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Resumo

Explorámos a eficácia das curvas simpliciais, um método de representação de palavras sensı́vel

ao contexto, motivados pelas suas propriedades matemáticas intrı́nsecas (e.g., diferenciação

e facilidade de combinação de representações), na tarefa de sumarização multi-documento.

Para este efeito, adaptámos o framework das curvas simpliciais para uma nova representação

matricial com base em representações densas de palavras e desenvolvemos uma álgebra sobre

objetos no simplex. Utilizamos os corpora de sumarização multi-documento DUC 2006 e DUC

2007. Os sumários gerados são comparados com os sumários de referência utilizando as métricas

de avaliação ROUGE-1, ROUGE-2 e ROUGE-L. Comparado com a pontuação ROUGE-1 de 0.29

da baseline mais simples escolhida, o nosso método obtém uma pontuação ROUGE-1 de 0.04,

ficando assim aquém das expectativas. Concluı́mos com uma exploração dos resultados obtidos

e sugerimos outras aplicações do método das curvas simpliciais.





Abstract

We explore the effectiveness of simplicial curves, a word-representation method that is context-

sensitive, motivated by its intrinsic mathematical properties (e.g., differentiation and ease of

combining representations), in the multi-document summarization task. To this effect, we

adapt the simplicial curves framework to use dense word-representations as its basis matrix

representation, and we develop an algebra over objects in the simplex. We use the DUC 2006 and

DUC 2007 multi-document summarization corpora. The generated summaries are compared

with the reference summaries using the ROUGE-1, ROUGE-2 and ROUGE-L evaluation metrics.

Compared to the ROUGE-1 score of 0.29 of the simplest chosen baseline, our method achieves a

ROUGE-1 score of 0.04, falling below our expectations. We conclude with an exploration of the

obtained results and suggest other applications of the simplicial curves method.
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1Introduction
Automatic text summarization is a task where the goal is to, given one or more documents,

produce a small text that accurately captures the information contained in the documents

being summarized. This can be mainly done in two ways: a) by selecting important words or

passages of the original text to preserve in the summary — extractive summarization, or b) by

generating new words (or new sentences with the original words) that better synthesize what

was in the original text (i.e., rephrase the text) — abstractive summarization. Despite working

towards the same goal, these two approaches have differences in metrics and corpora used, and

implementation methods.

For this purpose, is it fundamental to have a foundational framework that transforms

the words of a text (such as the ones in this sentence) into objects that can be manipulated

using mathematical operations, and, as such, can be used in computer applications. Different

transformation methods encode different aspects of language (such as syntactic properties),

and using one over the other is usually a matter of what trade-off is acceptable for a particular

application. For example, if we are interested in automatically tagging the parts-of-speech of a

text, we should choose a representation that enhances its syntactical aspects.

In this work, we are concerned with the re-exploration of a method to represent text in a

manner that deviates from the current, well-established representation methods. This method

— simplicial curves (Lebanon et al., 2007) — was chosen for its rich mathematical properties

and the potential for finding parallels between fundamental analytical operations (integrals,

derivatives) and results in the textual domain. Also, simplicial curves inherently encode the

sequencing of text and, since we can define an algebra over this representation, lend themselves

to composition. Simplicial curves have an intuitive sense of a document traversing in the space

composed by its parts (often words but, as we will see, we can admit other definitions for lexical

units), which can help with the explainability of the obtained results.

Our task is to explore the effectiveness of the simplicial curves approach in the field of
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abstractive multi-document summarization (MDS — produce a textual summary from multiple

documents, possibly from different sources, and talking about the same thing, while focusing on

slightly different aspects), as opposed to single-document summarization (SDS — produce a tex-

tual summary from a single document), using MDS datasets. We also explore different methods

of combining documents in a single representation and extracting text from it, evaluating our

results using standard summarization literature metrics (ROUGE (Lin, 2004); see section 3.2).

This document is structured as follows: a) chapter 2 describes the simplicial curves method,

with section 2.1 introducing historical context for different word representations in linguistic

tasks; section 2.2 introducing the notion of simplex and objects embedded in it; and section

2.3 building an algebra of curves, showing how we can combine two curves into a third one

or transform a curve into a numeric value; b) chapter 3 introduces the most used corpora,

evaluation metrics, and addresses the related work done in the MDS task; c) chapter 4 delimits

the corpora, evaluation metrics and baselines that we have used in the MDS task, with section

4.5 presenting the results from our experiments; and d) chapter 5 concludes the document, also

pointing out some future work to be done.



2Simplicial Curves

In this chapter we introduce different word representation methods, introduce the concept of

the simplex, and then develop the theory of simplicial curves with an accompanying algebra.

2.1 Background on Word Representations

In the following sections we will provide a description of different dimensional word represen-

tations. We are interested in different types of word representations because they will serve as

the base representation upon which the simplex (see section 2.2.1) will be built.

2.1.1 Traditional Representations

The most basic transformation from words to a mathematical object that can be manipulated

is called the one-hot approach. In this approach, words in a vocabulary V (with #V = n)

correspond to dimensions in some space Nn, and a word vector is represented by a 1 in the

position for the word and 0 everywhere else. For example, if we have a text with two words,

“test” and “red”, the vector for “test” is (1, 0) and for “red” is (0, 1).

This basic model was further improved with the use of term-frequency (TF) (Luhn, 1957),

where a word is represented by a one-hot vector multiplied by the word’s frequency in some

document, which then is composed of stacks of word-vectors (a matrix). Another possible

definition is that a document is the sum of the vectors of the words that are in the document.

Under this model, a word is considered important in a document if it appears many times in it.

This approach does not perform well in downstream applications when applied to texts where

something as simple as function words (such as “the” — the most frequent word in English)

are abundant, which are most texts. To counter this, the TF approach was enhanced by the

addition of an “inverse-document-frequency” (IDF) term (Jones, 1972), where the multiplicative

component of TF is weighted down by a function of the number of documents in which the
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word occurs. The combination of both methods is known as TF-IDF:

tfidf(w, d) := tf(w, d)× idf(w) (2.1)

tf(w, d) :=
times w appears in d

max{times t appears in d | ∀t ∈ d}
(2.2)

idf(w) := log
#D

#{d ∈ D |w ∈ d}
(2.3)

where D is a corpus, d ∈ D is a document, and w, t ∈ d are words in that document. Note that

there are other sensible definitions for the TF function; we chose to define it as the normalized

frequency.

Representing words as TF-IDF vectors accurately modeled text for many applications, but

this method for word representation results in vectors that are too sparse for applications such

as text classification and others. To counteract this, Latent Semantic Indexing (Deerwester et al.,

1990) took the resulting sparse matrix and decomposed it using Singular Value Decomposition,

allowing for the extraction of dense representations for words and documents that allowed the

use of other similarity notions, e.g., two words/documents are similar if the cosine of the angle

between their vectors is close to 1.

2.1.2 Neural Representations

Although representations derived from neural networks were already being studied (Collobert &

Weston, 2008; Turian et al., 2010; Mnih & Hinton, 2007) since 2000 with their introduction to NLP

in Bengio et al. (2000), it was in 2013 that the revolution of dense vector space representations

of words derived from a neural network was kick-started by Mikolov et al. (2013) (here called

SGNS, after the main method: “skip-gram with negative-sampling”). In this approach, word

vectors are extracted from the inner state of a neural network after training on some proxy task

(in their case, word similarity of a random word with the rest of the words in the enclosing

sentence). The advantages of SGNS-based representations are that a) the resulting word vectors

capture A:X::B:Y (A is to X as B is to Y) analogies by means of simple arithmetic: if we want

to solve A:X::B:? using SGNS embeddings, we can find the vector of ? by v? = vX − vA + vB ;

b) they are easy to incorporate in downstream applications, seeing as to get a word-embedding

for a word w, all one has to do is lookup the row of w in the embedding matrix W (serving as a

lookup table), after the neural network has been trained; and c) they indiscriminately improved
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task scores on many different NLP benchmarks (Baroni et al., 2014).

Subsequent research expanded on this trend, with various extensions and modifications

appearing over the decade. Of note are fastText in 2017 (Bojanowski et al., 2017) (rather than

considering words to be the smallest textual unit, build instead vectors for each character in

the text; a word vector is then the sum of the vectors of its characters), ELMo in 2018 (Peters et

al., 2018) (words have different vector representations, depending on the context in which they

appear), and more recently BERT in 2019 (Devlin et al., 2019) (a generalization of ELMo).

In 2014, a count-based approach (like TF-IDF) called GloVe was presented by Pennington

et al. (2014), which aimed to compete with SGNS-embeddings in their representational power.

Although their results in the word analogy, word similarity and named entity recognition

tasks indeed showed better results than SGNS-based solutions, Levy et al. (2015) later showed

empirically that GloVe is worse than SGNS for the word analogy and word similarity tasks on

various datasets (they do not conclude that representations derived from counting approaches

are worse than those derived from neural approaches, however), which reveals the variance

of the impact of the representation for a given task, illustrating the importance of choosing

the appropriate word representation for the task at hand. Moreover, further research (Levy &

Goldberg, 2014) showed that SGNS are doing nothing more than factoring a Pointwise Mutual

Information matrix derived from the text. In fact, how effective a method is in solving A:X::B:?

analogies was discovered by Ethayarajh et al. (2019) to be caused by variance shifts in a modified

formulation of the Pointwise Mutual Information between any two words.

PMI(x, y) := log
Pr(x, y)

Pr(x) Pr(y)
(2.4)

Also, one major drawback of any of the above representations (apart from ELMo and

BERT, indirectly) is that word order in a text is not preserved in the vector representation.

These so-called bag-of-words methods construct their vectors as if any two words in a text are

interchangeable, which is a fundamental oversight: text is sequentially structured, and we can

obtain much information by order alone (e.g., in SOV languages we know that the last word

in a sentence is most likely the verb). The relevance of this order information is, nevertheless,

dependent on the task.
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2.2 Objects in the Simplex

In the following sections we describe the notion of a simplex over an object space, and of curves

in this simplex.

2.2.1 Vocabulary Simplex

A simplex Σn over some set C of size n is a subset of an Rn-dimensional space where each

dimension represents an object in C, and the coordinates of each point in this subset are non-

negative and sum to one, i.e., Σn := {x ∈ Rn |xi ≥ 0,
∑n

i=1 xi = 1}. We can thus understand

points in the simplex as probability distributions over the objects in C. We call C the collection

and its objects the items. These can be concrete (such as real words in a vocabulary) or abstract

(such as the topics of a document).

Geometrically, the simplex can be thought of as an (n − 1)-dimensional triangle, e.g., Σ3

is the surface x+ y + z = 1. Each dimension is thus a vertex in this triangle, and the notion of

probability in this space is how close (under the L2 metric) a given point is to a vertex (see Fig.

2.1).

Figure 2.1: An example of Σ3, where each vertex corresponds to a word. The middle point
v is a distribution over each of the words. Being equidistant from all vertices, v is a uniform
distribution, that is, v =

(
1
3 ,

1
3 ,

1
3

)
.
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2.2.2 Curve Overview

Simplicial curves were first introduced by Lebanon et al. (2007), motivated by the, at the

time, lack of representation methods to model sequential content in textual documents. As a

generalization of the bag-of-words representation, simplicial curves aim to preserve the same

vector-space analogy as traditional representation methods, with the added benefit of modeling

words locally — i.e., the document is a time-dependent histogram of words rather than a plain

vector of all the words in the document.

The main idea is to model a text document y (or any sequence of discrete objects) as a

continuous, sequential mathematical object, i.e., a parametric curve, where one can use standard

calculus tools (e.g. derivatives, integrals, metrics) to model properties of the sequence. This also

introduces the concept of time (represented by µ) in a document, taken to be between 0 and 1.

µ = 0 represents the beginning of the curve, which maps to the beginning of the sequence, and

µ = 1 represents the end of the curve, mapping to the end of the sequence.

The way the curve is built is flexible in that it allows one to model the original sequence at

different levels of detail. If we choose a lower level of detail then the curve will focus more on

the individual objects of the sequence (in the case of text, words); if we choose a higher level

of detail then the curve will tend to model the sequence as a whole. Different representations

of the same curve (or even of different curves) can be combined to produce a single curve that

models the sequences at a varying level of detail.

A curve can be seen as a function γy from µ ∈ [0, 1] (the point of the curve we want to query)

to a member of Σn ⊂ Rn, a point in the simplex (i.e., a distribution) over the objects in the

original space.

Intuitively, the curve is a mapping from the normalized position of the document to a

histogram of the words in that position in the document. All curves are the same length to allow

comparisons between curves built from different-length sequences.

2.2.3 Curve Construction

Given an item sequence y of length N , the method starts by building an initial N × C matrix,

My, where the columns are the features of the objects (the vocabulary space) and the rows are
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the vector representations of each of them. The matrix indices are then made continuous in time

(t ∈ [0, 1]) by making My be indexed not by its row numbers, but by a function ϕ defined as

ϕMy(t, w) := [My]dtNe,w (2.5)

where [M ]i,j indicates the (i, j)’th element of the matrix. My can be built in a variety of manners,

which allows us to leverage several base-representations and the added benefits they contain.

More details will be shown in the following sections.

As an concrete example, consider the following word sequence y = w1w3w2w1, whose

matrix is represented in a one-hot fashion:

My =


t = 0 1 0 0

t = 1 0 0 1

t = 2 0 1 0

t = 3 1 0 0


Surrounding the matrix are the indices we would normally use to index the rows. Using

ϕMy(t, w), we get the following continuous access pattern:

ϕMy(t, w) =


0 ≤ t ≤ 1/4 1 0 0

1/4 < t ≤ 2/4 0 0 1

2/4 < t ≤ 3/4 0 1 0

3/4 < t ≤ 1 1 0 0


where t is used to index the rows and w, as before, the columns.

Once the continuous-access matrix representation is obtained, we smooth the entire matrix

by multiplying in time (so only the t variable is involved) the access function ϕMy with some

smoothing kernel Kµ,σ, where µ ∈ [0, 1] is the center and σ > 0 is the scale of the kernel.



2.2. OBJECTS IN THE SIMPLEX 9

For simplicity, a convenient choice for a smoothing kernel is a restricted Gaussian in [0, 1]:

Kµ,σ(x) :=


N (x;µ,σ)

Φ( 1−µ
σ

)−Φ(−µ
σ

)
, if x ∈ [0, 1]

0, otherwise
(2.6)

where N is the probability density function of the Normal distribution and Φ is its cumulative

density function.

However, given that we only care about the shape of the kernel (it should have a bell-shape

to emphasize points near its center, and have support only on [0, 1]), we can choose to use other

distributions as well. Another good candidate would be the Beta distribution B with appropriate

parameters.

B(x;α, β) :=
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (2.7)

The center parameter enhances the part of the curve we wish to focus on. Since the curve

access is normalized to be in [0, 1], we inspect a neighborhood of µ by centering the smoothing

kernel there. The scale parameter controls the shape of the kernel, which is fundamental

to control the level of detail we want the curve to encode. If the kernel is too wide (i.e.,

the smoothing is too strong) then the multiplication will yield a not-too-detailed view of the

document (this is, a higher-level representation of the document as a whole). If the kernel is too

narrow (i.e., the smoothing is too weak) then the multiplication will yield a very peaky view of

the document, precisely focusing on the original words. Formally:

γσy (µ)w :=

∫ 1

0
ϕMy(t, w)×Kµ,σ(t) dt (2.8)

where γσy is a distribution over the original collection C built using the items in y and γσy (µ)w

is the probability of item w from C at time µ ∈ [0, 1] in the sequence. For convenience, we will

generally drop the y and σ indices, only using them when we need to refer to curves built from

different documents or using different kernel scales.

Next, we explore different ways of obtaining My.
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2.2.3.1 One-hot Bag-of-Words-based

In the bag-of-words approach, My is built by stacking one-hot vector representations of the

words in the order that they appear in the sequence. To avoid the sparse representation pitfall

(see section 2.1.1), we apply some form of smoothing. Any classical form of smoothing can be

used so, for simplicity, we use Laplace Smoothing by c ∈ R.

Note that the larger c is, the closer all the previously-zero indices of the one-hot vectors will

be, which means that the corresponding point will tend towards the center of the vocabulary

simplex. Since all words will be smoothed the same way, the resulting curve will predominantly

stay near the center of the simplex.

This approach offers two advantages: a) it is easier to grasp its intuition since every word is

its own dimension, and b) it is easy to implement. However, preliminary experimental results

show that the resulting representation may not capture important information that should be

in the summary. A possible explanation for this is that, since a one-hot vector space has no

intrinsic meaning, we are not leveraging information contained in the vector spaces of other

forms of base representations (LDA (Latent Dirichlet Allocation (Blei et al., 2003)) with topics,

SGNS with semantic similarity — see below).

2.2.3.2 Dense Representation-based

Instead of stacking the one-hot representation for words into a matrix, we can instead use the

word × topic weighting matrix given by LDA. In this case, the simplex dimensions will be the

topics selected by LDA as being prevalent in the input text.

Formally, Latent Dirichlet Allocation (Blei et al., 2003) outputs a matrix T ∈ C ×K ⊆ R2,

where C is as before and K is an LDA hyper-parameter that specifies the number of topics that

should be extracted from the text. Each word wi in C corresponds to a row in T , and it is this

row, after normalization, that we take to be the i’th row in My when we see wi in y. Rows in My

can and will be repeated for each repeated word that appears in y.

As an example, for a document with four words and three topics, a possible topic weighing
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Figure 2.2: LDA plate model. The outer plate represents documents, while the inner plate
represents the repeated choice of topics and words within a document. In our case, T is θ in the
image. Image adapted from Blei et al. (2003).

of those words could be:

T =


0.1 34 24.1

23.4 4.3 1.4

19.6 8.3 11.2

4.6 6.6 50.4



Note that each weight-vector of wi given by LDA does not sum to one (does not form a

probability distribution), so to map them onto the simplex we need to normalize them using a

non-linear function (since if we used a linear function then vectors that were linearly dependent

would collapse to the same point when mapped to the simplex). We choose to use the softmax

function:

softmax(x) :=
exp(x)∑
i exp(xi)

(2.9)

where the exponential in the numerator is applied to the vector x (a row-vector of the ma-

trix) element-wise. My is then a dense matrix by construction, so no additional smoothing is

necessary.

More generally, My can be built using pre-built vector representations such as those given

by methods like word2Vec (SGNS) (Mikolov et al., 2013) or ELMo (Peters et al., 2018). In this

way, we can adapt the benefits that these representations provide (analogy resolution, dense

base-representations) with what simplicial curves gives us (ordering, algebraic operations). The

same normalization precautions described above also apply in this case.
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2.3 Curve Algebra in the Simplex

The main motivating idea is doing importance selection in the curve space and then mapping

the results back to text. To achieve this, we need to have a way of combining curves in various

ways, emphasizing different points.

With that in mind, we can define a basic algebra in the simplex, using familiar concepts

such as addition and concatenation, allowing us to combine different points (or sets of points),

indirectly combining the original items.

Since a curve is just a function γ : [0, 1]→ Σn ⊂ Rn, we can consider the algebra of vector

valued functions, with some additional operations to best allow the combination of curves, as

long as they remain closed in the simplex.

Let γ1 and γ2 be two curves and γ′ the result of combining them in some way. We define the

following:

• Curve addition

γ′(µ) =
1

2
(γ1(µ) + γ2(µ)) (2.10)

• Curve subtraction

γ′(µ) = softmax (γ1(µ)− γ2(µ)) (2.11)

• Curve concatenation

γ′(µ) = if µ <
1

2
then γ1(2µ) else γ2(2µ) (2.12)

• Curve conflation

γ′(µ) =
γ1(µ)⊗ γ2(µ)∑
w γ1(µ)w ⊗ γ2(µ)w

(2.13)

All of these generalize to a higher number of curves.

Curve addition has an intuitive motivation: just return the curve in the geometric space

between γ1 and γ2.

Conflation (Hill, 2011) is a method used to compose different probability distributions over

the same underlying objects whilst ensuring important statistical properties (e.g., conflation
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minimizes the loss of Shannon Information, and yields a maximum likelihood estimator, among

others). The vector multiplications are done element-wise.

Curve subtraction runs the risk of yielding a negative probability distribution, so we need

to normalize it to positive by applying the softmax function.

Concatenation also has an intuitive meaning — take the beginning of the second curve and

attach it to the end of the first, correcting the access argument accordingly. This can be useful

for, e.g., forming a curve for a document by sequentially composing the curves for its sentences.

Do note that it does not make sense to consider curve scaling by some scalar in R since we

would immediately have to re-normalize, losing the scaling operation.

We can also define the curve inner-product, allowing us to see how much two given curves

“agree” with each other, i.e., how similarly they travel in the simplex space.

• Curve inner-product

γ1 · γ2 =

∫ 1

0
γ1(µ) · γ2(µ) dµ

Since the result of evaluating a curve at a given point is a distribution, we can also generalize

common probabilistic descriptors such as entropy or the Fisher information:

• Curve Entropy

H(γ) :=

∫ 1

0
H(γ(µ)) dµ (2.14)

• Curve Fisher Information

I(γσ) :=

∫ 1

0
Ew∼γσ(µ)

[(
∂

∂σ
log(γσ(µ)w)

)2
∣∣∣∣∣σ
]

dµ (2.15)

We can also compare two different curves by finding their distance d under some metric

M, e.g., L2 distance (yielding the mean euclidean distance of one curve to another in space),

or the Jensen-Shannon metric, defined as JS(P ‖Q) := 1
2 (KL(P ‖A) + KL(Q ‖A)), with A =

1
2 (P +Q), where KL is the Kullback-Leibler divergence, yielding how similar two curves are

from one another, in terms of their probability distributions.
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• Curve difference under metricM

dM(γ1, γ2) :=

∫ 1

0
M(γ1(µ), γ2(µ)) dµ (2.16)

2.4 Summary

In this chapter we have given an overview of the different methods for word representations,

traditional and neural-based, that have been developed. We then introduced the idea of a

simplex and objects on that simplex. We detailed how to construct curves on simplices using

different word representations as a basis, and developed an original algebra for these objects.



3Multi-document

Summarization

In this chapter we are going to give an overview of some foundational and state-of-the-art

methods in multi-document summarization, as well as detail some of the most used evaluation

metrics and corpora.

3.1 Corpora

The Document Understanding Conference1 (DUC) were a series of challenges running from

2001 to 2007 whose aim was to evolve the state-of-the-art in text summarization. To this end,

a corpus for MDS was published each year, which invited competing implementations. The

top-ranked systems became good baselines for MDS. Of note are the DUC 2006 and DUC 2007

corpora, which, for our purposes, are comprised of, respectively, 50 and 45 document clusters of

English news from the Associated Press and the New York Times. Each document cluster has,

on average, 25 documents.

Since 2008, DUC became the summarization track of the Text Analysis Conference2 (TAC),

where the goal was the same. The track ran from 2008 to 2011 (and uniquely in 2014) but,

in recent years, TAC has grown to focus on knowledge-based systems. TAC challenges were

more diverse, ranging from MDS to just summary evaluation, opinion summarization or even

multilingual summarization. Of note is the TAC 2009 corpus, which is a dataset of 44 topics and

20 documents clusters per topic. The dataset is a subset of AQUAINT-2 (Vorhees & Graff, 2008),

a collection of 907k documents in English, comprised from articles from October 2004 to March

2006 from Agence France-Presse, Central News Agency (Taiwan), Xinhua News Agency, Los

Angeles Times, Washington Post News Service, New York Times and Associated Press.

Recently, Fabbri et al. (2019) introduced a new dataset for MDS along with some baselines

on that dataset using MMR and end-to-end methods. It consists of 56216 documents taken from

1https://duc.nist.gov/ (Accessed January 20, 2021)
2https://tac.nist.gov/ (Accessed January 20, 2021)

https://duc.nist.gov/
https://tac.nist.gov/
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scrapped full news articles and summaries from newser.com. Each summary is handmade

and has at least two or more sources from where it was obtained. The baseline methods used

were also tested in DUC and reported worse performance than known values for DUC. This

highlights the fact that the effectiveness of different summarization techniques is also highly

dependent on the type of text we want to summarize.

3.2 Evaluation Metrics

The classical metric used to automatically measure summary quality is Recall-Oriented Under-

study for Gisting Evaluation (ROUGE) (Lin, 2004), which measures lexical overlap between

the produced summary and some reference summary in various ways. The overlaps can be

computed at the word level (ROUGE-1), bi-gram level (ROUGE-2), bi-gram with n words in

between (ROUGE-Sn), bi-gram with n words in between and uni-gram overlap (ROUGE-SUn),

longest common subsequence (ROUGE-L), and some subsequent extensions considering dense

vectors built from n-grams (ROUGE-n-WE) (Ng & Abrecht, 2015) and co-occurrence statistics

(Lin & Och, 2004). While ROUGE correlates well with human judgments for extractive summa-

rization, it does not perform as well for abstractive summarization since the chosen new words

may not overlap with the reference summary, although possibly preserving the general meaning

of the text. Some work has been done in trying to take advantage of dense representations to

measure similarity rather than semantic overlap (Ng & Abrecht, 2015), which also generalizes

the ROUGE framework for abstractive summarization settings.

If ROUGE essentially measures the recall of the generated sentences (how much of the

candidate sentence is in the reference summary), Bilingual Evaluation Understudy (BLEU)

(Papineni et al., 2002) measures the accuracy (how much of the reference summary is in the can-

didate sentence). Although it originated in machine translation (ranking possible translations),

BLEU was applied to summarization in the very first DUC challenge, but subsequent challenges

evaluated performance using ROUGE.

In domains where we know a priori that a “good” summary of a document will necessarily

paraphrase the original text, Summarization Evaluation by Relevance Analysis (SERA) (Cohan

& Goharian, 2016) was developed to be a better (has higher correlation with human scores)

metric than ROUGE. By measuring the summaries’ content relevance rather than lexical overlap,

newser.com
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SERA displays a perfect rank correlation (ρ = 1) in the domain of scientific articles.

More recently, W. Zhao et al. (2019) advanced a metric — MoverScore — that measures

the semantics of a candidate summary sentence in comparison to a reference summary, by

formulating the text generation task as an optimal transport problem (i.e., find the cheapest

(under some cost metric) deformation of a probability distribution into another). They tested this

metric in a series of tasks such as machine translation, image captioning and, importantly, MDS,

and found that MoverScore generally correlates better with human judgments than ROUGE.

For manual evaluation, Nenkova et al. (2007) proposed the Pyramid method: a framework

for combining hand-crafted summaries from different human annotators, all the while account-

ing for the fact that there is high variability between the content different annotators produce

(from the focus of the summary to the way it is produced — if in an extractive or abstractive

manner). At the basis of the Pyramid method are Summary Content Units (SCU), passages that

appear repeated throughout summaries (not necessarily lexically equal) weighted by how many

times they appeared in a summary. SCUs with equal weight are then partitioned into layers

(i.e., a pyramid) where the layers at the bottom (less weight) are informationally less important

because they came from fewer summaries. After this arrangement, the pyramid is transformed

into a final score (in [0, 1]), where higher scores indicate that more of the content is as highly

weighted as possible, via the following formula, where there are n layers Ti (each layer then has

i weight; the bottom-most layer is T1) in the pyramid, Di is the number of SCUs in the summary

that appear in Ti, and X is the summary size in SCUs:

M :=

 n∑
i=j+1

i×#Ti

+ j ×

X − n∑
i=j+1

#Ti

 (3.1)

Score :=

(
n∑
i=1

i×Di

)
/M (3.2)

where j = max1≤i≤n {
∑n

t=i |Tt| ≥ X}. Reference summaries are used to build the pyramid and

a system summary can be assigned a number to see how informative it is.
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3.3 Related Work

At its core, extractive summarization is a text ranking problem, where we have to choose

the most important words to preserve in a final, shorter text. This formulation has a simple

translation to SDS: rank and select the parts of the original text that should appear in the

summary. However, this simplicity breaks down when we pass to the multi-document world:

the set of documents to summarize may not talk about the same thing at the same level of detail,

so we must identify and eliminate some redundancy. Also, we need to ensure that the produced

summary is coherent with respect to the different source texts (Radev et al., 2002). A common

way to solve this problem is to collapse the task into SDS: just concatenate all the texts. This,

however, also creates new problems. News articles, for example, make an effort to have their

first sentence be the most prominent (or “summarizable”), so the concatenated document of

news articles would have multiple “first sentences” throughout. This also destroys the text’s

narrative: the content no longer begins in the introduction and ends in the conclusion, it has

now instead various phases where it begins and ends anew.

Multi-document summarization is a well-studied field, featuring many different approaches

with various degrees of success, most of which fall into the pitfall of modeling it as an SDS

problem. Nonetheless, we highlight below some recent or seminal work done in the area.

Goldstein et al. (2000) generalized the Maximum Marginal Relevance (MMR) (Carbonell &

Goldstein, 1998) approach to extractive summarization to the MDS setting. MMR is a method

for selecting sentences to include in a summary that a) provide new information, and b) are not

similar to the already included sentences. Let s ∈ D be a sentence in a document D, R be the set

of sentences already chosen as relevant and that have been selected to appear in the summary,

and Q be some user query. MMR is then defined as

MMR(D,Q,R) := argmaxs∈D\R{λ sim1(s,Q)− (1− λ) max
s′∈R
{sim2(s, s′)}} (3.3)

where λ ∈ [0, 1] is a parameter controlling if we want the selected sentence to be more relevant

towards the query (as measured by some similarity metric sim1) or more diverse (by metric

sim2) towards the already selected sentences. In Goldstein et al. (2000), the authors applied

MMR to MDS by incorporating a series of document-independent statistical heuristics, such as

number of documents that contain the query, the document where a selected sentence comes
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from, the timestamps between document publications, among others. Testing was done using

the TIPSTER corpus (Harman & Liberman, 1993), evaluated using both compression ratio and

cosine similarity to reference human summaries.

Erkan & Radev (2004) introduced LexRank, a graph-based method for ranking TF-IDF (see

section 2.1.1) represented sentences in a text document. LexRank first constructs an undirected

graph with nodes representing sentences and edges representing the cosine similarity between

sentences (where edges are only present if this similarity is above some threshold). It then applies

the concept of eigenvalue centrality in graph-theory, achieved by multiplying the adjacency

matrix by some initial distribution over all the vertices in the graph until convergence. A

summary is then built by selecting the top n-th sentences, and evaluated using ROUGE-1 on the

DUC 2003 and DUC 2004 corpora.

L. Zhao et al. (2009) did query-focused graph-based MDS extraction by selecting the top

sentences that are closest to the query using LexRank. Afterward, these sentences are added to

the user query, after which all the sentences are re-ranked according to this new query, paying

attention to redundancy. This is done to reduce the information noise in the documents, and, as

such, should generate better summaries. Testing was done in DUC 2005 and DUC 2006 using

ROUGE-1, ROUGE-2, ROUGE-S, and ROUGE-SU4, showing that this method is comparable to

the top performing systems in the DUC challenge for those corpora.

Nayeem et al. (2018) did sentence fusion via walks on a graph. First, it constructs a graph

where vertices are words and directed edges mean that the source word appeared before the

target word in a sentence. Compression can be given by the shortest path between two words.

This is done as a way to merge sentences from different documents, hence achieving higher

coverage. Then it transforms the vertices into vectors via representations taken from the hidden

state in a Recurrent Neural Network (the state itself is the word vector) and passed to TextRank

(Mihalcea & Tarau, 2004) (similar to LexRank but with different criteria to build the graph) to

capture semantic meaning in the absence of lexical overlap. The final sentences are retrieved

from the TextRank output. For every word, they also decide if they want to include it in the final

summary or if they want to replace it by a possibly more informative word for that context. The

optimality of the length of the generated summary was validated on DUC 2004 using ROUGE-1,

ROUGE-2, ROUGE-1-WE, and ROUGE-2-WE, beating the state-of-the-art in all the metrics of

the dataset.
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Tohalino & Amancio (2018) explored a multi-level graph approach where documents are

modeled as layers and sentences are vertices in the layer. Inter/intra-layer edges are the cosine

similarity of sentences (modeled as TF-IDF vectors; see section 2.1.1), where inter-layer edges are

reinforced to give more weight to similar sentences in different documents. By using different

layers for the documents, the method can naturally discriminate from which documents do

sentences come from, helping with information redundancy, i.e., do not assign much weight to

vertices (sentences) that are in non-informative layers (documents). Summaries are generated by

picking the top vertices according to some measured classical graph-theoretic criterion such as

degree, average shortest path, accessibility, and absorption time, achieving competitive results

in ROUGE-1 on DUC 2002 and DUC 2004 and state-of-the-art in CSTNews (Cardoso et al., 2011),

a corpus of Brazilian Portuguese journalistic texts, when compared against other graph-based

systems (Ribaldo et al., 2012).

Kågebäck et al. (2014) explored the viability for summarization of modeling sentences

with semantically-aware representations (such as SGNS vectors, see section 2.1.2). To achieve

this, they represented sentences using a simple (sentence vectors are given by the sum of the

word vectors) and a complex method (sentence vectors are given by a recursive auto-encoder

(Socher et al., 2011) that explicitly models the word order in the sentence and the grammar

used). The dataset used is Opinosis (Ganesan et al., 2010) (short user reviews on different topics),

evaluated using ROUGE-1, ROUGE-2, and ROUGE-SU4; they concluded that simpler methods

(i.e., sentences are the sum of their words) outperform more complex ones.

Yogatama et al. (2015) represented each sentence by a vector given by Latent Semantic

Indexing (see section 2.1.1). Given that a set of vectors (points) forms a polytope, a summary

is built by selecting the sentences corresponding to the set of points that form the widest

polytope over all the other sentences in the document cluster, the assumption being that the

generated summary will be the one with the highest coverage (maximum volume) and least

redundancy (points chosen are, by construction, at the boundary – see Figure 3.1). Their method

was evaluated on TAC2008 and TAC2009 using ROUGE-1, ROUGE-2, and ROUGE-SU4, and

compared against MMR and Coverage-Based Summarization (Gillick et al., 2008), where the

generated summaries that cover more diverse bi-grams scored higher.

One should note that this is the same as finding the set of points that span the polytope with

the largest area. This is similar to an approach that we explore to construct summaries, with the
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Figure 3.1: The four red dots represent the selected sentences since the polytope spanned by
them covers all the other sentences in the document. Image adapted from Yogatama et al. (2015).

difference being that we find the set of points that span the smallest volume polytope.

Mani et al. (2018) represented a document by a paragraph vector (Le & Mikolov, 2014) and,

for a document cluster, its centroid is seen as the “content average” of all the documents in the

cluster. Summarization is done by selecting sentences that minimize the euclidean distance

to the centroid of the cluster. They evaluate on DUC 2006 and DUC 2007 using ROUGE-1,

ROUGE-2, and ROUGE-SU4. The idea of averaging representations of different objects into a

final statistic is close to one of our proposed approaches, the main drawback in the case of Mani

et al. (2018) is that their representation model needs to be pre-trained on some other dataset

(they chose Thomson Reuters Text Research Collection (Lewis et al., 2004) and CNN/Dailymail

(Hermann et al., 2015) corpora).

Peyrard et al. (2017) chose to focus on a different aspect of MDS: the metric. They combine

a series of metrics such as ROUGE-N, ROUGE-L, ROUGE-WE, Jensen-Shannon Divergence,

cosine similarity, and n-gram coverage in one final combination that optimizes correlation with

human judgments. They trained a model based on a Support Vector Machine to optimize the

combination of metrics and tested on the TAC 2008 and TAC 2009 corpora, concluding that this

combination of metrics has a high correlation (r ≈ 0.77, ρ ≈ 0.70) with pyramid scores, higher

than the same model trained with each individual metric.

Rioux et al. (2014) created a Reinforcement Learning agent that selects sentences from a

document cluster to include in the summary. The sentence features are based on bigrams and
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heuristics like “longest common subsequence length”. Delaying the reward the agent receives

for a well-selected sentence is found to have much better performance than not delaying.

Summaries were produced for DUC 2004, evaluated using ROUGE-1, ROUGE-2, and ROUGE-L,

and compared mainly against Automatic Summarization using Reinforcement Learning (Ryang

& Abekawa, 2012) (another RL agent), achieving higher performance. By incorporating these

metrics in the reward function for the agent, the generated summaries were found to be much

more grammatical (e.g., correct determiner use). This is due to the system extracting passages

that are more than one word long (i.e., increasing ROUGE-2 and ROUGE-L).

Liao et al. (2018) used Abstract Meaning Representation (Banarescu et al., 2013) for abstrac-

tive summarization. Under the AMR framework, documents are represented by graphs where

concepts in the text are vertices and semantic relations are edges. After parsing a document

to obtain an AMR graph, sentences are generated which preserve the core semantics of the

text. Here, this approach is applied in the MDS setting by considering a document cluster to be

just a bag of documents, where each document is a bag of sentences. Documents were taken

from DUC 2004 and TAC 2011, and compared against a series (see section 4.4.1 — we also test

our method against the systems they chose) of both extractive and abstractive baselines using

ROUGE-1 and ROUGE-2.

Figure 3.2: Example of an AMR graph for the sentence “The Japanese Government stated on
April 8, 2002 its policy of holding no nuclear warheads”. Image taken from Liao et al. (2018).
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Lebanoff, Muchovej, et al. (2019) proposed testing the effectiveness of sentence fusion in

abstractive summarization settings. To this end they found that current state-of-the-art systems

are not doing (either implicitly or explicitly) sentence fusion, ending with the note that sentence

fusion is not as effective as previously thought. Evaluation was done using the CNN/Dailymail

corpus by human evaluators, where the assessed metrics were a) faithfulness: if the summary

remains true to the original text, b) grammaticality: if the summary is grammatically acceptable,

and c) coverage: if the summary has information pertaining to selected article highlights. They

concluded that the systems that perform fusion rank the lowest on faithfulness and that higher

ROUGE scores do not necessarily lead to more faithful summaries. Within the systems that

perform fusion, they found that the systems that fuse sentences by simple concatenation are

the ones that have the highest faithfulness. In the other metrics, fusion systems are found to

generate readable, grammatically correct summaries, but not as much as the state-of-the-art

encoder-decoder systems.

Lebanoff et al. (2018) trained an encoder-decoder model to learn how to fuse disparate

sentences to generate the summary in an abstractive manner, with an attention mechanism to

regulate which sentences to fuse. MMR is also used to calibrate the selection, to account for

redundancy in the summary. They evaluate their performance using ROUGE-1, ROUGE-2,

ROUGE-SU4 and human judgments on documents from DUC 2004 and TAC 2011, comparing

it with the baselines used by Liao et al. (2018) plus an integer linear-programming model for

summarization (Gillick et al., 2009). The implications of the mixture of extractive and abstractive

summarization is seen as a point to develop further, since, despite not performing as well

as some extractive baselines, the summaries generated were more highly ranked by human

annotators in faithfulness and coverage. One advanced possibility is that they are not optimizing

the extractive part of the method separately from the abstractive one.

Lebanoff, Song, et al. (2019) used vector representations for words that change depending

on the context the word is inserted in (see section 2.1.2). With this representation, they created a

system that compresses or joins two sentences – hence it is an abstractive procedure – selected

by an attention mechanism that is sensible to the fact that the sentences may have come from

different documents. Tests were done both in SDS and MDS settings, and, for the used MDS

corpus (DUC 2004), the baseline extractive methods (see section 4.4.1, plus N -LEAD, where

the first N sentences are taken from each document to form the summary — in their case,
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N is the average number of sentences in the reference summaries) fared better in ROUGE-1,

ROUGE-2, and ROUGE-L scores, indicating that just having the awareness that sentences come

from different documents is not enough to properly select important content. Also, for the MDS

setting, they find that simpler representations that leverage word frequency across documents

(TF-IDF, see section 2.1.1) outperform more complex ones.

3.4 Summary

In this chapter we have given an overview of the related work on multi-document summariza-

tion. We started by introducing the main corpora used in the MDS task, DUC 2006 and DUC

2007, and the main metrics used for automatic or manual evaluation of the generated sum-

maries, namely ROUGE and Pyramid. We then talked about some elementary or state-of-the-art

methods in the MDS task, providing a short summary of each method, as well as the corpora

and metrics used.



4Summarization

Experiments

This chapter details the datasets, metrics, and steps taken for the summarization algorithm. We

also present and analyse the results of our experiments.

4.1 Datasets

We chose to test simplicial curves in the MDS problem using the DUC 2006 and DUC 2007

datasets (c.f. section 3.1). These datasets were chosen since they are the ones most suitable

for MDS, as well as being the ones where most MDS articles have focused on, facilitating

comparison of results. Our objective is, given a document cluster, to produce a summary (where

summary size varies with the chosen dataset) that is acceptable (measured by some metric —

see below) when compared to some human-made reference summary for that document cluster.

4.2 Curve Construction

Every DUC document is first converted from XML to plain text. We chose to construct the curves

at three levels: a) the sentence level (each curve represents a sentence); b) the document level

(each curve represents a document); and c) the mixed level (each curve represents a document,

built by concatenating smaller curves that represent the sentences of that document). Sentences

are extracted from every document using Apache OpenNLP1. No stopwords were removed and

no stemming was done, in order to preserve function words in the generated summaries.

The base matrices were created in two ways: a) 100-dimension vectors from word2Vec

(viz. 2.2.3.2); and b) 10-dimension vectors, obtained by applying UMAP (McInnes et al., 2018)

to the 100-dimension vectors. UMAP is a dimensionality reduction technique that maintains

positional relativity: objects close in the high-dimensional space are mapped to close objects in

1https://opennlp.apache.org/ (Accessed January 20, 2021)

https://opennlp.apache.org/
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the low-dimensional space and objects further apart in the high-dimensional space are mapped

to distant objects in the low-dimensional space..

Curves were built with a smoothing value for the restricted Gaussian kernel of σ ∈

{0.05; 0.005; 0.003; 0.001}. These values were chosen in-line with the original article. Find-

ing a clear relation between smoothing value and curve performance can be a future area of

enquiry. UMAP was run with the default parameters from the authors’ implementation.

4.3 Summary Construction

The most straightforward approach to building summaries using curves is the average curve

approach. The resulting curve should intuitively model both documents: to get a summary, it

suffices to synthesize words from it.

The success of this method is highly dependent on the underlying representation used to

build My. To summarize a single document, we can also consider curves built with different

scales for the kernel, i.e., synthesizing words from the curve γ′y = 1
2(γσ1y + γσ2y ) for document y.

We construct the summary curve by a) averaging and b) conflating the curves for all

the documents. Reconstructing the text is done by sampling uniform-spaced points from

the summary curve and retrieving the word associated with the dimension with the highest

probability (in the case of one-hot built curves), or by training an encoder-decoder model to

map between curves to sentences.

An LSTM (Hochreiter & Schmidhuber, 1997) was used to create a mapping from curves to

sentences in the cases where the curve dimensions do not have any extrinsic meaning. This was

done by training a neural-network to match curve representations (dense matrices) of sentences

to a vector representation of those sentences. This vector representation has length equal to the

length of the sentence, and the entries of the vector are the index positions in the vocabulary of

the word in the sentence.

As an example, consider the sentence “How are you, you villain?”. If we create a curve from

a base matrix representation with 10-dimension vectors, and we sample 5 points of that curve to
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create a summary, the network will have to map:

R5×10 3


0.1 · · · 0.15

...
. . .

...

0.45 · · · 0.03

 7−→ [
0 1 2 2 3

]

Since any unlabelled collection of texts can be used for this purpose, we trained the model in

the DUC 2006 dataset, using only the original documents as the source for our training sentences.

The model was constructed using the Keras Framework (Chollet et al., 2015) with the Tensorflow

backend. It was trained for 50 iterations using the Sparse Categorical Cross-entropy loss and

the RMSprop optimizer. The hidden layer of the LSTM had dimension 100 and its activation

function was softmax.

4.4 Evaluation

We compare the generated summaries with the reference summaries using ROUGE-1, ROUGE-

2, and ROUGE-L, since these are the most widely used automatic metrics in the MDS task.

Although it was also presented in section 3.2, we do not evaluate our summaries using SERA

because this metric has relevance chiefly in the field of summarizing scientific articles, and not

general news articles.

4.4.1 Baselines

We compare simplicial curves with some strong extractive (ext) and abstractive (abs) baselines

that have been applied successfully in multi-document summarization:

• SumBasic (ext) (Vanderwende et al., 2007) is a greedy algorithm for sentence selection that

chooses to include in the summary the sentence with the highest probability, as given

by P (S) = 1
#S

∑
w∈S P (w), where P (w) is a unigram distribution of all the words in the

corpus. This process is repeated until the desired length of the summary is reached.

• KLSum (ext) (Haghighi & Vanderwende, 2009) builds upon the above idea but, instead of

including in the summary the sentence with the highest probability, it selects the sentence
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that, when added to the summary, most reduces the KL-divergence between the unigram

distribution of the sentence and the unigram distribution of the corpus.

• TextRank (ext) (Mihalcea & Tarau, 2004) is very similar to LexRank (viz. section 3.3) but,

instead of finding the eigenvalue centrality of the sentence graph, sentences are ranked for

extraction by the PageRank algorithm. Further, the original TextRank algorithm builds the

weighted sentence graph by considering the weight of an edge to be the amount of lexical

overlap between two sentences.

• Pointer-Generator (PG) networks (abs) (See et al., 2017) is a mixture of extractive and

abstractive approaches: when constructing the summary, the model decides (based on an

attention mechanism) if, for the current position of the under-construction summary, it is

better to generate a new word or to copy a word from the source text. Both the attention

mechanism and the underlying model need to be trained using a different corpus from the

one we want to summarize.

• PG-MMR (abs) (Lebanoff et al., 2018) builds upon the above idea, only that the sum-

mary construction step is interleaved with MMR (section 3.3), where it is used to pick K

sentences to pass on to PG. After each summary construction round, the sentences are

re-ranked and the process repeats until the summary has the desired length.

4.5 Results and Discussion

The ROUGE-1, ROUGE-2 and ROUGE-L scores for each baseline and the proposed method

are presented in Tables 4.1 and 4.2, for the DUC 2006 and DUC 2007 datasets. In the simplicial

curves entry is the dimension of the word-embeddings used (10 or 100). “Cat” means that the

curve was done at the document level by concatenating curves at the sentence level. The results

presented are for curves built with smoothing kernel σ = 0.003.

All presented curve results were obtained by combining curves by average. The conflation

method, as discussed in section 2.3, is not shown as it was not successful: the resulting curve

would always concentrate all of its mass around one point, making the curve generate only one

word.

We can see that the ROUGE scores achieved for the simplicial curves are not competitive
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DUC 2006 R-1 R-2 R-L
SumBasic 0.27 0.03 0.12
KLSum 0.27 0.03 0.13
TextRank 0.33 0.06 0.16
PG 0.24 0.04 0.13
PG-MMR 0.30 0.06 0.15
Simplicial Curves 10 0.02 0.001 0.02
Simplicial Curves 100 0.04 0.001 0.04
Simplicial Curves 100 Cat 0.05 0.004 0.04

Table 4.1: Baseline and curve results on the DUC 2006 dataset.

DUC 2007 R-1 R-2 R-L
SumBasic 0.29 0.04 0.14
KLSum 0.28 0.04 0.13
TextRank 0.36 0.07 0.17
PG 0.26 0.05 0.14
PG-MMR 0.32 0.07 0.17
Simplicial Curves 10 0.02 0.001 0.01
Simplicial Curves 100 0.03 0.001 0.03
Simplicial Curves 100 Cat 0.04 0.003 0.03

Table 4.2: Baseline and curve results on the DUC 2007 dataset.

with the baselines. One possible explanation for this is that the curve-averaging method

generates curves that are poor information-wise, due to the original curves’ distance apart in

the 100-dimension word-embedding space (as illustrated in Figure 4.1, with γ′ = 1
2 (γ1 + γ2)).

This, combined with the fact that the curves pass through the same region many times (because

of the stopwords), leads to the resulting average curve being condensed in some specific areas

and every so often shooting off into regions with content.

Figure 4.1: Shortcoming of the curve-averaging method. γ′ has no clear relation with γ1 or γ2.

We keep the stopwords because we need the function words to generate legible text. Howver,
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even if we remove the stopwords, the overall result does not change: the resulting curve now

focuses on superfluous words between the curves.

One thing to note is the fact that the average curve may pass through regions that do not

represent the original documents in any way. To use a standard word-embedding example, if

there are two documents that say “hot” and “cold”, respectively, then the average curve will

pass through the “warm” region, and this would be the word that would be generated for the

summary, even though the original documents have no connection to this term. This is also

illustrated by Figure 4.1.

Even so, the ROUGE scores are better if the curves are built with higher dimension base

matrices. This is despite the fact that, in higher dimensions, the curves have a much wider

space to roam, thus aggravating the above-mentioned shortcoming of the averaging method.

We can explain this dissonance in two ways: a) the 10-dimension word vectors were obtained

by reducing the dimension of the 100-dimension word vectors with UMAP. This mapping may

have rendered the output vectors unfit for purpose, even though UMAP retains object proximity

relativity (close objects in higher dimensions remain close in lower dimensions; far away objects

in higher dimensions remain far away in lower dimensions); and b) higher dimensions in the

word-embedding space can model a higher number of concepts, so the generated words will

be richer (this is compatible with the above shortcoming: the curves to average have more

dimensions, so the average curve has more regions where it can pass through and not be

informative).

It is also interesting to note that constructing document-level curves by concatenating

sentence-level curves works better than constructing document-level curves or sentence-level

curves by themselves. This is due to the resulting curves being bigger (more information dense)

because each part of the curve explicitly models a sentence of the originating document.

Some examples of generated sentences from average curves with kernel σ are:

σ = 0.001 Think the other than the most common and the most common york

σ = 0.003 The New York Times news service the first time and the other states

σ = 0.005 The New York city and the New York city [repeated]

σ = 0.05 The officials said

These sentences come from curves generated from documents belonging to a document-set
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where New York appears in the context of a smoking ban in restaurants, air pilot investigations

and murder rates. In the generated sentences, only the main topic linking these documents is

of interest, with the other words being either low content or function words. If the smoothing

is too much (σ = 0.05), the curve “flattens” and ceases to pass through information dense

regions (explaining the small quantity of words generated), whilst if the smoothing is too little

(σ = 0.001) the simplicial curves method degenerates into a simple bag-of-words procedure,

where words are sampled with no regard for their position in a sentence.

Given that the ROUGE results were so poor, we did not use the algebraic machinery

developed in section 2.3. Our original plan was to relate an intrinsic curve feature (e.g., curve

entropy) with the quality of the generated summary, as given by the ROUGE scores. However,

because these were so low, any correlation score was highly probable to be just noise.

4.6 Summary

We have presented our proposed experiments to evaluate the simplicial curves method in

the MDS task. We detailed the corpora chosen, how we evaluate the generated summaries,

how we construct the curves from which we generate summaries, and a set of five baseline

methods to which we compare our method to. In the end, we have analysed the results of our

simplicial curves experiments. Although the results are poor metric-wise, we can find a number

of explanations for this, prompting a new path forward in this line of enquiry.
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5Conclusion and Future

Work

In this work we have expanded on the concept of simplicial curves (Lebanon et al., 2007),

generalizing it to different base representations. We introduced the simplicial curves method

and developed an algebra for it, which we did not use in its entirety.

We then explored the effectiveness of the method in the task of multi-document summariza-

tion, testing whether or not a representation that explicitly maintains sequencing information is

useful in this task. Our experiments show that it is not, with the ROUGE-1 score of 0.04 obtained

in the DUC 2007 dataset being below our simplest baseline (SumBasic) score of 0.29, where

summaries are constructed simply by selecting the most important sentences in a document.

It thus seems that the additional structure provided by the simplicial curves is not being used

effectively in generating summaries – essentially resulting in noise.

Some of the tools we had prepared to deal with curves were left unused because of the poor

results we had in the MDS task. If the results had been better – at least as good as the most

basic baseline – any impact that any upstream change could have had, as guided by the intrinsic

evaluation methods we developed, could at least be reliably measured.

The cause of these ROUGE results is made clear when we present the actual generated

summaries: the words selected by the curves are low-content and have little relevance across

documents, primarily due to the effect mentioned in Figure 4.1.

Notwithstanding the poor results in the summarization task, we still believe in the potential

use for a representation that explicitly encodes sequential information (like, e.g., ELMo (Peters

et al., 2018)) and that can be manipulated using standard and advanced tools of mathematics

(unlike ELMo). In particular, we would like to explore ways of using curves as an intermediate

representation for some domain-specialized downstream algorithms, i.e., either sample the

curve for points to use as input or use the curve itself as input.

We would also like to keep exploring the effectiveness of curves in different language-related
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tasks such as word segmentation or topic modeling, as well as some non-language-related tasks

that would nonetheless benefit from having a method for representing objects while preserving

sequential information (e.g., video processing).
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