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Abstract—Many indoor environments have objects with planar
proprieties and are arranged as propitious to exploit their planes’
normals alignment. These scenarios are ideal for a Manhattan
World assumption, stating that all planes in a scene are aligned
with one of the three dominant directions. In this master thesis,
we propose a novel deep Neural Network, called MW-Net, for
Manhattan planes detection and reconstruction, receiving a single
RGB image as input. The end-to-end network learns to predict
a rotation from the camera to the Manhattan World coordinate
system, probabilistic segmentation masks, and an offset/depth
map. The proposed method does not have a restriction on the
number of planes that can predict. MW-Net was trained on
ScanNet, and we extracted over 45000 ground-truth data. It uses
a Dilated Residual Network for feature extraction, followed by
two ramifications i) Global pooling for rotation prediction; ii)
Pyramidal pooling for image segmentation and offset/depth map.
MW-Net outperforms PlaneNet on segmentation accuracy, using
less architectural complexity, since we do not use a DCRF, unlike
PlaneNet.

Index Terms—Manhattan world, Manhattan planes recon-
struction, MW-Net, deep Neural Network, plane detection, Di-
lated Residual Network.

I. INTRODUCTION

Computer vision (CV) is one of the most active research
topics in computer science. In the early 2000s, several Machine
Learning approaches to CV problems brought some impressive
results (see [1]–[3]). These results sparked the interest in
ML methods such as Support Vector Machines [4] and, in
particular, on neural network architectures [5], [6]. With Deep
Learning (DL) emergence in [5], many works have exploited
these methodologies, achieving remarkable improvements [7]–
[10]. Indeed, DL methods applied to CV topics have been
trending, and this relationship translated in many state-of-the-
art methods on Object Detection [9], [11], [12], 3D Vision
[10], [13], [14], and Tracking [15], [16].

Works [5], [6] in deep neural network architecture have been
an essential role in the success of many recent methods, like
[9], [11], [17]. Residual networks [6] (or Resnets) made it
possible to increase the number of convolution layers, making
the neural networks deeper while avoiding the undesirable
vanishing gradient problem [18], [19]. This improvement on
deep architectures lead to the development of state-of-the-art
frameworks for object detection, e.g. R-CNN [7], Fast R-CNN
[8], Faster R-CNN [11], YOLO [9] or YOLO 9000 [20].

This thesis focuses on the Planes’ reconstruction problem,
which has been extensively studied in recent works (see [21]–
[23]). Although numerous works exploit new DL approaches,
non-deep methods use more traditional approaches on Plane

Detection topics, such as 3D Piecewise Planar Reconstruc-
tion [24] or Semantic Segmentation [25]. One example of a
more classical approach is the Manhattan-world Stereo [26],
which works under the Manhattan World (MW) constraints,
an approach that we also follow.

Concerning DL approaches to Plane detection, methods like
PlaneNet [21], PlaneRCNN [22] or PlaneRecover [23] brought
significant improvements in terms of accuracy and run-time
performance.

Usually, the Human being tends to build objects with
planar surfaces on their structures. Many Deep Learning
architectures ([9], [11], [17], [20]) can detect these objects,
and, consequently, one can use these architectures developed
for object detection and extend it to planar surfaces [21],
[22]. Although many plane detection methods share some
architectural similarities with object detection ones, they also
share some problems. For instance, PlaneNet [21] struggles
on small plane identification in a crowded planar scene. This
difficulty increases with the restriction on the number of
planes predicted (PlaneNet only estimates ten planes). Still,
PlaneRCNN [22] is an example of significant improvement,
having no restriction on the number of planes predicted, allied
to an increase on accuracy/time performance. PlaneRCNN
uses a more complex architecture than PlaneNet to achieve this
purpose. In this master thesis, we propose a novel method that
tries to overcome PlaneNet’s problems with less complexity
than PlaneRCNN.

Therefore, we propose the MW-Net, a novel deep neural
network for detecting planes that satisfy the MW constraints.
The MW Assumption states that all planes in a scene must
be parallel or orthogonal between each other. These planes,
Manhattan planes, have their normals aligned with one of the
MW coordinate system dominant directions (basis vectors).
We are aware that this approach will not recognize some planar
surfaces whose normals do not respect the MW constraints.
However, since many indoor scenes are composed of a large
set of planes aligned with one of the dominant directions, it
is possible to reconstruct almost the full planar scene with
this approach, trying to neglect the less significant planes. An
MW approach gives some flexibility to the proposed method
by eliminating any restriction of having a pre-declared number
of planes to be predicted.

MW-Net receives an RGB image and outputs: i) a rotation,
represented by a quaternion, from the camera to the MW
world; ii) probabilistic segmentation masks of each plane;
iii) and an offset and depth maps for planar and non-planar,
respectively. The quaternion is further converted to a rotation
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matrix 3 × 3 and it is constituted by the MW dominant
directions. Since planes’ normals are aligned with MW axis,
this rotation is used to identify the planes’s normal parameters.

II. STATE-OF-THE-ART

A. Plane detection

Plane detection is a research topic way before DL became
a trend. Many research works applied a more traditional
approach to this problem [24], [26]–[28]. Manhattan-world
stereo (MWS) [26], working within the constrained space
of Manhattan-world scenes, uses Multi-view Stereo (MVS)
[29] to reconstruct a set of oriented 3D points (positions and
normals), where normals extract the dominant axis, and the
positions generates axis aligned candidate planes. Candidate
planes are going to be used as hypotheses on Markov Random
Fields depth-map reconstruction. ”NYU-Toolbox” [24] is sim-
ilar to MWS but does not works within the MW constrained
space, and extracts its planes hypotheses using RANSAC [30].

Despite the outstanding results, there was the need to
simplify the input requirements, since most of these methods
require multiple views or depth information as input.

With the emergence of Deep learning, Plane detection
research works [21], [22], [31] start to exploit deep neural
network architectures, obtaining remarkable results. Since our
method builds on PlaneNet, it will be further described as well
as other state-of-the-art methods.

PlaneNet [21] uses a single RGB image as input and predicts
plane parameters, their segmentation masks and a non-planar
depth map. The network architecture consists of a Dilated
Residual Network [32], [33], for feature extraction, followed
by two ramifications. The first ramification has a Global pool-
ing followed by a fully connected layer for plane parameter’s
regression. The second ramification has a pyramidal pooling
followed by a convolution layer for image classification and
another convolution layer for non-planar depth map modelling.
PlaneNet outputs a non-planar depth map, being the planar
depth map determined using the plane parameters, only pos-
sible knowing the camera intrinsic parameters [34]. Although
PlaneNet’s remarkable results, it had some limitations such as
the number of planes that had to be pre-defined, ten planes
per scene.

PlaneRecover [23] also uses a single network for plane
detection. It receives an RGB image as input and outputs a
planar segmentation map, that segments the input in several
planes and non-plane objects and the plane’s parameters in
3D space. Similar to PlaneNet it predicts a limited number of
planes, only determining five planes per scene. PlaneRecover
distinguishes from the other methods by approaching the prob-
lem with unsupervised learning, led by difficulties on dataset’s
ground-truth extraction. A piecewise planar 3D model of the
scene can be built, using the network’s output.

PlaneRCNN [22] differs from PlaneNet by using a variant
of Mask R-CNN [17] for detection, and a refinement net-
work for segmentation Mask improvement. Plane detection is
made by predicting each plane parameters and segmentation
mask. PlaneRCNN presents a novel loss function, which

improves plane-parameter and depth map accuracy via end-
to-end training. The referred method presents state-of-the-
art results, overcoming PlaneNet’s limitation related to the
restriction of the number of planes that can be predicted per
scene.

Finally but not least, [31] is divided into two stages. In
a first stage, it trains a CNN to obtain planar/non-planar
segmentation map and pixel embeddings, followed by a mean
shift clustering algorithm to generate plane instances. On the
second stage, a network branch is trained to predict pixel level
plane parameters. It also does not have a restricted number of
planes that can be detected.

Both PlaneRCNN and [31] do not have any restriction on the
number of planes but they achieve this using a more complex
architecture than PlaneNet.

B. Manhattan World assumption

Exploiting environment geometry is not a novel approach,
and a MW can take advantage of these characteristics. On
3D reconstruction, there are many MW approaches [26], [35],
[36], but this topic is not the only taking advantage of it.

There are research studies using the MW constraints, for
instance in navigation [37], [38], where indoor and outdoor
scenes are designed on a Manhattan three-dimensional grid.
In [37], they state that the important signs for navigation
are aligned with one of the directions of MW, and facilitate
navigation.

III. DATASET

Many objects are made of planar surfaces, and most of
the time, they are arranged with other planar surfaces. An
indoor environment layout usually is composed of six planes
orthogonal or parallel to each other. Frequently, these planar
objects are arranged according to the layout, and many times
their planes are aligned with one of the three dominant
directions. Situations like these attract MW approaches, which
can detect a significant set of planes that have their normals
aligned with MW base vectors. The MW base vectors were
computed considering the most significant planes, to avoid
neglecting many non-constraint planar surfaces.

The MW assumption assumes that all planes in a scene are
aligned to one of the three dominant directions. If the plane’s
normal is aligned, then the plane will be detected. On the other
hand, if the plane’s normal is not aligned with one MW axis,
the plane will be detected but as part of the non-planar region,
not being counted as MW plane.

PlaneNet [21] detects planes unconstrained by the Man-
hattan World restrictions. For PlaneNet training, their authors
extracted ground-truth data from the ScanNet dataset, such as
the planes’ parameters, image segmentation, and the image
depth map.

This ground-truth data is not suitable for our network’s
training since it does not respect the MW constraints. Working
over the extraction mentioned, we defined the MW dominant
directions to distinguish the Manhattan planes from the non-
planar region, in each scene.
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A. ScanNet dataset

The ScanNet [39] is a large-scale RGB-D video database
of indoor environments. For each scene, this dataset makes
available annotations with estimated calibration parameters,
camera poses, 3D surface reconstructions, textured meshes,
dense object-level semantic segmentations, and aligned CAD
models.

For PlaneNet purpose, it was extracted 51000 ground-truth
piecewise planar data (50000 for training and 1000 for testing)
from ScanNet. For this process, they directly fit planes to 3D
points, using RANSAC with replacement, and project them
to images. The resulting dataset will make available for each
RGB image the image segmentation, plane parameters, image
depth, and intrinsic camera parameters.

The resulting planes are not under the MW constrains. For
each scene, it becomes necessary to extract the MW planes.
With this in mind, it was extracted a rotation from the camera
to the MW coordinate frame. This rotation is composed of
three dominant directions, and the MW planes’ normals are
aligned with one of those directions.

1) Manhattan World Assumption & Dataset: The MW
assumption states that all planes in a specific scene are
orthogonal or parallel to each other, thus planes’ normals must
be aligned to one of the three dominant directions. The MW
coordinate frame defines these dominant directions. The MW
base vectors can be arranged to obtain a rotation matrix from
the MW coordinate frame to the camera coordinate frame.

To compute the MW base vectors that better suits a specific
scene, we had in consideration a similar process as the one
presented in [40]. When choosing the MW base vectors, it
is desirable to capture the most significant planes. These
planes have the largest number of pixels assigned in the image
segmentation. For instance, considering a room, and having a
broader view of the division, these planes are usually a wall
or the floor.

Considering that, after the PlaneNet’s dataset processing,
we have access up to twenty planes per scene, a planar
segmentation of the image and the image depth map. A MW
base vectors were computed for each scene individually.

Initially, it was computed how many pixels were assigned
to each plane, using the image segmentation, and the inner
products between it and all the others 19 planes. Notice that
this process is made to all the planes. From the inner products,
we obtain the orthogonal planes to each plane.

The first base vector determined is the one associated with
the MW X-axis. It is set with the normal of the most significant
plane in the scene, i.e. with more pixels assigned, under the
condition of having at least one orthogonal plane on the
scene’s image segmentation. If the condition is not fulfilled,
this process is repeated to the second largest plane and so
on. The MW Y-axis is the second base vector defined, and it
assigned the normal of the largest plane from the list of planes
whose normal are orthogonal to the MW X-axis. Finally, MW
Z-axis is defined by the cross vector between the MW X-axis
and Y-axis base vectors. As it is possible to realize, scenes
must have at least two orthogonal planes; otherwise, they are
discarded.

The X and Y planes’ normals are not strictly orthogonal
since we gave a threshold to the inner product, 0.1, below
which two planes are considered orthogonal. With this in
mind, if we organize the base vectors X,Y and Z as columns,
we obtain a pseudo-rotation matrix RMW = [X,Y, Z] which
points to the need of projecting it to the closest matrix on the
SO(3) group.

A SO(3) matrix must respect the following conditions,

RTR = RRT = I

det(R) = 1.
(1)

We applied the Singular Value Decomposition (SVD) to the
pseudo-rotation RMW = [X,Y, Z],

[UΣV T ] = SV D(RMW ) (2)

Being now trivial to obtain the rotation from the camera to
the MW coordinate frame,

RC
MW = Udiag(1, 1, det(UV T ))V T (3)

where U and V T are unitary matrices. RC
MW is the rotation

from the Manhattan World to the camera coordinate frame.
Once having the RC

MW is now easy to find the rotation
from the camera to MW coordinate frame, which is given by
its inverse,

RMW
C = RC

MW

−1
. (4)

It is now possible to apply the MW constraints on each scene,
and distinguish which surface is planar or non-planar. This
data treatment was made as follows.

At this stage, the planes’ parameters available are repre-
sented regarding the camera coordinate frame’s origin. To
verify if a plane’s normal is aligned to one of the MW base
vectors, we need to have the planes’ parameters seen by the
origin of the MW frame’s origin. We can easily achieve this
by applying the rotation RMW

C . Considering a plane’s normal
considering the camera coordinate frame’s origin, NC , it is
now possible to obtain

NMW = RMW
C NC , (5)

where NMW is the plane’s normal seen by the MW coordinate
frame.

To distinguish planes from non-planar surfaces, we have
to verify which planes’ normals are aligned with one MW
axis. For this purpose, it was done the inner product between
the planes’ normals and each one of the MW base vectors,
[1, 0, 0], [0, 1, 0] or [0, 0, 1]. If any of the three inner products
were over a pre-established threshold, 0.9, the normal would
be considered aligned with the respective axis. From that point,
the plane’s normal would be replaced by the MW base vector
which is aligned. However, if none of the inner products
was over 0.9, the plane will become part of the non-planar
class. The image segmentation is then updated based on this
knowledge.

The image segmentation is obtained by assigning the spe-
cific class to each pixel. There will be four classes, one
for each MW dominant direction and one for the non-planar
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region. Pixels that are assigned with a class C ∈ [1, 2, 3] will
belong to a Manhattan plane and the pixels with a class C ∈ [4]
will belong to the non-planar region.

For PlaneNet’s purpose, their authors predicted the plane’s
normal and offset as a three-parameter vector, and the offset
was the vector’s norm. Still, since we are using MW base
vectors to identify planes, predicting a normalized three-
parameter vector, we only know the plane’s normal but not
the respective offsets.

Knowing the Manhattan planes and their mapping in the
image, we need to make an association class/offset to each
planar pixel. We find a solution to this problem, creating an
offset/depth map for each scene.

The offset/depth map ground-truth was obtained by inter-
secting the MW with the original image segmentation, from
which we get MW planes segments.

If a plane is a Manhattan plane, we assign the respective
offset to their pixels, otherwise we assign the respective depth
value to the pixel. To the non-planar region pixels we assign
the respective depth value. This makes it possible to obtain
the offset/depth map desired.

After the ground-truth extraction, we add the rotation from
the camera to the MW coordinate frame, as a quaternion,
QMW

C , the image segmentation with four classes, and the
offset/depth map to the ScanNet dataset, allowing the network
to train as expected.

If the rotations were predicted as 3×3 matrices, it would not
be possible to guarantee that the network’s rotations outputted
would fill the SO(3) group requisites. A possible approach
would be to project it to the rotation group, but this solution
would be computationally more complex.

IV. MW-NET: A PLANE DETECTION NETWORK WITH
MANHATTAN WORLD CONSTRAINTS

MW-Net is a novel method for plane detection. It takes a
192 × 256 RGB image, 3 channels, as input and outputs a
rotation quaternion, from the camera to the Manhattan World
(MW) coordinate frame, four probabilistic plane segmentation
masks, and an offset/depth map.

The rotation quaternion, a 1×4 vector, guarantees a rotation
belonging to the SO(3) group. The rotation quaternion can be
further converted to a 3× 3 matrix. This rotation is composed
by the MW dominant directions seen by the camera coordinate
frame, and we can easily obtain the Manhattan planes’ normals
making use of it.

For the image segmentation, the network predicts four
probabilistic segmentation masks, where each pixel is assigned
with four probabilities. There is one probability for each
possible class: i) planes’ normal is aligned with MW X-axis; ii)
planes’ normal is aligned with MW Y-axis; iii) planes’ normal
is aligned with MW Z-axis; iv) planes’ normal is not aligned
with any of the MW axes. The pixel belongs to the class that
has the largest value. The resulting segmentation image output
shape is 192× 256.

The offset/depth map is a 192 × 256 matrix where each
planar pixel is assigned the offset of the plane it belongs to.
For non-planar pixels, it is assigned a depth value.

Fig. 1: MW-Net’s Architecture. It is constituted by a Dilated
Residual Network (DRN), for feature extraction, and by two
ramifications, a global pooling for rotation quaternion predic-
tion and a pyramidal pooling [43] for the plane segmentation
mask and a offset map prediction.

The network predicts all Manhattan planes, without any
conditionality on the number of planes that can be estimated.
Our network only detects and reconstructs planes aligned with
one of the MW dominant direction. Indoor environments are
propitious to this approach due to the large set of orthogo-
nal and parallel planes in each scene, lifting the mentioned
restriction.

MW-Net uses a single neural network for the whole process,
implemented in Pytorch (see [41], [42]).

A. Architecture

MW-Net’s is a novel deep neural network, and its structure
can be seen in Figure 1. It is constituted by a Dilated Residual
Network (DRN), for feature extraction, and two ramifications:
i) a global pooling for quaternion rotation prediction; ii) and a
pyramid pooling [43], which, for its turn, ramifies in plane seg-
mentation mask and an offset/depth map prediction branches.
Over this chapter, when talking about convolution layers, it is
represented its kernel size between parentheses. For example,
a convolution layer with kernel size 3 is represented as
Conv(3×3). From now on, when talking about tensors shapes,
it is referred to their shapes as width× height× channels.

As already referred, the DRN in Figure 1 is a feature extrac-
tor block. DRN has a similar structure to Resnet, but instead of
using standard convolutions in some layers, it applies dilated
convolution [44]. Dilated convolutions are convolutions where
the kernel elements are spaced from each other, skipping some
input points. For example, D = 2 means that the kernel
elements have a gap between them; D = 3 means they are
spaced by two. The DRN used is a DRN-D-54, which has
35.8M parameters.

The DRN-D-54 structure, represented in figure 2, was
divided into seven levels. In level 0, there is a single standard
Conv(7× 7), and it is the starting layer that receives the RGB
image. Level 1 has two convolutions, being the first one a
standard Conv(3 × 3) and the second one is a Conv(3 × 3),
with stride 2.

Levels 2, 3, 4, and 5 have bottleneck blocks in their
structure. A bottleneck block [6] has 3 convolution layers,
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Fig. 2: DRN-D-54 architecture. It is divided in seven levels.
Bottleneck blocks form levels 2, 3, 4, and 5. Convolution with
color yellow have stride 2, color green have dilation 2, and
blue have dilation 4.

TABLE I: DRN-D-54 level description

Level Channels in Channels out Bottleneck blocks
0 3 16 0
1 16 32 0
2 32 256 3
3 256 512 4
4 512 1024 6
5 1024 2048 3
6 2048 512 0

starting with a Conv(1× 1), followed by a Conv(3× 3) and a
Conv(1× 1). Generally, the last layer outputs four times more
channels than the first two, i.e., if the first two layers output 64
channels, the last layer will output 4×64 = 256 channels. The
bottleneck block has a shortcut from its input to the outcome,
allowing to skip the three convolution layers described, giving
the block some flexibility to be just the identity if needed.
This property helps to avoid the undesirable vanishing gradient
problem.

Table I shows the number of output channels for each level,
and the number of bottleneck blocks. Level 2 and 3 have
3 and 4 bottleneck blocks respectively, and their first block
has the second Conv layer with stride 2. Level 4 and 5 have
six and three bottleneck blocks, respectively, and the second
convolution layer of each block is a dilated one, by 2 and 4
respectively. Finally, layer six is formed by two convolution
layers. The DRN outcome will be of shape 24×32×512 and
will feed the Global pooling and Pyramid pooling block.

Global pooling in Figure 1 is simply an average pooling in
two dimensions. The average pooling kernel has shape 24×32,
resulting in an output of shape of 1×1×512. Making this result
going through a fully connected layer with 512×4 parameters,
it results in the desired quaternion. This is another reason for
using the quaternion for predicting the rotation. If we predicted
the rotation as a 3× 3 matrix, the fully connected would have
512× 9 parameters, increasing its complexity.

Pyramid Pooling is a more complex block than Global
Pooling, see figure 3. It receives the DRN’s feature map and
applies four different average pooling to it, using different
kernels sizes. After pooling, each output goes through a
standard convolution, with size kernel of 1, that outputs 128

Fig. 3: Pyramid pooling architecture. It receives the DRN’s
feature map and applies four different average pooling to it,
using different kernels sizes. After pooling, each output goes
through a standard convolution, with size kernel of 1, that
outputs 128 channels. Each output goes through an upsample
to obtain shapes equal to the input one, 24× 32. Finally, the
pooling’s outputs are concatenated to each other, and with
the Pyramid pooling input, obtaining a final tensor shaped as
24× 32× 1024.

channels. Each output goes through an upsample to obtain
shapes equal to the input one, 24× 32. Finally, the pooling’s
outputs are concatenated to each other, and with the Pyramid
pooling input, obtaining a final tensor shaped as 24×32×1024.

Finally, Pyramid’s output goes through a standard convolu-
tion, with a kernel of size 3, outputting 512 channels. For the
Segmentation Masks, there is a standard convolution with a
kernel size of 1, and since there are four different classes, it
outputs four channels. Bearing in mind that the output is of
shape 24 × 32 × 4, it is necessary to upsample it so that the
resulting shape is 192×256×4. For the Offset map, instead of
a convolution that outputs four channels, a convolution outputs
a single output followed by the bilinear interpolation.

B. Training

MW-Net was trained on an indoor environment dataset,
ScanNet, with ground-truth extraction for the sake of MW
assumption. For training, it was used a pre-trained model of
PlaneNet, trained by us for 50 epochs, since the only pre-
trained model available was for their network implemented
on Tensorflow [45] . This pre-trained model does not use
the Dense Conditional Random Fields (DCRF) [46], used on
PlaneNet, to refine the Segmentation prediction.

The proposed model was trained on a GPU GeForce GTX
1070 over 40 epochs, and it was used 46710 samples for
training. Network’s learning was mini-batch learning, and each
batch has eight data samples. Using mini-batch learning, the
model updates its weights on a higher frequency; in the MW-
Net case, this happens in every mini-batch, i.e., the model
updates every eight samples from training data. Each sample
includes the RGB image and the respective ground-truth data
(quaternion, image segmentation, and offset/depth map), and
the camera intrinsic parameters. The RGB image will be the
network’s input, and the ground-truth data will be part of the
loss, as a reference to the network’s outputs. Since GPU RAM
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is limited, Mini-batch learning is useful because it allows good
memory management.

The optimizer used for training was the Adam Optimizer
[47] with an initial learning rate set to 3× 105. The optimizer
is responsible for minimizing the loss, updating the model
weights, and Adam computes adaptive learning rates per
parameter.

C. Loss

The problem at hand is a multi-task learning problem, our
network predicts three different outputs at the same time,
resulting in three different losses, one for each output. As it
is possible to see in section IV-B, the network learning is a
mini-batch one, and the batch size, B, is 8 samples of data
training. The overall loss is given by the sum of the three
losses, regarding the mini-batch in question, leading to

Loss =

B∑
i

Lossiquat + Lossiseg + Lossioffset, (6)

where Lossquat is the quaternion loss, Lossseg is the segmen-
tation loss, and Lossoffset is the offset loss. The Losses are
represented as Lossi that is the Loss of the ith sample of the
mini-batch.

D. Quaternion Loss

Quaternion prediction is a simple regression problem and
its approach is made with a l1 norm,

Lossquat = ‖(Q−Q∗)‖1, (7)

where Q is the quaternion predicted, Q∗ is the quaternion
ground-truth. The reason of the prediction being a quaternion,
over being a rotation matrix 3× 3, is because the quaternion
guarantees that the rotation predicted belongs to the SO(3)
group, adding to the fact that there are less network parame-
ters that need to be predicted. Considering each prediction’s
number of parameters, it will be more efficient to predict four
parameters than nine.

E. Segmentation Loss

Image segmentation is a classification problem, where to
each pixel it is given four probabilities. These four probabili-
ties encode how certain the network thinks the pixel belongs
to a specific plane. Classes 1, 2 and 3 correspond to planes that
has their normal align to the axis [1,0,0], [0,1,0] and [0,0,1]
from MW coordinate frame, and class 4 corresponds to a non-
planar region.

For this purpose it was used a cross entropy loss,

Lossseg =
1

K

K∑
p=0

− log

(
exp (m

(p)
class)∑C

j=0 exp (m
(p)
j )

)
(8)

which has a softmax inside the logarithm operation. In
equation 8 (m

(p)
class is a probabilistic value predicted by the

network for pixel p and class is the class target which the
pixel belongs to. (m

(p)
j is a probabilistic value predicted by

the network for pixel p and class j, C is the number of classes,
4, and K is the number of pixels K = 192× 256.

F. Offset/depth map Loss

For the offset/depth map loss, we use a squared l2 norm,

Lossoffset =
1

K
‖(O −O∗)‖22 (9)

where O is the offset/depth map, O∗ is the offset/depth map
ground-truth, and K = 192× 256 pixels.

V. RESULTS

As previously mentioned, MW-Net is able to reconstruct
a planar scene with a single RGB image. It is a competitive
method and is an innovative method for MW planes detection.
We compared MW-Net with the PlaneNet method. For this
comparison, it was applied the two recall metric from [21].
The comparisons were made with the original PlaneNet model,
their Github repository, which includes the dense conditional
random field (DCRF), for segmentation refinement. MW-Net
was trained for 40 epochs, but the model with the best results
was on the 26th epoch. For the comparisons made we used
the best model.

VI. MW-NET OUTPUTS

Fig. 4: MW-Net outputs and respective ground-truths. The
first images column, from left to right, is the inputs of
the network, followed by segmentation predictions, second
column, and segmentation ground-truths, third column. The
last two columns, from left to right, are the offset/depth-
map prediction and the offset/depth-map groundtruth. As it
is possible to infer, the segmentation results are very close to
the ground-truth.

The proposed network predicts four probabilistic segmen-
tation masks classes, three planar classes, one for each MW



DISSERTATION ON ELECTRICAL AND COMPUTER ENGINEERING 7

(a) input (b) Segmentation

(c) Segmentation-gt

Fig. 5: Example of image segmentation when classes are
swapped comparing to ground-truth. It is possible to see that in
image segmentation prediction the classes represented by the
color green and blue are swapped, relatively to the ground-
truth.

Fig. 6: IOU example. Representation of two planes intersect-
ing. The IOU between these two planes is the ratio between
the number of pixels on the intersection of both planes (yellow
region) over the number of pixels on the union (red + yellow
+ green)

axis, and one non-planar class. To each pixel, it is assigned the
class with a higher value between the four classes. Looking
at the segmentation on figure 4, it is possible to distinguish
four colors, corresponding each to a class. The blue color
correspond to the MW X-axis, the green color to Y-axis, and
the red color to Z-axis. The orange color corresponds to the
non-planar class. The network presents incredible results on
the segmentation branch, but there is margin to improve. It
is possible to see, in many segmentation images, that there
are some pixels on the left side that are classified incorrectly,
being those pixels classified as non-planar. This can happen for
many reasons, one of them may be due to the training dataset,
that can have many data elements that are promoting over-
fitting. This is one of the aspects that need to be improved in
further developments. Nonetheless, MW-Net presents 80,75%
of planar accuracy, while PlaneNet has 73,52%.

The metric applied for this accuracy is based on the IOU,
see legend figure 6, between the ground-truth with the inferred
plane. Having in count the figure 6, the metric applied for each
plane is the number of pixels that are in the intersection of the
plane ground-truth with the plane inferred, number of pixels
of yellow surface, over the total number of pixels that belong

(a) input (b) Segmentation

(c) Segmentation-gt

Fig. 7: In this figure it is represented an bad labeled example.
In this figure it is represented a bad labeled example. In figure
7 (a) it is represented the networks input, and on 7b (b)
and 7 (c) it is represented the segmentation predicted by the
network and the ground-truth, respectively. Cases like this
decreases the network segmentation accuracy.

to the plane ground-truth, represented by the number of pixel
on yellow+green surfaces.

To be fair with the network’s real performance, we have
to pay attention to cases illustrated in figure 5, where the
segmentation is well made but the classes are swapped.
In figure 5 it is possible to verify the dependency of the
segmentation on the quaternion prediction. Observing figure
5 (b), it is evident that the class represented by the blue color
is swapped with the class represented by the green color, when
comparing with the segmentation ground-truth in figure 5 (c).
This image segmentation, although having classes swapped, it
is segmenting planes correctly.

In order to the metric work as supposedly, to ground-truth
planes we have to infer predictions that overlap the most
with them. Obviously, two different ground-truth planes cannot
have the same plane inferred. The association is made through
the IOU, i.e., given a plane prediction it is computed the IOU
with all the planes ground-truth, and this plane is associated
to the ground-truth with which has the highest IOU.

Although the high segmentation accuracy rates, the segmen-
tation results may be harmed by some bad labelled data such as
the one in figure 7. In the figure there are three images, figure
7 (a) is the network’s input, and in figure 7 (b) and 7 (c) are
the image segmentation from the network and ground-truth,
respectively. It is obvious that the ground-truth is not accurate,
and the segmentation by the network is under the expectation.

In figure 4, the fourth column and fifth column, counting
from left to right, are the offset/depth map prediction and
ground-truth, respectively. The offset/depth map is basically
a offset mapping for planar surfaces and depth for non-planar
surfaces, as it was explained. Being a regression problem, the
network is responsible to predict 192×256 values, one for each
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(a) Input (b) MW-Net (c) PlaneNet (d) Groudtruth

Fig. 8: In this figure it is possible to see the comparison of
segmentation between MW-Net and PlaneNet, figures 8 (b)
and 8 (c) respectively. It is possible to see that the segmenta-
tion does not miss any plane having the indoor scene totally
identified.

pixel, resulting, naturally, in some outliers. In addiction to this
problem, for planar regions, since it is predicted an offset for
each pixel, it is natural that a large number of pixels will have
the same offset, and if this prediction it is not correct the error
will increase since it is spread to the remaining pixels.

Concluding, it is possible to notice that innumerable indoor
scenes presents many planar surfaces that are parallel and/or
orthogonal between each other. Having a MW approach to
the problem can simplify proposed objective, improving some
results. In the images presented, the majority of planes were
well predicted and it is possible to achieve remarkable results
with it. In the next section it is made the comparison with the
PlaneNet method.

A. MW-Net vs PlaneNet

PlaneNet outputs are the plane parameters, the image seg-
mentation, and a non-planar depth-map. The plane parameters
are the plane’s normal and offset, in the form offset×normal,
only needing three parameters to identify the planes. But
since their parameters depend on the offset, it struggles to
distinguish parallel planes with different offsets, when these
planes are close from each other, harming their segmentation
results. This can happen, for instance, because of network
difficulties on distinguishing different textures. PlaneNet only
predicts ten planes per scene, if there are a crowded planar
scenes, it will fail to perform as expected. In its turn, MW-Net
uses MW base vectors to identify the planes’ normals, being
the segmentation independent of the offset, and the offset is
offered by the offset/depth map prediction. The network do
not have a limitation on the number of planes that can be
predicted.

In figure 8, it is possible to see the comparison between
PlaneNet and MW-Net. The ground-truth represented in the
figure 8 (d), segments the image in the same way PlaneNet
does, where planes with different offsets are identified by
different classes. In figures 8 (c) and 8 (d), the non-planar class
is represented by the black color. The difficulty on identifying
parallel planes with different offsets, when they are close from
each other, is evident in the figure 8 (c), where it struggles to
identify distinguish the planes represent by the colors red and
blue on figure 8 (d), while MW-Net do not face this problem.

To compare against PlaneNet, it is applied two recall metrics
to both methods, the same as in [21]. To understand the metric
it is necessary to have a notion of what it is the Intersection
Over Union IOU, see legend figure 6. For the figure 9 (a),

(a) Plane Recall Accuracy (b) Pixel Recall Accuracy

Fig. 9: In this figure it is possible to compare segmentation
evolution in function of Depth threshold using two recalll met-
rics. The comparison was made between MW-Net PlaneNet.
MW-Net significantly outperforms PlaneNet in both metrics.

the metric presented is the percentage of the correctly pre-
dicted ground-truth planes. A ground-truth plane is correctly
predicted if the IOU with the inferred plane is over 0.5 and the
mean offset/depth difference, from the overlapping region, is
less than a given threshold. The offset/depth difference is the
difference between the offset/depth of plane prediction pixels
and the corresponding plane ground-truth pixels.

The second metric, figure 9 (b) is the number of pixels, that
are in the overlapping regions, over the total number of pixels
from all the planar surfaces in the scene, being similar to the
metric presented in section VI. This measure it is not the same
as the one in the previous section, because only the pixels that
are in the planes well predicted by the metric in figure 9 (a),
will count as pixels well predicted. This means that if the
IOU between the planes ground-truth and the plane inferred
is lower than 0.5, and they have pixels in common, this pixels
will not count as well predicted. Although the denominator
still is the total number of planar pixels in the scene.

In figure 9, it is presented the MW-Net and PlanNet per-
formance when applies the metrics described previously. We
vary the depth threshold from 0 to 1.50, and it is possible
to verify that MW-Net significantly outperforms PlaneNet,
except when the depth threshold is small and PlaneNet can
fit planes accurately for those thresholds, lower than 0.2.
It is seen that, considering threshold values above 0.2, the
MW-net outperforms significantly, meaning that our image
segmentation is much better than PlaneNet, but PlaneNet
outperforms MW-Net on depth prediction.

MW-Net obtain these results with less architecture complex-
ity than PlaneNet. Although PlaneNet uses a single network
for planar reconstruction, on segmentation branch, it uses a
dense conditional random field (DCRF) (see [46], and train
the DCRF module with precedent layers (see [48]), as a way
to refine segmentation results. MW-Net outperforms PlaneNet
without using any DCRF, as it is possible to verify in the
comparisons made.

VII. CONCLUSION

This thesis presented a novel method for planar reconstruc-
tion using a MW approach. MW-Net receives an RGB image
as input and outputs a rotation matrix from camera to MW
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coordinate frame as a quaternion, four image segmentation
probabilistic masks and an offset/depth map. MW-Net predicts
planes segments with high accuracy rates, and without any
restriction on the number of MW planes that can predict.
It was proven that MW approach is reliable since the in-
numerable quantity of planes that are parallel/orthogonal to
each other, and almost all planar surfaces were detected. MW-
Net outperforms PlaneNet, a state-of-the-art method, in terms
of segmentation, achieving remarkable results. MW-Net not
just outperform PlaneNet, also it does it with less network
architecture complexity.

As future work, a comparison with PlaneRCNN and
PlaneRecover should be made. There are space for improve-
ments, such as on offset/depth map. On segmentation, there
are miss-classified pixels, on most scene images left side, that
need to improve.
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