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Abstract

Europe is a continent of linguistic diversity: the Euro-
pean Union has 24 official languages. Globalization has
increased the necessity of having information translated to
many languages as possible, as fast as possible. Automatic
translation, and in particular neural machine translation,
can be a good solution to solve this problem. Neural ma-
chine translation provides an ideal setting for multilingual
systems: it makes it possible to share components across
multiple tasks. Multilingual systems make it possible to
have a single model that translates from multiple source
languages into multiple target languages.

While multilingual systems are appealing, the current re-
ported performance is still behind that of dedicated bilin-
gual models, for most language-pairs. To improve the per-
formance of multilingual systems, we implement an exist-
ing approach in the literature, adapters. Adapters are tiny
residual layers introduced in the middle of a pre-trained
model that are used to adapt the model to a new language,
improving its performance. We extend this method by con-
ditioning adapters on one language only (as opposed to the
language-pair setting initially proposed). By doing this, we
are able to perform direct zero-shot translation and to im-
prove the results in this scenario too.

Finally, we provide a thorough empirical analysis and
comparison of different multilingual and pivot-based sys-
tems on 24×23 language-pairs. While English is the usual
choice of pivot language, we also study the use of different
pivot languages, French and German, to translate between
Romance and Germanic languages, respectively.

1. Introduction
Globalization has increased the necessity to have infor-

mation translated in as many languages as possible. Nowa-
days it is possible to identify three different possibilities
to approach the translation problem: human translators
only, machine translation only, or a combination of machine
translation with human post-editing. Although it is not on

pair yet with human translators [1, 2], machine translation
has proven to be very effective and useful in many appli-
cations while significantly cheaper and more scalable than
human translator. Even in applications where quality is im-
portant, machine translation can be effective if used with
human post-editing.

Recently, a new generation of MT systems have
emerged: neural machine translation (NMT), which ally the
effectiveness and flexibility of neural networks with the in-
creasing availability of data and computational power. The
increasing computational capacity has allowed the emer-
gence of multilingual systems [3]. Neural machine trans-
lation makes it appealing to develop multilingual trans-
lation systems since the neural architecture is language-
agnostic and it is capable of capturing translation proper-
ties, such as long-distance re-ordering, even between highly
dissimilar languages. It has already been shown that shar-
ing a single translation model between multiple language
pairs can achieve competitive results when compared with
strong bilingual baseline [4, 5, 6], sometimes even with
improvements. However, these improvements are not uni-
form: when translating to/from low-resource languages re-
sults may improve with transfer learning, but on the other
hand high-resource languages are often penalized, due to
the lack of capacity to accommodate all the language pairs
[4].

Although research in multilingual models has shown en-
couraging results, there are still some challenges: - how to
deal with a huge number of languages; - how to deal with
different scripting systems (vocabulary); - how to deal with
heavy imbalance data across languages and domains; - how
to define the practical limit on model capacity; - how to deal
with differing degrees of linguistic similarity.

Regarding the aerospace field, machine translation (and
in particular multilingual neural machine translation) can
have a tremendous impact. Although English is the lan-
guage used in the aviation sector, it is not the native lan-
guage of most of the world. Due to this, many maintenance
errors have arisen [7, 8]. Maintenance errors can be costly
for both aircraft and human life. Simple misunderstandings
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can have a devastating impact. The aerospace field is facing
a shortage of aviation maintenance technicians. While En-
glish is the language that is the most used in this field, the
majority of the technicians speak English as a second lan-
guage. Local languages can have an important role by help-
ing to fill the shortage of technicians quickly. The new ad-
vances in the neural machine translation technologies have
increased the speed and accuracy of translation and lowered
the cost.

Furthermore, the European Space Agency (ESA) has
22 member states with different official languages. Mul-
tilingual machine translation can take an important role to
spread the work developed across the different countries
and to facilitate mutual assistance between member states.

The main contributions of this thesis are:

• We build multilingual NMT models handling the 24
European official languages, translating between any
pair of languages among those 24 (while using only
one model or a combination of two models). Our sys-
tems demonstrate good results, exhibit strong transla-
tion accuracy with much fewer parameters, improving
the quality of low-resource languages (when compared
with bilingual baselines), while keeping competitive
results for high-resource languages;

• We inject tiny task-specific layers (adapters) into pre-
trained models.1 We provide in-depth analysis of vari-
ous aspects of adapters that are crucial to achieve bet-
ter quality in multilingual NMT. We demonstrate that
is possible to close the gap to bilingual baselines with
a small number of additional parameters;

• We provide a through empirical analysis and com-
parison among various strategies, including various
choices of pivot languages.

This work is organized as follows: Section 2 covers a de-
scription of the state-of-art in multilingual neural machine
translation and it presents our contributions; Section 3 cov-
ers the experiments performed and the results obtained are
discussed; Section 4 sums up the main achievements and
leaves suggestions for future work.

2. Multilingual Neural Machine Translation
Multilingual translation models are systems that share

a single translation model between multiple language-
pairs. According to the language-pairs and translation di-
rections chosen, the multilingual neural machine translation
(MNMT) systems can be used in different configurations:

• many-to-one - multiple source languages and one tar-
get language;

1Code available online at:https://github.com/JoaoMCAlves/Multilingual-
Adapters

• one-to-many - one source language and multiple tar-
get languages;

• many-to-many - multiple source and target languages.

If we want to translate between N languages, if we fol-
low a naive approach and use individually trained models,
it would require N × (N − 1) models. If N is too large,
it is impractical to deploy and maintain this huge number
of models. Multilingual approaches reduce the number of
parameters required: depending on the approach, we can
choose the number of parameters to be constant (Universal
Encoder-Decoder Models) or to grow linearly with the
number of languages, O(N) (Models with Language-
Specific Encoders and Decoders). In this subsection, we
present these two different approaches.

2.1. Multilingual Models with Language-Specific
Encoders and Decoders

Language-specific approaches require specific encoders
or decoders for each language. Some additional features
are added to produce shared representations. Although
they lead better with the problem of accommodating more
language-pairs, they do not take full advantage of the trans-
fer learning feature. Furthermore, the training process tends
to be slower and there is an increase in memory require-
ments due to the increase in the number of parameters.

The first multilingual neural attempt was proposed in [3].
The authors proposed a one-to-many model with a single
encoder but separate decoders and attention mechanisms for
each target language. The study has shown that it was possi-
ble to improve the results of low-resource languages by us-
ing a mix of low-resource languages and high-resource lan-
guages. This architecture was able to make full use of the
source language data (English) across different language-
pairs. [9] proposed a similar approach.

Firat et al. [10] proposed a many-to-many model (with
up to 6 languages) with language-specific encoders and de-
coders with a single attention mechanism. This was the first
work to introduce the idea of direct zero-shot translation.
Once again, they showed improvements in low-resource set-
tings. The authors argue that they may use, for each lan-
guage, encoders and decoder with different architectures or
different sizes.

2.2. Universal Encoder-Decoder Models

A universal encoder-decoder model uses only one en-
coder and one decoder for all language-pairs. It allows in-
tegrating any language in the source or target side of the
encoder-decoder architecture with only one encoder and
one decoder. Moreover it can achieve good results with a
much smaller number of parameters (constant in the num-
ber of languages). However, the model capacity is a strong
limitation to this kind of models. It has been shown that in-
creasing the capacity is directly related with better results,
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but scaling capacity leads to a significantly larger compu-
tational footprint. Moreover, if we want to add a new lan-
guage or new data, the whole system needs to be retrained
and the quality of translations drops when we add too many
languages, especially for those with the most resources [4].
This problem is more evident when languages are not from
the same language family.

Johnson et al. [6] and Kudugunta et al. [11] proposed a
many-to-many model that shares all parameters across all
language pairs. To do that, the authors used a shared vocab-
ulary for all languages in the dataset. They only introduced
a special token at the beginning of every source sentence in-
dicating the target language. The authors expected to obtain
good translation results mainly when the target languages
are related. The authors were able to perform direct zero-
shot translation without any special treatment.

In [12], the authors tested adding different tokens at the
beginning of their source sentences: target-specific, source-
specific, and pair-specific. The study had the best results
when target-specific tokens were used. Moreover, they
have tested three different attention mechanisms: target-
specific attention, source-specific attention and paired at-
tention which represents a specific language combination.
The best results were achieved with a target-specific atten-
tion model.

2.3. Transfer Learning and Zero-Shot Translation

Transfer Learning is the mechanism that enables the
knowledge from a learned task to improve the performance
on a related task, which typically reduces the amount of data
needed to achieve the same results. In Natural Language
Processing, transfer learning has already been applied to
different tasks such as speech recognition, document classi-
fication or sentiment analysis.

In multilingual NMT, low-resource languages take ad-
vantage of being trained together with high-resource ones.
This mechanism is even stronger across similar languages.
The most common technique consists of training together
low-resource and high-resource languages. An extreme
case of transfer learning is zero-shot translation. In this case
there is no parallel data between the languages that we are
considering.

2.3.1 Pivot-Based Zero-Shot Translation

The most common alternative to multilingual systems
is pivot-based zero-shot translation using bilingual direct
models. The text is firstly translated from the source lan-
guage to the pivot language, and then from the pivot lan-
guage to the target language.

Although this strategy usually achieves good results, it
has a few disadvantages. The two-step translation strategy
has the potential to propagate errors. As it is a two-step

translation system, it requires doubling the latency and com-
putational overhead which is a concern for large-scale NMT
models. Moreover there is the possibility of losing impor-
tant information when the source is translated to the pivot
language.

In this work, we are going to combine a multilingual ap-
proach with pivot-based zero-shot translation. We are going
to use two multilingual models to perform pivot-based zero-
shot translation, using the many-to-one model followed by
the one-to-many model.

We also explore the use of two different pivot languages:
French (fr) and German (de) to translate between Romance
languages and German languages, respectively. English is
a popular language due to the parallel corpora available.
However, there are factors such as language relatedness that
can affect the choice of the pivot language for a certain
language-pair.

2.3.2 Direct Zero-Shot Translation

Direct zero-shot translation does not require the interme-
diate step of translating into a pivot language. The mul-
tilingual system is trained with multiple source and tar-
get languages, and it has the ability of translating between
them. Although pivot-based zero-shot translation yield
higher BLEU scores than direct translation, recent works
[13, 4] suggest that in the near future, direct zero-shot trans-
lation is going to be able to perform as good or better than
pivot-based zero-shot translation.

Escolano et al. [14] and Firat et al. [15] performed di-
rect zero-shot translation using a language-specific encoder-
decoder architecture but the results were behind the ones
achieved with Universal-Encoder approaches. Universal
Encoder-Decoder approaches have demonstrated the abil-
ity of translating between any language-pair, without us-
ing pivot languages and without any special treatment. The
shared representation space across languages induces trans-
fer learning. In [6] and [12], the authors obtained reason-
able results but they tested their direct zero-shot systems on
related languages and large-scale datasets.

2.4. Adapters

Adapters are tiny residual layer that are introduced in the
middle of a pre-trained model to improve its performance.
This approach shares a large set of parameters across all
tasks and introduces a small number of task-specific ones.
Adapters have been introduced as an alternative to fine-tune
all weights of the pre-trained model.

The main advantage of adapters is that they do not re-
quire full fine-tuning of all parameters of the pre-trained
model. Once the adapters are introduced, the parameters
of the pre-trained model are frozen, and the only parame-
ters that are fine-tuned are the adapters. It allows the model
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to converge faster as it is only necessary to train a few num-
bers of parameters. The main disadvantage of this approach
is the necessity of having a component for each task.

2.4.1 Adapters’ Architecture

Houlsby et al. [16] were the first to propose the use of
adapters for NLP tasks. They experimented different ar-
chitectures and placements and concluded that a two-layer
feed-forward neural network with a bottleneck works well.
They placed two of these adapters within each transformer
layer, one after the multi-head attention and one after the
feed-forward layer.

In the field of multilingual NMT, Bapna et al. [17]
achieved better results using only one adapter (after the
feed-forward layer). However, they have introduced a layer
normalization and recurrent connections. They introduced
a layer normalization in each adapter to avoid retraining all
the existing layer normalization layers as was done by [16].
The residual connections are introduced to allow the module
to represent a no-operation if necessary. The hidden dimen-
sion of the adapter is the hyperparameter that is fine-tuned.
They argue that this strategy allows them to adjust the ca-
pacity of the adapter easily, depending on the task they want
to perform, adjusting only one hyperparameter.

We decided to implement the same architecture as [17].
Our work is different from [17] because we propose the use
of adapters for all language-pairs (and not only for high-
resource ones) and propose to condition the adapters only
on one language instead of a language-pair.

2.4.2 Adapters’ Training Process

The injection and training of adapters is a two-step algo-
rithm: firstly, it is necessary to train a fully shared model on
all language-pairs, and then there is a fine-tuning using only
adapters.

Adapters are trained in the same way as full fine-tuning
of the pre-trained model. The data is passed through all
layers of the transformer. It is used in the same settings
as the fully shared system but the learning rate schedule is
reset. All the parameters are frozen, except the adapters.

2.4.3 Proposed Changes: Language-Specific Adapters

In the case of the many-to-many systems, if we want to have
adapters for all languages, the naive approach would be in-
jecting language-pair specific adapters (as was suggested in
[17]). However, there are a few issues that arise: the first
and obvious one is that we would need to have twice the
number of adapters compared to the previous experiments
(N − 1 from any language to English and N − 1 from En-
glish to any language).

Moreover, it would not allow us to use adapters to per-
form direct zero-shot translations. The work developed by
[17] did not take into consideration the possibility of per-
forming direct zero-shot translation. As the adapters would
be conditioned on English either in the source or in the tar-
get, we would have a problem if we wanted to translate be-
tween non-English languages.

In an extreme case, we could have an adapter for each
possible language combination. However, as we might not
have parallel data for every language-pair, we would not
be able to train all the adapters and it would imply hav-
ing O(N2) adapters. Adapters have a small number of pa-
rameters, but if we have such a huge number of adapters,
the number of parameters is going to increase quadratically
with the number of languages.

To solve this problem we decided that it could be ben-
eficial to have adapters conditioned only on one language,
instead of a language-pair. We propose three different ar-
chitectures based on the language that conditions the choice
of the adapters:

• source-specific adapters both in the encoder layers and
in the decoder layers;

• target-specific adapters both in the encoder layers and
in the decoder layers;

• source-specific adapters in the encoder layers and
target-specific adapters in the decoder layers.

In the three different configurations, we are going to have
the same number of adapters in each layer. The number of
adapters per layer is going to be equal to the number of
languages of our dataset, N .

As we said before, [17] did not focus on direct zero-shot
translation. The language-pair specific adapters were condi-
tioned on English either on the source or on the target side.
To translate between non-English languages, it would not
be possible to take advantage of adapters. The language-
specific adapters do not have this problem. As they are con-
ditioned only on one language, it is always possible to use
them regardless of architecture choice.

3. Experimental Analysis
3.1. Datasets

In our case, the main goal is to cover 24 EU Official Lan-
guages: English (en), Bulgarian (bg), Czech (cs), Danish
(da), German (de), Greek (el), Spanish (es), Estonian (et),
Finnish (fi), French (fr), Hungarian (hu), Italian (it), Latvian
(lv), Lithuanian (lt), Dutch (nl), Polish (pl), Portuguese (pt),
Romanian (ro), Slovak (sk), Slovenian (sl), Swedish (sv),
Irish (ga), Maltese (mt) and Croatian (hr).

For the majority of them, we used the Europarl dataset
[18] as the training, development and test corpus. However,
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three languages are not covered by Europarl: Irish, Croatian
and Maltese, so it was necessary to find alternatives. For
Irish we have used DGT corpus [19] and for Croatian and
Maltese the TildeMODEL corpus [20]. As the domain is not
exactly the same, the transfer learning process is harder.

In order to be able to compare the results achieved for di-
rect zero-shot Translation and Pivot when using languages
of Europarl we have created a test set and a development set
common to all languages that Europarl supports. Namely,
we used the data from the first semester of 2009 to accom-
plish this. The development set has 4000 sentences and the
test set has 4630 sentences.

3.2. Data Preprocessing and Vocabulary Construc-
tion

We tokenized and truecased all the sentences using
scripts from the Moses toolkit [21]. We used Byte Pair
Encoding (BPE) [22] to segment sentences into subword
symbols and to construct all our vocabularies. For the bilin-
gual experiments, the size of the shared vocabulary was 10k
tokens and for multilingual experiments, we used a shared
vocabulary containing 32k tokens. We decided to use this
size based on the work developed by Arivazhagan et al. [4].

3.3. Metrics

As we are dealing with a large number of languages, it
is important to find clear ways to present the results. Rather
than providing the BLEU score for each language pair, we
are going to compute some average BLEU scores:

• BLEU20 - average BLEU over all 20 language pairs
covered by Europarl

• BLEU23 - average BLEU over all 23 language pairs

• BLEUHR - average BLEU over the high-resource lan-
guage pairs

• BLEULR - average BLEU over the low and medium
resource language pairs

3.4. Bilingual Baselines

We trained bilingual baselines using the training dataset
that we have described before. We performed all our exper-
iments using the open-source Fairseq toolkit [23].

The experiments were performed with transformer base
settings [24], containing around 75M parameters. For these
experiments, we used transformers with 6 layers in both
the encoder and the decoder, model dimension set to 512
and 8 attention heads. For optimization, we use Stochastic
Gradient Descent with Adam Optimizer [25] (β1 = 0.9,
β2 = 0.98) with label smoothing of 0.1 and scheduled
learning rate (warm-up step 16k). We use dropout of 0.3.
BLEU scores are calculated on the checkpoint with the best
validation BLEU score employing beam search with a beam
size of 5.

We plot the two main directions separately in different
plots, when translating to or from English, in Figure 1.

Figure 1: Quality of individual bilingual models on all 20
language pairs covered by Europarl, measured in terms of
BLEU score. Languages are arranged in increasing order of
available data from left to right. Performance on individual
language-pairs is reported using dots and a trailing average
is used to show the trend.

3.5. Fully Shared Models

We trained three fully shared multilingual models: 1)
many-to-one model from 23 languages to English, 2) one-
to-many model from English into 23 languages and 3)
many-to-many model trained using all 46 translation direc-
tions (to and from English).

For all settings, we train a single transformer base with
the same hyper-parameters settings as the bilingual models.
The only difference is the use of a shared BPE vocabulary
with 32k tokens. Moreover, we followed the approach of
[6] and added a target-language token at the end of each
source sentence. In all cases, we report test results (in terms
of BLEU score) for the checkpoint that performed best on
the validation set.

As we have referred before, Europarl does not cover
three official European languages: Croatian, Irish and Mal-
tese. The deterioration in these languages is much higher,
so we decided not to represent them in the same graphs as
the other languages.

3.5.1 Results

We plot the results when translating to and from English in
Figure 2. In the first plot, we represent the performance of
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the many-to-many model and the many-to-one when trans-
lating from all languages to English. In the second one,
we represent the performance of the many-to-many and the
one-to-many models when translating from English to other
languages. We present some average metrics in Table 1.

Figure 2: Quality of many-to-many, many-to-one and one-
to-many models. Languages are arranged in increasing or-
der of available data from left to right. Results are reported
relative to those of bilingual baselines. The colors corre-
sponds to the following strategies : (i) Blue: Models trained
in one translation direction (many-to-one and one-to-many
respectively) (ii) Red: Model trained in both translation di-
rections (to and from English). Performance on individual
language-pairs is reported using dots and a trailing average
is used to show the trend.

Any→En BLEU23 BLEU20 BLEULR BLEUHR

1.Bilingual 46.32 42.72 41.24 43.66

2.All → En 45.07 42.79 43.66 42.93

4.All → All 42.92 40.93 40.04 41.29

En→Any BLEU23 BLEU20 BLEULR BLEUHR

1.Bilingual 36.90 37.14 33.67 40.51

3.En → All 34.25 35.03 32.02 37.84

4.All → All 33.04 33.85 31.05 36.47

Table 1: Average translation quality (BLEU score) of mul-
tilingual models trained. All → All reports the perfor-
mance of the multilingual model trained on all translation
directions, En→ All reports the performance of the model
trained on all language pairs with English as the source and
All→ En reports the performance on the model trained on
all language pairs with English as the target.

The many-to-one shared model achieved worse results
than the bilingual baselines if we consider all the languages
of our dataset (-1,25 BLEU23, 2-1, Table 1), but they were
able to outperform the bilingual baselines if we consider
only the languages that are covered by Europarl (+0,07
BLEU20, 2-1, Table 1). It outperforms bilingual base-
lines when translation to English for low settings (+0,84
BLEULR 2-1, Table 1). This phenomenon was already
described in previous works like [5] and [26]. A multilin-
gual system with shared weights promotes transfer learn-
ing from high-resource languages to low-resource ones. On
the other hand, the high-resource language pairs have a de-
crease in their performance (-0,73 BLEUHR 2-1, Table 1).
That might be explained by two different reasons:

• the different language pairs are competing for capacity,
and due to the limited model size, the high-resource
ones have difficulties to accommodate all the space
that they need;

• the model converges before it trains on significant por-
tions of the high-resource data.

Regarding the one-to-many setup, when we compare the
results achieved with bilingual baselines, it is easy to realize
that none of the language pairs had an improvement in their
performance. The deterioration in the performance is higher
for high-resource languages (-2,67BLEUHR 3-1, Table 1),
while the performance on low-resource languages does not
deteriorate that much (-1,64 BLEULR 3-1, Table 1).

Analysing the results of Figure 2, we notice both the
many-to-one model and the one-to-many model achieve
much better results than the many-to-many model. The
deterioration is higher when translating to English (-2,15
BLEU23 4-2, Table 1) than when translating from En-
glish (-1,21 BLEU23 4-3, Table 1). The many-to-many
model must accommodate twice as many translation direc-
tions with the same number of parameters. In this case, we
have 46 translation directions instead of 23. Due to this, the
many-to-many model suffers more relevant capacity issues.

3.6. Adapters

3.6.1 Language-Pair Specific Adapters

We have fine-tuned the many-to-one and the one-to-many
with language-pair specific adapters on top. We introduced
a variable number of adapters, depending on the training
data available for each language-pair, and evaluated the in-
fluence on the results.

We tested two different settings: injecting adapters only
for high-resource languages and injecting adapters for all
languages. We tested it both on the many-to-one and the
one-to-many models. We plot results in Figure 3.

Adapters clearly help to improve the performance of the
many-to-one model. There is an interesting phenomenon:
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Figure 3: Effects of injecting adapters. Languages are ar-
ranged in increasing order of available data from left to
right. Results are reported relative to those of bilingual
baselines. The colors corresponds to the following strate-
gies : (i) Blue: Fully Shared Model (ii) Green: Fully Shared
with adapters for High Resource languages (iii) Red: Fully
Shared with adapters for all languages. Performance on in-
dividual language-pairs is reported using dots and a trailing
average is used to show the trend.

even when we introduce adapters for high-resource lan-
guages only, the results for low-resource languages im-
prove. This may be related to the fact that the embedding
layer is not frozen. However, the best results are achieved
when adapters were injected for all languages. This config-
uration achieved the best results for every single language.

As we have seen before and unlike the many-to-one
model, there is a degradation in the results obtained with
the one-to-many model, for all languages pairs when a fully
shared model is used. Analysing the graph, it is possible
to conclude that when we inject adapters only for high-
resource settings, there is a huge improvement for high-
resource languages. The introduction of language-pair spe-
cific adapters for all language pairs was capable of achiev-
ing better results in general. For some low-resource lan-
guages, it was even able to surpass bilingual baselines.

3.6.2 Language-Specific Adapters

As described in Section 2.4, injecting language-pair specific
adapters on top of the many-to-many model would not be
a good choice. It would require a considerable number of
adapters and it would not allow us to take advantage of them
to perform direct zero-shot translation. To solve this issue,

we experimented three different adapter configurations:

1. Source-specific adapters both in the encoder and de-
coder layers;

2. Target-specific adapters both in the encoder and de-
coder layers;

3. Source-specific adapter in the encoder layers and
Target-specific adapters in the decoder layers.

We plot the results in Figure 4. Further results are sum-
marized in Table 2. Complete results are in appendix A of
the thesis.

[c

Figure 4: Effects of conditioning the adapters on different
conditions. Languages are arranged in increasing order of
available data from left to right. Results are reported rela-
tive to those of bilingual baselines. The colors corresponds
to the following strategies : (i) Blue: Fully Shared Model
(ii) Orange: Fully Shared Model with adapters conditioned
on the target language (iii) Red: Fully Shared Model with
adapters conditioned on the source language (iii) Green:
Fully Shared Model with adapters conditioned on the source
language in the encoder and conditioned on the target lan-
guage in the decoder. Performance on individual language-
pairs is reported using dots and a trailing average is used to
show the trend.

The injection of target-specific adapters show the
largest benefit for English→X translation (+2,66BLEU23,
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Any→En BLEU23 BLEU20 BLEULR BLEUHR

1.Many-to-Many 42.92 40.93 40.04 41.29

2.Many-to-Many w/Source Adapters 44.70 42.10 41.36 42.30

3.Many-to-Many w/Target Adapters 43.75 41.71 40.96 41.94

4.Many-to-Many w/Source+Target Adapters 44.42 42.14 41.41 42.32

En→Any BLEU23 BLEU20 BLEULR BLEUHR

1.Many-to-Many 33.04 33.85 31.05 36.47

2.Many-to-Many w/Source Adapters 33.82 34.63 31.97 37.11

3.Many-to-Many w/Target Adapters 35.70 36.33 33.59 38.88

4.Many-to-Many w/Source+Target Adapters 35.28 36.00 33.33 38.51

Table 2: Average translation quality (BLEU score) of multilingual models trained. Many-to-Many reports the performance
of the fully shared model trained on all translation directions, Many-to-Many w/Source Adapters reports the performance
of the Fully Shared Model with adapters conditioned on the source language, Many-to-Many w/Target Adapters reports the
performance of the Fully Shared Model with adapters conditioned on the target language, Many-to-Many w/Source+Target
Adapters reports the performance of the Fully Shared Model with adapters conditioned on the source language in the encoder
and conditioned on the target language in the decoder.

3-1, Table 2). Furthermore, the results were consistent, if
we consider only the low-resource settings, the improve-
ment was of +2,54 BLEULR and if we consider the high-
resource ones it was +2,41 BLEUHR. For X→English
translation, it shows a smaller benefit (+0,83 BLEU23, 3-
1, Table 2). As the adapters are conditioned on the target
language, the capacity is mainly increased for English→X
and consequently, the results are better in this translation
direction.

Source-specific adapters yield a larger benefit for
X→English tasks (+1,78 BLEU23, 2-1, Table 2) and a
smaller benefit for English→X tasks (+0,78 BLEU23, 2-
1, Table 2). For both translation directions, the results
have improved for low-resource and high-resource configu-
rations.

Although target and source-specific adapters were able
to achieve good results (target adapters are better when
translating from English to any language, and source
adapters are better when translating from any language
to English), a combination of source-specific adapters
in the encoder and target-specific adapters in the de-
coder was able to achieve more balanced results, if we
consider both translation directions. If we consider only
English→X translation, it performs slightly worst than tar-
get adapters (-0,42 BLEU23, 4-3, Table 2). But if we con-
sider X→English translation, it was able to achieve bet-
ter results than the exclusive use of source adapters (+0,67
BLEU23, 4-2, Table 2).

To sum up, the use of target adapters both in the en-
coder and in the decoder was the approach that achieved
the best results when translating from English to any
language, both for low-resource a high-resource settings.
The combination of source adapters (in the encoder
side) and target adapters (in the decoder side) was the

setting that achieved the best results when translating
from any language to English.

3.7. Translation between Non-English Languages

3.7.1 Results on Pivot-Based zero-shot Translation

Regarding Pivot translation, we did two different experi-
ments: pivoting using the bilingual models and pivoting
using a many-to-one model followed by a one-to-many
model. In the case of using the bilingual models, we need
to have 46 models if we want to cover all the EU official
languages (23 models from different languages to English
and 23 models trained in the opposite direction). If we use
the many-to-one and the one-to-many models, we only need
to have 2 models. We use the one-to-many and the many-
to-one models with language-pair specific adapters on top
because this was the approach that achieved better results
in the previous experiments. In Table 3 we compute the
average values when each language is either the source (left
side) or the target (right side). It is possible to find complete
results in appendix A of the thesis.

The results achieved by the bilingual models were bet-
ter than the ones obtained by the shared models. However,
shared models achieved competitive results, being better for
some languages combination.

If we analyse only the left side of the table (source side):
for high-resource languages, the results are always bet-
ter when using bilingual models for pivoting and for low-
resource languages the difference is smaller (0.09 BLEU
points)

If we take a look at the right-most column of Table 3:
the conclusions are very similar, for high-resource settings
bilingual models achieve better results. For low-resource
settings, the difference is only 0.06 BLEU points.
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Source Pivot Bilingual Pivot Shared Target Pivot Bilingual Pivot Shared
Average 27.71 27.38 Average 27.93 27.60
BLEULR 27.72 27.63 BLEULR 25.86 25.80
BLEUHR 27.69 27.06 BLEUHR 30.46 29.80

Table 3: Pivot-Based zero-shot translation results.

Taking into consideration the number of models neces-
sary to perform each of the strategies, we believe that using
the shared models for pivoting is the best approach. Instead
of using 46 models, we only need 2 and the results achieved
are quite comparable to the ones obtained with bilingual
models.

3.7.2 Results on Direct Zero-Shot Translation

Many-to-many models have the advantage of being able of
translating between any pair of supported languages, even
when parallel data is not available.

As we have described before, we have trained three dif-
ferent settings using adapters on top of the many-to-many
model. We have already concluded that they yield bene-
fits when translating to and from English. But how do they
impact the performance of direct zero-shot translation? We
performed direct zero-shot translation using the many-to-
many fully shared model and the models with adapters on
top. The results are in Table 4. Once again, we compute
the average values when each language is either the source
(left side) or the target (right side). Complete results are in
appendix A of the thesis.

If we use the fully shared model to generate direct zero-
shot translations, the results that we obtain are poor, espe-
cially if we compare with the ones that we obtained using
pivot-based techniques (Table 3).

Regarding the use of source-specific adapters, the results
that we obtained are also poor. We can say that the trans-
lations generated are completely useless. As the results
were so poor (around 3-4 BLEU points), we decided not
to present them in Table 4.

The combination of source adapters (in the encoder) and
target adapters (in the decoder) was able to achieve good
results too but not as good as the ones obtained with only
target-specific adapters.

Using only target adapters improve a lot the results
achieved in direct zero-shot translation. Our results show
that there an improvement of +9,71 BLEU points in average
when compared with the fully shared model. The improve-
ment is higher for low-resource language pairs. In gen-
eral, we can say that the use of only target-specific adapters
yields a larger benefit.

3.8. Use of Different Pivot Languages

Next we ask ourselves if we can improve the perfor-
mance if we use a different pivot language. English is the
usual choice, but we want to check if the usage of a lan-
guage that belongs to the same language family helps to im-
prove the translation performance in the case of pivot trans-
lation.

We have identified two languages with potential to be
used as pivot languages: German (de) and French (fr).
These languages were chosen because they present a big
volume of data and are representative of different language
families. After having chosen these two languages, we have
selected the languages that could be helped with this strat-
egy:

• pivot language French: Portuguese (pt), Spanish
(es), Italian (it) and German (de);

• pivot language German: Polish (pl), Dutch (nl),
Swedish (sv), French (fr) and Danish (da).

We trained dedicated bilingual model for each language
to and from English, and to and from the desired pivot lan-
guage (French or German depending on the previous list).
To train these models, we used Europarl dataset. After hav-
ing trained the bilingual dedicated models, we used them
for pivoting. We compare the translation quality of mod-
els of pivot translation in Tables 5 (for French) and 6 (for
German).

Somewhat surprisingly, we see that English is the best
pivot language. The reasons behind it may be:

• the bilingual models to/from French have a worse per-
formance (in terms of BLEU score) than the bilingual
models to/from English. As the models that are used
for pivoting are worse, consequently the pivot results
are worse too. In the case of German, degradation is
even higher;

• French and especially German are morphologically
rich languages. The degradation in the case of using
German as pivot language (-3,35 BLEU points on av-
erage when compared with results obtained using En-
glish) is much higher than in the case of French (-1,48
BLEU points).
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Many-to-Many Many-to-Many
Target Source+Target Target Source+Target

Source Fully Shared Adapters Adapters Target Fully Shared Adapters Adapters
Average 13.40 23.11 25.24 Average 13.55 23.31 22.91
BLEULR 9.03 22.34 21.90 BLEULR 15.01 22.47 21.93
BLEUHR 18.75 24.05 23.72 BLEUHR 11.76 24.33 24.12

Table 4: Direct zero-shot translation results.

de it pt es
English French English French English French English French

de - - 28.75 27.40 32.73 30.34 33.63 31.45
it 24.47 22.92 - - 32.80 32.01 33.43 32.46
pt 27.75 25.93 32.31 31.61 - - 38.12 36.32
es 27.53 25.87 31.87 31.09 36.98 35.26 - -

Table 5: Average translation quality (BLEU) of pivot translations using different pivot languages: English and French.Rows
indicate source language, columns indicate target language.

da nl fr pl sv
English German English German English German English German English German

da - - 32.11 29.93 36.14 33.08 23.70 21.48 34.77 30.90
nl 34.50 31.08 - - 35.64 33.32 23.45 21.04 32.22 28.48
fr 33.99 29.95 31.10 29.12 - - 23.25 20.92 31.78 27.73
pl 30.89 28.24 29.00 27.22 33.57 30.74 - - 29.30 26.67
sv 36.90 32.45 31.31 29.12 35.93 32.57 23.77 21.47 - -

Table 6: Average translation quality (BLEU) of pivot translations using different pivot languages: English and German.Rows
indicate source language, columns indicate target language.

4. Conclusion

We show that it is possible to train multilingual mod-
els in large scale settings and that they can improve perfor-
mance over bilingual baselines, especially for low resource
language pairs.

In order to improve the performance of fully-shared mul-
tilingual NMT systems, we followed [17] and introduced
adapters on top of the three fully shared models. Adapters
enable a multilingual model to adapt to multiple target tasks
without forgetting the original parameters of the model.
In the case of the many-to-one and one-to-many models,
we used language-pair specific adapters. In the case of
the many-to-many model, we explored different kind of
adapters. We tried to use adapters compatible with the
idea of direct zero-shot translation. The exclusive use of
source adapters was the approach that achieved worst re-
sults in all scenarios. When translating from English to
other languages, the exclusive use of target adapters was
the best choice. When translating from other languages
to English, the hybrid approach was the one that had the
best performance. In terms of direct zero-shot translation
(when translating between non-English languages), target
adapters, both in the encoder and decoder, were the ones
that achieved the best results.

Regarding pivot-based zero-shot translation, we ex-
plored the use of different pivot languages. We explored the
use of French and German to translate between Romance
and Germanic languages, respectively. We were expecting
to have better results when using French or German for piv-
oting between languages from the same family. However,
that did not occur. The best results were obtained when us-
ing English as the pivot language.

Regarding future work, Pfeiffer et al. [27] proposed to
combine different adapters (AdapterFusion) for different
Natural Language Processing tasks such as sentiment analy-
sis, commonsense reasoning, paraphrase detection, and rec-
ognizing entailment. They use a mechanism very similar to
the transformer’s attention. One interesting direction direc-
tion to be explored is the use of this technique for Multilin-
gual Neural Machine Translation. Sharing knowledge from
multiple adapters could possible improve, even more, the
results obtained due to Transfer Learning.
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