
Formal Verification of Pointer-Based Splay Trees in Iris

Ricardo Cirı́aco da Graça

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Fernando Peixoto Ferreira
Prof. Simão Patricio Melo de Sousa

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Prof. João Fernando Peixoto Ferreira

Member of the Committee: Prof. Jan Gunnar Cederquist

January 2021

Acknowledgments

I would like to thank my parents, sister and family for their support during this time. This path could

not have been possible without them.

I would also like to give a special thanks to my Supervisor, João Ferreira, who helped me a lot during

this year. I appreciate all the time that he has spent to support me as his oriented student.

To my Co-Supervisor, Simão Sousa, I also appreciated his help throughout the development of the

thesis.

At last, I would also like to thank my friends that have kept me company during the pandemic, they

surely made this year a lot better.

Abstract

When real-world applications crash or start to lack in performance, they can bring tremendous costs to

the involving parties. Therefore, it is important to ensure that these applications do not fail. Testing is

useful in practice as it can be used to show the presence of bugs. However, it cannot be used to prove

their absence. On the other hand, formal verification can be used to prove that a program fully meets a

given specification. However, formal verification of real-world code, which normally manipulates mutable

and non-trivial data structures, is a difficult task. In the last few years, many advances have been made

in formal verification, but there are still many opportunities to verify real-world code. In this project, we

explore Coq and the Iris framework to verify the functional correctness of the pointer-based implemen-

tation of Splay Trees which is used by the GNU Compiler Collection (GCC) in the Offloading and Multi

Processing Runtime Library (libgomp). In the process, we also verify a functional implementation of the

splay tree algorithm for a generalized ordered datatype using the interactive proof assistant Coq. To the

best of our knowledge, we provide the most complete formally verified pointer-based implementation of

Splay Trees.

Keywords

Formal Verification; Coq; Iris Framework; Splay Tree; Heap-lang; GNU Compiler Collection

iii

Resumo

As aplicações, quando suscetiveis a falhas ou a um desempenho decadente, podem afetar significa-

mente os custos daqueles que dependem de tal. Assim sendo, há uma necessidade de garantir que

estas aplicações não falham e que tenham o comportamento esperado. Testar é útil na prática, mas

só para mitigar certos bugs e não para ter esta garantia. No entanto, a verificação formal pode ser

usada para garantir que o comportamento de um programa obedece a certa especificação. Contudo,

a verificação formal de código usado no mundo industrial, que normalmente lida com estruturas de

dados mutáveis e não triviais, é uma tarefa custosa. Nos últimos anos, muitos avanços foram feitos no

que toca à verificação formal, mas ainda há muitas oportunidades para verifica programas de alto uso

no mercado. Neste projeto exploramos o assistente de provas Coq e o framework Iris para verificar a

correção de uma implementação de splay trees baseada em apontadores da aplicação GNU Compiler

Collection (GCC) que tem uso na biblioteca libgomp (GNU Offloading and Multi Processing Runtime

Library). Também provamos uma implementação functional do algoritmo de splay trees para tipo de

dados generalizado, com o assistente de provas Coq. Com o conhecimento que temos neste momento,

fornecemos a implementação baseada em ponteiros formalmente verificada mais completa de Árvores

Splay.

Palavras Chave

Formal Verification; Coq; Iris Framework; Splay Tree; Heap-lang; GNU Compiler Collection

v

Contents

1 Introduction 1

1.1 Work Objectives . 3

1.2 Contributions . 5

1.3 Organization of the Document . 5

2 Background and Related Work 7

2.1 Splay Trees . 9

2.1.1 Practical Applications . 9

2.1.2 Self-Adjusting Tree Structures . 9

2.2 Formal Verification of Tree Structures using ITPs . 11

2.3 The Iris Framework . 13

2.4 Time Credits and Time Receipts in Iris . 16

3 A Functional Implementation of Splay Trees 21

3.1 Nipkow’s Implementation . 23

3.2 Functional Correctness . 24

3.2.1 Properties Proved . 25

3.2.1.A Set of elements is invariant over the splay function 25

3.2.1.B Binary search tree invariant over the splay function 25

3.2.1.C Splay tree correctness of splayed key to root 26

3.2.1.D Binary search tree invariant over the insert method 26

3.2.1.E Binary search tree invariant over the delete function 28

3.3 Discussion . 29

4 A Pointer-Based Implementation of Splay Trees 31

4.1 GCC’s Splay Tree: Heap-Lang Code Translation . 33

4.2 Splay Tree Predicate . 35

4.2.1 Domain . 35

4.2.2 Edges . 35

4.2.3 Value function . 37

vii

4.2.4 Weight function . 38

4.2.5 Binary search tree invariant . 38

4.2.6 Memory model . 39

4.2.7 Splay tree predicate . 40

4.3 Domain Properties . 41

4.3.1 Descendants definition . 41

4.3.2 Domain proofs . 41

4.4 Link Properties . 42

4.4.1 Uniqueness of orientation for each edge . 42

4.4.2 Uniqueness of edge with same orientation . 42

4.5 Path Properties . 43

4.5.1 Absence of cycles in a tree . 43

4.5.2 Unicity of parent of a node . 44

4.5.3 Unicity of path between two nodes in a binary search tree 45

4.5.4 Path finiteness . 47

4.6 Edge Set Manipulation . 48

4.6.1 Operations on edge set . 48

4.6.1.A Add edge . 48

4.6.1.B Remove edge . 49

4.6.1.C Update edge . 50

4.6.1.D Union edge . 51

4.6.1.E Elimination of a set of edges . 52

4.6.2 Child of root is a binary search tree . 53

4.6.3 Join on mutation of sub-tree . 54

4.7 Path Find Count Properties . 55

4.7.1 Path find count inductive type . 56

4.7.2 Path find count termination proof . 57

4.8 Specification and Correctness of Rotations . 57

4.9 Iterative Rotate Inductive Predicate . 60

4.10 Splay Method Specification and Proof . 62

5 Evaluation 65

5.1 Functional Implementation . 67

5.1.1 Proof automation . 68

5.2 Pointer-Based Implementation . 70

5.2.1 Proof automation . 71

viii

6 Conclusion 73

A Iris 81

B Proofs 83

C Definitions of inductive types 85

D Definitions of functions 87

E Heap-lang code 91

ix

x

List of Figures

1.1 Sequence of objectives in order to have a fully verified heap-lang translation of the splay

tree algorithm implementation from the well-known GCC compiler 4

2.1 Using the splay heuristic method on node x, it is performed the zig case preserving the

search property. 10

2.2 A malformed self-adjusting tree. This would lead to a non halting situation if we tried to

lookup for a key that was between 6 and 9. 11

2.3 Iris’ λref,conc programming language syntax [1]. 13

2.4 The Hoare triple proposition defined in Iris, Φ has a binder for the return value of expres-

sion e [2]. 13

2.5 The Iris Löb rule. 14

2.6 Iris’ weakest precondition for the store operation. [2]. 14

2.7 Disjointed concurrency rule. 14

2.8 Cannot split the resource l ↪→ n to the two subcomputations since l ↪→ n ? l ↪→ n ` False. 15

2.9 Invariant typing rule as well as the invariant allocation and opening rule [2]. 15

2.10 Definition of resource algebra as a 4-tuple [3]. 16

2.11 Tick translation, transforms an Heap-Lang expression by inserting the tick value before

any of its expression [4]. 17

2.12 Time credit $ interface, TCIntf [4]. 17

2.13 Time credits weakening rule. 17

2.14 Exclusive and Persistent Time receipt interface, TRIntf [4]. 18

4.1 A tree where F p x RIGHT and F x y LEFT hold . 36

4.2 Adding edge with connection from x to y with orientation o to predicate F 48

4.3 Removing edge from x to y in predicate F . 49

4.4 Redirecting element x from pointing to y with orientation RIGHT , to pointing to z with

orientation RIGHT , in predicate F . 50

xi

4.5 Union of edge set F1 and F2. 51

4.6 Rotate with orientation o on a binary search tree (with root p) with internal grandchild. . . 58

4.7 Rotate with orientation o on a binary search tree (with root p) with no internal grandchild. . 58

4.8 Path reduce on GCC’s implementation of the zig-zig operation 63

4.9 Path reduce on GCC’s implementation of the zig-zag operation 64

A.1 The Hoare triple beta rule reduction. One step later, we can use P as an assertion. 81

A.2 Authoritative resource algebra. 82

xii

List of Tables

5.1 Metrics of functional implementation of splay trees . 67

5.2 Number of lines for Code, Tactic definition and Theorem/Lemmas related to the functional

splay tree implementation . 67

5.3 Metrics of GCC’s splay tree algorithm proofs . 70

5.4 Number of lines for Code, Tactic definition and Theorem/Lemmas related to the pointer-

based splay tree implementation . 72

xiii

xiv

Listings

2.1 The functional and time specification of the find method [5]. 12

2.2 A Heap-Lang double function as a value. (Functions are values. 18

2.3 The functional and time specification of the double function. TC = Time Credits ; TR =

Exclusive Time Receipts ; TRdup = Persistent Time Receipts (duplicable). 19

3.1 Binary tree inductive definition . 23

3.2 Binary search tree predicate . 24

3.3 Splay tree insert method . 24

3.4 Set splay lemma . 25

3.5 Binary search tree invariant over the splay method with tree t and key a 25

3.6 A key a belongs to a binary search tree t if and only if after splaying key a on tree t, the

resulting tree has key a in its root . 26

3.7 Binary search tree invariant over the insert method . 27

3.8 Binary search tree invariant over the delete method . 28

3.9 Function that creates a list of all possible trees generated by list l, where (++) is the

append list operation . 29

3.10 Assuming that t is a binary search tree, then any sequence of application of splay tree

methods result in a binary search tree . 30

3.11 Code extraction from Gallina to OCaml for the natural numbers 30

4.1 Rotate left function in the C++ language . 33

4.2 Rotate left function in heap-lang, λref,conc . 33

4.3 Convert a content data type to an heap-lang value . 39

4.9 Path trajectory size is less or equal than the size of domain of elements 47

4.10 Add edge definition written in Gallina . 48

5.1 Sequence of Coq tactics used to prove the bst splay theorem shown in Listing 3.5 68

A.1 Natural resource algebra components from cmra.v file, using plus (+) as the composition

operation. 82

xv

A.2 The authoritative Update rule used by the tick pseudo-code instruction to remove one time

credit from both views. 82

B.1 Proof of the double Heap-Lang function specification in the Coq proof assistant. 84

D.3 Splay tree delete method . 88

D.4 Splay tree splay max method . 88

xvi

1
Introduction

Contents

1.1 Work Objectives . 3

1.2 Contributions . 5

1.3 Organization of the Document . 5

1

2

Our world is now largely dependent on software systems running as expected. When software fails,

even if it is just for a mere few seconds, consequences can bring tremendous costs. Therefore, it is

crucial to ensure that software does not fail. Software testing is perhaps the most used technique to

prevent software failures. However, even though testing can be used to show the presence of bugs, it

cannot be used to prove their absence. On the other hand, formal verification can be used to prove

a program fully meets a given specification. However, formal verification of real-world code, which

normally manipulates mutable and non-trivial data structures, is a difficult task. In the last few years,

many advances have been made in formal verification, but there are still many opportunities to verify

real-world code.

In this project, we propose to explore the interactive proof assistant Coq [6] and the Iris framework [1]

to verify the functional correctness of the pointer-based implementation of Splay Trees which is used by

the GNU Compiler Collection (GCC) in the Offloading and Multi Processing Runtime Library (libgomp).

We chose Splay Trees for two main reasons: i) because they have become a widely-used data

structure for being the fastest type of balanced search tree for many applications; ii) and because, due

to their self-balancing properties, their formal verification presents an interesting challenge.

Below, we present in detail our work objectives and we enumerate the contributions that we have

made towards the verification of correctness of algorithms related with tree structures. We finalize this

chapter with a description of how this document is organized.

1.1 Work Objectives

Our work objectives are:

1. Verify a functional implementation of the splay tree algorithm for a generalized ordered

datatype using the interactive proof assistant Coq. To achieve this objective, we first translate a

functional implementation (Nipkow’s implementation [7]) of the splay tree algorithm to Gallina (Coq’s

specification language) and then prove the specification of the behaviour of each of the methods,

namely: splay (the most important method), splay max, insert and remove.

2. Verify a real-world imperative, pointer-based implementation of the splay tree algorithm us-

ing the interactive proof assistant Coq. We then proceed to prove a real imperative pointer-based

implementation of the splay tree algorithm using the Iris framework, which allows us to reason about

pointer-based algorithms with the help of separation logic. We decompose this objective into three

sub-objectives:

3

2.1. Translate GCC’s pointer-based implementation written in the C language to a language that

allow us to reason in Iris’ framework, heap-lang. Although some operations and control structures

from the C language are not available in heap-lang (e.g., while loops and address access), we can

replace these with other mechanisms that heap-lang provides us. With the heap-lang translated imple-

mentation, we can then proceed to its verification.

2.2. Create a predicate for the splay tree that holds the predicates and invariants for a binary

search tree and for the memory that is modeled with a generalized map. For this objective, we

take as an example the union find algorithm that was verified with the Iris’ framework by Mével, G et

al. [4]. Having the splay tree predicate and the implementation modeled in the proof assistant Coq, we

can then complete the next sub-objective.

2.3. Specify and verify the correctness of the lemmas related to the splay tree methods. This

involves the use of Iris’ proof mode that allows us to both specify such lemmas and prove them with

provided tactics for Iris’ logic.

Figure 1.1 shows a diagram of the sequence of tasks for the work objective 2.. First we translate

the GCC implementation to heap-lang, then we model the splay tree predicate, and then specify and

prove the correctness of the heap-lang splay algorithm. The splay tree implementation that we propose

to verify is the one used by the well-known compiler GNU’s Compiler Collection (GCC).

Specification Correctness Proof

Implementation

Model Splay Tree Predicate

Translate to λref,conc

Figure 1.1: Sequence of objectives in order to have a fully verified heap-lang translation of the splay tree algorithm
implementation from the well-known GCC compiler

4

1.2 Contributions

During the execution of the aforementioned objectives, we have managed to successfully verify in Coq

the Gallina translation of Nipkow’s implementation of the splay tree algorithm [7]. We have also proved

additional lemmas and theorems not considered by Nipkow and we successfully extracted the verified

code, in which the keys are natural numbers, to the OCaml functional language.

For the verification of the pointer-based implementation, we started by successfully translating the

GCC implementation of splay trees to heap-lang. Then, we have also succeeded in modeling the splay

tree predicate which contains all the needed invariants for a binary search tree, as well as the modeled

memory and the ownership of all the pointers of the binary search tree. Afterwards, we have proven

important lemmas related to each of the predicates that make the splay tree predicate (e.g., a node in a

binary search tree has at most one parent).

In order to prove some of these lemmas, we had to extend some inductive types to have more

information about these types. For example, to prove that a node has at most one parent 4.5.2, we had

to make sure that there is an unique path between two nodes in a binary search tree, and for the later

we needed to extend the path inductive type so we can have the full information of the path trajectory

and not only its endpoints.

Finally, we have successfully proven the correctness of the splay tree method, but, due to time

constraints, at the time of writing, we left one of the lemmas, that makes this proof possible, unproven

(we have informally proven it, though).

To the best of our knowledge, we provide the most complete formally verified pointer-based imple-

mentation of Splay Trees. Moreover, rather than implementing a version that facilitates the verification

process, we verify the translation of an existing and widely-used real-world implementation. Finally, it is

worth mentioning that our development provides a good starting point to prove time complexity proper-

ties of splay trees, using the techniques proposed by Mével, G et al. [4].

1.3 Organization of the Document

This thesis presents first, in Chapter 2, the background and related work, referring to splay trees (Section

2.1), the formal verification of tree structures using interactive theorem provers (ITPs) (Section 2.2), the

Iris framework (Section 2.3) and finally time credits and time receipts in Iris (Section 2.4).

Subsequently, in Chapter 3, we first discuss in Section 3.1, Nipkow’s functional implementation and

some of the predicates and data structures that were used to specify and prove some of the predicates

and lemmas. Afterwards, in Section 3.2, we show some of the lemmas that we have proven in Coq and

show how we have proven some of them. Finally, in Section 3.3, we show how we have proven that

given a binary search tree, then all possible generated trees, with the splay tree methods, result in a

5

binary search tree as well. In this later section, we also show how we have extracted the OCaml code

for the verified splayed algorithm for natural numbers.

Afterwards, in Chapter 4, we show how we have translated the GCC code to heap-lang (Section

4.1) and how we have created the splay tree predicate (Section 4.2) with the needed predicates and

invariants. Then we discuss some of the properties of the predicates and inductive types, such as

domain properties (Section 4.3), link properties (Section 4.4) and path properties (Section 4.5). In

Section 4.6, we talk about how we manipulate the edge set predicate and some relevant proven lemmas

that help us to prove the correctness of the rotations of the splay tree algorithm. We then show some of

the proofs related to an inductive predicate that models the binary search algorithm on a binary search

tree (Section 4.7). Finally, we explain how we have proven the correctness of the translated heap-lang

splay method in Section 4.10 after we have explained how we have verified the correctness of the rotate

operations performed on the tree (Section 4.8) and how we have created an inductive type that makes

part of the proof of the correctness of the splay method (Section 4.9)

In Chapter 5, we show some of the metrics about the work that we have done, both for the functional

implementation, in Section 5.1, and for the pointer-based implementation, in Section 5.2. Some of the

metrics that we show are: the number of total lines, the number of lemmas/theorems that we have

specified, the number of tactics that we have used to prove these lemmas/theorems and the number of

definitions such as values, predicates, functions and types.

Finally, in Chapter 6, we show the main challenges that we have encountered, we briefly discuss

the results of the metrics that we have mentioned in Chapter 5, and we present some of the differences

between our work and Mével, G et al.’s work. We conclude with a discussion on the current limitations

and future work, in Section 6.

6

2
Background and Related Work

Contents

2.1 Splay Trees . 9

2.2 Formal Verification of Tree Structures using ITPs . 11

2.3 The Iris Framework . 13

2.4 Time Credits and Time Receipts in Iris . 16

7

8

In this chapter we first discuss splay trees. Afterwards, we present some variants of tree structures

that have been proven with ITP, namely with Isabelle and CFML. We then present the Iris framework

which uses separation logic to reason about programs that deal with pointers. Finally, we talk about time

credits and time receipts that were developed by Mével, G. et al. [4] in the Iris framework.

2.1 Splay Trees

In this section, we present the practical uses of the splay tree algorithm and an application that uses

it. Then we talk briefly on self-adjusting structures and the potential function that is used to prove the

amortized complexity time of algorithms (in this case, the splay tree algorithm).

2.1.1 Practical Applications

Splay Trees have many practical applications, particularly in contexts where the same data is accessed

frequently. Examples include network routing (where IP addresses are accessed frequently) and mem-

ory allocation algorithms.

An application particularly relevant to this project is the use of Splay Trees by the GNU Compiler

Collection (GCC), a widely known sophisticated free collection of compilers for a wide variety of pro-

gramming languages: C, C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go [8]. GCC was

originally written for the GNU operating system and is now available on UNIX and Linux operating sys-

tems with new version releases every year [9].

GCC uses Splay Trees in its Offloading and Multi Processing Runtime Library (libgomp). The library

offers a fairly simple Splay Tree pointer-based C implementation [10] used by the OpenACC (an appli-

cation programming interface that is used to “support offloading of code to accelerator devices” [11]) to

manage the memory of devices [12].

In the Offloading implementation in the GCC application, the splay trees are used to do the mapping

between the host address and the device target address. They do not justify their use for splay trees,

however we suspect that it is because the same host may be accessed frequently. They offer a library

with the prototypes and definitions of the splay tree algorithm 1 and also the implementation written in

the C language 2.

2.1.2 Self-Adjusting Tree Structures

Splay trees are binary search trees (BST) that apply restructuring rules in each operation in order to

improve the efficiency of future operations without needing extra space to do so. This restructuring is
1Splay tree library: https://code.woboq.org/gcc/libgomp/splay-tree.h.html
2Splay tree implementation in the C language: https://code.woboq.org/gcc/libgomp/splay-tree.c.html

9

https://code.woboq.org/gcc/libgomp/splay-tree.h.html
https://code.woboq.org/gcc/libgomp/splay-tree.c.html

done by the splay heuristic method which has the responsibility to move more frequently accessed nodes

towards the root while adjusting itself with constant time rotation operations along the way (Example of

rotation in Figure 2.1).

y

x C

A B

x

yA

B C

Figure 2.1: Using the splay heuristic method on node x, it is performed the zig case preserving the search property.

This data structure has been and still is a case study when learning about amortized analysis. ”By

amortized time we mean the average time of an operation in a worst-case sequence of operations” [13].

To do this analysis, we can use a potential function Φ, a function that assigns a real positive value to

each configuration of the data structure D. The amortized time a on the ith operation, ai, can be less

or more than the actual time ti, depending only on the difference of the potential of the resulted data

structure after the ith operation, Φ(Di), with the potential of the data structure before the operation

Φ(Di−1), Φ(Di)−Φ(Di−1):

ai = ti + Φ(Di)−Φ(Di−1)

If this difference is positive, then the amortized time represents an overcharge of time in the ith operation,

otherwise it represents an undercharge [14]. So, after a sequence of m operations, and considering that

the initial data structure has 0 potential, Φ(D0) = 0, with the telescope rule we deduce that the total

amortized time A is an upper bound on the total actual time, since ∀i,Φ(Di) ≥ 0:

A =

m∑
i=1

ti + Φ(Di)−Φ(Di−1) =

m∑
i=1

ti + Φ(Dm) ≥
m∑
i=1

ti

To define the potential function of the Splay Tree, Sleator, D.D. et al. [13] have defined a weight

function W that maps every node x to an arbitrary, but fixed, positive weight W (x). After that, they have

defined a size function S that computes the sum of all the node’s weight of the tree t, S(t). They then

define the rank of the node as the function R, R(x) = log2(S(x)), and finally they define (as it is in

Equation 2.1) the potential function of the Splay Tree Φ to be the sum of all the ranks of each node.

Φ(ST) =
∑

x∈nodes(ST)

R(x) (2.1)

10

With this potential function, they have proved the bounded logarithmic amortized time of the Splay Tree’s

splay operation and all the other methods: lookup, insert and delete, which use, at the start, one call to

the splay operation. They state and prove several lemmas, including the famous access lemma:

Access Lemma [13] The amortized time to splay a tree with root t at a node x is at most 3(R(t) −

R(x)) + 1 = O(log(R(t)/S(x)))

2.2 Formal Verification of Tree Structures using ITPs

Tobias Nipkow already used an interactive theorem prover (ITP), namely Isabelle/HOL, to prove the

functional correctness of the Splay Tree methods [7]. He proves the following lemmas regarding the

splay method:

• size(splay a t) = size t : The size of the tree is the same after an application of a splay operation.

• bst t =⇒ splay a t = Node l e r =⇒ x ∈ set-tree l =⇒ x < a : After splaying an element

a of tree t, all elements to the left of the root node are lower than the splayed element a even if a

does not belong to the tree.

• set-tree(splay a t) = set-tree t : The set of elements of a tree t after a splay application is the

same as before the application.

• bst t =⇒ bst(splay a t) : If t is a binary search tree (bst), then splaying a key a in it results also in

a binary search tree.

• [[bst t; splay a t = t’]] =⇒ a ∈ set-tree t ⇐⇒ (∃lr.t’ = Node l a r) : If t is a binary tree and t’

is the result of splaying a in tree t, then a is in tree t if and only if it is the root of tree t’.

However, he reasons on a functional Isabelle implementation which does not require memory re-

source reasoning. A pointer-based imperative implementation of the Splay Tree algorithm is more error

prone than the functional implementation, once it may lead to malformations of the tree (e.g. occurrence

of a cycle by putting one of the nodes pointing to the root, Figure 2.2) if not well implemented.

5

1 10

15

Level 0

Level 1

Level 2

Figure 2.2: A malformed self-adjusting tree. This would lead to a non halting situation if we tried to lookup for a key
that was between 6 and 9.

11

Nipkow also proves the nontrivial amortized logarithmic complexity time of the, splay, insert, delete,

tree algorithm methods with a lightweight framework that supports proofs at a high level of abstraction

[15]. A small remark of his framework and CFML tool is that only the function calls are counted as

opposed to Iris with time credits. This is fine, since they define the functions as recursive and ”the

asymptotic complexity and the number of recursive calls necessary for the evaluation of the program are

of the same order-of-magnitude” [16]. Nipkow proves the access lemma with the use of the potential

function, mentioned before, for a tree t and element a [15] :

A a t ≤ 3 × (ϕ t − ϕ 〈 l, a, r〉) + 1 (Access Lemma)

|〈〉| = 0 and |〈 l, a, r〉| = |l|+ |r|+ 1 (Size of tree)

ϕ t = log2 |t| (Rank of node)

Φ〈〉 = 0 (Potential of leaf)

Φ〈l, a, r〉 = Φl + Φr + ϕ〈l, a, r〉 (Potential of node) [15]

CFML is a tool that is used to get a high degree of confidence in the correctness of Caml code with

the use of the Coq proof assistant. It comes with a generator that converts Caml code in Characteristic

Formulae (CF) Coq source. The CF of a program is a higher order logic formula that gives a sound

description of the semantics of the program [17]. Arthur Charguéraud and François Pottier extended

CFML, which allows reasoning about memory resources, with time credits and proved the correctness

and amortized time complexity of their own Union-Find (UF) (root/link) pointer-based algorithm imple-

mentation [5].

Theorem find spec: ∀ D R V x, x ∈ D →

app UnionFind ml.find[x]

PRE(UF D R V (2*α(card D) + 4))

POST(fun y => UF D R V * [R x = y])

Listing 2.1: The functional and time specification of the find method [5].

In Listing 2.1, we see the functional and time specification of the find method. The app Union-

Find ml.find[x] is the CF of the correspondent find Caml implementation. The keyword PRE referrers to

the precondition and POST to the postcondition in a Hoare triple style. Succinctly, the specification says

that the find method does not make changes to the UF predicate (although the graph is modified by the

compression function), that the output of the find method is the representative (the root) of x (R x = y)

and that the method runs in 2× α(|D|) + 4 3 computational steps.
3α is the inverse of Ackerman’s function.

12

2.3 The Iris Framework

Iris, is a framework for higher-order concurrent separation logic implemented and verified in the Coq

proof assistant [1]. It provides us with Heap-Lang, a deeply embedded higher-order concurrent impera-

tive programming language λref,conc in Coq (Figure 2.3). This framework uses separation logic [18] rules

on classical mutable shared data structure manipulation atomic commands [1] such as, the ones present

in the language: allocation (ref), lookup (!), mutation (←) and compare-and-set (CAS). Heap-Lang lets us

use functions as values, i.e., specify higher-order functions. It also lets us express concurrent programs

by using the fork instruction and reason on them with the use of some of Iris’ ingredients: invariants

”to allow different threads to access the same resources” and ghost states ”to keep track of additional

information” [2].

V al v ::= () | true | false | n | l | (v, v) | inj1v | inj2v | rec f(x) = e

Exp e ::= x | n | e � e | () | true | false | if e then e else e | l

| (e, e) | π1 e | π2 e | inj1 e | inj2 e

| match e with inj1 x =⇒ e | inj2 y =⇒ e end

| rec f(x) = e | e e

| ref(e) | !e | e ← e | cas(e, e, e) | fork{e}

Figure 2.3: Iris’ λref,conc programming language syntax [1].

This rich framework provides us with some of the classic separation logic connectives, such as the

separation conjunction (?), separation implication (−∗) and the points-to predicate (↪→) [19] (not to be

mistaken by the Reynolds’ singleton heap (→) predicate). The semantic definition of such connectives

is defined in Reynolds’ paper about separation logic [18]. A Iris proposition (iProp) has the following

type (State mon−−−→ Prop), where a state σ ∈ State is a finite map N
fin−−⇀ V al and Prop is a Coq

proposition [19]. In Iris, the specification of an Heap-Lang program e is often written as a Hoare triple as

seen in figure 2.4.

Γ ` P : Prop Γ ` e : Exp Γ ` Φ : Val→ Prop
Γ ` {P}e{Φ} : Prop

Figure 2.4: The Hoare triple proposition defined in Iris, Φ has a binder for the return value of expression e [2].

This triple states that if the heap-lang, λref,conc, program e runs on a heap h satisfying the Iris precon-

dition P, then, the program halts and if it terminates with the value v and a heap h′, then h′ must satisfy

the Iris postcondition Φ(v). In Iris’ lecture notes [2] there is a list of rules that let us verify the correctness

13

of Heap-Lang programs specified as Hoare triple (Ht). A key feature of this framework, is the addition of

later modality . and its main punch, the Löb rule (figure 2.5).

Q ∧ .P ` P
Q ` P

Figure 2.5: The Iris Löb rule.

The later modality ensures that to prove P, we must first do some work, i.e., a reduction step has to be

taken, in order to use P as an assumption (This is well reflected by the Ht-Beta rule in Appendix Figure

A.1). When this modality is omitted, the logic becomes inconsistent [3]. In addition, Iris introduces yet

another modality, the persistent modality �. Informally, �P is like P, but it does not assert any exclusive

ownership over resources, hence, it can be duplicated. These modalities are important when discussing

Iris’ concurrency.

. l ↪→ w ? .(l ↪→ v −∗ Φ())

wp (l← v){Φ}

Figure 2.6: Iris’ weakest precondition for the store operation. [2].

Iris’ Hoare triple {P}e{Φ} is equivalent to �(P −∗ wp e{Φ}) (it is persistent �, meaning that we could

have nested Hoare triples). The resources represented by wp e{Φ} are the weakest precondition, i.e.,

the minimum amount of resources that must be owned in order to ensure safety over program e and for

the postcondition Φ to be true. As an example, consider that we want to make a mutation, with the store

operation, i.e., l ← v. We first need to ensure that l is allocated l ↪→ w (it points to some value w, thus

it is safe to mutate), and, after one reduction step ., l points to v, l ↪→ v, and ensures that the mutation

operation returns the unit value (l ↪→ v −∗ Φ()). This weakest precondition store rule is reflected in

figure 2.6.

S ` {P1}e1{v.Q1} S ` {P2}e2{v.Q2}
S ` {P1 ? P2}e1||e2{v.∃v1 v2.v = (v1, v2) ?Q1[v1/v] ?Q2[v2/v]}

Figure 2.7: Disjointed concurrency rule.

As referred, one of Iris’ main ingredients that lets us reason about concurrency logic is invariants.

To reason on concurrent programs, suppose e1 || e2 is the parallel execution of expression e1 with e2

and that this execution must wait until both are finished (the || operation can be defined with the fork

expression [2]). If e1 and e2 do not share resources, then, we could just apply the disjointed concurrency

rule (figure 2.7). However, if these expressions share resources, we cannot simply split them and give

them to the two subcomputations (as in figure 2.8)!

14

{l ↪→ n}(l←!l + 1) || (l←!l + 1); !l{v.v ≥ n}

Figure 2.8: Cannot split the resource l ↪→ n to the two subcomputations since l ↪→ n ? l ↪→ n ` False.

To solve this issue, we need invariants which let the same resources to be accessed by different threads,

without creating any inconsistencies, i.e., in a control way [2]. Succinctly, the resources to be shared, P,

are given away (are lost) to an invariant, obtaining thus an invariant P
ι

for some namespace ι. Since

invariants are persistent, we can duplicate them, and then they can be passed to multiple subcomputa-

tions.

Type Rule:

Γ ` P : Prop Γ ` ι : InvName

Γ ` P
ι

Allocation rule:

ε Infinite S ∧ ∃ι ∈ ε. P
ι
` {Q}e{v.R}ε

S ` {.P ?Q}e{v.R}ε

Opening Rule:

e is an atomic expression S ∧ P
ι
` {.P ?Q}e{v. . P ? R}ε

S ∧ P
ι
` {Q}e{v.R}ε·ι

Figure 2.9: Invariant typing rule as well as the invariant allocation and opening rule [2].

To allocate a new invariant, we use the allocation rule of figure 2.9 on resource P, moving it into

to the persistent context so it can be used by multiple threads with the opening rule. E.g., assume

that we have the resource l ↪→ n, as it is in figure 2.8, and the invariant P = ∃m.n ≤ m ∧ l ↪→

m. We can easily see that l ↪→ n =⇒ P and by the later modality weakening rule, P =⇒ .P .

Assuming now that we have the namespace N , by applying the allocation rule on .P we stay with P
N

,

∃m.n ≤ m ∧ l ↪→ m
N

, in our persistent context. We can later use the opening rule stated in figure 2.9

to open the invariant, by inserting .P in both the precondition and postcondition, and use it on atomic

expressions. The namespace ι, in the opening rule, is used to make sure that we are not able to open

the same invariant twice, without closing it first. Allowing the same invariant to be opened twice would

lead to inconsistencies in the logic.

15

(M, V̄ : M → Prop, | − | : M → M?, (·) : M × M → M) satisfying:
∀ a, b, c. (a · b) · c = a · (b · c)
∀ a, b. a · b = b · a
∀ a. |a| ∈ M =⇒ |a| · a = a
∀ a. |a| ∈ M =⇒ ||a|| = |a|
∀ a, b. |a| ∈ M ∧ a � b =⇒ |b| ∈ M ∧ |a| � |b|
∀ a, b. V̄ (a · b) =⇒ V̄ (a)

where
M? , M] {⊥} with a? · ⊥ , ⊥ · a? , a?

a � b , ∃ c ∈ M. b = a · c
a B , ∀ c? ∈ M?. V̄ (a · c?) =⇒ ∃ b ∈ B. V̄ (b · c?)
a b , a {b}

if unital (uRA), has an element ε:
V̄ (ε) ; ∀a ∈M.ε · a = a ; |ε| = ε

Figure 2.10: Definition of resource algebra as a 4-tuple [3].

”Invariants allow us to make resources available to different threads, but exactly because they are

shared by different threads, the resources governed by them need to be preserved, i.e., the invariant

has to be reestablished after each step of execution” [2]. With ghost states, we can get more expressive

power on our invariants, e.g., we could prove the Hoare triple in figure 2.8 for v ≥ n+1, by letting us give

state to our invariants! Iris allow us to use ghost states via the following proposition: a γ , which asserts

ownership of a piece a ∈ M of a ghost location γ. Ghost states are represented in separation logic as

Partial commutative monoids (PCM) which are Resource algebras (RA) (figure 2.10) [3].

The composition operator (·) allows one to compose ownership of different threads where its crucial

rule is that a · b
γ
⇐⇒ a

γ
? b

γ
(GHOST-OP rule) [19]. We can change our ghost state with the use

of the frame-preserving updates, a b, i.e., for any resource c? compatible with a, it is the case that b

is compatible with c? as well (rule mentioned in figure 2.10). Some of the rules that make it possible to

manipulate ghost assertions use the view shift (or ghost move) connective: P Vε Q, meaning that if we

have resources that satisfy P we can change the ghost state and end with resources that satisfy Q! In

the next section, we will discuss better a specific example of a RA that is used to define the time credits’

predicate $, the authoritative RA mentioned in Appendix Figure A.2.

2.4 Time Credits and Time Receipts in Iris

An exciting recent development which is relevant for the context of this thesis is the extension of the

Iris logic, by Mével, G. et al. [4], to support reasoning on time credits and time receipts. Besides this

contribution, they have also proven the correctness of the union find algorithm and the amortized time of

the algorithm with the use of Iris extended with these concepts. Even though we can use this extension

to prove the logarithmic time complexity of the splay tree algorithm, we have not attempted to do so.

Time credits $ and time receipts are logic concepts that allow us to reason about the time execution

16

of programs. Whereas time credits can be useful to get an upper bound of the execution time of an

algorithm, time receipts can be used to reason about the lower bound. Mével, G. et al. [4], introduced

the tick pseudo-instruction, a Heap-Lang value with no run-time effect, as well as the tick translation

(figure 2.11), a function that transforms a Heap-Lang expression e into 〈〈e〉〉.

〈〈e1(e2)〉〉tick = tick(〈〈e1〉〉tick)(〈〈e2〉〉tick)
Figure 2.11: Tick translation, transforms an Heap-Lang expression by inserting the tick value before any of its

expression [4].

$: N→ iProp
TrueV> $0

$(n1 + n2) ≡ $n1 ? $n2
tick : V al

{$1}tick(v){λw.w = v}

- Time credit predicate
- Zero time credits can be created
- Time credits can be combined and split
- There is a tick pseudo-op
- tick consumes one time credit

Figure 2.12: Time credit $ interface, TCIntf [4].

To use Iris with time credits, Iris$, we first introduce its interface (figure 2.12). This interface comes

with the predicate $ that given a natural number n, it returns us n time credits as an Iris proposition,

$n, to use as resources. One of the key properties of time credits (TC) is that they can be split and

combined $(n1 + n2) ≡ $n1 ? $n2. This property is quite useful whenever, e.g., we have a sequential

program e = e1; e2 and want to give n1 time credits to e1 and n2 time credits to e2. Finally, the most

notorious of the properties is the tick consumption (last) which asserts that the tick pseudo-operation

(written in Heap-Lang in Appendix Listing E.1) has the need to consume exactly one TC, $1. It must be

noted that time credits, as resources, cannot be duplicated, but they can be thrown away, since Iris is an

affine logic, with the weakening rule (figure 2.13).

S ` n2 ≤ n1 S ` $n2
S ` $n1

Figure 2.13: Time credits weakening rule.

In Appendix Figure A.2 it is given the definition of the authoritative monoid that was used to imple-

ment the time credit interface. The time credit predicate is defined as, $ = λn, ◦n γ , where ◦n is the

fragmental view. So, if we have $n1 ? $n2 ≡ ◦n1 γ ? ◦n2 γ , by the GHOST-OP rule mentioned in

section 2.3 we have, ◦n1 γ ? ◦n2 γ≡ ◦n1 · ◦n2 γ≡ (⊥, n1) · (⊥, n2) γ≡ (⊥, n1 · n2) γ ≡ (⊥, n1 + n2) γ

≡ $(n1 + n2), since time credits use the natural RA monoid (Appendix Figure A.2) with the compos-

ing operation (+). We have verified the combine and split property of time credits! However, the time

credit invariant, which is required to complete the implementation of the time credit interface, is de-

fined as: ∃m, l ↪→ m ? •m γ
N

, where •m is called the authoritative view. We can update them, if

17

: N→ iProp
: N→ iProp

TrueV> 0
(n1 + n2) ≡ n1 ? n2

max(n1 + n2) ≡ n1 ? n2
nVT n ? n
N VT False
tick : V al
{ n}
tick(v)

{λw.w = v ? 1 ? (n+ 1)}

- Exclusive Time receipt (TR) predicate
- Persistent TR predicate
- Zero exclusive TR can be created
- Exclusive TR can be combined and split
- Persistent TR obey maximum
- From Exclusive TR we can get Persistent
- No machine runs for N time steps
- There is a tick pseudo-op
- tick produces one exclusive receipt and incre-
ments an existing persistent receipt

Figure 2.14: Exclusive and Persistent Time receipt interface, TRIntf [4].

we own both the fragmental, ◦n, and authoritative, •m, view. The tick consumption rule proceeds to

open the mentioned invariant, and updates both views! This is done with the frame preserving up-

date: ◦n · •m ◦(n − k) · •(m − k), assuming that k ≤ n, as it is in Appendix Listing A.2 in the

auth nat update decr lemma.

Iris’ time receipt (TR) interface in figure 2.14 shows some of the properties of exclusive time receipts

and persistent time receipts (also known as duplicable time receipts TRdup). The difference between

these is that an exclusive TR can be though as a proof of work, a hard earned receipt, which is additive as

shown in the interface, (n1 +n2) ≡ n1 ? n2. Whereas persistent TR’s are more like the statement

that some work has been done, i.e., n1, at least n1 work as been done, n2, at least n2 work as been

done, concluding that at least max(n1, n2) work has been done: n1 ? n2 ≡ max(n1 + n2). Since

they are persistent, they can be duplicated: n ≡ max(n, n) ≡ n ? n. The last property shows the

tick production rule, which states that tick produces exactly one exclusive TR, 1, and if it has a witness

that at least n work has been done in the past, n, it updates the witness to (n+1). A small example

follows of TC, TR and TRdup tick rules to clarify how they work on a Heap-Lang function.

Definition double : val :=

rec: "double" "n" :=

if: "n" = #0 then

#0

else

#2 + "double ("n" - #1).

Listing 2.2: A Heap-Lang double function as a value. (Functions are values.

18

Lemma double spec : ∀ n,

TCTR invariant nmax −∗

{{{ TC(3 + 5*n) ? TR (0) ? TRdup (n) }}}

� double #n �

{{{ RET #(2*n) ; TR(3) ? TRdup((n+1)%nat) }}}.

Listing 2.3: The functional and time specification of the double function. TC = Time Credits ; TR = Exclusive Time

Receipts ; TRdup = Persistent Time Receipts (duplicable).

Listing 2.3 is a lemma which states the functional and time specification of the Heap-Lang double

function written in Listing 2.2. The proof to this lemma is in Appendix Listing B.1, which requires the use

of weakest precondition (wp) tactics such as the wp tick akin to the consumption/production tick rule.

The specification is written as a Hoare triple, where in the precondition, we have 3 + 5× n time credits,

$(3 + 5 × n), 0 exclusive time receipts, 0, and n persistent time receipts, n. In the postcondition,

we have the functional specification, i.e., the call to double returns 2× n as a value, RET #(2*n). Briefly,

this specification says that double returns the supposed value and does it in 3 to 3 + 5×n computational

steps, thus proving its bounded linear time complexity.

Time receipts, can also be used to prove that certain undesirable events will not occur, if they need

an infeasible amount of time to happen. This is done with the assertion mentioned in the interface

N V> False (N = number of maximum steps). In the UF algorithm they were used to prove the

absence of integer overflows on the machine integers used to represent the rank of the nodes [4], under

the assumption that log2(log2(N)) < w − 1, where w is the size of the machine integer word used to

represent the node ranks.

19

20

3
A Functional Implementation of Splay

Trees

Contents

3.1 Nipkow’s Implementation . 23

3.2 Functional Correctness . 24

3.3 Discussion . 29

21

22

In this chapter we explain how we have proven the correctness of a functional implementation of

splay trees. We start off by showing how we have translated Nipkow’s Isabelle implementation and

predicates [7] to Gallina. Then we show how we have proven the correctness of the splay tree methods,

mainly the splay, insert, splay max and delete methods. Finally, we present a brief discussion about

what proofs we added which are not present in Nipkow’s proofs and we also show how we have extracted

the verified Splay Tree OCaml code for natural numbers as keys.

3.1 Nipkow’s Implementation

To verify a functional implementation of the splay tree algorithm, we first defined a simple inductive type

for binary trees (in Listing 3.1). This binary tree inductive type has two constructors: L for leaves, which

has no parameters (represented as < | | >), and T for nodes that has as parameters a left binary tree

t1, an ordered type element o.t and a right binary tree t2 (represented as < | t1, o.t, t2| >). An ordered

type o.t must have an equivalence relation (reflexivity, symmetry and transitivity) eq (=) and a binary

relation lt (<) that has the transitivity property and if we have x < y then we can not have x = y, i.e.,

x < y −→ ¬(x = y) 1.

Inductive tree :=

| L

| T (t1 : tree) (n : o.t) (t2 : tree).

Listing 3.1: Binary tree inductive definition

Since some of the proofs and predicate definitions require the use of a set data structure, we have

decided to use a Coq module for sets implemented with a simple list data structure (since it already

comes with some properties proven)2. Specifying that a binary tree is searchable required the set data

structure XSet (an ordered type set) as shown in Listing 3.2. According to the definition of the predicate,

a leaf is a binary search tree and a node is a binary search tree if all the nodes to its left (set tree l) are

of lesser value and all nodes to its right (set tree r) are of greater value than itself and its children are

binary search tree as well. The For all predicate in the binary search tree predicate, which receives as

arguments a predicate P and a set S, is used to state that all elements from set S obey property P .

1Coq orderedtype module: https://coq.github.io/doc/v8.9/stdlib/Coq.Structures.OrderedType.html
2Coq set module https://coq.inria.fr/library/Coq.MSets.MSetWeakList.html

23

https://coq.github.io/doc/v8.9/stdlib/Coq.Structures.OrderedType.html
https://coq.inria.fr/library/Coq.MSets.MSetWeakList.html

Fixpoint bst (t : tree) : Prop :=

match t with

| <| |> => True

| <| l, a, r |> => (bst l) ∧ (bst r) ∧

XSet.For all (fun n => n < a) (set tree l) ∧

XSet.For all (fun n => a < n) (set tree r)

end.

Listing 3.2: Binary search tree predicate

After the definition of the binary tree inductive type and the binary search tree predicate, we have

simply translated the recursive splay tree algorithm from Nipkow’s Isabelle implementation [7] to Galina.

This translation consisted in defining the splay tree function which we show in Appendix D.5, the insert

function (shown in Listing 3.3), and the splay max function (shown in Appendix D.4), which is used by

the delete function (shown in Appendix D.3).

Definition insert (a : o.t) (t : tree) : tree :=

match splay a t with

| <| |> => <| <| |>, a, <| |> |>

| <| l, a', r |> =>

if eq dec a a' then <| l, a, r |>

else if lt dec a a' then <| l, a, <| <| |> , a', r |> |>

else <| <| l , a', <| |> |> , a, r |>

end.

Listing 3.3: Splay tree insert method

3.2 Functional Correctness

In this section we present the most important lemmas that we have proven (some that already have been

proven by Nipkow) related to the binary search tree. During the proving task, some difficulties arose,

particularly how and where to perform induction. We then successfully proved these lemmas using

functional induction, which ``performs case analysis and induction following the definition of a function”
3.

3Functional induction: https://coq.inria.fr/refman/using/libraries/funind.html

24

https://coq.inria.fr/refman/using/libraries/funind.html

3.2.1 Properties Proved

3.2.1.A Set of elements is invariant over the splay function

One of the main lemmas that we have first proven is: After applying the splay function, the nodes

of a binary tree are the same as the ones before the application. This lemma is stated in Listing

3.4. Initially we were using the syntactic equality (=) in our lemma specification, instead of the semantic

equality XSet.Equal (mentioned in Listing 3.4), which we later found to be impossible to prove such

lemma. This impossibility is due to the fact that two sets may be the same, but their internal data

structures (such as the list that implements the set data structure) may differ.

Lemma set splay : ∀ a t,

XSet.Equal (set tree (splay a t)) (set tree t).

Listing 3.4: Set splay lemma

By using functional induction on the splay function in the set splay lemma mentioned in Listing 3.4,

we spawn fourteen (14) sub-cases which are the fourteen possible outputs for the splay tree algorithm

in Listing D.5. The base cases, i.e., the cases where the output does not call the function itself, are

pretty simple. In these cases we only need to apply several set properties such as union commutativity

and associativity. For the induction step, i.e., where the result is a call to the splay method, we have

as induction hypothesis that the tree that is called by the splay function has the same elements before

applying the splay method. With this hypothesis we can easily prove that the set of elements is equal,

i.e., we prove the lemma stated in Listing 3.4.

3.2.1.B Binary search tree invariant over the splay function

We have also proven that: Applying the splay tree function on a binary search tree preserves the

binary search tree predicate. This is stated in Listing 3.5. In order to prove such lemma, we have used

once again functional induction and applied a set of tactics to automate the proofs. However, we needed

the set splay lemma shown in Listing 3.4 in order to prove the bst splay lemma in Listing 3.5. One of the

induction step cases, from the bst splay lemma (Listing 3.5) that we have proven is shown in Equation

3.1.

Theorem bst splay : ∀ a t,

bst t −→ bst (splay a t).

Listing 3.5: Binary search tree invariant over the splay method with tree t and key a

25

splay a br = < | al, a′, ar| >−→

(bst br −→ bst (splay a br)) −→

bst (< | cl, c, < | bl, b, br| > | >) −→ bst < | < | < | cl, c, bl | >, b, al | >, a′, ar| > (3.1)

In order to prove the induction step in Equation 3.1, we have first proven bst (splay a br) with hypoth-

esis (bst br −→ bst (splay a br)) consequently by proving bst br using the hypothesis (bst < | cl, c, <

| bl, b, br| > | >), with the definition of bst in Listing 3.2. Therefore, with bst (splay a br) we have

bst (< | al, a′, ar| >) thanks to hypothesis (splay a br = < | al, a′, ar| >). To prove the conclusion, we

needed to prove that all elements from (< | al, a′, ar| >) are the same as the elements of br which we

can do with the lemma set splay shown in Listing 3.4. With these two mentioned hypotheses, with the

definition of binary search tree (bst) (in Listing 3.2) and with some properties over sets, we have proved

the case successfully.

3.2.1.C Splay tree correctness of splayed key to root

One of the important properties of the splay tree method is: Assuming that t is a binary search tree,

a key a belongs to tree t if and only if after applying the splay function with key a on tree t it

results in a tree with key a as root. We have proven successfully the statement as the theorem shown

in Listing 3.6. We used functional induction over the splay function which, just like for the bst splay

theorem, requires us to prove all fourteen (14) possible sub-cases. Some of these cases required the

use of the lemma set splay shown in Listing 3.4 and some properties of the set data structure.

Theorem splay to root : ∀ t a t',

bst t −→ eq tree (splay a t) t' ->

(XSet.In a (set tree t) ⇐⇒ (∃ l r, eq tree t' <| l, a, r |>)).

Listing 3.6: A key a belongs to a binary search tree t if and only if after splaying key a on tree t, the resulting tree

has key a in its root

3.2.1.D Binary search tree invariant over the insert method

In Nipkow’s splay tree implementation [7], and in most implementations, the insert method calls the

splay method and then adds the node to be inserted as the root (see Nipkow’s splay tree insert function

in Listing 3.3). We have proven, the theorem shown in Listing 3.7, i.e., that the binary search tree

invariant is preserved after an insert operation. Using functional induction over the insert method in

26

the proof of the bst insert theorem (Listing 3.7) gives us only 4 sub-cases to be proven (instead of 14 in

the splay tree method).

Theorem bst insert : ∀ a t,

bst t −→ bst (insert a t).

Listing 3.7: Binary search tree invariant over the insert method

Nevertheless, before proving the bst insert theorem, we have proven two other important lemmas listed

in Equation 3.2 (splay bstL) and Equation 3.3 (splay bstR). The lemma splay bstL in Equation 3.2 states

that after a splay with key a on tree t, every node from the left branch l has value lower than key a and

the lemma splay bstR in Equation 3.3 is the same, but for the right branch r. Notice that in these equa-

tions (3.6, 3.2, and 3.3) we use a semantic predicate called eq tree (which is an equivalence relation)

instead of the syntactic equality (=), due to the fact that two elements may be the same but differ in

syntax (similar to what we already discussed for the sets data structure that we have used to specify

these lemmas). The 4 sub-cases for the bst insert theorem are listed and proven informally below.

bst t −→ eq tree(splay a t) (< | l, e, r| >) −→ XSet.In x (set tree l) −→ x < a (3.2)

bst t −→ eq tree(splay a t) (< | l, e, r| >) −→ XSet.In x (set tree r) −→ a < x (3.3)

informal proofs of the 4 sub-cases that arise in the proof of the lemma shown in Listing 3.7 on

the binary search tree invariant over the insert function (shown in Listing 3.3)

1. bst < | < | | >, a,< | | > | > : trivial with the binary search tree predicate definition shown in

Listing 3.2.

2. splay a t =< | l, a′, r| >−→ bst t −→ eq a a′ −→ bst < | l, a, r| > : we use the bst splay lemma

in Listing 3.4 over bst t to conclude bst (splay a t) and consequently with hypothesis splay a t =

< | l, a′, r| > we conclude bst (< | l, a′, r| >); because we have eq a a′ as hypothesis we can

conclude bst < | l, a, r| >, i.e., the conclusion.

3. splay a t = < | l, a′, r| > −→ bst t −→ lt a a′ −→ bst < | l, a, < | < | | >, a′, r| > | >

: we can conclude bst (< | l, a′, r| >) the same way as we did in the case 2., then we just

use hypothesis lt a a′, set properties, and the binary search definition to prove the conclusion

bst < | l, a, < | < | | >, a′, r| > | >. To prove that all nodes from tree l have a value lower than

key a, in the conclusion, we used the splay bstL lemma in Equation 3.2.

4. splay a t = < | l, a′, r| > −→ bst t −→ lt a′ a −→ bst < | < | l, a′, < | | > | >, a, r | > : we

used the same proving process as in case 3., but had to use splay bstR (Equation 3.3), instead of

27

splay bstL (Equation 3.2), to prove that all nodes from tree r have a value greater than key a.

3.2.1.E Binary search tree invariant over the delete function

The delete function for splay trees uses both the splay tree method and the splay max method. The

splay max method is equivalent to using the splay method on the node which has the maximum value,

as it is reflected in the proven lemma splay max eq splay (shown in Equation 3.5). By splaying the node

with maximum value m, the resulting tree (which is a binary search tree, thanks to the proven lemma in

Equation 3.4) has no nodes on the right sub-tree as we would expect (proven lemma splay max leaf in

Equation 3.6) — if we did have such node with value x, then m < x which contradicts the fact that m is

the maximum value. We have also proven, in Equation 3.7, that the elements of the tree are preserved

after applying the splay max function.

bst t −→ bst (splay max t) (3.4)

bst t −→ (∀ x, XSet.In x (set tree t) −→ x < a ∨ x == a) −→ splay max t = splay a t (3.5)

splay max t = < | l, a, r| > −→ r =< | | > (3.6)

XSet.Equal (set tree (splay max t)) (set tree t) (3.7)

We then proceeded to prove the binary search tree invariant over the splay tree delete function,

which corresponds to the theorem shown in Listing 3.8. The theorem states that applying the delete

function in a binary search tree results in a binary search tree. Just like the insert function, the

delete function has 4 possible outputs and therefore, 4 possible sub-cases to prove. Below, we prove

informally these sub-cases for the theorem bst delete shown in Listing 3.8.

Theorem bst delete : ∀ t a,

bst t −→ bst (delete a t).

Listing 3.8: Binary search tree invariant over the delete method

informal proof of the 4 sub-cases that arise in the proof of the theorem shown in Listing 3.8 on

the binary search tree invariant over the delete function (shown in Appendix D.3)

1. bst < | | > : trivial with the definition of binary search tree

2. splay a t = < | l, a′, r| > −→ bst t −→ bst r : with the use of the bst splay theorem shown

in Listing 3.5 over hypothesis bst t we can get bst (splay a t) and with hypothesis splay a t =

28

< | l, a′, r| > we conclude bst (< | l, a′, r| >); by definition of the binary search tree predicate

shown in Listing 3.2, we can conclude bst r.

3. splay a t = < | l, a′, r| > −→ bst t −→ splay max l = < | l′, m, x0| > −→ bst < | l′, m, r| >

: with the binary search invariant over the splay method (Listing 3.5) and the splay max function

(Equation 3.4), and the splay max set invariant in Equation 3.7 we have easily proven this sub-

case.

4. splay a t = < | l, a′, r| > −→ bst t −→ bst < | l, a′, r| > : follows the same proving process of

case 2..

3.3 Discussion

We have proven all the lemmas/theorems that Nipkow’s has proven related to the splay tree functions

in the Coq proof assistant environment. The lemmas that are related to transformations between trees

and lists and between trees and maps that Nipkow has proven, were not proven by us.

Beside the theorems that were proven by Nipkow’s, we have proven, unlike Nipkow, that every

possible tree constructed by the splay (lookup), insert and delete operations is a binary search

tree, assuming that the initial tree is a binary search tree. To prove this theorem, we assume

that there is an arbitrary list l with key values that will be used for the input in the calls to these three

operations (e.g., if list is [a;b] then one possible sequence would be (insert b (splay a t))).

Fixpoint splay insert delete star t l :=

match l with

| [] => [t]

| hd :: tl =>

let insert := splay insert delete star (insert hd t) tl in

let delete := splay insert delete star (delete hd t) tl in

let splay := splay insert delete star (splay hd t) tl in

insert ++ delete ++ splay

end.

Listing 3.9: Function that creates a list of all possible trees generated by list l, where (++) is the append list opera-

tion

The splay insert delete star function shown in Listing 3.9 (also written as (splay | insert | delete)* t l)

creates a list of all possible trees that could be generated with list of keys l and with the three mentioned

splay tree functions. We then constructed a predicate called all tree in list are bst which takes a list of

trees and states that all the trees in the list are binary search trees. After the splay insert delete star

29

function and all tree in list are bst predicate definition, we have proven the theorem shown in Listing

3.10, which specifies the property mentioned abvoe. It is easy to see that if we start from a tree with no

elements (a leaf L: (< | | >), Listing 3.1) then we do not need the precondition of it being a binary search

tree, because by definition it already is (binary search tree predicate shown in Listing 3.2). Therefore we

have: (all tree in list are bst (splay insert delete star t (< | | >))) for any list l.

Lemma bst splay insert delete star : forall t l,

bst t −→ all tree in list are bst (splay insert delete star t l).

Listing 3.10: Assuming that t is a binary search tree, then any sequence of application of splay tree methods result

in a binary search tree

After we have proved successfully the functional implementation, we have successfully extracted an

implementation of the splay algorithm, from Gallina to OCaml, for the natural numbers set since the fact

that they are an Ordered Type set is already proven. In order to extract the code, we have executed

the lines shown in Listing 3.11. We have first created a module with our splay tree library that receives

an ordered type as input (OrderedTypeEx.Nat as OT), in this case the natural numbers, then we export

it and use the Coq keyword Extraction as seen in Listing 3.11 to extract the OCaml code to a module

named ”SplayTree” with ml extension (SplayTree.ml).

Module Nat Tree := SplayTree(OrderedTypeEx.Nat as OT).

Export Nat Tree.

Recursive Extraction splay.

Extraction "SplayTree" splay.

Listing 3.11: Code extraction from Gallina to OCaml for the natural numbers

30

4
A Pointer-Based Implementation of

Splay Trees

Contents

4.1 GCC’s Splay Tree: Heap-Lang Code Translation . 33

4.2 Splay Tree Predicate . 35

4.3 Domain Properties . 41

4.4 Link Properties . 42

4.5 Path Properties . 43

4.6 Edge Set Manipulation . 48

4.7 Path Find Count Properties . 55

4.8 Specification and Correctness of Rotations . 57

4.9 Iterative Rotate Inductive Predicate . 60

4.10 Splay Method Specification and Proof . 62

31

32

In this chapter we describe how we have modeled the GCC splay tree pointer-based implementation

from libgomp [10]. We first show how we have translated the C++ code and then how we modeled the

splay tree data structure algorithm in order to prove its correctness. Later on this chapter, we explain

how we have proved the correctness of the splay method from the splay tree algorithm.

4.1 GCC’s Splay Tree: Heap-Lang Code Translation

To perform the verification of GCC’s splay tree algorithm using the Iris framework, we manually translated

the C++ code from libgomp [10] to heap-lang, λref,conc.

In general, the translation of the C++ code to heap-lang is straightforward. This can be shown with

the example in Listing 4.1 and its respective heap-lang code function in Listing 4.2 for the rotate left

operation for splay trees.

static inline void rotate left

(splay tree node *pp, splay tree node p, splay tree node n)

{

splay tree node tmp;

tmp = n->right;

n->right = p;

p->left = tmp;

*pp = n;

}

Listing 4.1: Rotate left function in the C++ language

Definition rotate left : val :=

λ : "pp" "p" "n",

let: "tmp" := (right child "n") in

"n" <- (SOME (value "n", (left child "n", "p"))) ;;

"p" <- (SOME (value "p", ("tmp", right child "p")));;

"pp" <- "n".

Listing 4.2: Rotate left function in heap-lang, λref,conc

A problem that occurs during this task is that some operations and control structures available in the

C++ language are not present in heap-lang. For this reason, we had to translate these operations

and control structures with what heap-lang had to offer us. There are four aspects that deserve being

explicitly mentioned: access and mutation of node fields, loops, access to addresses, and generic types.

33

Access and mutation of node fields. A splay tree node, in the C++ code, has three fields, a key

value k and two pointers for other splay tree nodes, n1 and n2. In heap-lang, since there is no way to

create a type structure in any way, we have translated this structure to tuples. In heap-lang syntax:

Inj2(k, (n1, n2))). The constructor SOMEV in Listing 4.2 is equivalent to InjRV (Inj2 for values) and

NONEV, that simulates the C++ NULL keyword, is equivalent to InjLV () (value Inj1 () for values).

However, since such value, Inj2(k, (n1, n2))), does not contain any field names, we can only access

these fields with the projection functions that heap-lang offers us: π1 (projection on first element of tuple,

to access the left node) and π2 (projection on second element of tuple, to access the right node) with

semantics: πi(v1, v2) vi. (Recall that the syntax of heap-lang is shown in Figure 2.3). In Listing

4.2, the heap-lang functions value, left child and right child use these projection functions to access

the respective key values and children. Notice that we also can not change a specific field of the node

without changing its full value.

Loops. Although heap-lang allow us to express rich imperative programs, the only way to perform

loops is through recursive functions. GCC’s implementation uses a “do while” loop that we translated

into a recursive function. In this recursive function, we need to have, as parameters, the splay tree

pointer and the key which we are searching for. Since the C++ function is of return type void, we need

to pass the arguments that suffer mutation by their reference as opposed to their value. This is similar

to what happens in the GCC splay algorithm, where we pass as argument a pointer pp that points to the

splay tree root p. The output, i.e., the transformed tree, is then pointed by pointer pp. Finally, to create a

cycle we just need the function to call itself in order to have the same behaviour as the while loop. The

translation of the splay tree “do while” loop of GCC’s implementation can be seen in Appendix E.2.

Access addresses. Another problem that occurred during the translation was the fact that we can not

access the address of heap-lang variables, unlike in C++ where we can easily access such addresses

with the & operator. Therefore, to solve these problems, we have created variables that hold references

to such variables with the operation ref , as seen in the Appendix E.2.

Generic types. Unlike the actual GCC splay tree implementation, we do not use generic types. We

simplify our key values to integers, int, since we know for sure that integers are an ordered type set

with binary relation < and = (explained in section 3, subsection 3.1). In the GCC algorithm, the

splay compare function, the function that is used in the splay tree algorithm to compare node values

with the input key, is provided by the user. Therefore, the behaviour of the search algorithm is at the

hands of the user, meaning that it might be wrong for some type set, i.e., given a key, the key might

be present in the search structure, but due to the bad comparing function splay compare, the search

34

algorithm does not find the key. To solve this problem, we would need to assume some properties, as

lemmas to be proven by the user, over the key data type just like in the functional implementation. Since

our focus is on properties of the data structure operations (and not properties of the tree’s content), this

simplification does not affect our goals.

4.2 Splay Tree Predicate

In this section, we specify the splay tree predicate which contains the predicates and invariants for a

binary search tree as well as the memory model. The chosen predicate for the splay tree data structure

was inspired by the work of Mével, G et al. [4] for the union find algorithm.

4.2.1 Domain

The domain predicate D is the set of all the nodes that are present in the binary search tree. In the Iris

framework the datatype for pointers (node) is called loc. This domain predicate D has type loc −→ Prop,

which means that for every node x such that x ∈ D, we have D x. The TLC library, has a module for

sets1 that already includes this predicate datatype and some operations and lemmas over it.

One of the properties that we must guarantee, so that the splay tree algorithm will terminate for every

input, is for the domain D to be finite. Therefore we add the finite property to the binary search tree

predicate: finite D. In the TLC library, the finite predicate, described in Equation 4.1, states that there

exists a list l (a finite object) that for every node x ∈ D we have that x is contained by that list (mem x l).

finite D ≡ ∃l, (∀x, x ∈ D −→ mem x l) (4.1)

For every tree, we have considered that there exists a node p ∈ D that is the root of the tree. Note

that if there are no nodes in D then there is no root node and the splay tree algorithm is trivial for this

case. We call this property rootisindomain and we define it as shown in Equation 4.2.

rootisindomain p D ≡ p ∈ D (4.2)

4.2.2 Edges

The edge predicate F ′, of type loc −→ loc −→ Prop, has the information of all the edges that connect

each of the nodes. The predicate itself means that if we have F ′ x y, then we have an edge connection

from x to y. However, we also need information related to the orientation (O = {LEFT,RIGHT}) of

the edge since we are dealing with (binary) trees. Therefore we need a predicate F , of type loc −→
1TLC set module: https://github.com/charguer/tlc/blob/master/src/LibSet.v

35

https://github.com/charguer/tlc/blob/master/src/LibSet.v

loc −→ O −→ Prop, that given an edge from x to y with orientation o ∈ O, F x y o, states that we have

a connection from x to y with orientation o.

Nevertheless it seems redundant to have both F ′ and F since F already has the information of F ′,

∀ x y o, F x y o −→ F ′ x y, therefore we only include F in the binary search tree predicate. The tree

example shown in Figure 4.1 satisfies both F p x RIGHT and F x y LEFT .

p

x

y

Figure 4.1: A tree where F p x RIGHT and F x y LEFT hold

To make sure that F only holds information related to nodes from domain D we add the confined

property to our binary search tree predicate: confined D F . It is important for our edge set F to only

contain information related to nodes from domain D because otherwise the edge set could be infinite

and consequently the splay tree algorithm may not terminate. Confining the edge set F to domain D,

which is finite, implies that we have a finite maximum of |D|2 number of edges. However, since we are

dealing with trees, we have a maximum number of edges of |D| − 1. The confined property stated in

Equation 4.3, says that for any edge from x to y with orientation o, we have that x and y are in domain

D.

confined D F ≡ ∀ x y o, F x y o −→ (x ∈ D ∧ y ∈ D) (4.3)

We also have to make sure that for all nodes x, we have a maximum of two edges coming from it

with different orientations (to make sure that it is a binary tree). For that reason we add the binarytree

property, shown in Equation 4.4, to the binary search tree predicate: binarytree F:

binarytree F ≡ ∀ x y z u o, y 6= z −→ F x y u −→ F x z o −→ u 6= o (4.4)

Suppose that we now have three different edges coming from a node x, F x y1 o1, F x y2 o2, F x y3 o3,

i.e., y1 6= y2, y1 6= y3 and y2 6= y3. With the mentioned property in Equation 4.4, we can conclude that

all o1, o2 and o3 are different from each other, but thanks to the pigeonhole principle we see that two of

them must be equal, since for each oi we have oi ∈ {LEFT,RIGHT}, therefore we cannot have more

36

than two edges coming from a node x.

The root node p is defined as a node that does not have a parent and that has a path to every node x

such that x ∈ D, i.e., it obeys the isroot property: isroot D F p, presented in Equation 4.5. This property

states that for all node x and orientation o, if x ∈ D then we cannot have an edge from x to p (a parent

x) with orientation o and we must have a path from p to x. This property guarantees that all nodes from

domain D can be accessed by the root node, therefore we exclude the hypothesis that we are dealing

with forests.

isroot D F p ≡ ∀ x o, x ∈ D −→ ¬(F x p o) ∧ path F p x (4.5)

The path predicate mentioned on Equation 4.5 is an inductive predicate for the edge predicate F that

obeys the reflexive and transitive closure over edge set F . The properties of this closure are explicitly

mentioned in Equations 4.6, 4.7 and 4.8.

once ≡ ∀ F x y o, F x y o −→ path F x y (4.6)

reflexivity ≡ ∀ F x,path F x x (4.7)

transitivity ≡ ∀ Fx y z,path F x y −→ path F y z −→ path F x z (4.8)

4.2.3 Value function

In our binary search tree predicate, we also have a value function V , of type loc −→ int, that holds

information about the value of each node in the tree. Although the GCC’s splay tree algorithm is generic,

i.e., the values that are in the nodes can be of any type, we simplify by only using integers (as explained

in Section 4.1).

One of the basic properties of binary search trees is the searchtree property which states that for

a specific node, all nodes to its left are of a lesser value and all nodes to its right are of a greater

value. We can see the defined property in Equation 4.9. The function op returns the binary relation

lower than (lt) when o is equal to RIGHT and greater than (gt) when o is equal to LEFT (e.g., if

F x y RIGHT ∧ path F y z then V x < V y ∧ V x < V z). See Appendix D.1 for op’s definition.

searchtree F V ≡ ∀ x y z o, (F x y o ∧ path F y z) −→ op o (V x) (V y) ∧ op o (V x) (V z) (4.9)

The searchtree property defined in Equation 4.9 implies that we cannot have a cycle from a node to

itself, i.e., ∀ x o,¬(F x x o). To prove this, suppose we do have an edge from x to itself with orientation

o, F x x o. Thanks to the reflexivity property for path defined in Equation 4.7, we have path F x x.

37

Applying the searchtree property on the conjunction of these two former propositions, we end up with

op o (V x) (V x) which is false. Therefore ∀ x o,¬(F x x o) holds.

4.2.4 Weight function

In our binary search tree predicate, we also have a weight function W that is used to prove lemmas

about the potential function of the splay tree algorithm. This function, of type loc −→ int, maps a node to

an arbitrary positive value. Therefore, we include the property mentioned in Equation 4.10 in our binary

search tree invariant which says that every output of the weight function is positive.

positivefunction W ≡ ∀ x, W x > 0 (4.10)

This function W , referred by Sleator, D.D. et al [13] (mentioned in Chapter 2.1, Section 2.1.2), would

be used to calculate the potential function of the splay tree and consequently to prove the logarithmic

amortized time of the operations performed in this data structure.

4.2.5 Binary search tree invariant

Given the predicates described above: p D (section 4.2.1), F (section 4.2.2), V (section 4.2.3), W (sec-

tion 4.2.4) and invariants: finite (Equation 4.1), rootisindomain (Equation 4.2), confined (Equation 4.3),

binarytree (Equation 4.4), isroot (Equation 4.5), searchtree (Equation 4.9), positivefunction (Equation

4.10), we can bring them all together to form the binary search tree invariant mentioned in Equation

4.11.

Inv p D F V W ≡

finite D ∧

rootisindomain p D ∧

confined D F ∧

binarytree F ∧

isroot D F p ∧

searchtree F V ∧

positivefunction W (4.11)

38

4.2.6 Memory model

The memory of the machine that will run the algorithm is modeled with gmap, a generalized map M , of

type loc −→ content, that maps a node from the binary search tree to a content value. A node can have

one of four possible values (the content datatype is mentioned as an inductive type in Appendix C.1):

1. NodeB v nl nr : A node which holds value v, left child nl and right child nr

2. NodeL v nl : A node which holds value v and left child nl

3. NodeR v nr : A node which holds value v and right child nr

4. NodeN v : A node which holds value v with no children

With the content inductive type (Appendix C.1), we can translate it easily to a node heap-lang value

of the form Inj2(k, (n1, n2)), as mentioned in Section 4.1. The NULL keyword in the C++ language

is simulated with the value NONEV which is equivalent to InjLV () in the heap-lang notation module.2

Knowing this, we can easily convert a content datatype to a heap-lang value using the definition shown

in Listing 4.3.

Definition val of content (c : content) : option val :=

match c with

| NodeB k v1 v2 => Some (SOMEV(#k, (#v1, #v2)))

| NodeL k v1 => Some (SOMEV(#k, (#v1, NONEV)))

| NodeR k v2 => Some (SOMEV(#k, (NONEV, #v2)))

| NodeN k => Some (SOMEV(#k, (NONEV,NONEV)))

end.

Listing 4.3: Convert a content data type to an heap-lang value

We then create a memory invariant, Mem, described in Equation 4.12, which uses memory M that

has information related to what content is stored by the pointers in memory. This invariant assumes

that every node in domain D must have one of the four content values mentioned above and must

successfully map these content values to binary search tree components (edges and node values). For

example, if we have a pointer x in memory M that points to content NodeL v p, i.e., M !! x = NodeL

v p, then we can conclude with the Mem invariant, in Equation 4.12, that there exists edge F x p LEFT ,

there is no edge to the right of x (¬(∃ y, F x y RIGHT)) and the value in node x is v (V x = v).

2Implementation of the notation of the Heap-lang syntax https://plv.mpi-sws.org/coqdoc/iris/iris.heap_lang.

notation.html

39

https://plv.mpi-sws.org/coqdoc/iris/iris.heap_lang.notation.html
https://plv.mpi-sws.org/coqdoc/iris/iris.heap_lang.notation.html

Mem D F V M ≡

∀x, x ∈ D −→

match (M !! x) with

| Some (NodeB v p1 p2) => F x p1 LEFT ∧ F x p2 RIGHT ∧ V x = v

| Some (NodeL v p1) => F x p1 LEFT ∧ ¬(∃ y, F x y RIGHT) ∧ V x = v

| Some (NodeR v p2) => F x p2 RIGHT ∧ ¬(∃ y, F x y LEFT) ∧ V x = v

| Some (NodeN v) => ¬(∃ y, F x y RIGHT) ∧ ¬(∃ y, F x y LEFT) ∧ V x = v

| None => False

end (4.12)

With map M we create an invariant that states that we have ownership of all pointers from M ’s

domain and each one of these points to the heap-lang equivalent of their content value. This can be

achieved with the mapsto M invariant shown in Listing 4.4, where given a generalized map M , it gives

us ownership over all pointers in M , each one of these pointing to the heap-lang tuple value equivalent

of the content held by the map M (with the use of the val of content convert function in Listing 4.3).

Definition mapsto M M : iProp Σ :=

([? map] l −→ c ∈ M, from option (mapsto l 1) False (val of content c))%I.

Listing 4.4: Convert a content data type to a heap-lang value

4.2.7 Splay tree predicate

Finally, the splay tree predicate consists of the three mentioned invariants: the binary search tree invari-

ant Inv (Equation 4.11), the binary search tree memory invariant Mem (Equation 4.12) and the ownership

invariant mapsto M (Listing 4.4). The splay tree invariant puts the edge set F and memory M as exis-

tential quantifiers. We put these predicates as quantifiers because the output of the splay tree algorithm

modifies the edge set in several ways, depending on the tree itself. This makes it easier to write our

specifications. Even though there exists an unique edge set, we will see that the same edge set can be

obtained with different manipulation techniques over the initial edge set (Section 4.6).

ST p D V W ≡

∃ F M, Inv p D F V W ? Mem D F V M ? mapsto M M. (4.13)

40

4.3 Domain Properties

The domain D consists of all nodes (pointers with type loc) that are present in the tree data structure. In

this section we present the descendants function and some of the most important properties related to

the domain.

4.3.1 Descendants definition

The descendants definition in Equation 4.14, characterizes all nodes x that have a path from root r,

considering an edge set F . It is easy to see that if a node r is in D then the set of descendants of r must

be contained by D. This is specified in Equation 4.15. This is due to the isroot property (Equation 4.5),

i.e., there exists a path from p, the root of the tree, to any node that belongs to D, therefore there must

exist path F p r, and by the transitivity property for paths (Equation 4.8), we also have path F p x.

descendants F r ≡ {x | path F r x}. (4.14)

∀r, Inv p D F V W −→ r ∈ D −→ descendants F r ⊆ D. (4.15)

4.3.2 Domain proofs

We present here two important properties related to the domain.

First, if there is a path from the binary search tree root p to a node x, then node x must be

present in domain D. This lemma, formulated in Coq as shown in Listing 4.5, can be proven by doing

induction on the hypothesis path F p x and by proving each one of the three sub-cases for: once 4.6,

reflexivity 4.7 and transitivity 4.8.

Lemma descendants finite if bst : ∀ F x,

Inv p D F V W −→

path F p x −→

x ∈ D.

Listing 4.5: If there is a path from root to some node x, then x belongs to the tree domain

Second, since a binary search tree has a finite domain as mentioned in Section 4.2.1, and the

set D′ of the descendants of a node x is a subset of D (stated in Equation 4.15), then D′ is also

finite. The lemma that corresponds to the statement is shown in Listing 4.6 and can be proven with the

41

descendant inclusion lemma mentioned in Equation 4.15 and the finite inclusion rule defined in the TLC

library and shown in Equation 4.16.

∀ E F,E ⊆ F −→ finite F −→ finite E (4.16)

Lemma descendants finite if bst : ∀ F x,

Inv p D F V W −→

x \in D −→

let D' := descendants F x in

finite (D').

Listing 4.6: Finiteness of domain D’, the descendants of node x

4.4 Link Properties

As mentioned in Section 4.2.2, a link or edge between two elements x and y with orientation o is depicted

by the edge set F as F x y o. With the binary search tree invariant we can conclude several lemmas that

are useful and used throughout our proofs. Two important lemmas are the uniqueness of orientation

for each edge and the uniqueness of edge with same orientation.

4.4.1 Uniqueness of orientation for each edge

For every binary search tree of root p, such that Inv p D F V W (as defined in Section 4.2.5), each

edge has one and only one orientation. This is formalized in Equation 4.17. This can be proved easily

with the searchtree property (Equation 4.9). Suppose that we have orientation o and orientation u for

edge (x, y), then with the searchtree property we would have op o (V x) (V y) and op u (V x) (V y) (op

function definition in Appendix D.1). If o is different from u, we have both V x < V y and V x > V y at the

same time which is a contradiction for integers (Z).

∀ Fx y u o, Inv p D F V W −→ F x y o −→ F x y u −→ u = o (4.17)

4.4.2 Uniqueness of edge with same orientation

Given two edges (x, y) and (x, z), if they share the same orientation o, then y must be equal to

z. This is formalized in Equation 4.18 and can be proved with the binarytree property (Equation 4.4): if

42

they are different edges coming from the same node, then they must have different orientation. Suppose

they are different, using the binarytree property we end up with the contradiction o 6= o, therefore they

must be the same edge, i.e., y = z.

∀ Fx y u o, Inv p D F V W −→ F x y o −→ F x z o −→ y = z (4.18)

4.5 Path Properties

We have mentioned already the path inductive type that obeys the three properties: once (Equation

4.6), reflexivity (Equation 4.7) and transitivity (Equation 4.8). This section presents some of the most

relevant properties of path in the binary search tree data structure. In particular, it presents the proper-

ties: absence of cycles, unicity of parent of an node, unicity of path between two nodes and path

finiteness.

4.5.1 Absence of cycles in a tree

In a binary search tree, there are no cycles. We already proved before (in Section 4.2.3) that a node

cannot point to itself (i.e. ∀ x o,¬(F x x o)). We now want to prove that if a path from x to itself exists,

then the size of this path must be 0 (this is formalized in Equation 4.19). Therefore, we have extended

our path inductive type so that it can memorize the size of the path between two nodes. For that reason,

we have defined a new data type, shown in Appendix C.3, with name path count. This new inductive

type says that for path count F x y c, we have a path from x to y in edge set F of trajectory size c. It has

been easily proven that if we have a path from x to y with size c (i.e. path count F x y c) then we have a

path from x to y: path F x y.

∀ F x c, Inv p D F V W −→ path count F x x c −→ c = 0 (4.19)

In order to prove the lemma in Equation 4.19 we can do inversion on the path count inductive pred-

icate. Afterwards we are required to prove the property for the following three cases: path c refl (1.),

path c step (2.) and path c trans (3.) (as defined in Listing C.3):

1. Inv p D F V W −→ path count F x x 0 −→ 0 = 0 : which is trivial.

2. Inv p D F V W −→ F x x o −→ 1 = 0 : with F x x o in our hypothesis, we can easily prove this by

contradiction, since ∀ x o,¬(F x x o) as mentioned before.

43

3. Inv p D F V W −→ path count F x y n −→ F y x o −→ S n = 0 : with hypothesis path count F x y n

we conclude path F x y ; with the use of the searchtree property (Equation 4.9) on hypothesis

F y x o and path F x y we conclude op o (V y) (V y) which is false.

4.5.2 Unicity of parent of a node

In a binary search tree, an element has one and only one parent, except for the root that has

none. Therefore, if we have two parents p1 and p2 for child x, then p1 must be equal to p2 as stated in

the lemma shown in Listing 4.7.

Lemma only one parent if bst : ∀ F p1 p2 x o u,

Inv p D F V W −→

F p1 x o −→

F p2 x u −→

p1 = p2.

Listing 4.7: Lemma proving that an element x has only one parent

If an element x had two different parents, p1 and p2, then we would have link F p1 x o1 and F p2 x o2.

Using the properties rootisindomain (Equation 4.2), confined (Equation 4.3) and isroot (Equation 4.5),

we have both path F p p1 and path F p p2. Since p1 and p2 are distinct, we can confirm that there are

two different paths from p to x. However, the inductive data type path only allow us to compare paths

from the endpoint perspective, meaning that it cannot distinguish between the path that passes through

element p1 and another that passes through element p2.

This problem can be solved by storing the path trajectory in some data structure. We opted for

lists because they are simple to manipulate and, more importantly, they store the data in an ordered

manner which is important when we want to capture the exact trajectory of the path. Furthermore, two

trajectories are equal if and only if the lists are equal. Let us call this new data type, that stores the

path trajectory, path memory with the following properties: once (Equation 4.20), reflexivity (Equation

4.21) and transitivity (Equation 4.22). The notation (::) and (++) are respectively the classic cons and

append operations for lists3.

once ≡ ∀ F x y o, F x y o −→ path memory F x y [x] (4.20)

reflexivity ≡ ∀ F x,path memory F x x [] (4.21)

transitivity ≡ ∀ F x y z l, F x y o −→ path memory F y z l −→ path memory F x z (x :: l) (4.22)

3List module coq: https://coq.inria.fr/library/Coq.Lists.List.html

44

https://coq.inria.fr/library/Coq.Lists.List.html

From this new inductive data type we can easily prove that by having a witness l for the path from x to

y in edge set F , we also have a path from x to y, i.e., path memory F x y l −→ path F x y. Nevertheless,

the converse is not true, but we know for sure that if a path exists then there exists a witness, therefore

we have the following equivalence: (∃ l, path memory F x y l) ≡ path F x y.

Now suppose we have path memory F p p1 l1 for parent p1 and path memory F p p2 l2 for parent

p2. With the mentioned properties for path memory we can conclude path memory F p x (l1++[p1])

and path memory F p x (l1++[p2]) if p1 and p2 are both parents of x. Nevertheless, as we will see

in Subsection 4.5.3, in a binary search tree, a path from an element to another has an unique path

trajectory, meaning that for x to have two parents, (l1++[p1]) and (l2++[p2]) would have to be equal,

consequently p1 would have to be equal to p2, i.e., they would have to be the same parent which

contradicts our initial hypothesis.

4.5.3 Unicity of path between two nodes in a binary search tree

In a binary search tree, any path between two nodes has an unique trajectory. The lemma that

we have proven, as stated in Listing 4.8, shows that if we have a list l1 that represents some trajectory

between x and y and if we have another list l2 that also represents some trajectory between x and y,

then l1 and l2 must be equal.

Lemma path must be equal if bst : ∀ F x y l1 l2,

Inv p D F V W ->

path memory F x y l1 ->

path memory F x y l2 ->

l1 = l2.

Listing 4.8: The path between to nodes in a tree has a unique trajectory

To prove the lemma shown in Listing 4.8, we have done induction on the hypothesis path memory F x y l1.

This leads us to prove three sub-cases (assuming that Inv p D F V W is in the hypothesis context) and

for each one of these another three sub cases, as shown next.

proof branching for property stating that paths must be equal if binary search tree (Listing 4.8)

1. path memory F x x l −→ [] = l.

(a) path memory F x x [] −→ [] = [] (reflexivity, Equation 4.21)

(b) F x x o −→ [] = [x] (once, Equation 4.20)

(c) F x y o −→ path memory F y x l −→ [] = x :: l (transitivity, Equation 4.22)

2. F x y o −→ path memory F x y l −→ [x] = l.

45

(a) F x x o −→ path memory F x x [] −→ [x] = [] (reflexivity, Equation 4.21)

(b) F x y o −→ path memory F x y [x] −→ F x y o′ −→ [x] = [x] (once, Equation 4.20)

(c) F x y o −→ F x z o′ −→ path memory F z y l −→ [x] = x :: l (transitivity, Equation 4.22)

3. F x z o −→ path memory F z y l −→ (∀l′,path memory F z y l′ −→ l = l′) −→ path memory F x y l′ −→

x :: l = l′.

(a) F x z o −→ path memory F z x l −→ (∀l′,path memory F z x l′ −→ l = l′) −→

path memory F x x [] −→ x :: l = []. (reflexivity, Equation 4.21)

(b) F x z o −→ path memory F z y l −→ (∀l′,path memory F z y l′ −→ l = l′) −→

path memory F x y [x] −→ F x y o′ −→ x :: l = [x]. (once, Equation 4.20)

(c) F x z o −→ path memory F z y l −→ (∀l′,path memory F z y l′ −→ l = l′) −→

F x z′ o′ −→ path memory F z′ y l′ −→ x :: l = x :: l′. (transitivity, Equation 4.22)

To prove sub-case 1. we did inversion on hypothesis path memory F x x l which results in three

sub-cases (1.a), (1.b) and (1.c): (1.a) is trivial with the use of reflexivity on conclusion ; (1.b) by con-

tradiction on hypothesis F x x o, since ∀ x o,¬(F x x o) (section 4.2.3) ; and (1.c) with hypothesis

path memory F y x l we conclude path F y x and consequently by applying the searchtree property

(Equation 4.9) on F x y o and path F y x, we have op o (V x) (V x) which is false, i.e., contradiction.

For sub-case 2. we follow the same approach by doing inversion on hypothesis path memory F x y l

resulting in three sub-cases (2.a), (2.b) and (2.c): (2.a) similar to (1.b) ; (2.b) trivial with reflexivity on

conclusion ; And (2.c) if y = z, then l must be empty, [] (proven in case (1.)) and we solve the case

by reflexivity on conclusion, just like in case (2.b). If y 6= z then we have that o must be different from

o′ using the binarytree property (Equation 4.4), i.e., y and z branch to different sides. If they branch to

different sides, we have with the searchtree property (Equation 4.9): op o (V x) (V y) and op o′ (V x) (V y)

which is impossible for o 6= o′ since we can not have a < b∧a > b for integers (op function in Listing D.1).

Finally, for sub-case 3. we have our inductive hypothesis in our context,

IH : (∀l′,path memory F z y l′ −→ l = l′),

and we do inversion on hypothesis path memory F x y l′. This results in sub-cases (3.a), (3.b) and (3.c):

(3.a) is similar to case (1.c) ; (3.b) is similar to case (2.c) ; and finally, (3.c) if z′ = z, then we can use

the induction hypothesis IH on hypothesis path memory F z′ y l′ which gives that l = l′ and therefore

x :: l = x :: l′ (conclusion). At last, if z′ 6= z, then the proof is similar to (2.c), i.e., we can conclude that

op o (V x) (V y) and op o′ (V x) (V y) for o 6= o′ which is a contradiction.

46

4.5.4 Path finiteness

A path is finite if there exists a natural number that matches the size of its trajectory. In a binary search

tree with a finite domain of nodes D, there can not exist a path with trajectory size bigger than

the cardinality of domain D, |D|. If a path would exist with trajectory size bigger than the cardinality

of the domain, |D|, then in our trajectory we would have at least |D|+ 1 nodes, which means that some

node, in our trajectory, must be repeated. If a node is repeated in our trajectory, then it means that there

exists a loop, which contradicts the fact that it is a tree.

Lemma path memory size le card domain : ∀ p F x y l,

Inv p D F V W −→

path count F x y c −→

c <= card D.

Listing 4.9: Path trajectory size is less or equal than the size of domain of elements

The lemma that we have proven, shown in Listing 4.9, guarantees that the size of the path tra-

jectory between two nodes, in a binary search tree is at most the cardinality of domain D. To

prove it, we first had to prove that if we have a binary search tree with edge set F , such that

Inv p D F V W , then there are no duplicated nodes stored in a path trajectory l between two

nodes, i.e. noduplicates l (Equation 4.23). Afterwards, we had to prove that if a node is in trajec-

tory l, between two nodes of the binary search tree, then all nodes in l are in domain D, i.e.

∀ x,mem x l −→ x ∈ D (Equation 4.24). We then used lemma finite inv list covers and card (Equa-

tion 4.25) and noduplicates length le (Equation 4.26) from the TLC library which enabled us to prove

the lemma shown in Listing 4.9. (Remember that mem x l means that x is contained by l and length l

returns the size of list l as a natural number).

∀F x y l, Inv p D F V W −→ path memory F x y l −→ noduplicates l. (4.23)

∀F x y l, Inv p D F V W −→ path memory F x y l −→ (∀ x,mem x l −→ x ∈ D). (4.24)

∀D, finite D −→ ∃ l, ((∀x, x ∈ D −→ mem x l) ∧ |D| = length l) (4.25)

∀l1 l2,noduplicates l1 −→ (∀x,mem x l1 −→ mem x l2) −→ length l1 ≤ length l2 (4.26)

Suppose we have path memory F x y l in our hypothesis context and F is an edge set from a binary

search tree, i.e. Inv p D F V W . With Equation 4.23 we conclude H1:(noduplicates l) and with Equation

4.24 we conclude H2:(∀ x,mem x l −→ x ∈ D). Then, we can prove (∀x,mem x l −→ mem x l′) such

that l′ is the list of all nodes from domain D, with the use of Equation 4.25 and hypothesis H2, i.e., if

x ∈ D then x is also in the domain’s representative list l′. Finally, with Equation 4.26 we have proven that

47

length l ≤ length l′ where length l′ = |D|, therefore, length l ≤ |D|. To finalize the proof, we also have

proven that if there exists a path from x to y with size c, path count F x y c, then there exists a trajectory

l that witnesses such path, path memory F x y l, i.e., path count F x y c −→ ∃ l,path memory F x y l.

4.6 Edge Set Manipulation

The edge set F is the predicate mentioned in Section 4.2.2 which defines whether an edge exist in our

graph. In this subsection we show how to manipulate such predicate in a way that will be useful to model

the behaviour of the rotations that are involved in the splay tree method. We then show some important

invariants that will be useful to prove the correctness of the rotate operations.

4.6.1 Operations on edge set

In this section we introduce the main operations for manipulating the edge set F . The operations are the

following: add edge (subsection 4.6.1.A), remove edge (subsection 4.6.1.B), update edge (subsection

4.6.1.C), union edge (subsection 4.6.1.D) and elimination of a set of edges (subsection 4.6.1.E).

4.6.1.A Add edge

To add an edge to the edge set predicate F , we simply create a new edge set that joins the edges in

predicate F with the new added edge. Remember that an edge must also have an orientation com-

ponent. Figure 4.2 and Listing 4.10 show, respectively, an example of how an edge is added to the

predicate F and the definition of the operation add edge in Gallina.

F
x

z y

w

(x, y, o)

x

z y

w

∨ =

F ∨ (x, y, o)

x

z y

w

u

t

k

o u

t

k

o

Figure 4.2: Adding edge with connection from x to y with orientation o to predicate F .

Definition add edge F x y o :=

fun x' y' o' => F x' y' o' ∨ (x' = x ∧ y' = y ∧ o' = o).

Listing 4.10: Add edge definition written in Gallina

48

Some properties can be deduced from the add edge operation, such as: if any path exists in F ,

then it will for sure exist after adding an arbitrary edge (Equation 4.27: add edge introduction rule

for paths). However, the converse is only true under some hypothesis: If we add an edge (a, b) and

there is no path from the beginning of the path x to a, then the trajectory itself is a witness in the

initial edge set F (Equation 4.28: add edge elimination rule for paths).

∀ F x y l, path memory F x y l −→ (∀ a b c, path memory(add edge F a b c) x y l)
(4.27)

∀ Fx y l a b c,¬(path F x a) −→ path memory(add edge F a b c) x y l −→ path memory F x y l
(4.28)

4.6.1.B Remove edge

In order to remove an edge from our edge set predicate, we need to negate the fact that the edge is

in edge set F . For that, we use a conjunction on edge set F with the negated edge that we wish to

eliminate. Notice that our remove operation for edges does not need an orientation component, since

we assume that for all edge F x y o, we can not have o being RIGHT and LEFT at the same time,

since it will spawn a contradiction with the searchtree property defined in Equation 4.9. In Figure 4.3

and Listing 4.11, we show, respectively, an example of how an edge is removed from predicate F and

the definition of the operation remove edge in Gallina.

F
x

z y

w

(x, y)

x

z y

w

∧¬() =

F ∧ ¬(x, y)

x

z y

w

Figure 4.3: Removing edge from x to y in predicate F .

Definition remove edge F x y :=

fun x' y' o' => F x' y' o' ∧ ¬(x' = x ∧ y' = y).

Listing 4.11: Remove edge definition written in Gallina

Some properties for path can also be deduced from the remove edge operation. One of which is:

If any path exists in F after removing an edge, then it will also exist before removing that same

edge (Equation 4.29: remove edge elimination rule for paths). The converse, just like for the add edge

49

elimination, is not true without some assumptions: If we remove an edge (a, b) and there is no path

from some node x to a, then all paths which start on node x still exist (Equation 4.30: remove edge

introduction rule for paths).

∀ Fx y l a b, path memory(remove edge F a b) x y l −→ path memory F x y l
(4.29)

∀ Fx y l a b,¬(path F x a) −→ path memory F x y l −→ path memory (remove edge F a b) x y l
(4.30)

4.6.1.C Update edge

In order to modify an element to point to another, in our binary search tree, we need to add one edge

and remove up to two edges. Therefore, we have defined another operation to reduce the number of

applied add and remove operations (definition in Listing 4.12).

F
x

z y

∧¬(
x

z y

(x, z) ∨ (x, y)

)
x

z y

x

z y

∨ =

LE
FT

R
IG

H
T R

IG
H

T

R
IG

H
T

Figure 4.4: Redirecting element x from pointing to y with orientation RIGHT , to pointing to z with orientation
RIGHT , in predicate F .

Definition update edge F x y y'' o'':=

fun x' y' o' => ¬((x' = x ∧ y' = y) ∨ (x' = x ∧ y' = y'')) ∧ F x' y' o' ∨

(x' = x ∧ y' = y'' ∧ o' = o'').

Listing 4.12: Update edge definition written in Gallina

As shown in Figure 4.4 we also need to remove edge (x, z) when adding it; if not, then our edge set

predicate will have both F x z LEFT and F x z RIGHT which, as we seen with the searchtree property

(Equation 4.9), it is a contradiction. We then proved the introduction (Equation 4.31) and elimination

(Equation 4.32) rules for paths with the use of the add and remove edge introduction and elimination

rule (Equations: 4.27, 4.28, 4.30 and 4.29)

50

∀ Fx y l a b c d,¬(path F x a) −→ path memory (update edge F a b c d) x y l −→ path memory F x y l
(4.31)

∀ Fx y l a b c d,¬(path F x a) −→ path memory F x y l −→ path memory (update edge F a b c d) x y l
(4.32)

4.6.1.D Union edge

The definition of the union of two edge sets is shown in Listing 4.13. It is similar to the add edge

operation. From the union edge operation we can deduce easily an introduction rule for paths by in-

duction on trajectory l: If we have a path from x to y with trajectory l on edge set F1 or in F2

then we will have the same path from x to y with trajectory l on the union of both edge sets

(Equation 4.33). In case we want to eliminate such operation: Assume that F1 is disjointed from F2,

F1 ∩ F2 = ∅, and we have path memory (union edge F1 F2) x y l, therefore we can deduce that

either path memory F1 x y l or path memory F2 x y l (Equation 4.34). Figure 4.5 shows an example of

the union of two edge sets with the use of the logical connective ∨ (or).

F1

x

z y

w

F2

x

z y

w

∨ =

F1 ∨ F2

x

z y

w

Figure 4.5: Union of edge set F1 and F2.

Definition union edge F1 F2 :=

fun x' y' o' => F1 x' y' o' ∨ F2 x' y' o'.

Listing 4.13: Union of two edge sets written in Gallina

∀ F1 F2 x y l,path memory F1 x y l ∨ path memory F2 x y l −→ path memory (union edge F1 F2) x y l
(4.33)

∀ F1 F2 x y l, F1 ∩ F2 = ∅ −→ path memory (union edge F1 F2) x y l

−→ path memory F1 x y l ∨ path memory F2 x y l
(4.34)

51

4.6.1.E Elimination of a set of edges

While modeling the splay tree rotation operation, mainly the cases with double rotation, we needed to

focus on the sub-trees that have as root the child of the root. For that reason, we have created an

operation, called remove edge that are not in D, shown in Listing 4.14, that deletes all edges whose

endpoints do not belong to a given domain.

With the descendants and remove edge that are not in D definition we can easily retrieve the edge

set of some sub-tree F ′. Firstly, we get the domain of elements of the sub-tree with root x with descen-

dants, (descendants Fx) = D′. Then, we can eliminate all edges that do not belong to that domain with

remove edge that are not in D F D′ = F ′.

Definition remove edge that are not in D F D :=

fun x' y' o' => (x' ∈ D) ∧ (y' ∈ D) ∧ F x' y' o'.

Listing 4.14: Remove edges not in domain definition written in Gallina

In Equation 4.35, we see the rule for elimination on paths for operation remove edge that are not in D.

The proof behind this rule is the same as the one for elimination of remove edge in Equation 4.29. For

the introduction rule in Equation 4.36, we know that if there exists a path from some node x to another y

in F , then it will also exist on edge set (descendants F x) by definition of remove edge that are not in D.

∀ Fx y l D, path memory (remove edge that are not in D F D) x y l −→ path memory F x y l
(4.35)

∀ Fx y l, path memory F x y l −→ path memory (remove edge that are not in D F (descendants F x)) x y l
(4.36)

It is also important to get the edges that do not belong to certain domain. For this reason we have

defined the remove edge that are in D, in Listing 4.15, which does the task. This operation works as

a complement to operation remove edge that are not in D. Nevertheless, not an exact complement,

since their union does not complete the edge set F . The proven elimination rule for paths on opera-

tion remove edge that are in D is similar to the one for remove edge that are not in D (Equation 4.37).

Definition remove edge that are in D F D :=

fun x' y' o' =>

(¬(x' ∈ D) ∧ ¬(y' ∈ D)) ∧ F x' y' o'.

Listing 4.15: Remove edges in domain definition written in Gallina

∀ Fx y l D, path memory (remove edge that are in D F D) x y l −→ path memory F x y l (4.37)

52

4.6.2 Child of root is a binary search tree

Considering that p is a root of a binary search tree and if there exists a link from root p to some

element x, then x is a root for a binary search tree, that has as its domain elements its descen-

dants. The lemma that has been proven, that reflects the mentioned statement, is written in Listing

4.16. For this proof, we had to prove each property that we have mentioned in Subsection 4.2.5 for this

newly created tree.

Theorem child if inv : ∀ F x o,

Inv p D F V W −→

F p x o −→

let D' := (descendants F x) in

let F' := (remove edge that are not in D F D') in

Inv x D' F' V W.

Listing 4.16: The child of the root of a binary search tree, is a binary search tree as well

The proof of lemma shown in Listing 4.16 was divided into 7 sub-proofs for each property of the

binary search tree:

1. finite D′ : with the use of the lemma in Listing 4.6 (discussed in Section 4.3.2), we prove that

subset D′ of D is finite.

2. rootisindomain x D′ : by definition of descendants in Equation 4.14 and rootisindomain in Equation

4.2, this is equivalent to proving path F x x, which is true by reflexivity on path (Equation 4.7).

3. confined D′ F ′ : with the definition of remove edge that are not in D (Equation 4.14), we have that

F ′ x y o ≡ (x ∈ D′ ∧ y ∈ D′ ∧ F x y o). Therefore, we can easily see that F ′ x y o −→ (x ∈

D′ ∧ y ∈ D′) which means that F ′ is confined by D′.

4. binarytree F ′ : with binarytree F as hypothesis and its definition in Equation 4.4, to prove binarytree

F ′ ≡ ∀ x y z u o, y 6= z −→ F ′ x y u −→ F ′ x z o −→ u 6= o, we just need to prove that

∀x y o, F ′ x y o −→ F x y o, which is trivial with remove edge that are not in D definition shown

in Listing 4.14.

5. isroot D′ F ′ x : using the isroot definition written in Equation 4.5, we have to prove first that there

is no edge from some node in D′ to root x, i.e., ¬(F ′ e x o). If such edge would exist, then e

would belong to D′ by the confined property. If e belongs to D′ then there exists a path from x to e

in F (according to the descendants definition in Listing 4.14), path F x e, however, as seen before,

∀x y o, F ′ x y o −→ F x y o. Therefore, we have F e x, which creates a cycle in edge set F ,

contradicting the fact that we are dealing with a binary search tree. To prove that there exists a

53

path from root x to all other nodes of D′ in F ′, consider some y ∈ D′ as hypothesis, which is

equivalent to path F x y. However we can easily prove that path F x y −→ path F ′ x y with the

proven lemma in Equation 4.36, therefore there exists such path in F ′ to every element y of D′.

6. searchtree F ′ V ≡ ∀ x y z o, (F ′ x y o∧path F ′ y z) −→ op o (V x) (V y)∧op o (V x) (V z) : to prove

it, we only need in our hypothesis F x y o and path F x y. With F ′ x y o we can deduce F x y o as

previously explained, and with path F ′ x y, we can deduce path F x y with lemma for elimination

of remove edge that are not in D for paths in Equation 4.35.

7. positivefunction W : trivial, by hypothesis, since we do not modify the weight function W .

4.6.3 Join on mutation of sub-tree

Suppose that we have a binary search tree with root p and we have a link from p to some element

x with some orientation o. If we modify the sub-tree with root x to another binary search tree with

root z, then we can join p with z with orientation o and it will still be a binary search tree. This is

due to the fact that all elements that are to orientation o of p are preserved.

Theorem join if inv : ∀ F F' x z o,

Inv p D F V W −→

F p x o −→

let D' := (descendants F x) in

let FC' := (remove edge that are in D F D') in

Inv z D' F' V W −→

let F’’ := (add edge (union edge F' FC') p z o) in

Inv p D F’’ V W.

Listing 4.17: Modifying the roots child sub-tree to another binary search tree preserves the binary search tree

properties

We then proceed to prove all properties for this new modified tree:

• finite D : true, by hypothesis.

• rootisindomain p D : true, by hypothesis.

• confined D F ′′ : this is equivalent to proving F ′′ x′ y′ o′ −→ x′ ∈ D ∧ y′ ∈ D. To prove this,

we unfold F ′′ until its core F or F ′. We start by unfolding add edge and prove for the case where

x′ = p ∧ y′ = z ∧ o′ = o, i.e., for p ∈ D ∧ z ∈ D which is trivial. Then we are left with

the proof obligation (union edge F ′ FC ′): For FC ′ x′ y′ o′ we can conclude F x′ y′ o′ (using the

remove edge that are in D definition in Listing 4.15) and with the confined property (Equation 4.3),

54

x′ ∈ D ∧ y′ ∈ D ; For F ′, we have, thanks to the confined property (Equation 4.3) that belongs

to the invariant Inv z D′ F ′ V W , x′ ∈ D′ ∧ y′ ∈ D′. However, since D′ ⊆ D, we have, by the

inclusion property, also x′ ∈ D ∧ y′ ∈ D, therefore we have confined D F ′′ as we wanted to prove.

• binarytree F ′′ : To prove binarytree F ′′ ≡ ∀ x y z u o, y 6= z −→ F ′′ x y u −→ F ′′ x z o −→ u 6= o,

we start by destructing hypothesis F ′′ x y u and F ′′ x z o repeatedly until we either get to some

contradiction in our hypothesis or we get to the core edge set FC ′ or F ′. Notice that FC ′ and

F ′ are disjointed, therefore it is a contradiction for them to share the same nodes in edges. After

getting to the core F ′ or FC ′ (FC ′ ⊆ F) we simply use the binarytree property (Equation 4.4) for

their respective edge set.

• isroot D F ′′ p : We first prove that there is no edge from some node x′ to root p in F ′′: Suppose

we have such edge, F ′′ x′ p o′ for some orientation o′. What we do first is to destruct such

hypothesis: The add edge case, x′ = p ∧ p = z ∧ o′ = o, is a contradiction since root p is obviously

different than z, (p 6= z) ; We then are left to prove the union, i.e., for FC ′ x p o′ and F ′ x p o′:

For the first case (edge set FC ′), we can use the isroot property of edge set F (Equation 4.5)

and for edge set F ′, since there is no edge with node p in F ′, because of the confined D′ F ′

property (Equation 4.3) we conclude that is in fact a contradiction, therefore there is no such edge

F ′′ x′ p o′. Afterwards we are left to prove that there exists a path from node p to every node

x′ from domain D in F ′′. For this proof we first split it for the case x′ ∈ D′ and its complement

¬(x′ ∈ D′). For ¬(x′ ∈ D′) it is trivial, i.e., we conclude that the respective edge set is FC ′ and

since FC ′ ⊆ F we only needed to use the isroot property for edge set F (Equation 4.5) to prove it.

Finally, for x ∈ D′, that corresponds to the edge set F ′ and the added edge (p, z, o), we can prove

it by induction on the path trajectory.

• searchtree F” V : This proof is fairly simple, since we have both the search property (Equation 4.9)

for F ′ and FC ′. However, we had to prove that any path from node p to some other node in D′

on edge set F ′′ obeys the search property which was the difficult part. For this task, we done

induction on the path trajectory for F ′′.

• positivefunction W : trivial, by hypothesis, since we do not modify the weight function.

4.7 Path Find Count Properties

This section describes an inductive data type that models the task of searching for a key in a binary

search tree. We call this inductive predicate, path find count F V p x z n s, and we read it as (on bst):

with edge set F , value function V , starting the search for key z on node p, we find x after n steps and

with state s. The state s can be either GOING if the search algorithm is still in progress or ENDED if it

55

has already terminated. We start off this section by introducing the inductive type in Subsection 4.7.1

and then the termination proof for searching for a key in a binary search tree (Subsection 4.7.2).

4.7.1 Path find count inductive type

The inductive type for path find count that we have defined is written in Equation 4.38 with the rules in

Equations 4.39, 4.40, 4.41, 4.42 and 4.43. In this subsection, we explain each of the mentioned rules

for the path find count inductive type.

rules for the inductive type path find count

1. If the key value z that we are searching is z = (V x) and we are currently in node x, then the

search algorithm has ENDED with 0 steps on node x (Equation 4.39).

2. If an edge with orientation o on node x does not exist and we have (op o) (V x) (z) (Listing D.1) for

some key z then the search algorithm stops (ENDED) with 0 steps taken (Equation 4.40).

3. If there exists an edge with orientation o to y on node x and we have (op o) (V x) (z) we can step

into y by taking exactly 1 step and proceed with the search algorithm (GOING) (Equation 4.41).

4. If we have a path find count with key z GOING from y to some element t which requires n1 steps,

and if we also have a one step path find count with key z GOING (size 1) from x to y, then we

have a path find count from x to y with size of 1 + n1 (Equation 4.42).

5. If we have a path find count with key z from some node x to y which requires n1 steps, and we have

a path find count with key z that has ENDED from y to itself, then we also have path find count

which ENDED with key z with key z from x to y (Equation 4.43).

Inductive path find count : Edgeset −→ (loc −→ Z) −→ loc −→ loc −→ Z −→ N −→ state :=
(4.38)

∀ F V x,path find count F V x x (V x) 0 ENDED (4.39)

∀ F V x z o, ¬(∃ y, F x y o) −→ (op o) (V x) z −→ path find count F V x x z 0 ENDED (4.40)

∀ F V x y z o, F x y o −→ (op o) (V x) z −→ path find count F V x y z 1 GOING (4.41)

∀ F V x t y z n1, path find count F V x y z 1 GOING −→

path find count F V y t z n1 GOING −→ path find count F V x t z (S n1) GOING (4.42)

∀ F V x y z n1, path find count F V x y z n1 GOING −→

path find count F V y y z 0 ENDED −→ path find count F V x y z (n1) ENDED (4.43)

56

4.7.2 Path find count termination proof

In a binary search tree, Inv p D F V W , searching for key z in edge set F always terminates. To

prove the statement, we first have proven that assuming that there is no end to the search algorithm,

then we can have for every number of steps a searching path (lemma shown in Listing 4.18).

Lemma no ending path then exists a path with every size : ∀ p F z,

¬(∃ x n, path find count F V p x z n ENDED) ->

∀ n, (exists x, path find count F V p x z (S n) GOING).

Listing 4.18: Assuming that there is no end to the search algorithm, then we have a path for any number of steps

We have easily proven lemma in Listing 4.18 by doing induction on the number of steps. We also

have concluded that if we have path find count from some node x to other node y in n steps, then we

also have path count from node x to y in n steps. Nevertheless, as we saw in Section 4.5.4 (Listing

4.9), a path can not be longer than the cardinality of the domain of the binary search tree. Therefore,

considering that we have a binary search tree such that Inv p D F V W , and if we consider that there

is no end (ENDED) to the search algorithm, then we have a path in our binary search tree longer than

the cardinality of the domain by using the lemma in Listing 4.18; this is false for binary search trees,

according to the lemma shown in Listing 4.9. Therefore, there must be an end to the binary search

algorithm, which we have stated (and proved) as the theorem shown in Listing 4.19.

Theorem exists find count path if inv : ∀ p F z,

Inv p D F V W −→

(∃ x n, path find count F V p x z n ENDED).

Listing 4.19: For every edge set F from a binary search tree, there is an end to the search algorithm

As we will see in the next sections, the theorem shown in Listing 4.19 is important to prove the

correctness of the splay tree method algorithm.

4.8 Specification and Correctness of Rotations

The first operations of the splay tree algorithm that we have proven were the rotation operations: ro-

tate left and rotate right. In the splay tree algorithm of the GCC implementation, we observe that these

rotation operations are used on the root of the tree or on one of the children of the root, therefore we only

focus on these. We first have proved that the rotations on the root would preserve the invariants of the

binary search tree. Nonetheless, there exist two cases that we must consider: if internal grandchildren

exist (Listing 4.20; Figure 4.6) and if internal grandchildren do not exist (Listing 4.21; Figure 4.7), i.e., a

node with opposite orientation to the child of the root.

57

Theorem rotate XI if bst : ∀ F x z o,

Inv p D F V W −→

F p x o −→

F x z (invert orientation o) −→

let F' := (update edge F p x z o) in

let F’’ := (update edge F' x z p (invert orientation o)) in

Inv x D F'' V W.

Listing 4.20: Rotation on the root with internal grandchildren invariant.

F
p

t x

wz

F ′

p

t x

wz

F ′′

p

t x

wz

x

p w

t z

≡

o’

o

o

o’

o’

o

o

o’

o’

o

o

o’ o’

o

o o’

Figure 4.6: Rotate with orientation o on a binary search tree (with root p) with internal grandchild.

Theorem rotate XE if bst : ∀ F x o,

Inv p D F V W −→

F p x o −→

¬(∃ y, F x y (invert orientation o)) −→

let F' := (remove edge F p x) in

let F’’ := (add edge F' x p (invert orientation o)) in

Inv x D F'' V W.

Listing 4.21: Rotation on the root with no internal grand children invariant

F
p

t x

w

F ′

p

t x

w

F ′′

p

t x

w

x

p w

t

≡

o’

o

o

o’

o

o’

o

o’ o’

o

o

Figure 4.7: Rotate with orientation o on a binary search tree (with root p) with no internal grandchild.

58

In order to prove the correctness of the rotations performed on the children of the root, we use the

child if inv theorem shown in Listing 4.16 (Section 4.6.2) to retrieve the sub-tree of the respective child;

then we use one of the two mentioned rotation theorems (either rotate XI if bst shown in Listing 4.20 or

rotate XE if bst shown in Listing 4.21) to perform the rotation operation, depending on the tree structure.

Finally, we use the join if inv theorem shown in Listing 4.17 to join the root of the binary search tree with

the root of the modified sub-tree (invert orientation definition in Appendix D Listing D.2).

We then prove the correctness of the rotation operation of the heap-lang code for every possible

rotation operation case that can occur in the splay tree method: 8 cases for rotate left on the root node,

8 cases for rotate right on the root node, 32 cases for rotate left on a child node and another 32 cases for

rotate right on a child node. All of these cases are the possible memory cases that are allowed during

the splay tree method. For example, the rotate right cases on the root are only allowed if there exists a

root node with right child, therefore we have two (2) possible content values for the root node (NodeB

and NodeR as described in Section 4.2.6) and four (4) possible values for the child (NodeB, NodeR,

NodeL and NodeN), which yields the eight 8 cases.

Proving first the root cases, we can then use these to simplify the children cases on the sub-tree as

explained. In Listing 4.22 we show the lemma rotate left BB st, an example of the correctness of the

rotate left operation over the memory where the root pointer p points to content NodeB vp p1 p2 and p1

points to NodeB vp1 p3 p4 yielding edge set F ′′ and memory M ′. We can then use the same lemma,

rotate left BB st, shown in Listing 4.22, and the child if inv theorem shown in Listing 4.16 on the child’s

sub-tree on lemma rotate left RBB st’ shown in Listing 4.23. Then, using the join if inv theorem shown

in Listing 4.17, we can join the root with the new modified sub-tree.

Lemma rotate left BB st (pp p p1 p2 p3 p4 : loc) (vp vp1 : Z) :

let F’’ := (update edge (update edge F p1 p4 p RIGHT) p p1 p4 LEFT) in

let M' := (<[p:=NodeB (V p) p4 p2]> (<[p1:=NodeB vp1 p3 p]> M)) in

M !! p = Some (NodeB vp p1 p2) −→

M !! p1 = Some (NodeB vp1 p3 p4) −→

{{{ pp −→ #p ? pInv p D F V Wq ? pMem D F V Mq ? mapsto M M }}}

rotate left #pp #p #p1

{{{ RET #() ; pp −→ #p1 ? pInv p1 D F’’ V Wq ?

pMem D F’’ V M'q ?

mapsto M M' }}}.

Listing 4.22: Rotation on the root with internal grandchildren invariant

The lemma that we have proven in Listing 4.23 refers to the part of code from the GCC splay method

for the rotation of the children and it proves for the specifica case where the root node p points to value

(NodeR vp p2), the node p2 points to value (NodeR vp2 p3 p4) and p3 points to (NodeB vp4 p5 p6).

59

Lemma rotate left child RBB r st (pp p p2 p3 p4 p5 p6 : loc) (vp vp2 vp4 : Z) :

let D' := descendants F p2 in

let FC' := (remove edge that are in D F D') in

let F' := (remove edge that are not in D F D') in

let F’’ := (update edge F' p3 p6 p2 RIGHT) in

let F’’’ := (update edge F’’ p2 p3 p6 LEFT) in

let F’’’’ := (add edge (union edge F’’’ FC') p p3 RIGHT) in

let M' := (<[p:=NodeR (V p) p3]> (<[p2:=NodeB (V p2) p6 p4]>

(<[p3:=NodeB (V p3) p5 p2]> M))) in

M !! p = Some (NodeR vp p2) −→

M !! p2 = Some (NodeB vp2 p3 p4) −→

M !! p3 = Some (NodeB vp4 p5 p6) −→

{{{ pp −→ #p ? pInv p D F V Wq ? pMem D F V Mq ? mapsto M M }}}

let: "tmp" := ref #p2 in

rotate left ("tmp") #p2 (left child #p2) ;;

#p <- SOME (value #p, (left child #p, !"tmp"))

{{{ RET #() ; pp −→ #p ? pInv p D F’’’’ V Wq ? pMem D F’’’’ V M'q ?

mapsto M M'}}}.

Listing 4.23: Rotation on the child of the root, p2

4.9 Iterative Rotate Inductive Predicate

To prove the splay tree method, we first modeled the algorithm as an inductive predicate called fw ir,

that we read as forward iterative rotate. The predicate, fw ir F V p x k n F ′ s, says that if we have

edge set F and value function V , and we perform the splay tree method on root p with key k, then n

rotations are required to get to edge set F ′ with root x and state s. The state of the splay tree method

can be either GOING or ENDED (see C.2). If it is in state ENDED, then the splay tree method terminated

successfully, otherwise it is in state GOING which means that it needs to perform another loop of the

splay tree iterative method. This inductive predicate, fw ir, that models the heap-lang GCC’s splay tree

method present in Listing E.2, holds a total of 15 rules.

60

∀ F V p x y z o,

(orientation op o) (V p) z −→

F p x o −→

(orientation op o) (V x) z −→

F x y o −→

F y t (invert orientation o) −→

let D' := (descendants F x) in

let F' := (remove edge that are not in D F D') in

let FC' := (remove edge that are in D F D') in

let F’’ := (update edge F' x y t o) in

let F’’’ := (update edge F’’ y t x (invert orientation o)) in

let Fafr := (add edge (union edge F’’’ FC') p y o) in

let F1 := (update edge Fafr p y x o) in

let F2 := (update edge F1 y x p (invert orientation o)) in

fw ir F V p y z 2 F2 GOING

Listing 4.24: Splay tree rule for zigzig

In Listing 4.24 we present one of the rules for the iterative predicate which says that if we have two

edges F p x o and F x y o and if by searching for z we end up on node y, then we perform a zig-zig

double rotation, starting from the child and then the root yielding the edge set F2 with tree root y after 2

rotations. However, after performing the double rotation, we go back to the beginning of the cycle, i.e.,

the state is not yet over, ENDED, therefore we say that the algorithm is still GOING.

Lemma fw ir inv : ∀ p F x n z F' s,

Inv p D F V W −→

fw ir F V p x z n F' s −→

Inv x D F' V W.

Listing 4.25: After applying the splay tree method partially or totally (respectively GOING/ENDED) on some binary

search tree with root p, we end up with a binary search tree.

The proven lemma shown in Listing 4.25 translates to saying that the iterative rotation algorithm of

GCC’s splay method preserves the binary search tree invariant, i.e., the updates that occur on edge set

F (example shown in 4.24 for F2) preserve the invariants for the binary search tree invariant (Section

4.2.5).

We also have proven the lemma shown in Listing 4.26, that says that the inductive predicate fw ir

implements the GCC splay tree method loop referred in Listing E.2. As seen in the lemma shown in

Listing 4.26, we have fw ir as hypothesis which says that if we have a tree with root p, edge set F and

61

value function V , then after n rotations the splay algorithm with search key k will end with edge set

F ′ and root p′. The precondition and post-condition of the lemma describe exactly this behaviour on

program splay tree while loop, which is the while loop of the splay tree method. For this proof we have

used well-founded recursion 4 and had to use all the rotation cases (two of which are in Listings 4.22

and 4.23) that were mentioned in Section 4.8.

Lemma fw ir splay loop st : ∀ n p D (F:EdgeSet) V W pp p' k F' M,

fw ir F V p p' k n F' ENDED −→

Inv p D F V W −→

Mem D F V M −→

{{{ pp 7→ #p ? mapsto M M }}}

splay tree while loop #pp #k

{{{ M', RET #() ; pp 7→ #p' ?

pInv p' D F' V Wq ? pMem D F' V M'q ?

mapsto M M'

}}}.

Listing 4.26: The fw ir inductive predicate mimics the behaviour of the GCC’s heap-lang splay tree method.

4.10 Splay Method Specification and Proof

Finally, to conclude the proof of the correctness of the splay tree method, we need to prove that, consid-

ering a binary search tree with root p, edge set F and value function V , there exists a final: root p′, edge

set F ′ and a finite number of rotations n for fw ir F V p p′ k n F ′ ENDED, i.e.,

∃ p′ n F ′, fw ir F V p p′ k n F ′ ENDED

To prove the termination lemma, we need to prove that after a constant number of rotations (4) the path

from the root to the node which we are searching for reduces its level at least by one (represented in

Listing 4.27).

4https://coq.inria.fr/library/Coq.Init.Wf.html

62

https://coq.inria.fr/library/Coq.Init.Wf.html

Lemma path find count ir constant 4 : ∀ p F F' x x' z n,

Inv p D F V W ->

path find count F V p x z (4+n) ENDED ->

fw ir F V p x' z 4 F' GOING ->

(exists m y, (m < 4+n)%nat /\ path find count F' V x' y z m ENDED).

Listing 4.27: After four (4) rotations, the node for which we are searching for decreases at least one level

We have not succeeded in proving the path find count ir constant 4 lemma in Listing 4.27, yet we

know that it is in fact true. If the node to be splayed is at least four (4) steps away from the root, then the

splay algorithm needs at least two loops to perform two rotations in each one (either zig-zig or zig-zag).

To informally prove this lemma, we checked how the path size reduces for GCC’s zig-zig (Figure 4.8)

and zig-zag (Figure 4.9) operation. It can be observed in Figure 4.8 that the zig-zig operation reduces

the path if the key is z or the key is in sub-tree z2, however if it is in sub-tree z1 the level does not

change. In the zig-zag operation in Figure 4.9, we observe that the level of the nodes of sub-tree with

root z decrease by at least one (1). Therefore, we can exclude the cases where a zig-zag operation is

first performed since we know for sure that it will decrease at least one level of the path from the root

to the key. This leaves us with the zig-zig cases: As we observe in the zig-zig operation in Figure 4.8,

only the sub-tree z1 does not decrease its level, nevertheless if the key is in sub-tree z1, then the next

operation to be performed will be a zig-zag, reducing the path size to the key by at least one (1). We

have then informally proven that that after (4) rotations the path from the root to the key is reduced.

p

x

z

z2z1

p′

x′

z

x

p z2

z1x′

p′

o

o

oo’

o’

o’

o
o’

o’ o

oo’

Figure 4.8: Path reduce on GCC’s implementation of the zig-zig operation

63

p

x

z

z1 z2

p′

x′

z

xp

p′ z2z1 x′

o

o’

o’ o

o’

o

oo’

o’

o oo’

Figure 4.9: Path reduce on GCC’s implementation of the zig-zag operation

The proof of lemma path find count ir constant 4 in Listing 4.27 required the proof of 49 sub-cases,

since we have 7 inductive steps for two 2 rotations and therefore 79 = 49 for 4 rotations. Although these

sub-cases seem easy to prove as the lemma in itself, the difficulty lays in proving that some paths do

not change after the 4 rotations. This difficulty is also due to the operations that we perform in the tree,

such as elimination (Section 4.6.1.E) and union (Section 4.6.1.D) of sub-trees, which are not as easy to

deal with as other operations such as the add (Section 4.6.1.A) and remove (Section 4.6.1.B).

A way to deal with this problem is to change the manipulation operations that are being performed in

the tree to only add and remove operations, nevertheless, by doing this we could not apply the lemmas

that have been proven already for the root, meaning that we would have to prove the correctness of the

operations over each rotation on the roots children.

Now, assuming that lemma in Listing 4.27 is proven, we have proved that in a binary search tree, if

we have an end to a path find count for a binary search tree starting from the root of the tree, which we

have proven (Listing 4.19), then we can prove that the splay tree method ends, i.e.,

∃ p′ n F ′, fw ir F V p p′ k n F ′ ENDED

Finally, knowing that the splay tree algorithm ends, ∃ p′ n F ′, fw ir F V p p′ k n F ′ ENDED, we can use

lemma fw ir splay loop st to prove the splay tree specification in the lemma shown in Listing 4.28.

Lemma splay st (p pp : elem) (D : set elem) (V W : loc-> Z) (k : Z) :

{{{ pp 7→ #p ? ST p D V W }}}

splay tree splay #pp #k ;; ! #pp

{{{ (p' : loc), RET #(p') ; pp 7→ #p' ? ST p' D V W }}}.

Listing 4.28: The splay tree method specification lemma

64

5
Evaluation

Contents

5.1 Functional Implementation . 67

5.2 Pointer-Based Implementation . 70

65

66

In this chapter, we present some of the metrics for the proofs of correctness of the splay tree algorithm

for the functional implementation and for GCC’s pointer-based implementation. We also discuss how we

have automated some of the proofs and how we could possible have used them better to prove the

correctness of the splay tree correctness operations.

5.1 Functional Implementation

The main module, that has all proofs related to the splay tree algorithm methods, is SplayTree. The

definitions that we encounter in the SplayTree module are the splay tree methods and the predicates

mentioned in Section 3.1. The definition of the binary search tree predicate, used to define some of the

specifications, uses sets.

The XSet module that we have created is an extension of the MSetWeakList Coq module. We have

proved some properties such as union commutativity and associativity over sets, since the XSet module

lacks these properties which are important to prove lemmas related to sets in the SplayTree module.

Besides this extension, we also have created tactics that automate the proving process by reducing our

context hypothesis to simpler hypothesis.

modules
metrics #lines #lemmas/theorems #tactics #definitions

SplayTree.v 1 1541 49 2729 20
XSet.v 2 585 43 955 1

ListTree.v 3 30 2 40 0
MyTactics.v 4 24 0 0 0

TOTAL: 4 2180 94 3724 21

Table 5.1: Metrics of functional implementation of splay trees

#lines
Code 205

Tactic definition 176
Theorem/Lemmas 1775

TOTAL: 2156

Table 5.2: Number of lines for Code, Tactic definition and Theorem/Lemmas related to the functional splay tree
implementation

In table 5.2 we notice that the number of lines for the code of the splay tree algorithm and all the-

orem/lemmas, that were used to prove the correctness of the code, are respectively roughly 200 and

67

1800, i.e., we have 9 lines of proofs to 1 line of code.

We notice in Table 5.1 that the module where we used more tactics and where we have written

more lines, as expected, was the SplayTree module, where roughly 2700 tactics were used to prove the

lemmas/theorems. Nevertheless, these numbers could be bigger if we had not use some automated

proving mechanisms that Coq has to offer. We discuss in Section 5.1.1 how we have automated such

proofs.

5.1.1 Proof automation

During most of the proofs, we felt the need to automate and simplify some of the proofs. This required

the creation and use of several Coq tactics. These tactics greatly reduced the number of lines in our

proofs, e.g., to prove the fourteen (14) sub-cases of the bst splay theorem in Listing 3.5 we only used

four (4) lines of tactics as shown in Listing 5.1.

intros a t ; functional induction (splay a t) using splay ind ; intro ;

simpl in H ; simpl ; auto ; unfold XSet.For all ; intros ; tree reduction ;

repeat try (order | | logical reduction | | set reduction | |

logical reduction | | set create).

Listing 5.1: Sequence of Coq tactics used to prove the bst splay theorem shown in Listing 3.5

description of the created tactics that we used:

1. logical reduction : simplifies the proving context by recursively eliminating duplicated hypothe-

ses, splitting hypotheses that contain conjunctions, create new hypothesis with the use of modus

ponens, contradiction whenever false exists as hypothesis and other logical related rules.

2. set reduction : simplifies the proving context or proves the conclusion, related to hypothesis over

sets such as: reflexivity over sets (XSet.Equal S S) ; singleton equivalence (x ∈ {y} then x = y) ;

commutativity over union of sets (S1 ∪ S2 −→ S2 ∪ S1).

3. order : generated with the functor from the Ordered Type module that we have mentioned in

Section 3.1. It tries to automate some of the arithmetic proofs related to the Ordered Type.

4. tree reduction : simplifies some of the tree related proofs such as: a leaf and a singleton node

are binary search trees (respectively bst < | | > and bst < | < | | >, a,< | | > | >) ; the reflexivity,

symmetry and transitivity properties over the tree equality predicate eq tree ; after a splay max

application on a tree, the right subtree is a leaf < | | > (lemma in Listing 3.6).

68

Besides these tactics, we also used other tactics that are already available with Coq, such as repeat,

which repeats a tactic until it fails or does not change the proving context, the try tactical keyword which

allow us to use a certain tactic even if it fails (in case of failure it does not change the proving context).

Both of these are present in Listing 5.1.

69

5.2 Pointer-Based Implementation

In this section we present some of the metrics for GCC’s pointer-based splay tree implementation for

each of the 32 Coq modules that we have created. We have grouped up these metrics, namely the

number of lines, lemmas and theorems, tactics and definitions, into Table 5.3. In this table we observe

that we used roughly around 39000 tactics which was reduced due to some created Coq tactics.

modules
metrics #lines #lemmas/theorems #tactics #definitions

Code.v 1 200 0 0 14
STorientation.v 2 170 14 156 4
STpredicate.v 3 231 0 0 13

STlink.v 4 564 17 415 0
STdomain.v 5 346 20 339 3

STpath.v 6 1305 53 1220 1
STvaluefunction.v 7 177 4 184 2

STpotential.v 8 148 6 156 2
STedgeset.v 9 2520 96 3306 8

STedgesetrotateroot.v 10 773 21 1101 0
STnumberedges.v 11 94 3 117 1

STmemory.v 12 1021 21 1893 1
STproof.v 13 165 10 177 0

STpathcount.v 14 1165 47 1871 5
STir.v 15 980 11 1588 1

STrotaterightcasesroot.v 16 2033 24 2023 0
STrotateleftcasesroot.v 17 1983 24 2000 0

STrotaterightcaseschild.v 18 4112 32 5073 0
STrotateleftcaseschild.v 19 4033 32 4933 0

STsplaycases ir.v 20 64 1 64 0
STsplaycases irfail.v 21 233 3 300 0

STsplaycases ironeleftrotation.v 22 408 4 580 0
STsplaycases ironeleftrotationgrandchild.v 23 283 3 410 0

STsplaycases ironerightrotation.v 24 413 4 602 0
STsplaycases ironerightrotationgrandchild.v 25 289 3 398 0

STsplaycases ir oo child nlgc.v 26 785 3 1277 0
STsplaycases ir oo child lgc.v 27 1070 3 2078 0

STsplaycases ir ooi child nlgc.v 28 483 3 759 0
STsplaycases ir ooi child gco.v 29 652 3 1145 0
STsplaycases ir ooi child gcoi.v 30 513 3 778 0

STsplaycases ir ooi child gcooi.v 31 675 3 1178 0
STsplay.v 32 129 3 196 0
TOTAL: 32 28017 474 39146 55

Table 5.3: Metrics of GCC’s splay tree algorithm proofs

The modules for which we have the most part of the definitions (which includes definition of values,

predicates, functions and types) are Code, which has the translation of GCC’s splay tree implementation

to heap-lang (mentioned in Section 4.1), and STpredicate, which has the definitions of the splay tree

70

predicate that we have mentioned in Section 4.2. We also define some important inductive types, such

as path find count and fw ir in the modules STpathcount and STir, respectively. In the STpotential

module we have defined the potential function with the use of the weight function (referred in Section

4.2.4) that is present in the splay tree invariant.

By observing Table 5.3, we notice that the Coq modules that have the proofs related to the correct-

ness of the rotation operation over the children of the root of the tree, STrotaterightcaseschild and

STrotateleftcaseschild, are the modules with more lines and tactics. In each of these two modules, we

have 32 lemmas which are the possible combination of content values for the three pointers where a

rotation operation on a child can be performed. For example, if we wanted to perform a rotate right in the

right child, the root pointer could only hold 2 possible content values, the child pointer could only have 2

possible content values and the grandchild pointer could have 4, evaluating to 16 cases (example of a

case for three pointers is shown in Listing 4.23). We have more 16 more cases for the left child of the

root equating in total to 32 cases for the right rotation operation on children. Some automated proving

could be done in these proofs, however, since the edge set transformation is different for each memory

M configuration, it would probably be harder to try to automate it and therefore we have decided to prove

each case individually.

The last mentioned modules in Table 5.3 (which have STsplaycases as suffix) are the proof of the

sub-cases of the splay method specification. All of these modules together make almost 6000 lines, and

that is the reason why we have initially separated them by each sub-case.

5.2.1 Proof automation

At the end of each module, we usually define a tactic that simplifies further proofs related to lemmas

from that module. We consider this a good way to automate our proofs, since we only need to know the

name of the tactic and not the name of all lemmas. The proof assistant Coq allows us to create such

tactics with the use of the Ltac keyword by doing a match on the proving context. As an example, we

show in Listing 5.2 a small part of the created tactic for the link module. This listing shows a rule related

to the fact that we can not have an edge from a node to itself (which we have discussed in Section 4.2.3

about the searchtree property).The rule states: If in our proving context we have some hypothesis (h1)

Inv p D F V W , i.e., a binary search tree with root p, domain D, edge set F , value function V and weight

function W , and we have also as hypothesis (h2) F x x o, a link from a node x to itself, then apply the

cant point to itself if bst lemma and end the proof.

71

Ltac stlink tac := match goal with

(...)

| h1 : Inv ?p ?D ?F ?V ?W, h2 : ?F ?x ?x ?o |- =>

exfalso ; apply (cant point to itself if bst p D V W F x o h1 h2)

(...)

end.

Listing 5.2: Tactic for every link-related lemma

#lines
Code 200

Tactic definition 223
Theorem/Lemmas 27594

TOTAL: 28017

Table 5.4: Number of lines for Code, Tactic definition and Theorem/Lemmas related to the pointer-based splay tree
implementation

Notice in table 5.4 that the number of lines of code 200 to the number of lines of theorem/lemmas

27594 in the pointer-based verification gives us with roughly 138 lines of proofs to 1 line of code. This

ratio is way bigger than the 1 to 9 ratio that we have mentioned in Section 5.1 for the functional imple-

mentation, showing how much costly it is to prove a pointer-based implementation.

72

6
Conclusion

73

74

The main challenge addressed by this project is the formal verification of pointer-based splay trees

using the Iris framework. We started by using Coq to successfully prove functional correctness of a

functional implementation of splay trees, in a development inspired by Nipkow’s work [7]. We then

modelled and verified a real pointer-based implementation of splay trees — the one used by GCC, the

GNU’s Compiler Collection. The verification of this pointer-based implementation proved to be much

more challenging than the verification of the functional implementation. For example, we left the lemma

path find count ir constant 4 lemma (shown in Section 4.10, Listing 4.27) unproven. Nevertheless, we

were able to verify key properties of splay trees and we have organized our work in such a way that

anyone who wants to prove the correctness of algorithms related with binary search tree structures has

a good starting point with some important properties already proven.

Our work for the proof of GCC’s splay tree pointer-based implementation, was inspired by the work

of Mével, G et al. [4] for the union find algorithm. After all, the Iris framework is still a recent tool and

their work was extremely important to understand how they have approached the verification problem.

In particular, we modeled the tree structure as a graph and the memory as a generalized map in the

same way as Mével, G et al. However, since we are working with a completely different structure and

algorithms from those considered by Mével, G et al., then we had different challenges. For example,

in the find operation of the union find algorithm, they have defined an inductive predicate with only two

(2) cases (for the root node and for a non-root node). We can see, by just looking at the heap-lang

function for the splay method in Listing E.2, that we deal with a lot more cases than just 2 (in total,

the fw ir predicate mentioned in Section 4.9 has 15 inductive rules), which substantially increases the

verification complexity. Also, in their model, a node in the union find algorithm can only have 2 possible

content values. On the other hand, in our case we have that a node can have 4 possible content values,

as seen in Section 4.2.6. This means that if we have n nodes in memory, we would have 4n possible

memory content to analyse, instead of 2n, which still makes a big difference for a small number of nodes

to analyse.

Along the proofs we have used some automated proving mechanisms, but they were not enough

to automate some of the cases such as the proofs related with the correctness of the double rotations

(which involve the rotations on the children). This is a problem when the number of cases is exponential

for the number of pointers we are analysing in the memory. When we had to analyse three pointers in

the memory for the rotations performed on the children of the root, we had to consider 64 cases (see

Table 5.3 for module STrotaterightcaseschild and STrotateleftcaseschild). If the algorithm would go

deeper in the tree in the cycle done in the splay method, then it would be non-viable to do a brute-force

approach on each case as we have done.

75

Current Limitations and Future Work

At the moment, we have some prepared setup to start proving intensional aspects of the splay tree algo-

rithm, namely its logarithmic amortized time complexity. Nevertheless, the path find count ir constant 4

lemma, that we have discussed in Section 4.10 Listing 4.27, was left unproven. We have informally

proven it (on paper), but did not prove it in the Coq Proof Assistant. Therefore, since it is not desirable to

have lemmas depending on other unproven lemmas (this case the splay method specification mentioned

in Section 4.28), then the proof of this lemma should be top priority.

Insert and delete operations. We are confident that we would have proven the correctness of the

insert method for GCC’s splay tree pointer-based implementation (in Appendix Listing E.3). However,

we felt that the lemma path find count ir constant 4 in Section 4.10 Listing 4.27 was more important

to invest our time in proving due to the reasons that we have previously mentioned. Nevertheless, the

remove method from the GCC implementation would require a little more effort to prove, due to the fact

that we would have to create an inductive predicate that would model the splay max while loop seen in

Appendix Listing E.4.

Time complexity properties. After the proof of correctness of these splay tree methods we would,

for future work, start proving time complexity properties of the splay tree algorithm. We have already

proven the constant time (64 computational steps) of the rotation operations for the root (shown in Listing

6.1), which were simple to prove. Nevertheless, to prove the amortized algorithm time, we would have to

change the splay tree predicate mentioned in Section 4.2 to have stored in itself Φ time credits, which we

did not did because we would have to modify every lemma that would use such predicate. And besides

this extension of the splay tree predicate, we would have to prove the difference of potential for each

rotation operation (single and double).

Lemma rotate right RN st tc `{!tctrHeapG Σ} (pp p p2 : loc) (vp vp2 : Z) :

M !! p = Some (NodeR vp p2) −→

M !! p2 = Some (NodeN vp2) −→

TCTR invariant nmax -?

{{{ pp −→ #p ? pInv p D F V Wq ? pMem D F V Mq ? mapsto M M ? TC (64) }}}

�rotate right #pp #p #p2 �

{{{ RET #() ; pp −→ #p2 ? ST p2 D V W }}}.

Listing 6.1: Rotation constant time complexity proven

76

Concurrency. During this project, we also did not use Iris concurrency reasoning which we would like

to further explore on concurrent algorithms related to tree structures. One of the concurrent tree struc-

tures that we would wish to explore in the future is the counting-based tree (CBTree) [20], a concurrent

variant of Splay Trees. This would allow us to explore more of what the Iris framework has to offer us,

such as: invariants and ghost states [2].

77

78

Bibliography

[1] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer, “Iris from the ground up:

A modular foundation for higher-order concurrent separation logic,” Journal of Functional Program-

ming, vol. 28, 2018.

[2] L. Birkedal and A. Bizjak, “Lecture notes on Iris: Higher-order concurrent separation logic,” 2018.

[3] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer, and L. Birkedal, “The essence of

higher-order concurrent separation logic,” in Proceedings of the 26th European Symposium on

Programming Languages and Systems - Volume 10201. Berlin, Heidelberg: Springer-Verlag,

2017, p. 696–723. [Online]. Available: https://doi.org/10.1007/978-3-662-54434-1 26

[4] G. Mével, J.-H. Jourdan, and F. Pottier, “Time credits and time receipts in iris,” in European Sympo-

sium on Programming. Springer, 2019, pp. 3–29.

[5] A. Charguéraud and F. Pottier, “Verifying the correctness and amortized complexity of a union-find

implementation in separation logic with time credits,” Journal of Automated Reasoning, vol. 62,

no. 3, pp. 331–365, 2019.

[6] “The Coq proof assistant.” [Online]. Available: https://coq.inria.fr/

[7] T. Nipkow, “Splay tree,” Archive of Formal Proofs, vol. 2014, 2014.

[8] R. M. Stallman et al., “Using the GNU compiler collection,” Free Software Foundation, vol. 4, no. 02,

2003.

[9] GCC Team, “GCC Releases,” https://gcc.gnu.org/releases.html, 2019, [Online; accessed 2019-12-

21].

[10] ——, “gcc,” https://github.com/gcc-mirror/gcc/blob/master/libgomp/splay-tree.c, 2019, [Online; ac-

cessed 2019-12-21].

[11] ——, “OpenACC,” https://gcc.gnu.org/onlinedocs/gfortran/OpenACC.html, [Online; accessed 2019-

12-21].

79

https://doi.org/10.1007/978-3-662-54434-1_26
https://coq.inria.fr/
https://gcc.gnu.org/releases.html
https://github.com/gcc-mirror/gcc/blob/master/libgomp/splay-tree.c
https://gcc.gnu.org/onlinedocs/gfortran/OpenACC.html

[12] ——, “gcc,” https://github.com/gcc-mirror/gcc/blob/master/libgomp/oacc-mem.c, 2019, [Online; ac-

cessed 2019-12-21].

[13] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary search trees,” Journal of the ACM (JACM),

vol. 32, no. 3, pp. 652–686, 1985.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT press,

2009.

[15] T. Nipkow, “Amortized complexity verified,” in International Conference on Interactive Theorem

Proving. Springer, 2015, pp. 310–324.

[16] D. Le Métayer, “Ace: An automatic complexity evaluator,” ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), vol. 10, no. 2, pp. 248–266, 1988.

[17] A. Charguéraud, “Characteristic formulae for the verification of imperative programs,” in ACM SIG-

PLAN Notices, vol. 46, no. 9. ACM, 2011, pp. 418–430.

[18] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in Proceedings 17th

Annual IEEE Symposium on Logic in Computer Science. IEEE, 2002, pp. 55–74.

[19] R. Krebbers, A. Timany, and L. Birkedal, “Interactive proofs in higher-order concurrent separation

logic,” in ACM SIGPLAN Notices, vol. 52, no. 1. ACM, 2017, pp. 205–217.

[20] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan, “The cb tree: a practical concurrent

self-adjusting search tree,” Distributed computing, vol. 27, no. 6, pp. 393–417, 2014.

80

https://github.com/gcc-mirror/gcc/blob/master/libgomp/oacc-mem.c

A
Iris

S ` {P}e[v/x]{u.Q}
S ` {.P}(λx.e)v{u.Q}

Figure A.1: The Hoare triple beta rule reduction. One step later, we can use P as an assertion.

81

Given a unital RA (M, ε, V, | · |), Auth(M)
Carrier: M⊥,> ×M
Composition operation:

(x, a) · (y, b) =

 (y, a · b) if x = ⊥
(x, a · b) if y = ⊥
(>, a · b) otherwise

Core:

|(x, a)|AUTH(M) = (⊥, |a|)

Valid elements:

VAUTH(M) = {(x, a)|x = ⊥ ∧ a ∈ V ∨ x ∈M ∧ x ∈ V ∧ a � x}

and

•m = (m, ε) ; ◦n = (⊥, n)

Figure A.2: Authoritative resource algebra.

Section nat.

Instance nat valid : Valid nat := λ x, True.

Instance nat validN : ValidN nat := λ n x, True.

Instance nat pcore : PCore nat := λ x, Some 0.

Instance nat op : Op nat := plus.

(...)

Listing A.1: Natural resource algebra components from cmra.v file, using plus (+) as the composition operation.

Lemma auth nat update decr (γ : gname) (m n k : nat) :

(k ≤ n)%nat →

own γ (•nat m) −∗

own γ (◦nat n) −∗

==> own γ (•nat (m - k)) ?

own γ (◦nat (n - k)).

Listing A.2: The authoritative Update rule used by the tick pseudo-code instruction to remove one time credit from

both views.

82

B
83

Proofs

Lemma double spec : ∀ n,

TCTR invariant nmax −∗

{{{ TC(3 + 5*n) ? TR (0) ? TRdup (n) }}}

� double #n �

{{{ RET #(2*n) ; TR(3) ? TRdup((n+1)%nat) }}}.

Proof.

intros.

iIntros "#Htickinv !#" (Phi) "TC Post".

iInduction n as "IH" forall (Phi).

+ wp tick rec. wp tick op. wp tick if. iApply "Post".

done.

+ wp tick rec. wp tick op. wp tick if.

replace (5 * S n')%nat with (5 + 5 * n')%nat. lia.

wp tick op. assert (Haux : S n' - 1 = n'). lia.

rewrite Haux. iDestruct "TC" as "[T1 TC]".

wp apply ("IH" with "TC").

iIntros. wp tick op.

assert (Hpost : 2 * S n' %nat = 2 + 2 * n' %nat. lia.

rewrite Hpost. iApply "Post". done.

Qed.

Listing B.1: Proof of the double Heap-Lang function specification in the Coq proof assistant.

84

C
Definitions of inductive types

Inductive content :=

| NodeB : Z -> elem -> elem -> content

| NodeL : Z -> elem -> content

| NodeR : Z -> elem -> content

| NodeN : Z -> content.

Listing C.1: The content of a node in the splay tree algorithm

Inductive state :=

| ENDED

| GOING.

Listing C.2: A state of an algorithm can either be ENDED or GOING

85

Inductive path count : EdgeSet -> elem -> elem -> nat -> Prop :=

path c refl : forall F x, path count F x x 0

| path c step : forall F x y o, F x y o -> path count F x y 1

| path c trans : forall F x y z o n,

path count F x y n ->

F y z o ->

path count F x z (S n).

Listing C.3: The path count inductive type written in Gallina

86

D
Definitions of functions

Definition op (o : orientation) :=

match o with

| LEFT => Z.gt

| RIGHT => Z.lt

end.

Listing D.1: Operation orientation, returns ”<” if RIGHT and ”>” if LEFT

Definition invert orientation (o : orientation) :=

match o with

| LEFT => RIGHT

| RIGHT => LEFT

end.

Listing D.2: Invert function for orientation

87

Definition delete (a : o.t) (t : tree) : tree :=

match splay a t with

| <| |> => <| |>

| <| l, a', r |> =>

if eq dec a a' then

match splay max l with

| <| |> => r

| <| l', m, r' |> => <| l', m, r |>

end

else

<| l, a', r |>

end.

Listing D.3: Splay tree delete method

Fixpoint splay max (t : tree) : tree :=

match t with

| <| |> => <| |>

| <| l, b, <| |> |> => <| l, b, <| |> |>

| <| l, b, <| rl, c, rr |> |> =>

match splay max rr with

| <| |> => <| <| l, b, rl |> , c, <| |> |>

| <| rrl, x, xa |> => <| <| <| l, b, rl |> , c, rrl |>, x , xa |>

end

end.

Listing D.4: Splay tree splay max method

88

Fixpoint splay (a : o.t) (t : tree) : tree :=

match t with

| <| |> => <| |>

| <| cl , c, cr |> =>

if eq dec a c then <| cl , c, cr |>

else if lt dec a c then match cl with

| <| |> => <| cl, c, cr |>

| <| bl, b, br |> =>

if eq dec a b then <| bl, b, <| br, c, cr |> |>

else if lt dec a b then match splay a bl with

| <| |> => <| bl, b, <| br, c, cr |> |>

| <| al, a', ar |> =>

<| al, a', <| ar, b, <| br, c, cr |> |> |>

end

else match splay a br with

| <| |> => <| bl, b, <| br, c, cr |> |>

| <| al, a', ar |> =>

<| <| bl, b, al |> , a', <| ar, c, cr |> |>

end

end

else match cr with

| <| |> => <| cl, c, cr |>

| <| bl, b, br |> =>

if eq dec a b then <| <| cl, c, bl |>, b, br |>

else if lt dec a b then match splay a bl with

| <| |> => <| <| cl, c, bl |>, b, br |>

| <| al, a', ar |> =>

<| <| cl, c, al |>, a', <| ar, b, br |> |>

end

else match splay a br with

| <| |> => <| <| cl, c, bl |>, b, br |>

| <| al, a', ar |> =>

<| <| <| cl, c, bl |>, b, al |> , a', ar |>

end

end

end.

Listing D.5: Functional splay tree method implemented in Gallina

89

90

E
Heap-lang code

tickc =∆ rec self(x) =

let k = !c in

if k = 0 then oops()

else if CAS(c,k,k-1) then x else self(x)

Listing E.1: Tick function in Heap-Lang.

Definition splay tree while loop : val :=

rec: "func" "sp'" "key" :=

let: "n" := !"sp'" in

let: "cmp1" := splay compare "key" (value ("n")) in

if: "cmp1" = #0 then

#()

else (

91

let: "c" := (

if: "cmp1" < #0 then

(left child ("n"))

else

(right child ("n"))

) in

if: ("c" = NONE) then

#()

else

let: "cmp2" := splay compare "key" (value "c") in

if: ("cmp2" = #0)

| | (("cmp2" < #0) && ((left child "c") = NONE))

| | ((#0 < "cmp2") && ((right child "c") = NONE)) then

(

if: ("cmp1" < #0) then

rotate left "sp'" "n" "c"

else

rotate right "sp'" "n" "c"

) ;; #()

else (

if: ("cmp1" < #0) && ("cmp2" < #0) then

(let: "tmp" := (ref "c") in

rotate left ("tmp") "c" (left child "c") ;;

"n" <- SOME (value "n", (!"tmp", right child "n"))) ;;

rotate left ("sp'") "n" (left child "n")

else if: (#0 < "cmp1") && (#0 < "cmp2") then

(let: "tmp" := (ref "c") in

rotate right ("tmp") "c" (right child "c") ;;

"n" <- SOME (value "n", (left child "n", !"tmp"))) ;;

rotate right ("sp'") "n" (right child "n")

else if: ("cmp1" < #0) && (#0 < "cmp2") then

(let: "tmp" := (ref "c") in

rotate right ("tmp") "c" (right child "c") ;;

"n" <- SOME (value "n", (!"tmp", right child "n"))) ;;

rotate left ("sp'") "n" (left child "n")

else if: (#0 < "cmp1") && ("cmp2" < #0) then

(let: "tmp" := (ref "c") in

rotate left ("tmp") "c" (left child "c") ;;

92

"n" <- SOME (value "n", (left child "n", !"tmp"))) ;;

rotate right ("sp'") "n" (right child "n")

else

#()

) ;;

"func" "sp'" "key"

).

Listing E.2: Splay tree method in heap-lang.

Definition splay tree insert : val :=

λ: "sp" "n",

splay tree splay "sp" (value "n") ;;

let: "comparison" := (

if: !"sp" 6= NONE then

splay compare (value (!"sp")) (value "n")

else

#0

) in

if: (!"sp" 6= NONE) && ("comparison" = #0) then

#()

else (

if: (!"sp" = NONE) then

"n" <- SOME(value "n", (NONE, NONE))

else if: ("comparison" < #0) then

"n" <- SOME(value "n", (!"sp",right child "n")) ;;

"n" <- SOME(value "n", (left child "n", right child (left child "n"))) ;;

(left child "n") <-

SOME(value (left child "n"), (left child (left child "n"),NONE))

else

"n" <- SOME(value "n", (left child "n", !"sp")) ;;

"n" <- SOME(value "n", (left child (right child "n"), right child "n")) ;;

(right child "n") <-

SOME(value (right child "n"), (NONE,right child (right child "n")))

) ;;

"sp" <- "n"

Listing E.3: Splay insert method in heap-lang.

93

Definition splay tree remove : val :=

λ: "sp" "key",

splay tree splay "sp" "key" ;;

if: (!"sp" 6= NONE) && ((splay compare (value(!"sp")) "key") = #0) then (

let: "left" := ref (left child (!"sp")) in

let: "right" := ref (right child (!"sp")) in

if: (!"left" 6= NONE) then (

"sp" <- !"left" ;;

if: (!"right" 6= NONE) then

(

rec: "func" "left'" :=

if: (right child (!"left'") 6= NONE) then

"left" <- (right child (!"left")) ;;

"func" "left'"

else #()

) "left" ;;

!"left" <- SOME(value !"left", (left child !"left", !"right"))

else #()

)

else

"sp" <- !"right"

)

else #()

Listing E.4: Splay remove method in heap-lang.

94

95

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings

	1 Introduction
	1.1 Work Objectives
	1.2 Contributions
	1.3 Organization of the Document

	2 Background and Related Work
	2.1 Splay Trees
	2.1.1 Practical Applications
	2.1.2 Self-Adjusting Tree Structures

	2.2 Formal Verification of Tree Structures using ITPs
	2.3 The Iris Framework
	2.4 Time Credits and Time Receipts in Iris

	3 A Functional Implementation of Splay Trees
	3.1 Nipkow's Implementation
	3.2 Functional Correctness
	3.2.1 Properties Proved
	3.2.1.A Set of elements is invariant over the splay function
	3.2.1.B Binary search tree invariant over the splay function
	3.2.1.C Splay tree correctness of splayed key to root
	3.2.1.D Binary search tree invariant over the insert method
	3.2.1.E Binary search tree invariant over the delete function

	3.3 Discussion

	4 A Pointer-Based Implementation of Splay Trees
	4.1 GCC's Splay Tree: Heap-Lang Code Translation
	4.2 Splay Tree Predicate
	4.2.1 Domain
	4.2.2 Edges
	4.2.3 Value function
	4.2.4 Weight function
	4.2.5 Binary search tree invariant
	4.2.6 Memory model
	4.2.7 Splay tree predicate

	4.3 Domain Properties
	4.3.1 Descendants definition
	4.3.2 Domain proofs

	4.4 Link Properties
	4.4.1 Uniqueness of orientation for each edge
	4.4.2 Uniqueness of edge with same orientation

	4.5 Path Properties
	4.5.1 Absence of cycles in a tree
	4.5.2 Unicity of parent of a node
	4.5.3 Unicity of path between two nodes in a binary search tree
	4.5.4 Path finiteness

	4.6 Edge Set Manipulation
	4.6.1 Operations on edge set
	4.6.1.A Add edge
	4.6.1.B Remove edge
	4.6.1.C Update edge
	4.6.1.D Union edge
	4.6.1.E Elimination of a set of edges

	4.6.2 Child of root is a binary search tree
	4.6.3 Join on mutation of sub-tree

	4.7 Path Find Count Properties
	4.7.1 Path find count inductive type
	4.7.2 Path find count termination proof

	4.8 Specification and Correctness of Rotations
	4.9 Iterative Rotate Inductive Predicate
	4.10 Splay Method Specification and Proof

	5 Evaluation
	5.1 Functional Implementation
	5.1.1 Proof automation

	5.2 Pointer-Based Implementation
	5.2.1 Proof automation

	6 Conclusion
	Bibliography
	Appendix A

	A Iris
	B Proofs
	C Definitions of inductive types
	D Definitions of functions
	Appendix B

	E Heap-lang code

