defined in a separate JavaScript Object Notation

(JSON) [122] file, whereas makefiles make widespread use of regular expressions for the same purpose

33

– since WDL also supports regular expressions it could be made to work in an equivalent way to makefile

but that would take the portability away from it while maintaining its inherent verbosity. Similar to WDL,

there is the Common Workflow Language (CWL) [123] whose main goal is portability. As such, CWL

workflows are written in the JSON or YAML Ain’t Markup Language (YAML) [124] formats (also focused

in being portable).

The decision to use WDL stemmed from the fact that already before the start of this work, the

Sequencing Analysis Support Core (SASC) team at LUMC had WDL pipeline modules available for

sequencing data analysis in their GitHub repository, BioWDL [125], under the MIT license [126]. At the

time it already included an in-development somatic variant calling workflow, as well as templates for

modular pipelines and a collection of reusable WDL tasks. Additionally, SASC also developed a pipeline

development framework, Biopet (Bio Pipeline Execution Toolkit) [127], which is used in some pipeline

tasks. The development of the pipeline benefited from SASC’s expertise in developing WDL pipelines,

and is hosted in the BioWDL repository where it is maintained and updated with newer tool versions

and workflows to keep up with the needs of the Immunogenomics group and other users of the pipeline.

Since the repository is public, anyone can contribute by making pull requests with improvements.

To explain how workflows and tasks are implemented using WDL, we will now go through a rather

simplified example based on the pipeline’s Somatic Variant Calling module source code. Starting with

workflows and then presenting tasks, we will be highlighting some of the most useful features of the

language with examples to motivate them. The code excerpts show line numbers that continue to

increment between listings if the code being presented belongs to the same file.

3.3.1 Workflows

Having a modular approach to code structure, a WDL script starts by importing the needed dependen-

cies. The imported files are WDL scripts, where other workflows and tasks are defined. Imports can

have an alias as shown in Listing 3.1.

Listing 3.1: WDL imports

1 # File: mutect2.wdl

2 import "tasks/biopet/biopet.wdl" as biopet

3 import "tasks/gatk.wdl" as gatk

Then comes the workflow or task definition. In Listing 3.2 the workflow “Mutect” is declared. Its

definition starts with the declaration of variables. These variables are inputs of type File, String and

Map. The File type is practical as it takes file paths and abstracts them into File objects. One useful

feature is marking inputs as optional by following the variable type with a question mark, e.g., the “File?

34

regions” variable declaration. It gives users the option to specify a file comprised of regions in the

genome where variants should be called, avoiding unnecessary computation. Another useful feature

is assigning a default value to a variable, as seen in the “dockerImages” Map. The latter enables the

developer to set a tested container image version as the default, alleviating user burden of input definition

and benefiting reproducibility. Input values are specified in a separate file explained in Section 3.7, with

an example in Listing 3.10.

Listing 3.2: WDL workflow inputs

3 workflow Mutect {

4 input {

5 File referenceFasta

6 String tumorSample

7 File tumorBam

8 String? controlSample

9 File? controlBam

10 File? regions

11

12 Map[String , String] dockerImages = {

13 "gatk4":"quay.io/biocontainers/gatk4 :4.1.2.0 - -1",

14 "biopet -scatterregions":"quay.io/biocontainers/biopet -

scatterregions :0.2--0"

15 }

16 }

After the workflow inputs, we call tasks (usually defined in the imported files). Note that workflows

can call other workflows similarly to calling tasks. For the sake of simplicity we will only consider task

calls. Tasks also define inputs (detailed in section 3.3.2). When tasks are called, some input values

are expected to be passed on by the caller. Similarly to imports, task calls can have an alias. In

Listing 3.3, the “ScatterRegions” task, defined in “biopet” (alias for the “tasks/biopet/biopet.wdl” import),

gets called under the “scatterList” alias. In this same listing, we see that the task call takes three inputs –

“referenceFasta”, “regions” and “dockerImage” – that are assigned with values from the workflow inputs

(seen in Listing 3.2).

Listing 3.3: WDL workflow task calling

17 call biopet.ScatterRegions as scatterList {

18 input:

35

19 referenceFasta = referenceFasta ,

20 regions = regions ,

21 dockerImage = dockerImages["biopet -scatterregions"]

22 }

WDL has a simple to use built-in mechanism for scattering, i.e., dividing a task’s workload into smaller

pieces for parallel processing. This allows for multiple smaller jobs to be scheduled simultaneously by

Cromwell instead of a single, more computationally demanding one, thus reducing the total execution

time of the pipeline. Listing 3.4 displays a task call wrapped within a scatter clause that uses scatter

pieces (“scatterList.scatters”) calculated in the previous task call (Listing 3.3). Succinctly, the previous

task call (aliased “scatterList”) produces genome region pieces, “scatterList.scatters”, over which the

following task calls (aliased as “mutect”) execute in a parallel manner.

Listing 3.4: WDL workflow scattering a task call

23 scatter (bed in scatterList.scatters) {

24 call gatk.MuTect as mutect {

25 input:

26 inputBams = select_all ([tumorBam , controlBam]),

27 referenceFasta = referenceFasta ,

28 outputVcf = basename(bed) + ".vcf.gz",

29 tumorSample = tumorSample ,

30 normalSample = controlSample ,

31 intervals = [bed],

32 dockerImage = dockerImages["gatk4"]

33 }

34 }

Finally, the workflow’s output is defined, a VCF file with the variants predicted by Mutect (see List-

ing 3.5). Only the files declared as output in the main pipeline script get saved to the pipeline’s output

directory. The remaining files are stored in an execution directory used for caching.

Listing 3.5: WDL workflow outputs

35 output {

36 File outputVcf = mutect.vcfFile

37 }

38 }

36

3.3.2 Tasks

Now we will be making the link between the workflow from before and the last task called there, “MuTect”,

imported from the “tasks/gatk.wdl” file. Identical to workflows, the first part of a task are the inputs. In

Listing 3.6 we highlight two aspects: 1) the correspondence to the inputs assigned in Listing 3.4 when

this task is called. 2) The “memory”, “memoryMultiplier” and “dockerImage” inputs which are related to

the job execution environment.

Listing 3.6: WDL task inputs

1 # File: tasks/gatk.wdl

2 task MuTect {

3 input {

4 Array[File]+ inputBams

5 File referenceFasta

6 String outputVcf

7 String tumorSample

8 String? normalSample

9 Array[File]+ intervals

10

11 Int memory = 4

12 Float memoryMultiplier = 3

13 String dockerImage = "quay.io/biocontainers/gatk4 :4.1.2.0 - -1"

14 }

The command section in Listing 3.7 contains the commands that are executed to accomplish the

task. In this case, the commands are run in an Unix-based container.

Listing 3.7: WDL task command section

14 command {

15 set -e

16 mkdir -p $(dirname ~{ outputVcf })

17 gatk --java -options -Xmx~{ memory}G \

18 Mutect \

19 -R ~{ referenceFasta} \

37

20 -I ~{sep=" -I " inputBams} \

21 -tumor ~{ tumorSample} \

22 ~{"-normal " + normalSample} \

23 -O ~{ outputVcf} \

24 -L ~{sep=" -L " intervals}

25 }

Finally, in Listing 3.8 we define the outputs (similarly to workflows), and the runtime. The “vcfFile”

output in this listing, becomes available to the workflow that called this task (see Listings 3.2-3.5). There,

this output is referred to as “mutect.vcfFile” (Listing 3.5) because the task call was aliased as “mutect”

(Listing 3.4). Concerning the runtime section, it is used to specify the computing resources that should

be allocated when the job is submitted to the cluster, and the environment where the commands are

run. In Listing 3.8, using input variables, the amount of (primary) memory and the container image to be

used are specified.

Listing 3.8: WDL task output and runtime sections

26 output {

27 File vcfFile = outputVcf

28 }

29

30 runtime {

31 docker: dockerImage

32 memory: ceil(memory * memoryMultiplier)

33 }

34 }

3.3.3 Structs

In the type of analysis that our pipeline does, it is not uncommon that files need to be indexed, thus

increasing the number of files having to be referred to. However, there is a WDL construct that allows

to group files with their indices: structs (exemplified in Listing 3.9). Structs are not limited to grouping

files and their indices, they can group many and other types of variables. Structs can be declared in a

separate WDL file that is then imported or in files containing tasks, workflows, or both.

38

Listing 3.9: WDL struct grouping a file and its indices

26 struct BwaIndex {

27 File fastaFile

28 Array[File] indexFiles

29 }

3.4 Cromwell WFMS

Cromwell is a WFMS that runs workflows written in CWL or WDL (used in this work). It is an open source

project under the BSD 3-Clause license [128], therefore private and commercial use is permitted. Having

this license contributes to the adoption of the pipeline by others as there are no licensing costs. Cromwell

is geared towards scientific workflows and its development is linked to WDL. Furthermore, it manages

job submission and scheduling without pipeline developers having to write code for that. However, the

environment where the pipeline is run needs to have Cromwell configured for it first. This is trivial if users

are to run the pipeline in a laptop, but not as straightforward in an HPC environment (see Appendix A.1).

Some of Cromwell’s features are: simplicity in leveraging container technology (see Listing 3.8);

support for popular backends – Apache Spark [129], Google Cloud [130], SGE [19] and others; caching

that avoids re-running tasks previously executed. Figure 3.2 outlines how caching works in Cromwell.

When the pipeline gets run, the database connected to the Cromwell installation in the system – where

all workflow runs are logged to – is queried for information concerning the jobs about to be scheduled. If

the same command with the same user-defined inputs has already been run, Cromwell inspects the file

system for the presence of the output files that the previous identical jobs generated. In case the files

exist, depending on Cromwell’s configuration, either links pointing to them or copies are created in the

current execution folder.

Cromwell can run in one of two modes: “run” or “server”. Run mode serves as a way to get ac-

quainted and experiment with Cromwell, or run very simple workflows as only one workflow can run

simultaneously using the same command. For more complex workflows server mode is recommended,

as it exposes a larger set of features through its Representational State Transfer (REST) endpoints. To

customize Cromwell’s behaviour and to configure it to run with a given backend in server mode (SGE

in our case) a configuration file written in Human-Optimized Config Object Notation (HOCON) is used.

HOCON’s primary goal is to keep the semantics from JSON (tree structure, set of types, encoding and

escaping), while being more convenient as a human-editable configuration file format [131]. Cromwell’s

HOCON configuration file contains configuration values related to the endpoint, and backend parameters

related to job submission, runtime resources, file system, caching, database and more. In Appendix A.1

the configuration file used in Shark cluster is presented, detailing the the level of customization possible.

39

Cache Subsystem

Output Files
Present?

Command to Run
Pipeline received

Is the Run
Cached?

Yes
Query File System

No

Schedule from Last
Incomplete Job

Fetch Cached
Information from DB

Create Copies/Links
to Files

Yes

Cromwell Engine

No

Schedule Jobs from
Start

Run Pipeline &
Log Execution

Figure 3.2: Cromwell cache subsystem: when a pipeline is run, the database associated to the Cromwell server
running in the system is checked for pre-existing information about the jobs about to be submitted. In
case output files already exist from previous runs, either links pointing to them or copies are created in
the current execution folder.

40

3.5 Singularity Container Platform

Containers are a great tool to simplify software deployment and execution. In the context of our pipeline,

containers address the important aspect of building a reproducible and portable pipeline. Containers

allow different users to have the same software configuration by simply linking to the same Docker

image (see Listing 3.6). This results in having the same configured software versions even if the users

are using different environments, thus providing consistent results between environments. Furthermore,

time is saved due to avoiding installing software. This benefit is amplified when we consider that a given

user can have multiple, or changing over time, computing environments. The container image only

needs to be downloaded once. Generally, when software is updated, simply updating the image URL

pointed to by the pipeline is enough. The latter can be done in the user inputs passed on to the pipeline

(detailed in Section 3.7), avoiding changing the source code. This ease in selecting software versions

also makes it easier to experiment with different versions. The requirement to run containers is having

containerization software installed.

Singularity was the chosen containerization tool because it is the one installed in the Shark cluster.

Compared to the more popular Docker, Singularity has a stricter security model, hence its availability in

the cluster. Nevertheless, Singularity allows not only to build the containers available in the Singularity

Container Library [132], but also those in other container platforms’ repositories, for example, in Docker

Hub or in Red Hat’s Quay repositories. Since the latter two repositories are more popular, many bioinfor-

matics tools are already available there. In our case, all the required bioinformatics tools were available

in these repositories, mostly in the Biocontainers organization repository in Quay [133]. This means that

we did not have to containerize any software, presenting another advantage of using containers in this

work.

3.6 Integrated Pipeline Code Structure

The integrated pipeline continued being developed and is now in release 4.0.0 [18]. Our contribution to

it finished just before version 1.0.0 [17] was launched. The integrated pipeline’s source code, as seen

in the respective GitHub repository at the last commit pertaining to this work [134], is divided into the

following git submodules [135]:

• “QC”: responsible for adapter trimming and gathering QC metrics using FastQC.

• “BamMetrics”: gathers metrics from BAM files using Picard.

• “gatk-preprocess”: produces a report on the observed base quality scores and optionally recali-

brates the BAM file based on the report.

41

• “somatic-variantcalling”: responsible for running part, or all the variant callers (user-defined) –

Mutect2, VarDict and Strelka – and combining the resulting VCF files.

• “tasks”: collection of reusable tasks called by other workflows. It includes, for example, read

mapping tasks.

Essentially, Git submodules are Git repositories that are kept as subdirectories of another Git repos-

itory. The division into git submodules enables integrating them easily into other WDL pipelines. Taking

into account WDL’s architecture of workflows and tasks, the submodules accomplish a good degree

of code decoupling, i.e., low dependency between their code. All submodules are dependent on the

“tasks” submodule. Otherwise, they are mostly independent and code changes should not involve re-

writing multiple parts of the pipeline, and the parts that would need alterations should be easily traceable.

Located at the root of the repository we find the main script, “pipeline.wdl” which runs the entire pipeline

(see how in Section 3.7).

3.7 Running the Integrated Pipeline

3.7.1 Environment Configuration

Although the pipeline was mainly developed and tested in the Shark cluster – running the free and

open-source Debian Linux distribution Ubuntu 14.04.6 LTS (kernel version “3.13.0-170-generic x86 64”)

– the pipeline should run in most Unix-based Operating Systems (OSs). The major requirement is that

the execution environment, be it a laptop or a computing cluster, should have Cromwell installed and

properly configured (covered in Section 3.4). With that ensured, Cromwell can interpret WDL or CWL

scripts regardless of the Unix-based OS where it is installed. Contributing to platform independence is

that the pipeline modules’ software runs within containers managed by Singularity, which is available for

Unix-based OSs. Neither a wide range of OSs nor multiple tool versions were validated, but in principle

and succinctly, the pipeline should run on most current Unix-based OSs installed with Java 8 and above,

Singularity 3, and Cromwell 43 to 45.

3.7.2 Pipeline Inputs

3.7.2.A Inputs Definition File

Before running the integrated pipeline, the user must define the inputs in a JSON file. Listing 3.10 shows

an example excerpt of an input file used to run the pipeline. In that example, paths for the output (results)

directory and for the reference genome are specified, as well as, configuration and computing resource

parameters concerning the Strelka and VarDict variant callers, respectively. In pipelines with multiple

42

workflows and tasks (such as ours), the input file can get rather verbose. A more complete example

can be seen in Appendix A.2.1. Such dense input files are not user-friendly and can be error-prone.

Currently, there is no alias mechanism (similar to the one seen with workflows and tasks) that could

avoid this complexity. Only the definition of appropriate default values suiting most cases reduces input

definition complexity (by avoiding having to define those default variables).

Listing 3.10: Pipeline’s user-defined input file example excerpt

1 {

2 "pipeline.outputDir": "/ storage/output",

3 "pipeline.reference": {

4 "fasta": "/ref/Homo_sapiens_assembly38.fasta",

5 "fai": "/ref/Homo_sapiens_assembly38.fasta.fai",

6 "dict": "/ref/Homo_sapiens_assembly38.dict"

7 },

8 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.strelkaSomatic.exome": true,

9 "pipeline.somaticVariantcalling.SomaticVariantcalling.vardict.

VarDict.varDict.memory": 16,

10 "pipeline.sampleConfigFile": "/ config/samples.yml"

11 }

3.7.2.B Sample Configuration File

The last input in Listing 3.10 is defined when the users want their samples aligned – the users do not

have to necessarily align their samples if they have already done it, they could instead choose to start

with the Somatic Variant Calling module. Listing 3.11 is an example of a simple sample configuration

file corresponding to the last input definition of Listing 3.10. In it, we see that identifiers are given to

each sample (“TUMOR” and “NORMAL”), library (“lib1” for both samples) and readgroup (“lane1” for

both libraries). Additionally, the directories where the R1 and R2 reads are located are defined. More

samples, libraries and lanes can be defined, it simply depends on the data the user wants processed

by the pipeline (see Appendix A.2.2 for a more complex example). Also in Listing 3.11, note that the

“TUMOR” sample defines the “NORMAL” sample as being the control. This is the case of tumor-normal

matched samples. The correspondence of samples, libraries and readgroups to the pipeline’s workflow

is made clearer in Section 3.8.2.

43

Listing 3.11: Pipeline’s YAML sample configuration file example

1 samples:

2 - id: TUMOR

3 control: NORMAL

4 libraries:

5 - id: lib1

6 readgroups:

7 - id: lane1

8 reads:

9 R1: /storage/fastq/TUMOR_L003_R1.fastq.gz

10 R2: /storage/fastq/TUMOR_L003_R2.fastq.gz

11 - id: NORMAL

12 libraries:

13 - id: lib1

14 readgroups:

15 - id: lane1

16 reads:

17 R1: /storage/fastq/NORMAL_L003_R1.fastq.gz

18 R2: /storage/fastq/NORMAL_L003_R2.fastq.gz

3.7.3 Womtool Input Generation

Womtool is a helpful CLI tool whose main uses are validating WDL scripts (syntactical and semanti-

cally), and generating a JSON skeleton file of the inputs available for a given workflow (exemplified in

Listing 3.12). Concerning the latter use, the generated JSON includes, for each input, its type, its default

value (if any), and whether it is optional. The full output, including optional variables, is about 400 lines

long.

44

Listing 3.12: Womtool “inputs” example command, taking the main pipeline script, “pipeline.wdl”, as the source

workflow. The command is followed by an excerpt of its output, which by default includes optional

inputs.

1 $ java -jar womtool -45 .jar inputs pipeline.wdl

2 {

3 "pipeline.somaticVariantcalling.SomaticVariantcalling.vardict.

VarDict.varDict.minimumVariantDepth": "Int (optional, default =

4)",

4 "pipeline.sample.Sample.library.Library.readgroup.Readgroup.qc.

QC.FastqcRead1.NoneFile": "File? (optional)",

5 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.gatherVcfs.memory": "Int (optional, default = 8)",

6 "pipeline.sample.Sample.library.Library.readgroup.Readgroup.qc.

QC.Cutadapt.bwa": "Boolean? (optional)",

7 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.strelkaSomatic.memory": "Int (optional, default = 4)",

8 "pipeline.bwaIndex": {

9 "fastaFile": "File",

10 "indexFiles": "Array[File]"

11 }

12 }

3.7.4 Running the Pipeline

The command used to run the pipeline at the Shark cluster, assuming all needed files are in the current

directory, is:

Listing 3.13: Example Cromwell command, running the pipeline’s main WDL workflow

1 cromwell run pipeline.wdl -i inputs.json -o options.json

where “pipeline.wdl” is the main pipeline script, “inputs.json” is the file assigning values to the pipeline’s

WDL inputs (explained in section 3.7.2), and “options.json” is a settings file configuring Cromwell’s be-

haviour, for example, by disabling using cached results. When the command in Listing 3.13 is run, the

workflow in “pipeline.wdl” is executed by Cromwell. A detailed log is printed to the CLI as the workflow

progresses. The log shows what tasks are being scheduled, the commands they run (that were defined

45

as in Listing 3.7), and the tasks status. The latter is given by the status of the jobs submitted to the

cluster. Figure 3.3 shows an example of a Cromwell’s log during a variant calling workflow.

Figure 3.3: Cromwell’s log output example.

3.8 Integrated Pipeline Modules

In this section, we use Unified Modeling Language (UML) sequence diagrams to show the process flow

and interactions between the WDL workflows of the pipeline. We made two adaptations to the diagrams

that are outside of the current UML specification [136]: 1) Although not in the sequence diagram spec-

ification, we make use of composition arrows (distinguished by the filled in diamond on one end). They

convey a multiple simultaneous call to the same workflow or task, serving as an abstraction to the oc-

currence of input division into smaller pieces. Usually, this means scattering the genome into smaller

regions so that each job (run in parallel) takes less time to complete. 2) The parallel combined fragment

in Figure 3.7 is divided vertically instead of horizontally to save vertical space.

In the sequence diagrams that follow, lifelines (horizontal rectangles on the top with text and a dashed

line descending from them) correspond to WDL workflows that call tasks throughout their execution spec-

ifications (vertical grey rectangles). Some data transformation and some optional tasks were omitted to

achieve a clearer diagram. With the same goal, arrows returning from workflows show only the most

relevant returned outputs, and some workflow and task names were slightly changed when compared

to the source code.

46

3.8.1 Quality Control and Adapter Trimming

The sequence diagram in Figure 3.4 shows that the first step pertaining to the QC and Adapter Trimming

module is splitting the FASTQ files – format shown before in Listing 2.1 – resulting from sequencing the

tumor and normal tissue samples. These files can be multiple GB in size, containing millions of text

lines. By splitting them into smaller files, the “QC” workflow jobs seen in Figure 3.4 can be called in

parallel. Following the guidelines in section 2.2.2, FastQC is run twice, before and after trimming adapter

sequences with Cutadapt. Finally, by running the MultiQC [137] tool, FastQC reports are aggregated

and plotted into a single HTML file.

Pipeline

Biopet
FastqSplitter
R1/R2

Sample Library Readgroup QC

QC reads and reports

1..n 1

Call

FastQC
R1/R2

Cutadapt

FastQC
R1/R2

1..n 1

Call

User

1..n 1

Call
Run main script

1..n 1

Call

ref
Read Alignment

QC reads and reports
QC reads and reports

QC reads and reports

ref
Somatic Variant Calling

MultiQC

MultiQC
HTML report

Figure 3.4: QC and Adapter trimming WDL workflow represented in a UML sequence diagram.

Figure 3.5 shows the “Mean Quality Scores” plot in MultiQC, generated from FastQC data. This

figure showcases MultiQC’s sample highlighting (lines in blue). MultiQC also allows filtering out samples

from the plots, zooming in on any given part of the plots, exporting the plots to different formats and

47

saving the applied viewing options. In Figure 3.5, we see that there is a left side bar with links to not

only other FastQC plots (bottom), but also to plots presenting data from other tools used in the pipeline –

Picard, SAMtools and GATK – as MultiQC automatically gathers all reports found in the specified folder

(and its subfolders). Having all reports in a single file that allows filtering is practical and helps to ensure

sample quality and to spot incorrect pipeline execution. More plots generated by MultiQC can be seen

in in Appendix B.

Figure 3.5: MultiQC’s “FastQC: Mean Quality Scores” plot with samples highlighted in blue.

3.8.2 Read Mapping (Alignment)

Reads are mapped using BWA-MEM [138], the BWA tool used to align reads ranging from 70 base

pairs (bps) to a few megabases (ours being over 150 bps). BWA-MEM was chosen over Bowtie 2

(both mentioned in section 2.2.3) for three main reasons: 1) generally, BWA-MEM has a better sensi-

tivity [139]. 2) GATK best practices for alignment [140] use BWA-MEM. We follow the updated version

of the protocol [141]. 3) Since BWA-MEM was already used in the previous pipeline, it allowed us to

then make a fairer comparison between the two pipelines. A comparison between the variants called

(which are influenced by the alignment step) is presented in Section 4.2.3. It was paramount to the Im-

munogenomics group to have at least the same variants being called by both the new and the previous

pipelines.

Figure 3.6 summarizes the Read Mapping module: after the scattered FASTQ files (from sequencing)

48

are processed in the QC and Adapter Trimming module, they are aligned against a reference genome

(defined by the user), resulting in BAM files. Then, a Picard task is called, “MarkDuplicates”, that locates

and tags duplicate reads (originating from a single DNA fragment) in the BAM files. Afterwards, calling

tasks that run GATK tools, the BAMs are recalibrated: tables for Base Quality Score Recalibration

(BQSR) are generated over each scattered genome region (created by the “ScaterRegions” task) and

then gathered into one table (with the “GatherBqsrReports” task). Subsequently, BQSR is applied to the

BAMs files and they are gathered into a single BAM (per “Library” call) with Picard. As a post-processing

step, the “BamMetrics” workflow is run, collecting various metrics from the recalibrated BAM file that will

later be collected by MultiQC (mentioned in Section 3.8.1). Finally, the “Sample” workflow receives the

BAM and metrics files for each “Library” workflow that it initially called. The BAM files are merged into

one (using SAMtools) for each sample specified in the YAML sample configuration file (exemplified in

Listing 3.11).

3.8.3 Somatic Variant Calling

Depending on the user-defined inputs (covered in Section 3.7.2.A), the Somatic Variant Calling module

runs up to three different variant callers: Mutect2, Strelka2 and VarDict. Optionally, the user can choose

to combine the variant callers outputs into a single VCF file. The logic behind running all three variant

callers is to maximize the number of true protein changing variants, be it a SNV, indel, or SV. Not all

neoantigen detection pipelines do this, e.g., Epi-Seq focuses only on SNVs. Table 3.1 summarizes the

types of variants called by each of the variant callers used.

Table 3.1: Variant types called by Mutect2, Strelka2 and VarDict. It is also specified whether the variant caller
reports SNVs that are located together, i.e., MNVs.

SNV MNV Indel SV Germline
Mutect2 Yes Yes Yes No No
Strelka2 Yes No Yes Yes Yes
VarDict Yes Yes Yes Yes Yes

The variant calling tools were chosen according to four main considerations mentioned in Section 2.3.

Firstly, Mutect and Strelka’s showing higher sensitivity at low VAF for WES data with lower false positive

rates than other tools. Secondly, VarDict achieving high sensitivity with a carefully chosen VAF while

calling all types of variants. Thirdly, the inputs required being BAM aligned reads of matched tumor-

normal samples. Finally, combining different variant callers resulting in more variants called. Additionally,

Mutect and Strelka were already used in the previous pipeline.

Figure 3.7 summarizes the Somatic Variant Calling module: with the matched tumor-normal BAM

files from Read Mapping, the three variant calling workflows – “VarDict”, “Mutect2” and “Strelka2” – are

called in parallel. In each workflow, a scatter task is first executed, dividing the genome into multiple

49

Library

Run main script

Pipeline Sample Readgroup

BwaMem
(alignment)

Picard
MarkDuplicates

GATK
Preprocess

Picard
GatherBamFiles

Call

BaseRecalibrator
(creates reports)

Apply
BaseRecalibration

GatherBqsrReports

Recalibrated BAM and report files

BamMetrics

Samtools
Flagstat

Picard
CollectMultipleMetrics

Call

BAM metrics files

1..n 1

Call

BAM and metrics files

Samtools
Merge (BAMs)

ref
Somatic Variant Calling

User

1..n 1

Call

BAM and metrics files

1..n 1

Call

ref
QC and Adapter Trimming

Aligned BAM files

Biopet
ScatterRegions

Figure 3.6: Read Mapping (Alignment) WDL workflow represented in a UML sequence diagram.

50

regions. Consequently, each workflow can call its variant callings tasks – “VarDict”, “MantaSomatic”,

“StrelkaSomatic” and “Mutect2” – in parallel (conveyed by the black-filled diamonds in the diagram).

After the three variant calling workflows are over, the resulting VCF files are returned and combined

(provided the user defined the respective pipeline input variable). Since each variant caller workflow

runs differently, we will analyse each one as well as address the combination of their outputs.

3.8.3.A Mutect2

The first task called by the “Mutect2” workflow scatters the genome regions into smaller pieces over

which the “Mutect2” tasks are called in parallel. Each of these tasks generates a stats file that needs to

be merged into one – done with the “MergeStats” task – for later use in the variant filtering step. There

are two noteworthy workflows (now in the true meaning of the word, not in the WDL sense) that the

“Mutect2” tasks follow: the Read Orientation Artifacts workflow and the Panel of Normals workflow, both

part of the GATK best practices for calling somatic mutations using Mutect2 [142]. The integration of

these two workflows is part of the improved filtering contribution mentioned in Section 1.3.

The Read Orientation Artifacts workflow is advised for samples that are suspected to exhibit orienta-

tion bias artifacts. This applies to all FFPE tumor samples and samples sequenced on Illumina platforms

such as the HiSeq platform that we used [143]. Nevertheless, with the current optimizations this workflow

can be run without affecting result accuracy nor causing considerable extra computing [142]. This work-

flow requires passing the “–f1r2-tar-gz” parameter to Mutect2, resulting in a compressed file with counts

related to read orientation. This file is then used in the “LearnReadOrientationModel” task that outputs a

model of the read orientation artifacts – a bias detected by its distinct signature [144]. Then, “GetPileup-

Summaries” summarizes read support for a set number of known variant sites into a table. These known

variants, and other useful resources, can be obtained from the GATK resource bundle [145–147]. Using

the output from the previous task, the “CalculateContamination” task is run. The latter calculates the

fraction of reads coming from cross-sample contamination. Finally, and after merging the scattered VCF

files from Mutect2’s variant calling, the variant calls can be filtered – “FilterMutectCalls” task – using the

outputs from the “LearnReadOrientationModel” and “CalculateContamination” tasks.

The Panel of Normals workflow first requires creating a database using the variants found in the

normal tissue of various patients. Then, by passing the database path to Mutect2’s variant calling

command, we get improved variant filtering as there is data on variants that we know were found in the

tissue of normal patients. The logic is that, if a candidate somatic variant was detected in one patient

but it was present in the panel of normals database, then it is likely to be a normal variant and can thus

be filtered.

51

parallel

VarDict

ChunkedScatter

VarDict

Picard
SortVCF

Variants, indels, manta and combined VCF files

Filtered VCF file

Run main script

Pipeline

1..n

Call

User

Somatic
VariantCalling Mutect2

Biopet
ScatterRegions

Mutect2

MergeStats

GetPileUpSummaries
(normal/tumor)

CalculateContamination

Picard
MergeVCFs

FilterMutectCalls

Call

Strelka2

Biopet
ScatterRegions

MantaSomatic

Picard
MergeVCFs

SomaticSeq
ModifyStrelka

CombineVariants

StrelkaSomatic

The Mutect2
workflow mostly
calls GATK tasks

VCF file

CombineVariants

ref
QC and Adapter Trimming

ref
Read Mapping (Alignment)

Return
Return

The relative run time of each
variant calling workflow should
not be inferred by the length of
the respective vertical execution
rectangle. In practice, in terms
of execution time, we saw:
Strelka2 < VarDict < Mutect2

LearnReadOrientationModel

Figure 3.7: Somatic Variant Calling WDL workflow represented in a UML sequence diagram.

52

3.8.3.B Strelka2

Similarly to Mutect2, the first task called by the “Strelka2” workflow scatters the genome regions into

smaller pieces. Over which the “MantaSomatic” – SV calling – and “StrelkaSomatic” – SNV and indel

calling – tasks are called in parallel. Identically to Mutect2, the scattered VCF files for each type of

variant called are merged with Picard’s MergeVFCs tool. However, since with Strelka2 different tools are

used to generate each type of variant, the VCFs can be combined in the “CombineVariants” task. For

this, we first need to run an auxiliary script from SomaticSeq to adequately format the VCFs.

3.8.3.C VarDict

As opposed to the other two variant callers, VarDict is limited to processing regions of up to 1 Mbps. This

lead to the development of the chunked-scatter tool [148]. Briefly, compared to Biopet’s scatter-regions,

chunked-scatter provides a finer control over the division of the genome regions. The mentioned VarDict

limitation and how chunked-scatter tackles it is detailed in Section 4.1.3.

After having the genome regions chunked, multiple VarDict tasks run in parallel, one per chunk.

VarDict’s fastest implementation in terms of execution time is written in Java [149]. The VarDict WDL

tasks can be made to run in less time by increasing the “threads” input available to the pipeline users.

VarDict is configured following the software’s recommendations for paired sample variant calling from

BAM files. After running the main VarDict Java binary, R and Perl scripts are used for variant filtering.

The main binary’s output is piped directly into the filtering scripts.

Concerning filtering and as mentioned in Section 2.3, the VAF threshold is of special relevance in

VarDict. We found that with the default VAF threshold of 2%, the true variants called were in line with the

results from the other two variant callers (detailed in Section 4.2). However, as many other parameters,

the user can define another value. Furthermore, we decided to run variant filtering with the “-A” flag,

thus outputting all predicted variants at the same position (instead of choosing only one), and with the

“-M” flag, increasing the stringency in the filtering of candidate somatic variants.

Finally, the chunked VCFs must be gathered into one file. VarDict’s VCFs require sorting, so Picard’s

SortVCF is used (also responsible for merging).

3.8.3.D Combining Variant Calls

Last in the Somatic Variant Calling module, the returned VCFs from each variant caller are (optionally)

combined into a single VCF file for more practical analysis in downstream tools. With this, the integrated

pipeline returns to the main script and finishes, leaving the user a directory with all the results, except

intermediary files (e.g, scattered regions) which are kept in the cromwell execution folder for caching.

53

3.9 Standalone Pipeline Modules

In this section, we cover the pipeline modules that are not integrated into the Cromwell pipeline. This

means they are run separately.

3.9.1 Mutant Protein Prediction

In the Mutant Protein Prediction module, Isovar is run with RNA-Seq data extracted from the tumor

sample (covered in Section 2.4). It uses RNA to assemble the most abundant coding sequence for each

mutation. Isovar provides a Python API and can be used as a CLI tool. It works by (adapted from its

documentation [150]):

1. Collecting RNA reads which span the location of a variant,

2. Filtering the RNA reads to those which support the mutation,

3. Assembling mutant reads into longer coding sequences,

4. Matching mutant coding sequences against reference annotated reading frames, and

5. Translating coding sequences determined directly from RNA into mutant protein sequences

Figure 3.8 presents an overview of Isovar and highlights one of the advantages of using RNA to

determine the coding sequence for mutations: the phasing of somatic and germline variants. If phasing

is not taken into account, the resulting protein sequences may not match the ones produced by tumor

cells, thus being an incorrect choice to include in a tumor vaccine. In case the RNA-Seq reads from a

patient do not contain enough information for Isovar to predict the mutant protein, data from the Ensembl

VEP is used (mentioned in Section 2.4). Initially, we intended to modify Isovar’s code to, for example,

output more than only the top predicted protein sequence. However, Isovar restarted active development

during the same period of our work [151], becoming less of a priority.

3.9.2 HLA Typing

The HLA Typing module remained the same when compared to the previous pipeline. OptiType, as

mentioned in Section 2.5, is the most accurate for HLA class I. OptiType takes the sequencing reads

from a given patient (FASTQ files) and maps them against all HLA class I alleles, from which a binary

matrix is generated indicating which alleles a specific read could be aligned to with the least number

of mismatches [77]. Based on this matrix, an optimization problem – formulated as an Integer Linear

Program (ILP) – is solved, having as output the predicted optimal HLA alleles.

54

CCTGCTGATACATCA
GCTGATACATCA

CCTGCTGATACCTCA
GCCTGCTGATACCTCA

ATACCTCA

TCGCTACCT
TCGCTACCTCCG
TCGCTACCTCC
TCGTTACC
TCGTTACCTCCGACTTA

Somatic mutation Germline mutation

RNA-Seq
tumor reads

Select coding sequence

GRLCSSDGP

CCTGCTGATACATCATCGCTACCTCCG

Translate into protein sequence

Intron

Figure 3.8: Isovar tool overview, showing the phasing of somatic and germline mutations. Note that RNA-Seq uses
a cDNA library, hence the presence of T instead of U. Adapted from [65].

3.9.3 HLA Binding Prediction

For the HLA binding prediction module, a Python tool was developed [152] – licensed under GNU Gen-

eral Public License version 3 [153]. It depends on a modified version of mhctools [154], a Python

Application Programming Interface (API) to commonly used MHC binding predictors. We use mhctools

to run NetMHC and NetMHCpan (mentioned in Section 2.6.1 as performing the best in HLA class I bind-

ing prediction). Our modified version of mhctools [155] enables functionality that exists in NetMHCpan

but that is not made available by mhctools. This modification enables mhctools to output the different

types of peptide ranking that NetMHCpan allows, that depend on the data used to train this predic-

tor [156] (detailed in Section 3.9.3.D).

Our Python tool, henceforth referred to as bind-pred, receives as inputs:

• a file containing the predicted mutant protein sequences from Isovar (see Section 3.9.1), alongside

the non-mutant sequences (example excerpt in Listing 3.14);

• size values, to extract short peptides around the mutation locations of the given sizes;

• a protein database (explained below);

• the patient HLA alleles as predicted by OptiType (see Section 3.9.2) that we want to predict the

short peptides binding to;

• names of the output directory and to prefix the name of the created files.

55

As outputs, bind-pred writes:

• A tab-separated file comprised of concatenated data output by netMHC and netMHCpan (see

Section 3.9.3.D);

• Files for use in mass spectometry and peptide reactivity testing (see Section 3.9.3.E);

• A time-stamped log file with debug, general, warning and error data.

The protein database we choose as input is Swiss-Prot, a high quality manually annotated and non-

redundant protein sequence database from UniProt Knowledgebase [157]. Additionally, we filtered the

database to only contain human protein sequences, leaving the database with around 20 thousand se-

quences. Swiss-Prot was choosen for 2 main reasons: fast query time and avoiding wrongly annotated

proteins (common in non-curated databases). The purpose of using a database is explained in the

description of bind-pred that follows.

The first step in bind-pred is dividing the (mutant and non-mutant) proteins in the input file into short

peptides of user-defined sizes around the mutation positions. When we run bind-pred, we typically

choose peptide sizes of 8 to 12 because HLA class I molecules preferentially bind short peptides [158].

The second step is querying the database for complete matches of the short mutant peptides. If any of

the latter are found in the database, they are filtered out in a third step. The fourth and last step is calling

netMHC and netMHCpan. We will now describe each step in more detail.

Listing 3.14: Bind-pred protein input file example. It contains shorter proteins than usual for increased legibility

(usually 51 amino-acid long, not 25 as shown).

1 varID WT MUT

2 chr6_113860425_C/T AAEEPSKVEEKKAEEAGASAAACEA AAEEPSKVEEKKAAEAGASAAACEA

3 chr12_20654151_G/A AGLMPGKWVEDSDESGDTDDPEEEE AGLMPGKWVEDSDTSGDTDDPEEEE

3.9.3.A Dividing Input Proteins into Short Peptides surrounding Mutations

In the first step of bind-pred, the mutation positions are located. Since we do not know the number of

mutations nor how they are organized, and because the two protein sequences – Mutant (MUT) and

non-mutant (called Wild Type (WT)) – may differ in size, we start by aligning them against each other

through global pairwise alignment. To perform this alignment, we used the Biopython [159] package. In

pairwise alignment, a gap function that dictates the penalty in opening and extending gaps is required

– ours is presented in Listing 3.15. To obtain better alignments, we more heavily penalized opening

gaps to the right of the sequence, i.e., if there is to be a gap, we want it to come sooner rather than

56

later. Additionally, we had to take into account that the two protein sequences can be of different sizes,

making the gap function depend on the longest one.

Listing 3.15: Gap function used in aligning the input protein sequences (WT and MUT)

1 # 'x' is the gap position in the sequence and 'y' is gap length.

2 def gap_function(x, y):

3 if y == 0: # no gap

4 return 0

5 elif y == 1: # gap open penalty

6 return -0.6 + (x/len_longest_prot) / 2

7 return -0.6 + (x/len_longest_prot) / 2 - 0.1 # gap extension penalty

Listing 3.16 shows an alignment between two protein sequences as it is printed to the log of bind-

pred. In this listing, we see that there was a deletion that caused the MUT sequence to have 2 gaps in

the alignment.

Listing 3.16: Alignment of two protein sequences printed to the log of bind-pred. On the top is the WT, and on the

bottom the MUT. A 6 nucleotide deletion occurred (indel variant), leading to a 2 amino-acid gap in the

middle of the MUT sequence.

1 KIHVTPLIPGKSQSVSVSGPGPGPGPGLCPGPNVLLNQQNPPAPQPQHLAR --

2 ||||||||||||||||||||||||| ||||||||||||||||||||||||

3 KIHVTPLIPGKSQSVSVSGPGPGPG --LCPGPNVLLNQQNPPAPQPQHLARRP

With the mutation locations stored, we then break the proteins into smaller peptides around those

locations (according to the user-defined sizes). We generate all the possible peptides of the defined

sizes containing the mutations. This is done using a sliding-window over a big enough chunk surrounding

the mutation. Besides the files mentioned in Section 3.9.3.E, a file with all the short peptides (with

identifiers) is created.

3.9.3.B Querying Protein Database for Exact Peptide Matches

In the second step, we query the user-defined database (of known proteins) with the short peptides from

the file generated in the previous step. The querying is done using an improved implementation of the

Basic Local Alignment Search Tool (BLAST) algorithm [160], BLAST+ [161], providing rapid sequence

comparison. In this step, we again use the Biopython package, that provides an interface to BLAST

CLI tools. More specifically, we run the “blastp-short” tool, as we are querying for short peptides. This

57

results in an XML file with the query data containing values such as the number of amino-acid matches

between the query sequence and the one found in the database (which does not need to completely

match).

3.9.3.C Filtering Exact Matches

In the third step, we filter out the short peptide sequences (from step 1) which completely align with no

mismatches to the sequences in the database. This is done by parsing, with a Biopython method, the

XML file from step 2.

3.9.3.D Running Binding Prediction Software

In the last step, we run netMHC and netMHCpan to predict the binding of the short peptides that re-

mained after filtering, to the patient’s HLA alleles. We not only predict binding to the MUT peptides, but

also to the corresponding WT peptides (helpful in downstream analyses). We call netMHCpan twice,

the difference between the two calls being the “Binding Affinity” parameter (“-BA”). With this parameter,

peptide ranking changes as the data used to train the ANN is different. To accomplish the two distinct

calls to netMHCpan we had to modify mhctools (mentioned in Section 3.9.3). Listing 3.17 shows an

example excerpt of the final output (tab-separated) file where the binding predictions are concatenated

together.

Listing 3.17: Bind-pred binding predictions output file (example excerpt). We show the same 3 peptide sequences

for each binding prediction function call – netMHCpan-BA, netMHCpan and netMHC. The “Bind Level”

column indicates the predicted binding strength. Lines 3, 4 and 7 show a weak binding (WB) pre-

diction, line 10 shows a strong binding (SB) prediction, and the remaining lines show a no-binding

prediction (N/A).

1 Var_id %Rank Bind_Level WT_peptide MUT_peptide WT_Affinity MUT_Affinity

DAI HLA_allele Size Program

2 chr3_167720076_G/A-L93 -WT25 -MUT25 -M0 70 .1093 N/A PLYAVMYP PLYAVMYS

43320 .6 44286 .9 -966.30 HLA -A24:02 8 netMHCpan -BA

3 chr3_167720076_G/A-L93 -WT25 -MUT25 -M1 1.8626 WB LYAVMYPV LYAVMYSV

2698.3 2333.8 364.5 HLA -A24 :02 8 netMHCpan -BA

4 chr3_167720076_G/A-L93 -WT25 -MUT25 -M2 1.0265 WB YAVMYPVF YAVMYSVF

643.6 930.9 -287.29 HLA -A24 :02 8 netMHCpan -BA

5 chr3_167720076_G/A-L93 -WT25 -MUT25 -M0 65.0 N/A PLYAVMYP PLYAVMYS

N/A N/A N/A HLA -A24:02 8 netMHCpan

6 chr3_167720076_G/A-L93 -WT25 -MUT25 -M1 3.6779 N/A LYAVMYPV LYAVMYSV

58

N/A N/A N/A HLA -A24:02 8 netMHCpan

7 chr3_167720076_G/A-L93 -WT25 -MUT25 -M2 1.8158 WB YAVMYPVF YAVMYSVF

N/A N/A N/A HLA -A24:02 8 netMHCpan

8 chr3_167720076_G/A-L93 -WT25 -MUT25 -M0 70.0 N/A PLYAVMYP PLYAVMYS

42322 .65 43924 .73 -1602.08 HLA -A24:02 8 netMHC

9 chr3_167720076_G/A-L93 -WT25 -MUT25 -M1 3.0 N/A LYAVMYPV LYAVMYSV

3760 .65 3697 .55 63.09 HLA -A24 :02 8 netMHC

10 chr3_167720076_G/A-L93 -WT25 -MUT25 -M2 0.25 SB YAVMYPVF YAVMYSVF

108 .38 116 .21 -7.82 HLA -A24 :02 8 netMHC

3.9.3.E Outputs

Besides the binding prediction output file above, during the first step of bind-pred (see Section 3.9.3.A),

two files are generated while the proteins input file – containing the MUT and corresponding WT se-

quences – is parsed. One of the files is useful for doing mass spectrometry, which is done in the lab

(outside the scope of this work). This file consists of variant identifiers that are generated based on

the mutation position with the respective mutant sequence alongside it (see Listing 3.18). The other file

is useful for peptide reactivity testing, which is done in the lab (and outside the scope of this work). It

contains variant identifiers followed by MUT sequences of size 25 that are built around the respective

mutation position (see Listing 3.19).

Listing 3.18: Example excerpt of output file for use in mass spectometry

1 >chr3_167720076_G/A_M26

2 MTMEEMKNEAETTSMVSMPLYAVMYSVFNELERVNLSAAQTLRAAFIKAEK

3 >chr5_136213548_C/T_M26

4 NDEVNEGELKEIKQDISSLRYELLEKKSQATGELADLIQQLSEKFGKNLNK

5 >chr5_141346161_G/A_M26

6 NDSDLTLYLVVAVAAVSCVFLAFVIMLLALRLRRWHKSRLLQASGGGLAST

Listing 3.19: Example excerpt of output file for use in peptide reactivity testing

1 var_id MUT_peptide

2 chr3_167720076_G/A SMVSMPLYAVMYSVFNELERVNLSA

3 chr5_136213548_C/T QDISSLRYELLEKKSQATGELADLI

4 chr5_141346161_G/A AAVSCVFLAFVIMLLALRLRRWHKS

59

3.10 R Shiny Result Analysis

The only interface to the pipeline mentioned until now is the CLI. However, data visualization was a

concern since the conceptualization stage of this pipeline. Taking into account the benefits of data

visualization mentioned in Section 2.7, a separate R Shiny [20] application was extended to plot variant

data distributions. Shiny is an R package to build interactive web applications with a focus on simplicity

of development and redistribution, responsiveness in the interaction with the application for the end-

user and appealing default User Interfaces (UIs) based on Bootstrap [162], a widely used front-end

component library. The UI can be written in R but also directly using the common web development

languages – HTML, CSS and JavaScript.

Our Shiny application’s source code is available in GitHub [163] and hosted online [164] (experimen-

tal) in the Shinyapps cloud [165]. The contribution to this module was adding a results tab, containing

two bar plots, and the respective data scraping script that gathers and processes the data used to build

the plots. An overview is shown in Figure 3.9: on the top left, the user can browse directories and is

expected to select one with a specific structure (defined by the Immunogenomics group). Then, the

data scraping script locates and processes the files containing the variants and the resulting peptides.

These variants underwent visual inspection by the research group and have three main attributes used

in generating the plots: “selected”, “expressed” and “variantTYPE”. “Selected” if they alter the amino

acid sequence, “expressed” if they are being expressed according to the RNA data, and “variantType”

being the variant type. The “Selected” and “variantType” data are obtained using Ensembl VEP.

One plot shows the number of protein changing variants per sample and whether they are expressed

(see Figure 3.10). The other plot shows the type of variants (see Figure 3.11). An R script was writ-

ten [166] to generate the data needed for the plots according to the samples the user selected. This

module requires further development so that others outside the Pathology group are able to use it.

Nonetheless, it was already proven to be useful, as it helped detecting an error related to the processing

of a patient sample (covered in Section 4.1.4).

3.11 Continuous Integration and Testing

For CI purposes - the practice of merging in small code changes frequently, rather than merging in a large

change at the end of a development cycle - Travis CI [167], a continuous integration platform, is used.

Although normally requiring a paid license, it is free for open source projects such as our integrated

pipeline. Travis CI automatically builds and tests code changes, providing immediate feedback on the

success of the change. The goal of using this tool is to build more reliable software by developing and

testing in smaller increments. Additionally, the pytest framework [168] was used to write the integration

tests [169]. The pipeline’s Travis CI main configuration file [170] calls the pytest framework to run the

60

Figure 3.9: R Shiny module’s results tab overview. On the left, the user can browse folders. On the right, the plots
generated with the data from the chosen folder are shown. Figures 3.10-3.11 show the plots in more
detail.

Figure 3.10: R Shiny module plot showing the number of protein changing variants per sample, while indicating
whether the variants are expressed (black) or not expressed (grey).

61

Figure 3.11: R Shiny module plot showing the number of occurrences for a set of variant types. The samples’
identifiers are shown on the right.

tests. These tests use very small test data: instead of GB of files as is the case when running the

pipeline for real-world analysis, files in the order of KB are used, speeding up the CI process. The tests

verify that the pipeline runs successfully and whether the outputs change after new code is pushed to

the repository. For example, in the Somatic Variant Calling module, inputs smaller than 1 Megabyte

containing NGS reads are used to check whether the variants called remain the same with new code.

62

4
Problems and Validation

Contents

4.1 Problems and Noteworthy Aspects . 65

4.2 Validation . 67

63

64

4.1 Problems and Noteworthy Aspects

In this section we go over some of the notable problems and interesting aspects we found while devel-

oping the Cromwell pipeline.

4.1.1 Cromwell Filling Cluster’s Storage Space

When executing the pipeline, Cromwell requires the inputs to be localized following a certain directory

structure. To avoid filling up the cluster’s storage with duplicate inputs, Cromwell first tries to create hard-

links, then soft-links and finally a copy of the file. When using container images, the soft-links strategy is

not possible, thus if hard-links fail to be created a file copy ensues, resulting in the storage being filled.

The Network File System (NFS) in the Shark Cluster has a maximum of 1000 hard-links per file.

This limit was reached after multiple pipelines sharing the same inputs were run, resulting in the storage

quota allocated for the Pathology group being filled. Furthermore, creating copies takes time, which

slowed down the pipeline execution considerably.

The solution for this problem was, after a file reached 1000 hard-links, copy it once and then create

hard-links over this newer copy. If the 1000 hard-links are reached in the newer copy, repeat the process.

4.1.2 BWA Intricacies

During a phase of result comparison between the Cromwell pipeline and the previously used one, we

noticed that, for the same sample, there were different variants called as a result of unexpected differ-

ences in read alignment. We concluded that the differences in the read alignment were a consequence

of not defining in the Cromwell pipeline’s inputs a certain index file for BWA. That index file makes BWA

alt-aware, i.e., it informs BWA of mapping regions that are alternative, making it prioritize mapping reads

to the primary (non-alt) regions. The noteworthy aspect that we realized was that even if the mapping

to the alt region is better than to that of the primary region, BWA will preferentially map to the primary

region as long as the reads reasonable align to it. This was an unexpected behaviour that changed our

perception of the alignment process.

4.1.3 VarDict Memory Usage

During testing of the pipeline, we noticed there were VarDict jobs that hung for hours. After logging in to

the computing nodes where the VarDict jobs were running, it became clear that the VarDict processes

were thrashing due to the Java Virtual Machine (JVM) constantly reaching the maximum virtual memory

allowed for the process (even after increasing the virtual memory limit to unreasonable amounts). This

caused Java’s garbage collector to constantly clear up the processes’ virtual memory, impeding the

65

process to move forward. The thrashing was solvable by giving VarDict genome regions not bigger than

1 Mbps in size to call the variants in, but for this the pipeline’s region scattering logic had to be changed.

Consequently, and as mentioned in Section 3.8.3.C, the chunked-scatter tool was developed.

To understand how this tools differs from the previously used scatter-regions tool, we first have

to understand how the genome regions are divided into a format variant callers recognize. Region

segments are written in a BED format file. BED files contain genome segments written line by line. A

line is composed by an identifier followed by the start and end coordinates (in bps). A line could have,

for example, “chr1” as an identifier (for chromosome 1), and “1 1000000” as coordinates – Listing 4.1

shows an example of a BED file. The root cause for VarDict’s thrashing is that it uses memory linear

to the individual segments size in the BED files [171], rapidly filling the memory for large contiguous

segments in the BED file. Having segments of a maximum of 1 Mbps effectively avoided thrashing.

Listing 4.1: Example BED file (“regions.bed”) with differently sized genome segments, both for chromosome 1

1 $ cat regions.bed

2 chr1 100 2000000

3 chr1 3000000 4500000

Listings 4.2 and 4.3 show the different behaviour of the aforementioned tools when taking as input

the BED file from Listing 4.1. With chunked-scatter (new strategy), the segments are divided even if they

were contiguous in the corresponding input segment which was not done in the scatter-regions tool (old

strategy).

Listing 4.2: Chunked-scatter genome region division into 1 Mbp chunks

1 $ chunked -scatter -c 1000000 regions.bed

2 $ cat scatter -0.bed

3 chr1 100 1000100

4 chr1 999950 2000000

5 chr1 3000000 4500000

66

Listing 4.3: Scatter-regions genome region division using 1 Mbp as the scatter parameter (-s).

1 $ scatter -regions -s 1000000 regions.bed

2 $ cat scatter -0.bed

3 chr1 100 2000000

4 chr1 3000000 4500000

4.1.4 R Shiny Module Error Finding

As alluded to in Section 2.7, visualizing data is a practical way to identify unexpected results. An example

of this is given by the “NIC5” sample values in Figure 3.10. In this figure we see that the “NIC5” sample

did not contain any non-expressed variants, which was caused by human error in handling the output

files. Quickly identifying errors avoids later issues and saves troubleshooting time.

4.2 Validation

Pipeline validation was done using two types of data: 1) synthetic data, i.e., data semi-computationally

fabricated, meaning that we know what variants were injected into the original data. These variants are

gathered in what we refer to as a ground truth file. We followed two approaches to obtain synthetic data:

searching for synthetic datasets available online (see Section 4.2.1), and generating our own synthetic

datasets using tools with that purpose (see Section 4.2.2). 2) Using real patient data that had already

been processed by the previous pipeline, meaning we know which somatic variants were called before.

Although we cannot be sure the variants called before represent the ground truth, as they are simply a

product of another pipeline with the same objective, our goal is that the newer pipeline calls at least the

same protein changing variants as the previous pipeline (see Section 4.2.3). With both types of data,

the validation consists of comparing the variants called by our pipeline with the ones in the ground truth

VCF files.

4.2.1 Validation with ICGC-TCGA DREAM Synthetic Data

As a first validation, we assessed the pipeline’s variant calling performance. We ran the Somatic Variant

Calling module of our pipeline on synthetic genomes from the ICGC-TCGA DREAM Mutation Calling

Challenge that took place in 2013 [172]. A set of three simulated tumors, each paired with its normal

sample, were available. The (WGS) reads were aligned to the hg19 reference. Moreover, for each

simulated tumor, a VCF file containing the ground truth (computationally added) variants was provided.

We chose this dataset because it is commonly used for the assessment of somatic variant callers.

67

4.2.1.A Methodology

Before succeeding to run the Somatic Variant Calling module, we had to address three aspects regarding

VarDict. The first aspect was VarDict failing to call variants using the hg19 reference file as it contained

“M” and “R” characters – these mean A or C, and A or G, respectively. Since there were only three

occurrences and given that they did not overlap with any variant in the ground truth file, we replaced

them with one of the possible nucleotides, in this case A. The second aspect was VarDict only running

successfully for one of the three sets, restricting our validation process to it. The errors in the two failing

samples concerned null pointers during intermediary steps of VarDict’s execution. Considering VarDict

was developed to process WES, the errors may have been caused by the considerably larger amount of

data processing WGS encompasses. The third aspect was filtering out germline variant calls from the

output VCF. This had to be done because VarDict always calls germline variants, even if it is tuned for

somatic variant calling.

After successfully running the Somatic Variant Calling module, we analysed each variant caller’s

results. Three points arose: 1) 17% of the variants from the ground truth were not called because they

contained dated annotations – “INV”, “DUP”, “DEL”, “IGN” and “MSK”. These annotations were located

in the “ALT” column of the ground truth VCF file (refer back to the VCF example shown in Listing 2.2).

None of the variant callers annotate variants in such a way. 2) We encountered multiallelic variants –

variants with more than one observed variation – each represented in a single row of the VCF file output

by Mutect2. 3) The ground truth only considered chromosomes 1 to 22 and X.

To address aspect “1)” in the previous paragraph, we decided to filter out all variants other than

SNVs from the VCF files. We chose to keep SNVs because these are consistently represented across

all VCF files (those output by the variant callers and those representing the ground truth). Concerning

aspect “2)”, since not all variant callers represent multiallelic variants in a single row, using BCFtools

we separated them into multiple rows (now each representing an SNV). Regarding aspect “3)” in the

previous paragraph, we discarded every contig from our analysis that was not in chromosomes 1 to 22

and X.

Finally, both the ground truth VCF and the hg19 reference file required sorting to be used with the

GATK tool to combine variants from different files. The files were required to follow a natural sorting

(instead of alphabetical where, for example, 11 comes before 2). Hence, the ground truth VCF was

sorted using Picard’s “SortVcf” and the hg19 reference with SAMtools’ “faidx”.

4.2.1.B Results

With the caveats from Section 4.2.1.A in mind, we proceeded to take statistical measures of the variant

calling performance of our pipeline running on the aforementioned synthetic data. We based ourselves

on the measures typically used to compare variant callers that are mentioned in Section 2.3. Recogniz-

68

ing that we are before a binary classification test, a variant called by our pipeline is considered either true

or false, depending on whether it is in the ground truth file. Thus, each variant called can be classified as

a True Positive (TP), False Positive (FP), False Negative (FN), or True Negative (TN). Table 4.1 shows a

confusion matrix, a common way to help understand TP, FP, FN, and TN.

Table 4.1: Representation of a confusion matrix.

Ground TruthConfusion
Matrix TRUE FALSE

TRUE TP FP
Predicted

FALSE FN TN

In our case, a TP is a variant call that is also found in the ground truth file; a FP is a variant call that

was not in the ground truth file; a FN is a variant that is in the ground truth file but that was either not

called at all (missed) or that was called but was filtered by the variant caller; a TN is a variant call that

was filtered by the caller and that is not in the ground truth file. Consequently, the number of TPs plus

FNs totals the number of variants in the ground truth file, which is 3537. Using these four metrics, we

can calculate sensitivity (true positive rate) and specificity (true negative rate):

Sensitivity =
TP

Positives
=

TP

TP + FN
(4.1)

Specificity =
TN

Negatives
=

TN

TN + FP
(4.2)

Figure 4.1 shows the number of TPs, FPs, TNs and FNs, the latter subdivided into “(not called+filtered)”.

Figures 4.1A-C analyse each variant caller individually. In these, the counts were obtained by first merg-

ing (with GATK CombineVariants) the VCF file output by the variant caller with the ground truth VCF file,

followed by running shell commands that process the resulting file, calculating the number of variants

that fit into each category. Figure 4.1D analyses the union of all variant callers’ output, following the

same logic as before. Figure 4.1E presents the same union analysis but only for Mutect2 and Strelka2.

We cover the latter case to assess VarDict’s impact as it shows the best sensitivity but also the worst

specificity. Appendix C.1 presents the exact values obtained during the validation process. Table 4.2

shows the sensitivity and specificity of each variant caller.

Table 4.2: Sensitivity and specificity values of Mutect2, Strelka2 and VarDict running on synthetic data.

Mutect2
(M2)

Strelka2
(S2)

VarDict
(VD)

Union
M2, S2, VD

Union
M2, S2

Sensitivity 0.973 0.957 0.987 0.991 0.980
Specificity 0.981 0.995 0.791 0.839 0.992

Concerning the values for sensitivity in Table 4.2, we consider the variant callers to have performed

69

Figure 4.1: TP, FP, FN and TN counts from running the newer pipeline’s Somatic Variant Calling module on syn-
thetically generated alignment files. These counts were produced in relation to a ground truth file. (A),
(B) and (C) concern Mutect2, Strelka2 and VarDict, respectively. (D) presents the counts obtained after
doing the union of the called variants from the individual variant callers. Note that FNs are subdivided
into “(not called+filtered)” variants. For example, (D) shows that one ground truth variant was not called
by any of the variant callers and that 31 ground truth variants, although called, ended up being filtered
by some or all the variant callers. Given the high FP count introduced by VarDict, we present (E). It
follows the same logic as (D) but only for Mutect2 and Strelka2. In all figures, high values were rounded
– followed by “K” or “M”, for thousands and millions, respectively.

70

well in finding the true variants. However, even though VarDict had the best sensitivity, it called around

190 thousand FP variants (see Figure 4.1C), resulting in a subpar value for specificity. For the Pathology

group at LUMC, this is not problematic because the priority is finding all possible protein changing

variants in CRC with low mutation numbers.

Looking at the FNs in Figure 4.1D, there were 31 ground truth variants being called but filtered by the

variants callers and 1 ground truth variant that was not called. Regarding the 31 ground truth variants

that are filtered, the variant callers do so either because of low mapping quality or due to the lack of

supporting reads.

4.2.1.C Remarks

All in all, the synthetic dataset showed unpractical to use for validation due to the considerable amount

of adjustments required, which resulted in only validating the SNV performance of the variant callers.

Additionally, we found that some of Mutect2’s FPs were variants present in the ground truth file but

that were reported as MNVs so, similarly to multiallelic variants, they were shown in a single row of

the output VCF file – in total Mutect2 reported 142 MNVs. Moreover, after inspection we found that

many of the FP variants were good predictions that should have been included in the ground truth file.

We considered this to be another relevant flaw in this dataset and discuss it further, along with the

FN definition used, in Section 5.1. Initially, we converted the dataset files to follow the hg38 reference

because of its advantages (see Section 2.2.3). After comparing the results with those of the original

dataset (using hg19), we concluded that using hg38 would further hinder the validation process (detailed

in Appendix C.2).

4.2.2 Validation with Generated Synthetic Data

After the validation with the ICGC-TCGA DREAM synthetic data, we tried generating our own synthetic

data. For this we chose Xome-Blender [173], a cancer genome simulator that takes real samples as

input. We decided to use it because of its claim of not adding any synthetic element. Essentially, this

meant that Xome-Blender took the input of a normal individual and generated tumor mutations from it,

in a sort of backtracking clonal evolution process. After several attempts in tuning the parameters and

restricting the region of processing to the exome, we could not get the tool to run reliably for the normal

patient samples we had available. We could not understand the cause of the problem.

4.2.3 Validation with Previous Results

A major concern in developing the new pipeline was maintaining coherency with the results from the

previous pipeline. This would allow continuity in the analysis of the same samples and give confidence

71

in the predicting performance of the new pipeline in newer samples. In practice, this meant the new

pipeline was required to call the same protein changing variants as the previous one did.

4.2.3.A Methodology

To confirm whether the requisite above was met, we ran the new pipeline on real, low-mutation CRC

patient’s tumor-normal paired WES samples that had already been processed by the previous version

of the pipeline. Moreover, the predicted variants from the previous pipeline had already undergone

visual inspection by the Pathology group. Briefly, this inspection verifies whether each variant is non-

synonymous (codes for different proteins than originally) and that it is being expressed by checking the

corresponding RNA sequencing reads. These variants represent the closest possible to a ground truth,

and we refer to them as target variants.

4.2.3.B Results

Table 4.3 summarizes the validation results obtained. The variants called by all variant callers (intersec-

tion) are considered true and can skip individual inspection. This is identical to the workflow followed by

the Pathology group when using the previous pipeline. In the table we see that, across all samples, 91%

of the target variants were in the intersection results. The remaining 9% are divided in two categories:

requiring inspection and filtered by all. The former are variants that, in a real patient analysis done by

the Pathology group, would have to be individually inspected to assess whether they would be consid-

ered true. In these low mutation samples, all the variants are considered even if they are only called by

one variant caller. The variants that are not called by the three variant callers (intersection), are visually

inspected to discard sequencing artifacts. Furthermore, two of the variants that required inspection (the

one in the NIC3 sample and one from NIC7) were correctly reported as MNVs, whereas in the previous

pipeline they had been detected as SNVs. Three variants were identified but filtered unanimously by the

variant callers (NIC7 sample). The filters were related to either weak evidence, low quality or read bias,

or a combination of them. These filters, combined with visual inspection in IGV, lead to discussion of

the previous categorization of the variants as true.

4.2.3.C Remarks

We consider the results are in line with the list of variants generated by the previous pipeline. Additionally,

if we were to adjust our results to consider the two MNVs as belonging to the intersection, and the

three “filtered by all” variants to be excluded from the target variants, the resulting percentage for the

intersection would go up to 94.1%. Ideally, more samples should be analysed.

72

Table 4.3: New pipeline’s validation results relative to the expressed protein changing variants identified by the pre-
vious pipeline. The sample column contains the samples’ names and simply serves as an identifier. The
target variants column shows the number of expressed protein changing variants previously identified.
The next columns contain the number of target variants called by each variant caller in the new pipeline.
The intersection presents the number of target variants that were called by all variant callers. The val-
ues in the column of (variants) requiring inspection were obtained by subtracting the number of target
variants with that of the intersection added to the value in the last column. The last column shows the
number of target variants that, although called, were filtered by all variant callers. Values marked with an
asterisk (*) include one correctly reported MNV (in the respective sample) that corresponds to an SNV in
the previous pipeline. The two asterisks (**) concern three variants that, after a second visual inspection
were considered false positives and removed from the target variants list.

Sample
Target
Variants

Mutect2 Strelka2 VarDict Intersection
Require
Inspection

Filtered
by All

NIC3 19 19 19 18 18 1* 0
NIC4 30 29 30 30 29 1 0
NIC5 50 46 49 50 45 5 0
NIC6 23 22 23 23 22 1 0
NIC7 33 27 29 29 27 3* 3**

Total
155
(100%)

143
(94%)

150
(96.8%)

150
(96.8%)

141
(91%)

11
(7.1%)

3
(1.9%)

73

74

5
Conclusions and Future Work

Contents

5.1 Conclusions . 77

5.2 Future Work . 80

75

76

5.1 Conclusions

In this work we present a type of bioinformatics pipeline whose purpose is helping treat patients in the

field of cancer immunotherapy: the neoantigen identification pipeline. This type of pipeline comprises

several computational steps, has varying levels of complexity and may focus only on a subset of all

the required steps to identify neoantigens. Specifically, the pipeline we present in this thesis covers all

the steps of the typical neoantigen discovery workflow (summarized in Figure 2.1). Succinctly, before

executing the pipeline, normal and tumor tissue samples are collected from the patient and sequenced,

resulting in millions of nucleotide sequences called reads. Reads are the first main pipeline input, and

they initially go through a quality control step. Then, they are pieced together relatively to a reference

genome. Now having a map of the reads’ locations in the human genome, it is possible to run the

crucial steps of identifying tumor-specific variants and the subsequently produced mutant proteins. The

last step is predicting which of these proteins are most likely to be recognized by the patient’s immune

system to aid in fighting the cancer. Conceptually, we divided each step of the pipeline into a module

(shown in Figure 3.1).

5.1.1 Main Goals

The pipeline presented in this dissertation was developed in the context of the Immunogenomics group

from LUMC’s Pathology Department. Besides maximizing the number of protein changing variants de-

tected, the pipeline had the two main goals of reducing execution time and maintaining the same pre-

dictive performance, when compared to the previously used makefile-based pipeline (see Section 2.9).

Both of these goals were accomplished. Concerning reducing execution time, it was accomplished by

leveraging the HPC infrastructure available. We saw the execution time being reduced from days to

hours. There are no results to support the latter for three reasons: 1) the previous pipeline does not

run in the Shark cluster as Makefile jobs are not supported. 2) The previous pipeline was executed

in a server used for regular diagnostics. As such, the server could only be used to run the previous

pipeline when it was available, i.e., the pipeline was divided into parts that were executed when the

server was available. 3) Benchmarking the new pipeline running on an HPC cluster is not trivial. We

would have to account for factors such as: queue times for each job; heterogeneous hardware between

the nodes where each job is run; the load on the nodes caused by other users; any other bottlenecks

(for example, storage and networking devices I/O). Hence, a study outside the scope of our work would

have to be done (we expand on this topic in Section 5.2.3). However, to give a rough idea of the in-

tegrated pipeline’s execution time, it took each real patient WES sample used in the pipeline validation

results in Section 4.2.3, between 10 to 14 hours to be processed in the Shark Cluster. Concerning the

other main goal of maintaining the same predictive performance as before, we verified whether the new

77

pipeline called the same protein changing variants as the previous pipeline. Table 4.3 shows that all

target variants are called.

5.1.2 Further Validation

Furthermore, we validated the variants output by the pipeline on publicly available synthetically gener-

ated data (see Section 4.2.1.B). To use it in our validation, several adjustments were required, making

its use rather unpractical and limiting the conclusions.

Nonetheless, we consider that the variants called by the union of all variant callers was good, achiev-

ing a sensitivity of 0.991 (refer to Table 4.2 to see this and the other results mentioned in this paragraph).

However, in the same union we get a specificity of 0.839, negatively skewed by VarDict’s high false pos-

itive count. In a broader sense, this is a consequence of VarDict calling a disproportionate amount of

variants compared to Strelka2 and Mutect2 (see Figures 4.1A-C), the majority of them being TNs. If

we remove VarDict from the union, we observe an increase in specificity to 0.992 (approximately 18%

increase), while only decreasing the sensitivity to 0.980 (approximately 1% decrease). Although VarDict

has the stronger influence in the specificity, looking at Figures 4.1A-C, we notice that both Mutect2 and

Strelka2 also have high FP and TN counts. Even though the synthetic dataset in question allowed to

validate the pipeline’s variant calling performance, we conclude (and address below) that some aspects

of this dataset were not ideal.

Let us recall that we defined TNs as variant calls that were filtered by the respective variant caller.

This was because the ground truth VCF file only included the variants that were injected into the synthetic

data as true variants. Hence, there were no variants labeled as false in the ground truth. Having no

variants labeled as false has at least two implications: 1) specificity can be meaninglessly increased

by an high TN count, provided the value of FPs is of a smaller magnitude. 2) More importantly, it is

possible that real true variants are called that are not in the ground truth file, consequently affecting

the assessment of the tools’ variant calling performance. We saw that this happened for many of the

detected FP variants. However, we considered there was little benefit in going through the thousands

of FPs because not only were we more interested in maximising the sensitivity (detect as much true

variants as possible) but also because even if we concluded that the majority of the FPs were good

predictions, we still could not add the latter to the ground truth file as we needed an objective ground

truth. Since the FP count could not be trusted, we did not present other metrics of performance, such as

the Positive Predictive Value (PPV). PPV measures the proportion of positive results, given by TP/(TP+

FP). The latter would show us the proportion of variants that are called correctly as true.

Additionally, we tried generating synthetic data ourselves where we would have more control over

the injected variants and original samples. However, the time invested in this was fruitless as the tool

chosen was not capable of processing our patient samples (see Section 4.2.2). We decided to discard

78

this idea because the comparison with the previous pipeline version results was considered enough.

5.1.3 Integrated Pipeline

The integrated pipeline [17] successfully runs in the Shark HPC Cluster (see Section 3.2) and should

be able to run in other HPC environments provided the backend is properly configured (as exemplified

for SGE in Appendix A.1). To run the pipeline, a simple CLI command taking as parameter an input

file is run (see Section 3.7.4). The inputs passed on to the pipeline before execution reside in a single

JSON file that can be automatically generated using the Woomtool (see Section 3.7.3). This allows easy

input definition but is also verbose, which can be overwhelming to a new user (see Listing 3.10). This

verboseness is inherent to having multiple WDL (sub)workflows being called, which leads to long input

variables. WDL, being a language designed to build workflows, natively provides useful constructs such

as a parallelization mechanism (scatter), helping reduce execution time, and “File” type variables that

simplify handling files paths in the code. In general, and specifically comparing to the monolithic makefile

approach of the the previous pipeline, WDL scripts favor readability, making them more maintainable and

motivating contribution from the bioinformatics community. WDL’s natural division into workflows favors

modularity. To the same end, the integrated pipeline is divided into git submodules that can be easily

integrated in other git projects or used standalone (see Section 3.6).

WDL workflows are interpreted by the Cromwell WFMS (see Section 3.4). Cromwell manages job

scheduling and supports containerization software, allowing result reproducibility. Singularity is the tool

used to pull and build container images because it is what the Shark Cluster supports for this purpose

(see Section 3.5). Singularity is compatible with the more widely used Docker images, so we found

that every tool needed in the pipeline was already containerized. These tools were chosen based

on the research presented in Chapter 2. The most notable tools per module are: FastQC, MultiQC

and Cutadapt for QC and Adapter Trimming; BWA-MEM for Read Mapping; Mutect2, Strelka2 and

VarDict for Somatic Variant Calling. Picard, SAMtools and the GATK’s toolkit are noteworthy as these

tools were used in diverse intermediary steps, saving us development time by addressing common

data processing tasks. We summarize each modules’ workflows using UML sequence diagrams (see

Figures 3.4, 3.6 and 3.7). We highlight our decision to include the Read Orientation Artifacts and Panel of

Normals procedures to Mutect2’s workflow, both contributing to variant filtering. The former calculates

read related biases and the latter takes into account variants found in the normal samples of other

patients. Lastly, continuous integration is assured using Travis CI and the pytest framework, and all

software used and developed in this thesis is open source and can be used without a fee.

79

5.1.4 Standalone Pipeline Modules

The three remaining modules – Mutant Protein Prediction, HLA Typing and HLA Binding Prediction –

are run separately from the integrated pipeline. The tools used in these modules were supported by

the research presented in Chapter 2, of which some were also already used in the previous pipeline.

When compared to the previous pipeline, the first two modules were not modified. Regarding the Mu-

tant Protein Prediction module (see Section 3.9.1), it was initially planned to be extended by us but it

started being actively developed in the same period of our work. Regarding the HLA Typing module

(see Section 3.9.2), there was never a plan to modify it due to a previous positive experience with it.

Consequently, we chose to focus our efforts in the remaining module, HLA Binding Prediction, for which

we developed a Python tool [152], referred to as bind-pred in this thesis (see Section 3.9.3).

For bind-pred, we first modified the interface tool that runs the HLA binding prediction tools [155].

With it we were able to obtain an additional type of peptide ranking besides the provided in the original

tool. For bind-pred to function as intended, it was essential that the alignments between MUT and WT

peptides were done correctly. We ended up with the gap function shown in Listing 3.15, that provided

correct alignments for all the different cases we encountered. Furthermore, we used a novel approach

that filters MUT peptides found to be exact matches when querying a peptide database. The intention is

to exclude normal peptides, i.e., peptides that are usually being produced in healthy tissue. This way we

filter out peptides that should not have potential in helping treating tumors. Besides peptide rankings,

bind-pred outputs two other files auxiliary to lab work (mass spectrometry and peptide reactivity testing).

5.1.5 User Interface

An R Shiny application was extended to plot the number of protein changing variants per sample and

the type of variants (see Section 3.10). It is available in GitHub [163] and online [164]. However, it needs

further development to be used outside the context of the Pathology department at LUMC. Nonetheless,

it helped identify a problem with the sample data (see Section 4.1.4), demonstrating the power of data

visualization.

5.2 Future Work

In this section we address topics that could be explored to extend and improve the presented work.

5.2.1 Results Database

As the number of patients analysed by the pipeline increases, a Database (DB), possibly tied to the

HPC Cluster storage, would provide easier querying of the generated results, facilitating subsequent

80

analyses. A DB would also result in a more structured way of storing the results, rather than relying on

shared directories in the installed network file system (current procedure). Lastly, a DB could provide

data consistency and durability, avoiding storing invalid data and corrupting data in the case of a system

failure. Research about the supported and recommended DB system for the general case and for

running on the Shark cluster would have to be done but given the specific formats of data generated by

this type of pipelines, specialized DB frameworks such as Gemini [174] could be considered. Besides

not having to put as much development effort into designing a DB solution, specific advantages of using

Gemini are that it allows to directly load VCF files into the DB and extends the data with annotations

from trustworthy sources such as the ones from the ENCODE project [175]. Additionally, and particularly

for LUMC, a collaboration with the Department of Clinical Genetics which already has a DB solution in

place to store germline variants could be done.

5.2.2 User Interface

Although a CLI is used to run the pipeline, having the ability to interact with the latter through a Graphical

User Interface (GUI) makes the developed software more enticing for users that may not be CLI savvy

(such as biologists without a background in information technologies). A GUI can also offer a space for

the user to observe and interact with the results collected from the analysis, e.g., explore the positions of

the genome where phased tumor variants occur. The latter can be done by generating a hyperlink to an

open IGV session (with port listening enabled), something that is straightforward and documented [176].

Furthermore, when compared to a CLI, a GUI can provide a more familiar and user-friendly interface to

set the pipeline’s input parameters and simplify accessing, locating and moving the resulting data. With

the GUI there is the potential to open the pipeline to a considerably wider range of researchers, as in

practice many are still reluctant to operate a CLI if they have little to no previous experience with it.

An appropriate tool to build a simple GUI is Tkinter [177]: the standard Python interface to Tk [178],

a toolkit that provides a library of basic elements of GUI widgets. Tkinter comes included with most

binary distributions of Python and is compatible with Unix and Windows platforms. These properties

make it a good choice for a cross-platform implementation, which is important given the widespread use

of the Windows OS in research laboratories (as is the case at LUMC). Although the pipeline only runs in

Unix platforms, this GUI could be run in Windows systems because the main requirement is to be able

to connect to the HPC cluster using Secure Shell (SSH) which, especially in the current Windows OS

version (Windows 10), is a simple task to accomplish. For example, by installing the Windows Subsystem

for Linux, currently already possible through the integrated application store. Another alternative, and

taking into account that the Shark cluster comes with Python installed, the GUI could instead be installed

on the cluster and then have the application display forwarded to the Windows machine by using X11

SSH forwarding. However, this solution would require more configuration. For local installations of the

81

pipeline, e.g., in a researcher’s laptop, the Tkinter GUI would necessarily have to be installed in a Unix

platform as it is the one supported by the pipeline. Alternatively to Tkinter, the R Shiny module could be

further extended, which has as the advantage of being easily deployed on-premises or in the cloud for

free [179].

5.2.3 Benchmarking Performance

Although having verified a significant reduction in execution time when compared to the previously used

pipeline, further optimization could be accomplished. Benchmarking and code profiling can provide

insights into current sources of bottlenecks in the pipeline.

As alluded to in Section 5.1.1, benchmarking the pipeline running in any HPC cluster poses some

problems. Typically users do not have exclusive usage of the computing nodes, thus disk Input/Output

(I/O) is usually the main limiting factor in performance. There is also added complexity because the

computing nodes are not homogeneous regarding the hardware installed. This affects, among other

aspects, the ability to make meaningful comparisons between different pipeline runs. Nonetheless,

measures related to Central Processing Unit (CPU) and primary memory usage, and the amount of

data transferred in I/O operations can be collected by querying the Shark cluster with the qacct com-

mand [180]. Moreover, a profiling tool can then help to identify the sections of code to optimize. Also, the

pipeline’s modularity can in part mitigate the problems mentioned above, by allowing for shorter, more

manageable runs. Furthermore, comparing performance with other pipelines is also a point of interest

to assess potential improvements that can be done.

5.2.4 Integrating Standalone Modules

Succinctly, integrating the remaining pipelines would involve containerizing Isovar and the developed

tools for the HLA Binding Prediction module. Moreover, the process between the Somatic Variant Calling

and the Mutant Protein Prediction modules would have to be streamlined, as there is at least a visual

inspection step that has to be done (that could possibly be avoided by modifying Isovar directly). Finally,

the corresponding WDL workflows and integration tests would have to be written.

5.2.5 Tracking Code Coverage

To track code coverage - percentage of source-code covered by tests - over time, the web service Cov-

eralls [181] could be used. It officially supports Travis CI (see Section 3.11), is programming language

independent, and free for open source projects.

82

Bibliography

[1] “Akka-http Homepage,” https://doc.akka.io/docs/akka-http/current/index.html, last accessed 19

Oct 2020.

[2] S. Behjati and P. S. Tarpey, “What is next generation sequencing?” Archives of Disease in

Childhood - Education and Practice, vol. 98, no. 6, pp. 236–238, 2013. [Online]. Available:

https://doi.org/10.1136/archdischild-2013-304340

[3] L. C. Brody, “Nucleotide,” https://www.genome.gov/genetics-glossary/Nucleotide, last accessed

21 Oct 2019.

[4] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law, “Comparison of

next-generation sequencing systems,” Journal of biomedicine & biotechnology, vol. 2012, pp.

251 364–251 364, 2012. [Online]. Available: https://doi.org/10.1155/2012/251364

[5] M. A. Quail, M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, A. Bertoni, H. P.

Swerdlow, and Y. Gu, “A tale of three next generation sequencing platforms: comparison of

ion torrent, pacific biosciences and illumina miseq sequencers,” BMC genomics, vol. 13, pp.

341–341, Jul 2012. [Online]. Available: https://doi.org/10.1186/1471-2164-13-341

[6] Illumina, “Key Illumina Technology Overviews,” https://www.illumina.com/science/technology.html,

last accessed 17 Dec 2018.

[7] “Genome Research Consortium,” https://www.ncbi.nlm.nih.gov/grc, last accessed 30 Sep 2019.

[8] E. F. Fritsch, M. Rajasagi, P. A. Ott, V. Brusic, N. Hacohen, and C. J. Wu, “HLA-binding properties

of tumor neoepitopes in humans,” Cancer Immunology Research, vol. 2, no. 6, pp. 522–529,

2014. [Online]. Available: https://doi.org/10.1158/2326-6066.CIR-13-0227

[9] J. Finnigan, A. Rubinsteyn, J. Hammerbacher, and N. Bhardwaj, “Mutation-derived tumor antigens:

Novel targets in cancer immunotherapy,” Oncology (Williston Park, N.Y.), vol. 29, 2015.

[10] A. Wilm, P. P. K. Aw, D. Bertrand, G. H. T. Yeo, S. H. Ong, C. H. Wong, C. C. Khor,

R. Petric, M. L. Hibberd, and N. Nagarajan, “Lofreq: a sequence-quality aware, ultra-sensitive

83

https://doc.akka.io/docs/akka-http/current/index.html
https://doi.org/10.1136/archdischild-2013-304340
https://www.genome.gov/genetics-glossary/Nucleotide
https://doi.org/10.1155/2012/251364
https://doi.org/10.1186/1471-2164-13-341
https://www.illumina.com/science/technology.html
https://www.ncbi.nlm.nih.gov/grc
https://doi.org/10.1158/2326-6066.CIR-13-0227

variant caller for uncovering cell-population heterogeneity from high-throughput sequencing

datasets,” Nucleic Acids Res, vol. 40, no. 22, pp. 11 189–11 201, 2012. [Online]. Available:

https://doi.org/10.1093/nar/gks918

[11] S. Maleki Vareki, “High and low mutational burden tumors versus immunologically hot and

cold tumors and response to immune checkpoint inhibitors,” Journal for immunotherapy of

cancer, vol. 6, no. 1, pp. 157–157, Dec 2018. [Online]. Available: https://doi.org/10.1186/

s40425-018-0479-7

[12] P. Saxová, S. Buus, S. Brunak, and C. Keşmir, “Predicting proteasomal cleavage sites: a

comparison of available methods,” International Immunology, vol. 15, no. 7, pp. 781–787, 2003.

[Online]. Available: https://doi.org/10.1093/intimm/dxg084

[13] P. A. Ott, Z. Hu, D. B. Keskin, S. A. Shukla, J. Sun, D. J. Bozym, W. Zhang, A. Luoma,

A. Giobbie-Hurder, L. Peter, C. Chen, O. Olive, T. A. Carter, S. Li, D. J. Lieb, T. Eisenhaure,

E. Gjini, J. Stevens, W. J. Lane, I. Javeri, K. Nellaiappan, A. M. Salazar, H. Daley, M. Seaman,

E. I. Buchbinder, C. H. Yoon, M. Harden, N. Lennon, S. Gabriel, S. J. Rodig, D. H. Barouch, J. C.

Aster, G. Getz, K. Wucherpfennig, D. Neuberg, J. Ritz, E. S. Lander, E. F. Fritsch, N. Hacohen,

and C. J. Wu, “An immunogenic personal neoantigen vaccine for patients with melanoma,”

Nature, vol. 547, pp. 217–221, 2017. [Online]. Available: https://doi.org/10.1038/nature22991

[14] U. Sahin, E. Derhovanessian, M. Miller, B.-P. Kloke, P. Simon, M. Löwer, V. Bukur, A. D. Tadmor,

U. Luxemburger, B. Schrörs, T. Omokoko, M. Vormehr, C. Albrecht, A. Paruzynski, A. N. Kuhn,

J. Buck, S. Heesch, K. H. Schreeb, F. Müller, I. Ortseifer, I. Vogler, E. Godehardt, S. Attig,

R. Rae, A. Breitkreuz, C. Tolliver, M. Suchan, G. Martic, A. Hohberger, P. Sorn, J. Diekmann,

J. Ciesla, O. Waksmann, A.-K. Brück, M. Witt, M. Zillgen, A. Rothermel, B. Kasemann,

D. Langer, S. Bolte, M. Diken, S. Kreiter, R. Nemecek, C. Gebhardt, S. Grabbe, C. Höller,

J. Utikal, C. Huber, C. Loquai, and Ö. Türeci, “Personalized RNA mutanome vaccines mobilize

poly-specific therapeutic immunity against cancer,” Nature, vol. 547, pp. 222–226, 2017. [Online].

Available: https://doi.org/10.1038/nature23003

[15] Docker Inc., “Enterprise Container Platform,” https://www.docker.com/, last accessed 21 Oct 2019.

[16] “Immunogenomics Group, Pathology Department, LUMC,” https://www.lumc.nl/org/pathologie/

research/90708043159185/1709335/, last accessed 23 Nov 2020.

[17] R. Vorderman, P. van ’t Hof, D. Cats, A. Paulo, and L. Mei, “biowdl/germline-dna: Release 1.0.0,”

https://doi.org/10.5281/zenodo.3459263, Sep 2019.

[18] R. Vorderman, D. Cats, P. van ’t Hof, C. Agaser, A. Paulo, and L. Mei, “biowdl/germline-dna:

Release 4.0.0,” https://doi.org/10.5281/zenodo.3974515, Aug 2020.

84

https://doi.org/10.1093/nar/gks918
https://doi.org/10.1186/s40425-018-0479-7
https://doi.org/10.1186/s40425-018-0479-7
https://doi.org/10.1093/intimm/dxg084
https://doi.org/10.1038/nature22991
https://doi.org/10.1038/nature23003
https://www.docker.com/
https://www.lumc.nl/org/pathologie/research/90708043159185/1709335/
https://www.lumc.nl/org/pathologie/research/90708043159185/1709335/
https://doi.org/10.5281/zenodo.3459263
https://doi.org/10.5281/zenodo.3974515

[19] K. Voss, J. Gentry, and G. Van der Auwera, “Full-stack genomics pipelining with GATK4 + WDL +

Cromwell [version 1; not peer reviewed],” F1000Research, vol. 6(ISCB Comm J):1379 (poster),

2017. [Online]. Available: https://doi.org/10.7490/f1000research.1114631.1

[20] R Studio, “R Shiny,” https://shiny.rstudio.com/, last accessed 21 Oct 2019.

[21] V. I. Jurtz and L. R. Olsen, Cancer Bioinformatics, ser. Methods in Molecular Biology.

New York, NY: Humana Press, 2019, vol. 1878, ch. 9, pp. 157–172. [Online]. Available:

https://doi.org/10.1007/978-1-4939-8868-6 9

[22] Broad Institute, “Introduction to the GATK Best Practices,” https://software.broadinstitute.org/gatk/

best-practices/, last accessed 21 Dec 2018.

[23] Babraham Bioinformatics, “FastQC Homepage,” https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/, last accessed 19 Dec 2018.

[24] B. Ewing and P. Green, “Base-calling of automated sequencer traces using phred. II. Error proba-

bilities,” Genome Res., vol. 8, no. 3, pp. 186–194, Mar 1998.

[25] C. Del Fabbro, S. Scalabrin, M. Morgante, and F. M. Giorgi, “An extensive evaluation of read

trimming effects on illumina ngs data analysis,” PLOS ONE, vol. 8, no. 12, 2013. [Online].

Available: https://doi.org/10.1371/journal.pone.0085024

[26] M. Martin, “Cutadapt removes adapter sequences from high-throughput sequencing reads,”

EMBnet.journal, vol. 17, no. 1, pp. 10–12, 2011. [Online]. Available: http://journal.embnet.org/

index.php/embnetjournal/article/view/200

[27] R. Knut, B. Langmead, D. Weese, and D. Evers, “Alignment of next-generation sequencing

reads,” Annual review of genomics and human genetics, vol. 16, 2015. [Online]. Available:

https://doi.org/10.1146/annurev-genom-090413-025358

[28] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string searches,”

SIAM Journal on Computing, vol. 22, no. 5, p. 935–948, 1993. [Online]. Available:

https://doi.org/10.1137/0222058

[29] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees with enhanced suffix arrays,”

Journal of Discrete Algorithms, vol. 2, no. 1, pp. 53–86, 2004.

[30] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in Proceedings

41st Annual Symposium on Foundations of Computer Science, 2000, pp. 390–398. [Online].

Available: https://doi.org/10.1109/SFCS.2000.892127

85

https://doi.org/10.7490/f1000research.1114631.1
https://shiny.rstudio.com/
https://doi.org/10.1007/978-1-4939-8868-6_9
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1371/journal.pone.0085024
http://journal.embnet.org/index.php/embnetjournal/article/view/200
http://journal.embnet.org/index.php/embnetjournal/article/view/200
https://doi.org/10.1146/annurev-genom-090413-025358
https://doi.org/10.1137/0222058
https://doi.org/10.1109/SFCS.2000.892127

[31] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,” Digital Sys-

tems Research Center Research Reports, vol. 1, 1995.

[32] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–wheeler

transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btp324

[33] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,” Nature Methods,

vol. 9, pp. 357–359, 2012. [Online]. Available: https://doi.org/10.1038/nmeth.1923

[34] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, and

T. R. Gingeras, “STAR: ultrafast universal RNA-seq aligner,” Bioinformatics, vol. 29, no. 1, pp.

15–21, 10 2012. [Online]. Available: https://doi.org/10.1093/bioinformatics/bts635

[35] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg, “Tophat2: accurate

alignment of transcriptomes in the presence of insertions, deletions and gene fusions,” Genome

Biology, vol. 14, no. 4, p. R36, 2013. [Online]. Available: https://doi.org/10.1186/gb-2013-14-4-r36

[36] N. L. Bray, H. Pimentel, P. Melsted, and L. Pachter, “Near-optimal probabilistic rna-seq

quantification,” Nature Biotechnology, vol. 34, pp. 525–527, 2016. [Online]. Available:

https://doi.org/10.1038/nbt.3519

[37] K. Belk, C. Boucher, A. Bowe, T. Gagie, P. Morley, M. D. Muggli, N. R. Noyes, S. J. Puglisi,

and R. Raymond, “Succinct colored de bruijn graphs,” bioRxiv, 2016. [Online]. Available:

https://www.biorxiv.org/content/early/2016/02/18/040071

[38] European Bioinformatics Institute , “EMBL-EBI Homepage,” https://www.ebi.ac.uk/, last accessed

21 Dec 2018.

[39] European Bioinformatics Institute, “HTS Mappers,” https://bit.ly/2P7lEDQ, last accessed 21 Dec

2018.

[40] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin,

and 1000 Genome Project Data Processing Subgroup, “The Sequence Alignment/Map format

and SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 06 2009. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btp352

[41] D. Barnett, “BAMtools Github Repository,” https://github.com/pezmaster31/bamtools, last ac-

cessed 26 Aug 2020.

[42] Broad Institute, “Picard Tool Homepage,” https://broadinstitute.github.io/picard/, last accessed 26

Aug 2020.

86

https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1186/gb-2013-14-4-r36
https://doi.org/10.1038/nbt.3519
https://www.biorxiv.org/content/early/2016/02/18/040071
https://www.ebi.ac.uk/
https://bit.ly/2P7lEDQ
https://doi.org/10.1093/bioinformatics/btp352
https://github.com/pezmaster31/bamtools
https://broadinstitute.github.io/picard/

[43] C. Xu, “A review of somatic single nucleotide variant calling algorithms for next-generation

sequencing data,” Comput Struct Biotechnol J, vol. 16, pp. 15–24, 2018. [Online]. Available:

https://doi.org/10.1016/j.csbj.2018.01.003

[44] M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature, vol. 458, no.

7239, pp. 719–724, 2009. [Online]. Available: https://doi.org/10.1038/nature07943

[45] K. L. Gorringe, Loss of Heterozygosity. American Cancer Society, 2016, pp. 1–8. [Online].

Available: https://doi.org/10.1002/9780470015902.a0026643

[46] C. T Saunders, W. Wong, S. Swamy, J. Becq, L. J Murray, and K. Cheetham,

“Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample

pairs,” Bioinformatics (Oxford, England), vol. 28, pp. 1811–7, 2012. [Online]. Available:

https://doi.org/10.1093/bioinformatics/bts271

[47] Broad Institute, “Mutect2 Homepage,” https://gatk.broadinstitute.org/hc/en-us/articles/

360037593851-Mutect2, last accessed 26 Aug 2020.

[48] L. T. Fang, P. T. Afshar, A. Chhibber, M. Mohiyuddin, Y. Fan, J. C. Mu, G. Gibeling, S. Barr,

N. B. Asadi, M. B. Gerstein, D. C. Koboldt, W. Wang, W. H. Wong, and H. Y. Lam, “An ensemble

approach to accurately detect somatic mutations using somaticseq,” Genome Biology, vol. 16,

no. 1, p. 197, 2015. [Online]. Available: https://doi.org/10.1186/s13059-015-0758-2

[49] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. Twigg, A. O M Wilkie, G. McVean, and G. Lunter,

“Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical

sequencing applications,” Nature genetics, vol. 46, pp. 912–918, 2014. [Online]. Available:

https://doi.org/10.1038/ng.3036

[50] A. Christoforides, J. Carpten, G. J Weiss, M. Demeure, D. Von Hoff, and D. Craig, “Identification of

somatic mutations in cancer through bayesian-based analysis of sequenced genome pairs,” BMC

genomics, vol. 14, p. 302, 2013. [Online]. Available: https://doi.org/10.1186/1471-2164-14-302

[51] Z. Lai, A. Markovets, M. Ahdesmaki, B. Chapman, O. Hofmann, R. McEwen, J. Johnson,

B. Dougherty, C. Barrett, and J. Dry, “Vardict: A novel and versatile variant caller for

next-generation sequencing in cancer research,” Nucleic Acids Research, vol. 44, p. e108, 2016.

[Online]. Available: https://doi.org/10.1093/nar/gkw227

[52] D. E. Larson, C. C. Harris, K. Chen, D. C. Koboldt, T. E. Abbott, D. J. Dooling, T. J. Ley, E. R.

Mardis, R. K. Wilson, and L. Ding, “Somaticsniper: identification of somatic point mutations in

whole genome sequencing data,” Bioinformatics, vol. 28, no. 3, pp. 311–317, 2012. [Online].

Available: https://doi.org/10.1093/bioinformatics/btr665

87

https://doi.org/10.1016/j.csbj.2018.01.003
https://doi.org/10.1038/nature07943
https://doi.org/10.1002/9780470015902.a0026643
https://doi.org/10.1093/bioinformatics/bts271
https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
https://doi.org/10.1186/s13059-015-0758-2
https://doi.org/10.1038/ng.3036
https://doi.org/10.1186/1471-2164-14-302
https://doi.org/10.1093/nar/gkw227
https://doi.org/10.1093/bioinformatics/btr665

[53] W. Wang, P. Wang, F. Xu, R. Luo, M. P. Wong, T.-W. Lam, and J. Wang, “Fasd-

somatic: a fast and accurate somatic snv detection algorithm for cancer genome

sequencing data,” Bioinformatics, vol. 30, no. 17, pp. 2498–2500, 2014. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btu338

[54] S. Kim, K. Jeong, K. Bhutani, J. H. Lee, A. Patel, E. Scott, H. Nam, H. Lee,

J. Gleeson, and V. Bafna, “Virmid: Accurate detection of somatic mutations with

sample impurity inference,” Genome biology, vol. 14, p. R90, 2013. [Online]. Available:

https://doi.org/10.1186/gb-2013-14-8-r90

[55] A. Roth, J. Ding, R. Morin, A. Crisan, G. Ha, R. Giuliany, A. Bashashati, M. Hirst, G. Turashvili,

A. Oloumi, M. Marra, S. Aparicio, and S. P Shah, “Jointsnvmix : A probabilistic model for

accurate detection of somatic mutations in normal/tumour paired next generation sequencing

data,” Bioinformatics (Oxford, England), vol. 28, pp. 907–13, 2012. [Online]. Available:

https://doi.org/10.1093/bioinformatics/bts053

[56] Y. Liu, M. Loewer, S. Aluru, and B. Schmidt, “Snvsniffer: An integrated caller for germline and

somatic single-nucleotide and indel mutations,” BMC Systems Biology, vol. 10, p. 47, 2016.

[Online]. Available: https://doi.org/10.1186/s12918-016-0300-5

[57] K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe, C. Sougnez, S. Gabriel,

M. Meyerson, E. S. Lander, and G. Getz, “Sensitive detection of somatic point mutations in

impure and heterogeneous cancer samples,” Nature Biotechnology, vol. 31, pp. 213–219, 2013.

[Online]. Available: https://doi.org/10.1038/nbt.2514

[58] Y. Shiraishi, Y. Sato, K. Chiba, Y. Okuno, Y. Nagata, K. Yoshida, N. Shiba, Y. Hayashi, H. Kume,

Y. Homma, M. Sanada, S. Ogawa, and S. Miyano, “An empirical Bayesian framework for somatic

mutation detection from cancer genome sequencing data,” Nucleic Acids Research, vol. 41, no. 7,

p. e89, 2013. [Online]. Available: https://doi.org/10.1093/nar/gkt126

[59] M. Gerstung, C. Beisel, M. Rechsteiner, P. Wild, P. Schraml, H. Moch, and N. Beerenwinkel,

“Reliable detection of subclonal single-nucleotide variants in tumor cell populations,” Nature

communications, vol. 3, p. 811, 2012. [Online]. Available: https://doi.org/10.1038/ncomms1814

[60] J. Carrot-Zhang and J. Majewski, “Lolopicker: detecting low allelic-fraction variants from

low-quality cancer samples,” Oncotarget, vol. 8, no. 23, pp. 37 032–37 040, 2017. [Online].

Available: https://doi.org/10.18632/oncotarget.16144

[61] Y. Fan, L. Xi, D. S. T. Hughes, J. Zhang, J. Zhang, P. A. Futreal, D. A. Wheeler, and W. Wang,

“Muse: accounting for tumor heterogeneity using a sample-specific error model improves

88

https://doi.org/10.1093/bioinformatics/btu338
https://doi.org/10.1186/gb-2013-14-8-r90
https://doi.org/10.1093/bioinformatics/bts053
https://doi.org/10.1186/s12918-016-0300-5
https://doi.org/10.1038/nbt.2514
https://doi.org/10.1093/nar/gkt126
https://doi.org/10.1038/ncomms1814
https://doi.org/10.18632/oncotarget.16144

sensitivity and specificity in mutation calling from sequencing data,” Genome Biology, vol. 17,

no. 1, p. 178, 2016. [Online]. Available: https://doi.org/10.1186/s13059-016-1029-6

[62] H. Xu, J. DiCarlo, R. V. Satya, Q. Peng, and Y. Wang, “Comparison of somatic mutation calling

methods in amplicon and whole exome sequence data,” BMC Genomics, vol. 15, no. 1, pp.

244–253, 2014. [Online]. Available: https://doi.org/10.1186/1471-2164-15-244

[63] C. Xu, M. R. Nezami Ranjbar, Z. Wu, J. DiCarlo, and Y. Wang, “Detecting very low

allele fraction variants using targeted dna sequencing and a novel molecular barcode-aware

variant caller,” BMC Genomics, vol. 18, no. 1, p. 5, Jan 2017. [Online]. Available:

https://doi.org/10.1186/s12864-016-3425-4

[64] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A. Miller, E. R. Mardis,

L. Ding, and R. K. Wilson, “Varscan 2: Somatic mutation and copy number alteration discovery

in cancer by exome sequencing,” Genome Research, vol. 22, pp. 568–576, 2012. [Online].

Available: https://doi.org/10.1101/gr.129684.111

[65] A. Rubinsteyn, J. Kodysh, I. Hodes, S. Mondet, B. A. Aksoy, J. P. Finnigan, N. Bhardwaj, and

J. Hammerbacher, “Computational pipeline for the PGV-001 neoantigen vaccine trial,” Frontiers in

Immunology, vol. 8, p. 1807, 2018. [Online]. Available: https://doi.org/10.3389/fimmu.2017.01807

[66] D. H. Spencer, M. Tyagi, F. Vallania, A. J. Bredemeyer, J. D. Pfeifer, R. D. Mitra,

and E. J. Duncavage, “Performance of common analysis methods for detecting low-

frequency single nucleotide variants in targeted next-generation sequence data,” The

Journal of Molecular Diagnostics, vol. 16, no. 1, pp. 75 – 88, 2014. [Online]. Available:

https://doi.org/10.1016/j.jmoldx.2013.09.003

[67] S. Sengupta, K. Gulukota, Y. Zhu, C. Ober, K. Naughton, W. Wentworth-Sheilds, and Y. Ji,

“Ultra-fast local-haplotype variant calling using paired-end dna-sequencing data reveals somatic

mosaicism in tumor and normal blood samples,” Nucleic Acids Res, vol. 44, 09 2015. [Online].

Available: https://doi.org/10.1093/nar/gkv953

[68] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker,

G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and . G. P. A. Group, “The variant

call format and VCFtools,” Bioinformatics, vol. 27, no. 15, pp. 2156–2158, 06 2011. [Online].

Available: https://doi.org/10.1093/bioinformatics/btr330

[69] Samtools, “Bcftools Homepage,” https://samtools.github.io/bcftools/, last accessed 23 Oct 2019.

[70] A. Rubinsteyn, J. Kodysh, and B. A. Aksoy, “hammerlab/isovar: Version 0.7.0,” 2017.

89

https://doi.org/10.1186/s13059-016-1029-6
https://doi.org/10.1186/1471-2164-15-244
https://doi.org/10.1186/s12864-016-3425-4
https://doi.org/10.1101/gr.129684.111
https://doi.org/10.3389/fimmu.2017.01807
https://doi.org/10.1016/j.jmoldx.2013.09.003
https://doi.org/10.1093/nar/gkv953
https://doi.org/10.1093/bioinformatics/btr330
https://samtools.github.io/bcftools/

[71] EMBL-EBI, “Ensembl Homepage,” https://www.ensembl.org/index.html, last accessed 01 Dec

2020.

[72] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken,

D. Barrell, A. Zadissa, S. Searle, I. Barnes, A. Bignell, V. Boychenko, T. Hunt, M. Kay,

G. Mukherjee, J. Rajan, G. Despacio-Reyes, G. Saunders, C. Steward, R. Harte, M. Lin,

C. Howald, A. Tanzer, T. Derrien, J. Chrast, N. Walters, S. Balasubramanian, B. Pei, M. Tress,

J. M. Rodriguez, I. Ezkurdia, J. van Baren, M. Brent, D. Haussler, M. Kellis, A. Valencia,

A. Reymond, M. Gerstein, R. Guigó, and T. J. Hubbard, “GENCODE: the reference human

genome annotation for The ENCODE Project,” Genome Res., vol. 22, no. 9, pp. 1760–1774,

2012. [Online]. Available: https://www.doi.org/10.1101/gr.135350.111

[73] W. McLaren, L. Gil, S. E. Hunt, H. S. Riat, G. R. S. Ritchie, A. Thormann, P. Flicek, and

F. Cunningham, “The ensembl variant effect predictor,” Genome Biology, vol. 17, no. 1, p. 122,

Jun 2016. [Online]. Available: https://doi.org/10.1186/s13059-016-0974-4

[74] K. Wang, M. Li, and H. Hakonarson, “Annovar: functional annotation of genetic variants from

high-throughput sequencing data,” Nucleic Acids Research, vol. 38, no. 16, p. e164, 2010.

[Online]. Available: https://doi.org/10.1093/nar/gkq603

[75] D. Middleton, F. Gonzalez, M. Fernandez-Vina, J.-M. Tiercy, S. G. E. Marsh, M. Aubrey,

M. G. Bicalho, A. Canossi, V. Carter, S. Cate, F. R. Guerini, P. Loiseau, M. Martinetti,

M. E. Moraes, V. Morales, J. Perasaari, M. Setterholm, M. Sprague, S. Tavoularis, M. Torres,

S. Vidal, C. Witt, G. Wohlwend, and K. L. Yang, “A bioinformatics approach to ascertaining the

rarity of hla alleles,” Tissue Antigens, vol. 74, no. 6, pp. 480–485, 2009. [Online]. Available:

https://doi.org/10.1111/j.1399-0039.2009.01361.x

[76] S. J. Mack, P. Cano, J. A. Hollenbach, J. He, C. K. Hurley, D. Middleton, M. E. Moraes, S. E.

Pereira, J. H. Kempenich, E. F. Reed, M. Setterholm, A. G. Smith, M. G. Tilanus, M. Torres,

M. D. Varney, C. E. M. Voorter, G. F. Fischer, K. Fleischhauer, D. Goodridge, W. Klitz, A.-M.

Little, M. Maiers, S. G. E. Marsh, C. R. Müller, H. Noreen, E. H. Rozemuller, A. Sanchez-Mazas,

D. Senitzer, E. Trachtenberg, and M. Fernandez-Vina, “Common and well-documented hla

alleles: 2012 update to the cwd catalogue,” Tissue Antigens, vol. 81, no. 4, pp. 194–203, 2013.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/tan.12093

[77] A. Szolek, B. Schubert, C. Mohr, M. Sturm, M. Feldhahn, and O. Kohlbacher, “Optitype: precision

hla typing from next-generation sequencing data,” Bioinformatics, vol. 30, no. 23, pp. 3310–3316,

2014. [Online]. Available: https://doi.org/10.1093/bioinformatics/btu548

90

https://www.ensembl.org/index.html
https://www.doi.org/10.1101/gr.135350.111
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1111/j.1399-0039.2009.01361.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/tan.12093
https://doi.org/10.1093/bioinformatics/btu548

[78] D. C. Bauer, A. Zadoorian, L. O. W. Wilson, M. G. H. Alliance, and N. P. Thorne,

“Evaluation of computational programs to predict hla genotypes from genomic sequencing

data,” Briefings in Bioinformatics, vol. 19, no. 2, pp. 179–187, 2018. [Online]. Available:

https://doi.org/10.1093/bib/bbw097

[79] N. Nariai, K. Kojima, S. Saito, T. Mimori, Y. Sato, Y. Kawai, Y. Yamaguchi-Kabata, J. Yasuda,

and M. Nagasaki, “Hla-vbseq: accurate hla typing at full resolution from whole-genome

sequencing data,” BMC Genomics, vol. 16, no. 2, p. S7, 2015. [Online]. Available:

https://doi.org/10.1186/1471-2164-16-S2-S7

[80] Y. Bai, M. Ni, B. Cooper, Y. Wei, and W. Fury, “Inference of high resolution hla types using

genome-wide rna or dna sequencing reads,” BMC Genomics, vol. 15, no. 1, p. 325, 2014.

[Online]. Available: https://doi.org/10.1186/1471-2164-15-325

[81] S. Boegel, M. Löwer, M. Schäfer, T. Bukur, J. de Graaf, V. Boisguérin, Ö. Türeci, M. Diken, J. C.

Castle, and U. Sahin, “HLA typing from RNA-Seq sequence reads,” Genome Medicine, vol. 4,

no. 12, p. 102, 2012. [Online]. Available: https://doi.org/10.1186/gm403

[82] M. Andreatta and M. Nielsen, “Gapped sequence alignment using artificial neural networks:

application to the MHC class I system,” Bioinformatics, vol. 32, no. 4, pp. 511–517, 2016. [Online].

Available: https://doi.org/10.1093/bioinformatics/btv639

[83] M. Nielsen and M. Andreatta, “NetMHCpan-3.0; improved prediction of binding to

MHC class I molecules integrating information from multiple receptor and peptide length

datasets,” Genome Medicine, vol. 8, no. 1, p. 33, 2016. [Online]. Available: https:

//doi.org/10.1186/s13073-016-0288-x

[84] R. Vita, J. A. Overton, J. A. Greenbaum, J. Ponomarenko, J. D. Clark, J. R. Cantrell, D. K.

Wheeler, J. L. Gabbard, D. Hix, A. Sette, and B. Peters, “The immune epitope database

(IEDB) 3.0,” Nucleic Acids Research, vol. 43, no. D1, pp. D405–D412, 2015. [Online]. Available:

https://doi.org/10.1093/nar/gku938

[85] Immune Epitope Database and Analysis Resource, “MHC I Automated Server Benchmarks,” http:

//tools.iedb.org/auto bench/mhci/weekly/, last accessed 1 Jan 2019.

[86] E. Karosiene, C. Lundegaard, O. Lund, and M. Nielsen, “NetMHCcons: a consensus method

for the major histocompatibility complex class I predictions,” Immunogenetics, vol. 64, no. 3, pp.

177–186, 2012. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/22009319

91

https://doi.org/10.1093/bib/bbw097
https://doi.org/10.1186/1471-2164-16-S2-S7
https://doi.org/10.1186/1471-2164-15-325
https://doi.org/10.1186/gm403
https://doi.org/10.1093/bioinformatics/btv639
https://doi.org/10.1186/s13073-016-0288-x
https://doi.org/10.1186/s13073-016-0288-x
https://doi.org/10.1093/nar/gku938
http://tools.iedb.org/auto_bench/mhci/weekly/
http://tools.iedb.org/auto_bench/mhci/weekly/
https://www.ncbi.nlm.nih.gov/pubmed/22009319

[87] M. Andreatta, V. I. Jurtz, T. Kaever, A. Sette, B. Peters, and M. Nielsen, “Machine learning reveals

a non-canonical mode of peptide binding to mhc class ii molecules,” Immunology, vol. 152, no. 2,

pp. 255–264, 2017. [Online]. Available: https://doi.org/10.1111/imm.12763

[88] M. Nielsen, C. Lundegaard, T. Blicher, B. Peters, A. Sette, S. Justesen, S. Buus, and O. Lund,

“Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence:

NetMHCIIpan,” PLOS Computational Biology, vol. 4, no. 7, pp. 1–10, 2008. [Online]. Available:

https://doi.org/10.1371/journal.pcbi.1000107

[89] W. Fleri, “Selecting thresholds (cut-offs) for MHC class I and II binding predictions,” http://help.

iedb.org/entries/23854373, last accessed 1 Jan 2019.

[90] S. Paul, D. Weiskopf, M. A. Angelo, J. Sidney, B. Peters, and A. Sette, “HLA Class I Alleles

are associated with peptide-binding repertoires of different size, affinity, and immunogenicity,”

The Journal of Immunology, vol. 191, no. 12, pp. 5831–5839, 2013. [Online]. Available:

https://doi.org/10.4049/jimmunol.1302101

[91] B. Engels, V. H. Engelhard, J. Sidney, A. Sette, D. C. Binder, R. B. Liu, D. M. Kranz, S. C.

Meredith, D. A. Rowley, and H. Schreiber, “Relapse or eradication of cancer is predicted by

peptide-major histocompatibility complex affinity,” Cancer Cell, vol. 23, no. 4, pp. 516–526, 2013.

[Online]. Available: https://doi.org/10.1016/j.ccr.2013.03.018

[92] E. Assarsson, J. Sidney, C. Oseroff, V. Pasquetto, H.-H. Bui, N. Frahm, C. Brander, B. Peters,

H. Grey, and A. Sette, “A quantitative analysis of the variables affecting the repertoire of T

cell specificities recognized after vaccinia virus infection,” The Journal of Immunology, vol. 178,

no. 12, pp. 7890–7901, 2007. [Online]. Available: https://doi.org/10.4049/jimmunol.178.12.7890

[93] S. H. van der Burg, M. J. Visseren, R. M. Brandt, W. M. Kast, and C. J. Melief,

“Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide

complex stability,” J. Immunol., vol. 156, no. 9, pp. 3308–3314, 1996. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pubmed/8617954

[94] K. W. Jørgensen, M. Rasmussen, S. Buus, and M. Nielsen, “NetMHCstab – predicting stability of

peptide–MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery,” Immunology,

vol. 141, no. 1, pp. 18–26, 2014. [Online]. Available: https://doi.org/10.1111/imm.12160

[95] J. J. A. Calis, M. Maybeno, J. A. Greenbaum, D. Weiskopf, A. D. De Silva, A. Sette,

C. Keşmir, and B. Peters, “Properties of mhc class i presented peptides that enhance

immunogenicity,” PLOS Computational Biology, vol. 9, no. 10, pp. 1–13, 10 2013. [Online].

Available: https://doi.org/10.1371/journal.pcbi.1003266

92

https://doi.org/10.1111/imm.12763
https://doi.org/10.1371/journal.pcbi.1000107
http://help.iedb.org/entries/23854373
http://help.iedb.org/entries/23854373
https://doi.org/10.4049/jimmunol.1302101
https://doi.org/10.1016/j.ccr.2013.03.018
https://doi.org/10.4049/jimmunol.178.12.7890
https://www.ncbi.nlm.nih.gov/pubmed/8617954
https://doi.org/10.1111/imm.12160
https://doi.org/10.1371/journal.pcbi.1003266

[96] T. Trolle and M. Nielsen, “Nettepi: an integrated method for the prediction of T

cell epitopes,” Immunogenetics, vol. 66, no. 7, pp. 449–456, 2014. [Online]. Available:

https://doi.org/10.1007/s00251-014-0779-0

[97] Y. Kim, J. Sidney, S. Buus, A. Sette, M. Nielsen, and B. Peters, “Dataset size and

composition impact the reliability of performance benchmarks for peptide-MHC binding

predictions,” BMC Bioinformatics, vol. 15, no. 1, p. 241, 2014. [Online]. Available:

https://doi.org/10.1186/1471-2105-15-241

[98] H. Pearson, T. Daouda, D. P. Granados, C. Durette, E. Bonneil, M. Courcelles, A. Rodenbrock,

J.-P. Laverdure, C. Côté, S. Mader, S. Lemieux, P. Thibault, and C. Perreault, “MHC

class I–associated peptides derive from selective regions of the human genome,” The

Journal of Clinical Investigation, vol. 126, no. 12, pp. 4690–4701, 2016. [Online]. Available:

https://doi.org/10.1172/JCI88590

[99] L. R. Olsen, S. Tongchusak, H. Lin, E. L. Reinherz, V. Brusic, and G. L. Zhang, “TANTIGEN: a

comprehensive database of tumor T cell antigens,” Cancer Immunology, Immunotherapy, vol. 66,

no. 6, pp. 731–735, 2017. [Online]. Available: https://doi.org/10.1007/s00262-017-1978-y

[100] H. G. Rammensee, J. Bachmann, N. P. N. Emmerich, O. A. Bachor, and S. Stevanović,

“SYFPEITHI: database for MHC ligands and peptide motifs,” Immunogenetics, vol. 50, no. 3, pp.

213–219, 1999. [Online]. Available: https://doi.org/10.1007/s002510050595

[101] N. Vigneron, V. Stroobant, B. J. Van den Eynde, and P. van der Bruggen, “Database of t

cell-defined human tumor antigens: the 2013 update,” Cancer Immun, vol. 13, 2013. [Online].

Available: https://www.ncbi.nlm.nih.gov/pubmed/23882160

[102] H. Thorvaldsdóttir, J. T. Robinson, and J. P. Mesirov, “Integrative Genomics Viewer (IGV):

high-performance genomics data visualization and exploration,” Briefings in Bioinformatics,

vol. 14, no. 2, pp. 178–192, 04 2012. [Online]. Available: https://doi.org/10.1093/bib/bbs017

[103] J. T. Robinson, H. Thorvaldsdóttir, A. M. Wenger, A. Zehir, and J. P. Mesirov, “Variant review with

the integrative genomics viewer,” Cancer Research, vol. 77, no. 21, pp. e31–e34, 2017. [Online].

Available: https://cancerres.aacrjournals.org/content/77/21/e31

[104] A.-M. Bjerregaard, M. Nielsen, S. R. Hadrup, Z. Szallasi, and A. C. Eklund, “MuPeXI: prediction of

neo-epitopes from tumor sequencing data,” Cancer Immunology, Immunotherapy, vol. 66, no. 9,

pp. 1123–1130, 2017. [Online]. Available: https://doi.org/10.1007/s00262-017-2001-3

[105] J. Hundal, B. M. Carreno, A. A. Petti, G. P. Linette, O. L. Griffith, E. R. Mardis,

and M. Griffith, “pVAC-Seq: A genome-guided in silico approach to identifying tumor

93

https://doi.org/10.1007/s00251-014-0779-0
https://doi.org/10.1186/1471-2105-15-241
https://doi.org/10.1172/JCI88590
https://doi.org/10.1007/s00262-017-1978-y
https://doi.org/10.1007/s002510050595
https://www.ncbi.nlm.nih.gov/pubmed/23882160
https://doi.org/10.1093/bib/bbs017
https://cancerres.aacrjournals.org/content/77/21/e31
https://doi.org/10.1007/s00262-017-2001-3

neoantigens,” Genome Medicine, vol. 8, no. 1, p. 11, 2016. [Online]. Available: https:

//doi.org/10.1186/s13073-016-0264-5

[106] F. Duan, J. Duitama, S. A. Seesi, C. Ayres, S. Corcelli, A. Pawashe, T. Blanchard, D. McMahon,

J. Sidney, A. Sette, B. Baker, I. Mandoiu, and P. Srivastava, “Genomic and bioinformatic

profiling of mutational neo-epitopes reveals new rules to predict anti-cancer immunogenicity,”

Journal of Experimental Medicine, vol. 211, no. 11, pp. 2231–2248, 2014. [Online]. Available:

http://jem.rupress.org/content/211/11/2231.full

[107] GNU Operating System, “GNU make,” https://www.gnu.org/software/make/manual/make.html, last

accessed 24 Oct 2019.

[108] “Shark Cluster Homepage,” https://git.lumc.nl/shark/SHARK/wikis/home, last accessed 4 Jan

2019.

[109] “Docker Hub Homepage,” https://hub.docker.com/, last accessed 5 Jan 2019.

[110] Red Hat, “Search Quay,” https://quay.io/search, last accessed 21 Oct 2019.

[111] “Singularity Homepage,” https://www.sylabs.io/docs/, last accessed 5 Jan 2019.

[112] “Open Grid Scheduler,” http://gridscheduler.sourceforge.net/, last accessed 5 Jan 2019.

[113] Python Software Foundation, “Welcome to Python.org,” https://www.python.org/, last accessed 21

Oct 2019.

[114] The R Foundation, “R: The R Project for Statistical Computing,” https://www.r-project.org/, last

accessed 21 Oct 2019.

[115] Oracle Corporation, “OpenJDK,” https://openjdk.java.net/, last accessed 21 Oct 2019.

[116] Oracle, “Java SE at a Glance,” https://www.oracle.com/technetwork/java/javase/overview/index.

html, last accessed 21 Oct 2019.

[117] Software Freedom Conservancy, “Git,” https://git-scm.com/, last accessed 21 Oct 2019.

[118] “Anaconda software distribution. computer software,” https://anaconda.com, last accessed 30 Nov

2019.

[119] G. V. der Auwera, “OpenWDL,” http://openwdl.org/, last accessed 26 Oct 2019.

[120] “DNAnexus Homepage,” https://www.dnanexus.com/, last accessed 5 Jan 2019.

[121] “dxWDL Homepage,” https://github.com/dnanexus/dxWDL, last accessed 5 Jan 2019.

94

https://doi.org/10.1186/s13073-016-0264-5
https://doi.org/10.1186/s13073-016-0264-5
http://jem.rupress.org/content/211/11/2231.full
https://www.gnu.org/software/make/manual/make.html
https://git.lumc.nl/shark/SHARK/wikis/home
https://hub.docker.com/
https://quay.io/search
https://www.sylabs.io/docs/
http://gridscheduler.sourceforge.net/
https://www.python.org/
https://www.r-project.org/
https://openjdk.java.net/
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://www.oracle.com/technetwork/java/javase/overview/index.html
https://git-scm.com/
https://anaconda.com
http://openwdl.org/
https://www.dnanexus.com/
https://github.com/dnanexus/dxWDL

[122] J. Organization, “Introducing JSON,” https://www.json.org/, last accessed 27 Oct 2019.

[123] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer, A. Kartashov, D. Leehr,

H. Ménager, M. Nedeljkovich, and et al., “Common workflow language, v1.0,” 2016. [Online].

Available: https://doi.org/10.6084/m9.figshare.3115156.v2

[124] O. Ben-Kiki, C. Evans, and I. döt Net, “The Official YAML Website,” https://yaml.org/, last accessed

27 Oct 2019.

[125] “BioWDL Homepage,” https://biowdl.github.io/, last accessed 5 Jan 2019.

[126] Open Source Initiative, “MIT License,” https://opensource.org/licenses/MIT, last accessed 27 Oct

2019.

[127] Sequencing Analysis Support Core Team (LUMC), “Biopet Github Repository,” https://github.com/

biopet/biopet, last accessed 25 Aug 2020.

[128] Open Source Initiative, “The 3-Clause BSD License,” https://opensource.org/licenses/

BSD-3-Clause, last accessed 27 Oct 2019.

[129] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, “Apache

spark: A unified engine for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56–65, Oct.

2016. [Online]. Available: https://doi.org/10.1145/2934664

[130] “Google cloud homepage,” https://cloud.google.com/, last accessed 18 Nov 2019.

[131] D. Wijnand, “HOCON Informal Specification,” https://github.com/lightbend/config/blob/master/

HOCON.md#hocon-human-optimized-config-object-notation, last accessed 29 Oct 2019.

[132] “Singularity Library Homepage,” https://cloud.sylabs.io/library, last accessed 5 Jan 2019.

[133] Red Hat , “Biocontainers,” https://quay.io/organization/biocontainers, last accessed 21 Oct 2019.

[134] D. Cats, R. Vorderman, P. van ’t Hof, and A. Paulo, “BioWDL germline-DNA project, com-

mit 0ec8409a14c718f50130b9af9a1eadd76c28dd09,” https://github.com/biowdl/germline-DNA/

tree/0ec8409a14c718f50130b9af9a1eadd76c28dd09, last accessed 27 Oct 2019.

[135] Git, “Git Submodules,” https://git-scm.com/book/en/v2/Git-Tools-Submodules, last accessed 18

Oct 2019.

[136] Object Management Group Unified Modeling Language, “OMG® Unified Modeling Language®

Version 2.5.1,” https://www.omg.org/spec/UML/2.5.1, Dec 2017.

95

https://www.json.org/
https://doi.org/10.6084/m9.figshare.3115156.v2
https://yaml.org/
https://biowdl.github.io/
https://opensource.org/licenses/MIT
https://github.com/biopet/biopet
https://github.com/biopet/biopet
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://doi.org/10.1145/2934664
https://cloud.google.com/
https://github.com/lightbend/config/blob/master/HOCON.md#hocon-human-optimized-config-object-notation
https://github.com/lightbend/config/blob/master/HOCON.md#hocon-human-optimized-config-object-notation
https://cloud.sylabs.io/library
https://quay.io/organization/biocontainers
https://github.com/biowdl/germline-DNA/tree/0ec8409a14c718f50130b9af9a1eadd76c28dd09
https://github.com/biowdl/germline-DNA/tree/0ec8409a14c718f50130b9af9a1eadd76c28dd09
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.omg.org/spec/UML/2.5.1

[137] P. Ewels, M. Magnusson, S. Lundin, and M. Käller, “MultiQC: summarize analysis results for

multiple tools and samples in a single report,” Bioinformatics, vol. 32, no. 19, pp. 3047–3048, 06

2016. [Online]. Available: https://doi.org/10.1093/bioinformatics/btw354

[138] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with bwa-mem,” arXiv:

Genomics, 2013. [Online]. Available: https://arxiv.org/abs/1303.3997

[139] S. Thankaswamy-Kosalai, P. Sen, and I. Nookaew, “Evaluation and assessment of

read-mapping by multiple next-generation sequencing aligners based on genome-wide

characteristics,” Genomics, vol. 109, no. 3, pp. 186 – 191, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0888754317300204

[140] G. A. Van der Auwera, M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy-

Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K. V. Garimella,

D. Altshuler, S. Gabriel, and M. A. DePristo, “From fastq data to high-confidence

variant calls: The genome analysis toolkit best practices pipeline,” Current Protocols in

Bioinformatics, vol. 43, no. 1, pp. 11.10.1–11.10.33, 2013. [Online]. Available: https:

//currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/0471250953.bi1110s43

[141] Broad Institute, “(How to) Map reads to a reference with alter-

nate contigs like GRCH38,” https://gatk.broadinstitute.org/hc/en-us/articles/

360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-like-GRCH38, last

accessed 13 June 2019.

[142] ——, “How to Call somatic mutations using GATK4 Mutect2,” https://gatk.broadinstitute.org/hc/

en-us/articles/360035531132--How-to-Call-somatic-mutations-using-GATK4-Mutect2, last ac-

cessed 23 Aug 2019.

[143] M. Schirmer, R. D’Amore, U. Z. Ijaz, N. Hall, and C. Quince, “Illumina error profiles: resolving

fine-scale variation in metagenomic sequencing data,” BMC bioinformatics, vol. 17, pp. 125–125,

Mar 2016. [Online]. Available: https://doi.org/10.1186/s12859-016-0976-y

[144] Broad Institute, “Mutect2 Notes,” https://console.cloud.google.com/storage/browser/

gatk-best-practices/somatic-hg38;tab=objects?project=broad-dsde-outreach&prefix=, last

accessed 05 Sep 2020.

[145] ——, “GATK Resource Bundle,” https://gatk.broadinstitute.org/hc/en-us/articles/

360035890811-Resource-bundle, last accessed 05 Sep 2020.

[146] ——, “GATK hg38 Resource Bundle,” https://console.cloud.google.com/storage/browser/

genomics-public-data/resources/broad/hg38/v0, last accessed 05 Sep 2020.

96

https://doi.org/10.1093/bioinformatics/btw354
https://arxiv.org/abs/1303.3997
http://www.sciencedirect.com/science/article/pii/S0888754317300204
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/0471250953.bi1110s43
https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/0471250953.bi1110s43
https://gatk.broadinstitute.org/hc/en-us/articles/360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-like-GRCH38
https://gatk.broadinstitute.org/hc/en-us/articles/360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-like-GRCH38
https://gatk.broadinstitute.org/hc/en-us/articles/360035531132--How-to-Call-somatic-mutations-using-GATK4-Mutect2
https://gatk.broadinstitute.org/hc/en-us/articles/360035531132--How-to-Call-somatic-mutations-using-GATK4-Mutect2
https://doi.org/10.1186/s12859-016-0976-y
https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-hg38;tab=objects?project=broad-dsde-outreach&prefix=
https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-hg38;tab=objects?project=broad-dsde-outreach&prefix=
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://gatk.broadinstitute.org/hc/en-us/articles/360035890811-Resource-bundle
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0

[147] ——, “GATK Somatic hg38 Resource Bundle,” https://console.cloud.google.com/storage/browser/

gatk-best-practices/somatic-hg38, last accessed 05 Sep 2020.

[148] Sequencing Analysis Support Core Team (LUMC), “Chunked-scatter Github Repository,” https:

//github.com/biowdl/chunked-scatter, last accessed 16 Jul 2019.

[149] AstraZeneca, “VarDict Github Repository,” https://github.com/AstraZeneca-NGS/VarDictJava, last

accessed 03 Sep 2019.

[150] Alex Rubinsteyn and Julia Kodysh and B. Arman Aksoy, “Isovar GitHub Repository,” https://github.

com/openvax/isovar, last accessed 08 Sep 2020.

[151] “Isovar GitHub Code Frequency,” https://github.com/openvax/isovar/graphs/code-frequency, last

accessed 28 Jul 2019.

[152] A. Paulo and D. Ruano, “Binding Prediction Module GitHub Repository,” https://github.com/

Amfgcp/NeoSeq WDL/, last accessed 09 Sep 2020.

[153] Open Source Initiative, “GNU General Public License version 3,” https://opensource.org/licenses/

GPL-3.0, last accessed 3 Nov 2019.

[154] A. Rubinsteyn, “PyPi mhctools page,” https://pypi.org/project/mhctools/, last accessed 02 Sep

2019.

[155] A. Paulo and D. Ruano, “Modified mhctools (GitHub fork),” https://github.com/Amfgcp/mhctools,

last accessed 09 Sep 2020.

[156] B. Reynisson, B. Alvarez, S. Paul, B. Peters, and M. Nielsen, “NetMHCpan-4.1 and

NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif

deconvolution and integration of MS MHC eluted ligand data,” Nucleic Acids Research, vol. 48,

no. W1, pp. W449–W454, 05 2020. [Online]. Available: https://doi.org/10.1093/nar/gkaa379

[157] “Uniprot Homepage,” https://www.uniprot.org/, last accessed 25 Aug 2019.

[158] T. N. M. Schumacher, M. L. H. De Bruijn, L. N. Vernie, W. M. Kast, C. J. M. Melief, J. J. Neefjes,

and H. L. Ploegh, “Peptide selection by MHC class I molecules,” Nature, vol. 350, no. 6320, pp.

703–706, Apr 1991. [Online]. Available: https://doi.org/10.1038/350703a0

[159] “Biopython Package Documentation,” https://biopython.org/, last accessed 13 Sep 2019.

[160] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local alignment search tool.”

Journal of molecular biology, vol. 215(3), pp. 403–10, 1990.

97

https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-hg38
https://console.cloud.google.com/storage/browser/gatk-best-practices/somatic-hg38
https://github.com/biowdl/chunked-scatter
https://github.com/biowdl/chunked-scatter
https://github.com/AstraZeneca-NGS/VarDictJava
https://github.com/openvax/isovar
https://github.com/openvax/isovar
https://github.com/openvax/isovar/graphs/code-frequency
https://github.com/Amfgcp/NeoSeq_WDL/
https://github.com/Amfgcp/NeoSeq_WDL/
https://opensource.org/licenses/GPL-3.0
https://opensource.org/licenses/GPL-3.0
https://pypi.org/project/mhctools/
https://github.com/Amfgcp/mhctools
https://doi.org/10.1093/nar/gkaa379
https://www.uniprot.org/
https://doi.org/10.1038/350703a0
https://biopython.org/

[161] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden,

“BLAST+: architecture and applications,” BMC Bioinformatics, vol. 10, no. 1, p. 421, Dec 2009.

[Online]. Available: https://doi.org/10.1186/1471-2105-10-421

[162] Bootstrap Team, “Boostrap - The most popular HTML, CSS, and JS library in the world,” https:

//getbootstrap.com/, last accessed 21 Oct 2019.

[163] S. Frölich, A. Paulo, and D. Ruano, “R Shiny Module GitHub Repository,” https://github.com/

Amfgcp/neoseq shiny, last accessed 12 Sep 2020.

[164] A. Paulo, S. Frölich, and D. Ruano, “R Shiny Module Web Deployment,” https://neoseq.shinyapps.

io/shiny/, last accessed 12 Sep 2020.

[165] RStudio, “Shinnyapps Cloud Service,” https://www.shinyapps.io/, last accessed 12 Sep 2020.

[166] A. Paulo and D. Ruano, “R Shiny Module variant count/typing script,” https://github.com/Amfgcp/

neoseq shiny/blob/master/shiny/scripts/varCounts.R, last accessed 12 Sep 2020.

[167] “Travis-CI Homepage,” https://travis-ci.com/, last accessed 5 Jan 2019.

[168] H. Krekel, “Pytest Framework Homepage,” https://docs.pytest.org/en/latest/, last accessed 16 Oct

2019.

[169] A. Paulo, “Merged pull request (#14) containing integration tests,” https://github.com/biowdl/

somatic-variantcalling/pull/14, last accessed 9 Aug 2019.

[170] P. van ’t Hof, R. Vorderman, and D. Cats, “Integrated Pipeline’s Travis CI root configuration file,”

https://github.com/biowdl/germline-DNA/blob/0ec8409a14c718f50130b9af9a1eadd76c28dd09/

.travis.yml, last accessed 26 Jun 2019.

[171] N. Karulin, “VarDict’s linear memory usage explained (GitHub comment),” https://github.

com/AstraZeneca-NGS/VarDictJava/issues/80#issuecomment-357912754, last accessed 27 Mar

2019.

[172] International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), “ICGC-

TCGA DREAM Mutation Calling challenge,” https://www.synapse.org/#!Synapse:syn312572/wiki/

58893, last accessed 01 Apr 2019.

[173] R. Semeraro, V. Orlandini, and A. Magi, “Xome-blender: A novel cancer genome

simulator,” PLOS ONE, vol. 13, no. 4, pp. 1–19, 04 2018. [Online]. Available: https:

//doi.org/10.1371/journal.pone.0194472

98

https://doi.org/10.1186/1471-2105-10-421
https://getbootstrap.com/
https://getbootstrap.com/
https://github.com/Amfgcp/neoseq_shiny
https://github.com/Amfgcp/neoseq_shiny
https://neoseq.shinyapps.io/shiny/
https://neoseq.shinyapps.io/shiny/
https://www.shinyapps.io/
https://github.com/Amfgcp/neoseq_shiny/blob/master/shiny/scripts/varCounts.R
https://github.com/Amfgcp/neoseq_shiny/blob/master/shiny/scripts/varCounts.R
https://travis-ci.com/
https://docs.pytest.org/en/latest/
https://github.com/biowdl/somatic-variantcalling/pull/14
https://github.com/biowdl/somatic-variantcalling/pull/14
https://github.com/biowdl/germline-DNA/blob/0ec8409a14c718f50130b9af9a1eadd76c28dd09/.travis.yml
https://github.com/biowdl/germline-DNA/blob/0ec8409a14c718f50130b9af9a1eadd76c28dd09/.travis.yml
https://github.com/AstraZeneca-NGS/VarDictJava/issues/80#issuecomment-357912754
https://github.com/AstraZeneca-NGS/VarDictJava/issues/80#issuecomment-357912754
https://www.synapse.org/#!Synapse:syn312572/wiki/58893
https://www.synapse.org/#!Synapse:syn312572/wiki/58893
https://doi.org/10.1371/journal.pone.0194472
https://doi.org/10.1371/journal.pone.0194472

[174] U. Paila, B. A. Chapman, R. Kirchner, and A. R. Quinlan, “Gemini: Integrative exploration of

genetic variation and genome annotations,” PLOS Computational Biology, vol. 9, no. 7, pp. 1–8,

07 2013. [Online]. Available: https://doi.org/10.1371/journal.pcbi.1003153

[175] S. Foissac, “An integrated encyclopedia of DNA elements in the human genome,” Nature, 01

2012. [Online]. Available: https://doi.org/10.1038/nature11247

[176] Broad Institute, “Creating HTML Links to IGV,” https://software.broadinstitute.org/software/igv/

ControlIGV, last accessed 23 Oct 2019.

[177] “Tkinter Homepage,” https://docs.python.org/3.4/library/tkinter.html, last accessed 5 Jan 2019.

[178] “Tk Homepage,” https://tkdocs.com/tutorial/intro.html, last accessed 5 Jan 2019.

[179] RStudio Inc., “Hosting and deployment,” https://shiny.rstudio.com/deploy/, last accessed 24 Oct

2019.

[180] D. Net, “qacct Linux man page,” https://linux.die.net/man/1/qacct, last accessed 24 Oct 2019.

[181] “Coveralls Homepage,” https://coveralls.io/, last accessed 5 Jan 2019.

[182] Broad Institute, “Picard’s LiftoverVcf Tool,” https://gatk.broadinstitute.org/hc/en-us/articles/

360036831351-LiftoverVcf-Picard, last accessed 27 Sep 2020.

[183] University of California Santa Cruz, “UCSC’s Lift Genome Annotations Tool,” https://genome.ucsc.

edu/cgi-bin/hgLiftOver, last accessed 30 May 2019.

99

https://doi.org/10.1371/journal.pcbi.1003153
https://doi.org/10.1038/nature11247
https://software.broadinstitute.org/software/igv/ControlIGV
https://software.broadinstitute.org/software/igv/ControlIGV
https://docs.python.org/3.4/library/tkinter.html
https://tkdocs.com/tutorial/intro.html
https://shiny.rstudio.com/deploy/
https://linux.die.net/man/1/qacct
https://coveralls.io/
https://gatk.broadinstitute.org/hc/en-us/articles/360036831351-LiftoverVcf-Picard
https://gatk.broadinstitute.org/hc/en-us/articles/360036831351-LiftoverVcf-Picard
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver

100

A
Cromwell Pipeline Files

A.1 Cromwell Shark Cluster Configuration

The Cromwell configuration file (in the HOCON format) that was employed in the Shark HPC cluster is

shown in Listings A.1-A.13. Together these listings form the whole configuration file. The parameters

in this configuration file were defined by the Cromwell configuration administrators of the Shark cluster.

The configuration file defines Cromwell’s runtime behavior (covered in Section 3.4).

Listing A.1: Import of default application values and definition of the Cromwell’s server webservice bind port

1 include required(classpath("application"))

2 webservice {

3 port = 8000

4 }

101

Listing A.2: Beginning of the SGE backend-specific configuration

5 backend {

6 default="SGE"

7 providers {

8 SGE {

9 actor -factory = "cromwell.backend.impl.sfs.config.

ConfigBackendLifecycleActorFactory"

Listing A.3: SGE’s general job configuration

10 config {

11 concurrent -job -limit = 200

12 exit -code -timeout -seconds = 120

13 runtime -attributes= """

14 Int? cpu=1

15 Int? memory =4

16 String? docker

17 """

Listing A.4: SGE’s job submission commands for both standard and docker jobs (using SGE’s “qsub” command)

18 submit = """

19 qsub \

20 -terse \

21 -V \

22 -b n \

23 -wd ${cwd} \

24 -N ${job_name} \

25 ${true="-pe BWA" false ="" defined(cpu)} ${cpu} \

26 ${true="-l h_vmem =" false ="" defined(memory)}${memory}${true="G"

false ="" defined(memory)} \

27 -o ${out} \

28 -e ${err} \

29 ${script}

30 """

31 submit -docker = """

32 echo '

102

33 /usr/local/singularity /3.2.1/ bin/singularity exec --containall --bind

/exports ,${cwd}:${docker_cwd} docker ://${docker} sh ${script}

34 rc=$?

35 if [! -f ${cwd}/ execution/rc]

36 then

37 echo "$rc" > ${cwd}/ execution/rc

38 fi

39 ' | \

40 qsub \

41 -terse \

42 -V \

43 -b n \

44 -wd ${cwd} \

45 -N ${job_name} \

46 ${true="-pe BWA" false ="" defined(cpu)} ${cpu} \

47 ${true="-l h_vmem =" false ="" defined(memory)}${memory}${true="G"

false ="" defined(memory)} \

48 -o ${cwd}/ execution/stdout \

49 -e ${cwd}/ execution/stderr

50 """

Listing A.5: SGE’s specification of how to kill a job (kill and kill-docker), how to check if a job is still running

during a cromwell restart (check-alive), and how to read a job identifier from the standard output of the

submission (job-id-regex)

51 kill = "qdel ${job_id}"

52 kill -docker = "qdel ${job_id}"

53 check -alive = "qstat -j ${job_id}"

54 job -id-regex = "(\\d+)"

Listing A.6: SGE’s file system duplication strategies when localizing a file (sorted first-to-last). Cached-copy helps

save space when using docker containers in shared file systems as hard-links do not work between

physical disks and soft-links do not work with docker. With cached-copy, files are copied once to the

physical disk where the workflow is running and then hard-links are used.

55 filesystems {

56 local {

103

57 localization: [

58 "soft -link", "hard -link", "cached -copy", "copy"

59]

Listing A.7: SGE’s file system duplication strategies when copying a cached file (sorted first-to-last). Also includes

file hashing parameters.

60 caching {

61 duplication -strategy: ["soft -link", "hard -link", "copy"]

62 # Computes an md5 hash of the file path and the last modified

time

63 hashing -strategy: "path+modtime"

64 # Checks if a sibling file with the same name and the .md5

extension exists , and if it does , uses the content of this

file as a hash.

65 check -sibling -md5: true

66 }

67 }

68 }

Listing A.8: End of SGE backend-specific configuration with number of task retries after transient failures

70 default -runtime -attributes {

71 maxRetries: 2

72 }

73 }

74 }

75 }

76 }

Listing A.9: General system configuration, focused on limiting the number of I/O requests

77 system {

78 abort -jobs -on-terminate = true

79 io {

80 number -of -requests = 10000

104

81 per = 10 seconds

82 number -of -attempts = 5

83 timeout {

84 default = 5 minutes

85 }

86 }

87 }

Listing A.10: Call caching configuration

88 call -caching {

89 enabled = true

90 invalidate -bad -cache -results = true

91 }

Listing A.11: Database configuration

92 database {

93 profile = "slick.jdbc.MySQLProfile$"

94 db {

95 url = "jdbc:mysql ://res -crom -db01.researchlumc.nl/cromwell_43_db?useSSL=

false&rewriteBatchedStatements=true"

96 user = "XYZ"

97 password = "XYZ"

98 driver = "com.mysql.cj.jdbc.Driver"

99 # Prevents jobs from failing due to maximum number of connections on the

mysql server.

100 numThreads = 3 # Default was 20.

101 maxConnections = 15 # Default

102 idleTimeout = "30s" # Default was 10

103 maxLifetime = "30m" # Default

104 }

105 }

Listing A.12: Workflow options

105

106 workflow -options {

107 # Delays failure until all running jobs are complete

108 workflow -failure -mode = "ContinueWhilePossible"

109 }

Listing A.13: Akka-http [1] (used to serve requests) configuration that limits the load exerted on the HPC node

responsible for job submission (head node)

110 # Limit the number of threads on the headnode

111 akka {

112 actor.default -dispatcher.fork -join -executor {

113 # Number of threads = min(parallelism -factor * cpus , parallelism -max)

114 parallelism -factor = 3.0 # Default

115 parallelism -max = 3

116 }

117 }

A.2 User-defined Pipeline Input Files

A.2.1 Input Definition File

Listings A.14-A.19 show an example of a JSON input file that was used to run the pipeline with real

patient data. On the whole, the listings form a single input file (covered in Section 3.7.2.A). The input

variables available can be generated with Womtool (covered in Section 3.7.3)

Listing A.14: Beginning of the complete user-defined input file example with general parameters

1 {

2 "pipeline.outputDir": "/aligning -somatic/results -NIC7 -alt -pon",

3 "pipeline.dockerTagsFile": "/ github/germline -DNA/dockerTags.yml",

4 "pipeline.reference": {

5 "fasta": "/gatk -b38/Homo_sapiens_assembly38.fasta",

6 "fai": "/gatk -b38/Homo_sapiens_assembly38.fasta.fai",

7 "dict": "/gatk -b38/Homo_sapiens_assembly38.dict"

8 },

106

9 "SomaticVariantcalling.runCombineVariants": "true"

Listing A.15: QC and Adapter Trimming parameters

10 "pipeline.dbSNP": {

11 "file": "/gatk -b38/dbsnp_146.hg38.vcf.gz",

12 "index": "/gatk -b38/dbsnp_146.hg38.vcf.gz.tbi"

13 },

14 "pipeline.sample.Sample.library.Library.bqsr.GatkPreprocess.

baseRecalibrator.knownIndelsSitesVCFs": [

15 "/gatk -b38/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz"

16],

17 "pipeline.sample.Sample.library.Library.bqsr.GatkPreprocess.

baseRecalibrator.knownIndelsSitesVCFIndexes": [

18 "/gatk -b38/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz.tbi"

19],

20 "pipeline.sample.Sample.library.Library.readgroup.Readgroup.qc.

QC.Cutadapt.memory": 16,

Listing A.16: Read Mapping parameters (the sample configuration file used is shown in Listing A.20)

21 "pipeline.sampleConfigFile": "/ config/NIC7.yml",

22 "pipeline.bwaIndex": {

23 "fastaFile": "/gatk -b38/Homo_sapiens_assembly38.fasta",

24 "indexFiles": [

25 "/gatk -b38/Homo_sapiens_assembly38.fasta.64.alt",

26 "/gatk -b38/Homo_sapiens_assembly38.fasta.64.amb",

27 "/gatk -b38/Homo_sapiens_assembly38.fasta.64.ann",

28 "/gatk -b38/Homo_sapiens_assembly38.fasta.64.bwt",

29 "/gatk -b38/Homo_sapiens_assembly38.fasta.64.pac",

30 "/gatk -b38/Homo_sapiens_assembly38.fasta.64.sa"

31]

32 },

33 "pipeline.sample.Sample.library.Library.readgroup.Readgroup.

107

fastqsplitterR2.memory": 10,

34 "pipeline.sample.Sample.library.Library.readgroup.Readgroup.

fastqsplitterR1.memory": 10,

Listing A.17: Somatic Variant Calling parameters – Strelka2

35 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.scatterList.scatterSize": 150000000,

36 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.strelkaSomatic.exome": true,

37 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.mantaSomatic.exome": true,

38 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.strelkaGermline.exome": true,

39 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.gatherVariants.memory": 12,

40 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.gatherIndels.memory": 12,

41 "pipeline.somaticVariantcalling.SomaticVariantcalling.strelka.

Strelka.gatherSVs.memory": 12,

Listing A.18: Somatic Variant Calling parameters – VarDict

42 "pipeline.somaticVariantcalling.SomaticVariantcalling.vardict.

VarDict.varDict.memory": 18,

43 "pipeline.somaticVariantcalling.SomaticVariantcalling.vardict.

VarDict.gatherVcfs.memory": 16,

Listing A.19: Somatic Variant Calling parameters – Mutect2

44 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.scatterList.scatterSize": 150000000,

45 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.scatterList.memory": 10,

108

46 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.mutect2.memory": 16,

47 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.gatherVcfs.memory": 10,

48 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.mutect2.germlineResource": "/gm/somatic -hg38_af -only -

gnomad.hg38.vcf.gz",

49 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.mutect2.germlineResource Index": "/gm/somatic -hg38_af -

only -gnomad.hg38.vcf.gz.tbi",

50 "pipeline.somaticVariantcalling.SomaticVariantcalling.

variantsForContamination": "/gm/somatic -

hg38_small_exac_common_3.hg38.vcf.gz",

51 "pipeline.somaticVariantcalling.SomaticVariantcalling.

variantsForContaminationIndex": "/gm/somatic -

hg38_small_exac_common_3.hg38.vcf.gz.tbi",

52 "pipeline.somaticVariantcalling.SomaticVariantcalling.

sitesForContamination": "/gm/somatic -

hg38_small_exac_common_3.hg38.vcf.gz",

53 "pipeline.somaticVariantcalling.SomaticVariantcalling.

sitesForContaminationIndex": "/gm/somatic -

hg38_small_exac_common_3.hg38.vcf.gz.tbi"

54 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.mutect2.panelOfNormals": "/aligned -NICs/

pon_with_gnomAD.vcf.gz",

55 "pipeline.somaticVariantcalling.SomaticVariantcalling.mutect2.

Mutect2.mutect2.panelOfNormalsIndex": "/aligned -NICs/

pon_with_gnomAD.vcf.gz.tbi",

56 }

A.2.2 Sample Configuration File

Listing A.20 shows the sample configuration file where the paired tumor-normal FASTQ sample files are

specified (covered in Section 3.7.2.B).

109

Listing A.20: Sample configuration file

1 samples:

2 - id: NIC7T

3 control: NIC7N

4 libraries:

5 - id: lib1

6 readgroups:

7 - id: lane1

8 reads:

9 R1: /data/fastq/NIC7T_L003_R1.fastq.gz

10 R2: /data/fastq/NIC7T_L003_R2.fastq.gz

11 - id: lane2

12 reads:

13 R1: /data/fastq/NIC7T_L007_R1.fastq.gz

14 R2: /data/fastq/NIC7T_L007_R2.fastq.gz

15 - id: NIC7N

16 libraries:

17 - id: lib1

18 readgroups:

19 - id: lane1

20 reads:

21 R1: /data/fastq/normals/NIC7N_L003_R1.fastq.gz

22 R2: /data/fastq/normals/NIC7N_L003_R2.fastq.gz

23 - id: lane2

24 reads:

25 R1: /data/fastq/normals/NIC7N_L007_R1.fastq.gz

26 R2: /data/fastq/normals/NIC7N_L007_R2.fastq.gz

110

B
MultiQC Plots

Figures B.1-B.9 were exported directly from MultiQC. These show plots that MultiQC generated auto-

matically – by analysing the pipeline output directory and its sub-directories – after running the QC and

Adapter Trimming and the Read Alignment modules with 9 normal patient samples.

111

Figure B.1: MultiQC’s “Observed Quality Score Counts” plot generated from GATK’s data.

Figure B.2: MultiQC’s “Alignment Summary” plot generated from Picard’s data.

112

Figure B.3: MultiQC’s “Base Distribution” plot (Thymine selected) generated from Picard’s data.

Figure B.4: MultiQC’s “Lengths of Trimmed Sequences” plot generated from Cutadapt’s data.

113

Figure B.5: MultiQC’s “Sequence Counts” plot generated from FastQC’s data.

Figure B.6: MultiQC’s “Per Sequence Quality Scores” plot generated from FastQC’s data.

114

Figure B.7: MultiQC’s “Per Sequence GC Content” plot generated from FastQC’s data.

Figure B.8: MultiQC’s “Sequence Length Distribution” plot generated from FastQC’s data.

115

Figure B.9: MultiQC’s “Adapter Content” plot generated from FastQC’s data.

116

C
ICGC-TCGA DREAM Synthetic Dataset

Validation

C.1 Detailed Results

In this appendix, we present the detailed results of Section 4.2.1 resorting to confusion matrices fol-

lowed by the sensitivity, specificity and precision values. More concretely, the tables shown below detail

the summarized results of Figure 4.1 and Table 4.2 (additionally showing precision values). See Sec-

tion 5.1.2 to understand the disparity between the precision values and the reason for only showing them

here. Figure C.1 contains the confusion matrix template for the other tables, where the validation results

pertaining to the different somatic variant callers or their union are shown.

117

Ground TruthConfusion
Matrix Template TRUE FALSE

TRUE TP FP
Predicted

FALSE FN TN

Sensitivity (TPR) TP / (TP + FN)
Specificity (TNR) TN / (TN + FP)
Precision (PPV) TP / (TP + FP)

Ground Truth
Mutect2

TRUE FALSE
TRUE 3,443 1,170

Predicted
FALSE 94 60,787

Sensitivity (TPR) 0.973
Specificity (TNR) 0.981
Precision (PPV) 0.746

Ground TruthMutect2 and
Strelka2 Union TRUE FALSE

TRUE 3,468 3,829
Predicted

FALSE 69 506,286

Sensitivity (TPR) 0.980
Specificity (TNR) 0.992
Precision (PPV) 0.475

Ground Truth
Strelka2

TRUE FALSE
TRUE 3,386 2,448

Predicted
FALSE 151 469,478

Sensitivity (TPR) 0.957
Specificity (TNR) 0.995
Precision (PPV) 0.580

Ground TruthMutect2, Strelka2
and VarDict Union TRUE FALSE

TRUE 3,505 191,915
Predicted

FALSE 32 1,001,961

Sensitivity (TPR) 0.991
Specificity (TNR) 0.839
Precision (PPV) 0.018

Ground Truth
VarDict

TRUE FALSE
TRUE 3,492 189,694

Predicted
FALSE 45 716,394

Sensitivity (TPR) 0.987
Specificity (TNR) 0.791
Precision (PPV) 0.018

Figure C.1: ICGC-TCGA DREAM challenge synthetic dataset detailed validation results. On the top left, the tem-
plate followed by the remaining tables is shown. The two tables below the template present the results
concerning the union of all or part of the somatic variant callers. On the right, the results for each
variant caller are shown.

118

C.2 Conversion to hg38

Before calling variants on this dataset, we decided to liftover (essentially convert) the ground truth VCF

files and re-map the reads, from the human reference hg19, that they came in, to the hg38 reference.

We used Picard’s and UCSC’s tools [182, 183] to lift over the VCFs and we re-mapped the reads as

mentioned in Section 3.8.2. This was done because hg38 is the default reference in our pipeline as

it greatly expands the repertoire of alternate contigs (contiguous nucleotide sequences) compared to

hg19, resulting in more accurate alignments. The liftover resulted in around 17% of the variants in the

ground truth file being discarded. These were variants with dated annotations – “INV”, “DUP”, “DEL”,

“IGN” and “MSK” – that the liftover tool rejected. For example, we saw “DUP” annotations instead

of explicitly stating the duplicated nucleotides. These annotations were located in the “ALT” column

of the ground truth VCF file (refer back to the VCF example shown in Listing 2.2). Moreover, these

annotations were problematic because the auxiliary tool we use to make VCF comparisons, GATK’s

CombineVariants, does not recognize these dated annotations, hence being unable to combine the VCF

files. Regardless, we considered 17% to be a considerable loss in variants from the ground truth file, so

we decided to also call variants using the original files aligned against the hg19 reference and compare

them to those obtained with the hg38-aligned files.

After dealing with the three aspects concerning VarDict that were mentioned in Section 4.2.1.A, we

were able to run the Somatic Variant Calling module successfully for one of the sets. We analyzed

each variant caller’s results for each of the two references, hg19 and hg38, to determine which we

should use for validation. We will only focus on Mutect2’s comparison as the points raised are applicable

to the other variant callers. Besides the points in Section 4.2.1.A (only concerning hg19), comparing

the results for Mutect2 runs with the hg19 and hg38 references, two aspects arose: 1) with the hg19

reference, we confirm that 17% less variants are called when compared to the ground truth because

of dated annotations – “INV”, “DUP”, “DEL”, “IGN” and “MSK”. Mutect2 does not annotate variants in

such a way. With the hg38 reference, the same 17% of variants had already been discarded following

the ground truth VCF liftover, so they were not taken into account. 2) Given that the hg38 reference

considers more alternate contigs, Mutect2 called variants located in these alternate contigs that were

not in the respective ground truth file but that we considered good predictions (through visual inspection

in IGV). Additionally, this made us aware that the ground truth file only considered chromosomes 1 to

22 and X. Aspect “1)” and “2)” were handled similarly as in Section 4.2.1.A: discard variants other than

SNVs and discard every alternate contig from our analysis.

Considering the aspects mentioned above, we decided to do the validation using only hg19 related

files as there was no benefit in doing otherwise.

119

120

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Context and Motivation
	1.2 Problem Formulation
	1.3 Contributions
	1.4 Thesis Outline

	2 Background: Typical Neoantigen Identification Workflow
	2.1 Overview
	2.2 Turning Tissue into Strings
	2.2.1 Sequencing
	2.2.2 Quality Control and Adapter Trimming
	2.2.3 Read Mapping (Alignment)

	2.3 Somatic Variant Calling: Finding Nucleotide Differences in Tumors
	2.4 Predicting Mutant Proteins from Somatic Variants: Finding Tumor-specific Proteins
	2.5 HLA Typing: Different Patients React Differently
	2.6 Predicting Peptide Immunogenicity: Will the Peptides Bind?
	2.6.1 Predicting HLA Binding
	2.6.2 Predicting Post-HLA Binding Events
	2.6.3 Prioritizing Neoantigens

	2.7 Information Visualization
	2.8 Related Pipelines
	2.9 Previously used Pipeline at LUMC

	3 Methods: Developed Neoantigen Identification Pipeline
	3.1 Overview
	3.2 Shark High-Performance Computing Cluster
	3.3 Workflow Description Language
	3.3.1 Workflows
	3.3.2 Tasks
	3.3.3 Structs

	3.4 Cromwell WFMS
	3.5 Singularity Container Platform
	3.6 Integrated Pipeline Code Structure
	3.7 Running the Integrated Pipeline
	3.7.1 Environment Configuration
	3.7.2 Pipeline Inputs
	3.7.2.A Inputs Definition File
	3.7.2.B Sample Configuration File

	3.7.3 Womtool Input Generation
	3.7.4 Running the Pipeline

	3.8 Integrated Pipeline Modules
	3.8.1 Quality Control and Adapter Trimming
	3.8.2 Read Mapping (Alignment)
	3.8.3 Somatic Variant Calling
	3.8.3.A Mutect2
	3.8.3.B Strelka2
	3.8.3.C VarDict
	3.8.3.D Combining Variant Calls

	3.9 Standalone Pipeline Modules
	3.9.1 Mutant Protein Prediction
	3.9.2 HLA Typing
	3.9.3 HLA Binding Prediction
	3.9.3.A Dividing Input Proteins into Short Peptides surrounding Mutations
	3.9.3.B Querying Protein Database for Exact Peptide Matches
	3.9.3.C Filtering Exact Matches
	3.9.3.D Running Binding Prediction Software
	3.9.3.E Outputs

	3.10 R Shiny Result Analysis
	3.11 Continuous Integration and Testing

	4 Problems and Validation
	4.1 Problems and Noteworthy Aspects
	4.1.1 Cromwell Filling Cluster's Storage Space
	4.1.2 BWA Intricacies
	4.1.3 VarDict Memory Usage
	4.1.4 R Shiny Module Error Finding

	4.2 Validation
	4.2.1 Validation with ICGC-TCGA DREAM Synthetic Data
	4.2.1.A Methodology
	4.2.1.B Results
	4.2.1.C Remarks

	4.2.2 Validation with Generated Synthetic Data
	4.2.3 Validation with Previous Results
	4.2.3.A Methodology
	4.2.3.B Results
	4.2.3.C Remarks

	5 Conclusions and Future Work
	5.1 Conclusions
	5.1.1 Main Goals
	5.1.2 Further Validation
	5.1.3 Integrated Pipeline
	5.1.4 Standalone Pipeline Modules
	5.1.5 User Interface

	5.2 Future Work
	5.2.1 Results Database
	5.2.2 User Interface
	5.2.3 Benchmarking Performance
	5.2.4 Integrating Standalone Modules
	5.2.5 Tracking Code Coverage

	Bibliography
	Appendix A

	A Cromwell Pipeline Files
	A.1 Cromwell Shark Cluster Configuration
	A.2 User-defined Pipeline Input Files
	A.2.1 Input Definition File
	A.2.2 Sample Configuration File

	Appendix B

	B MultiQC Plots
	Appendix C

	C ICGC-TCGA DREAM Synthetic Dataset Validation
	C.1 Detailed Results
	C.2 Conversion to hg38

