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Resumo

A Europa é um continente de diversidade linguı́stica: A União Europeia tem atualmente 24 lı́nguas ofici-

ais. A globalização aumentou a necessidade de ter informação traduzida num maior número de lı́nguas

possı́veis, o mais rápido possı́vel. A tradução automática, e em particular a tradução automática neural,

pode ser uma boa abordagem a este problema. A tradução automática neural proporciona condições

ideias para o desenvolvimento de sistemas multilingue: torna possı́vel a partilha de componentes para

diferentes tarefas. Sistemas multilingue tornam possı́vel o uso de um único modelo capaz de traduzir

entre múltiplas lı́nguas tanto na origem como no alvo.

Embora estes sistemas sejam bastante apelativos, ainda continuam a ter um desempenho inferior

ao proporcionado por sistemas que suportam apenas um par de lı́nguas, na maioria das situações.

De modo a melhorar a performance dos sistemas que suportam múltiplas lı́nguas, implementámos

uma abordagem existente na literatura: adapters. Adapters são pequenas camadas residuais que são

introduzidas no meio de modelos pré-treinados, que são usadas para adaptar o modelo para novas

lı́nguas, melhorando a sua performance. Procuramos melhorar este método introduzindo adapters que

são condicionados em apenas uma lı́ngua (ao contrário da abordagem atual que condiciona num par

de lı́nguas). Fazendo esta mudança, torna-se possı́vel extrair o potencial dos adapters para melhorar a

performance, mesmo em cenários em que não existe informação paralela disponı́vel.

Por fim, avaliamos empiricamente e comparamos a performance de sistemas que suportam múltiplas

lı́nguas e sistemas que recorrem a uma lı́ngua pivô em 24×23 pares de lı́nguas. Inglês é a escolha

habitual como lı́ngua pivô, mas nós procuramos estudar o uso de lı́nguas pivô diferentes: Francs e

Alemão, para transduzir entre lı́nguas românicas e germânicas, respetivamente.

Palavras-chave: aprendizagem profunda, processamento de lı́ngua natural, tradução au-

tomática neural
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Abstract

Europe is a continent of linguistic diversity: the European Union has 24 official languages. Globalization

has increased the necessity of having information translated to many languages as possible, as fast as

possible. Automatic translation, and in particular neural machine translation, can be a good solution

to solve this problem. Neural machine translation provides an ideal setting for multilingual systems: it

makes it possible to share components across multiple tasks. Multilingual systems make it possible to

have a single model that translates from multiple source languages into multiple target languages.

While multilingual systems are appealing, the current reported performance is still behind that of

dedicated bilingual models, for most language-pairs. To improve the performance of multilingual sys-

tems, we implement an existing approach in the literature, adapters. Adapters are tiny residual layers

introduced in the middle of a pre-trained model that are used to adapt the model to a new language,

improving its performance. We extend this method by conditioning adapters on one language only (as

opposed to the language-pair setting initially proposed). By doing this, we are able to perform direct

zero-shot translation and to improve the results in this scenario too.

Finally, we provide a thorough empirical analysis and comparison of different multilingual and pivot-

based systems on 24×23 language-pairs. While English is the usual choice of pivot language, we also

study the use of different pivot languages, French and German, to translate between Romance and

Germanic languages, respectively.

Keywords: Deep learning, natural language processing, neural machine translation, multilin-

gual neural machine translation
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Chapter 1

Introduction

1.1 Motivation

Globalization has increased the necessity to have information translated in as many languages as pos-

sible. Nowadays it is possible to identify three different possibilities to approach the translation problem:

human translators only, machine translation only, or a combination of machine translation with human

post-editing. Although it is not on pair yet with human translators (Toral [1], Läubli et al. [2]), machine

translation has proven to be very effective and useful in many applications while significantly cheaper

and more scalable than human translator. Even in applications where quality is important, machine

translation can be effective if used with human post-editing.

Early approaches to machine translation were rule-based and statistical (Brown et al. [3], Shannon

and Weaver [4]). Statistical machine translation is the use of statistical models that learn to translate text

from a source language to a target language given a large text corpus. These systems work by directly

mapping a symbol or a subsequence of symbols in a source language to its corresponding symbol or

subsequence in a target language. Usually, these approaches are specific to each language-pair and

extending them to multiple languages requires significant engineering efforts. The first approaches were

word-based. Later there was an improvement when the phrase-based approach was introduced.

Recently, a new generation of MT systems have emerged: neural machine translation (NMT) which

ally the effectiveness and flexibility of neural networks with the increasing availability of data and com-

putational power .The first approaches in this field were Recurrent Neural Networks (RNNs) using Long

Short-Term Memory (LSTM) cells or Gated Recurrent Units (GRUs) (Sutskever et al. [5]). Later, a new

mechanism was introduced in neural machine translation: the attention mechanism (Bahdanau et al.

[6]). This mechanism allows the model to focus on specific words of the source sentence to generate

the target word mimicking the idea of ”word alignment” present in IBM models (Brown et al. [3]). The

transformer was introduced by Vaswani et al. [7] taking advantage of this mechanism. The idea behind

the transformer is to handle the dependencies between input and output with attention completely.

The increasing computational capacity has allowed the emergence of multilingual systems (Dong

et al. [8]). Neural machine translation makes it appealing to develop multilingual translation systems

1



since the neural architecture is language-agnostic and it is capable of capturing translation proper-

ties, such as long-distance re-ordering, even between highly dissimilar languages. It has already been

shown that sharing a single translation model between multiple language-pairs can achieve competitive

results when compared with strong bilingual baseline (Arivazhagan et al. [9], Aharoni et al. [10], Johnson

et al. [11]), sometimes even with improvements. However, these improvements are not uniform: when

translating to/from low-resource languages results may improve with transfer learning, but on the other

hand high-resource languages are often penalized, due to the lack of capacity to accommodate all the

language-pairs (Arivazhagan et al. [9]).

Existing approaches can be divided into shared models and language-specific encoder-decoder ap-

proaches. Johnson et al. [11] proposed sharing all parameters across all language-pairs, with one

special token at the beginning of every source sentence indicating the target language. The main ad-

vantage of this approach is its simplicity and the fact that the number of model parameters remains

constant. Language-specific encoder-decoder further divide into the ones that share parameters (Firat

[12]) and the ones that do not share at all (Dong et al. [8]).

Although research in multilingual models has shown encouraging results, there are still some chal-

lenges:

• how to deal with a huge number of languages;

• how to deal with different scripting systems (vocabulary);

• how to deal with heavy imbalance data across languages and domains;

• how to define the practical limit on model capacity;

• how to deal with very heterogeneous inter-task relationships that come from dataset noise;

• how to deal with differing degrees of linguistic similarity.

Regarding the aerospace field, machine translation (and in particular multilingual neural machine

translation) can have a tremendous impact. Although English is the language used in the aviation

sector, it is not the native language of most of the world. Due to this, many maintenance errors have

arisen (Drury and Ma [13], Drury and Marin [14]). Maintenance errors can be costly for both aircraft and

human life. Simple misunderstandings can have a devastating impact. The aerospace field is facing a

shortage of aviation maintenance technicians. While English is the language that is the most used in this

field, the majority of the technicians speak English as a second language. Local languages can have

an important role by helping to fill the shortage of technicians quickly. The new advances in the neural

machine translation technologies have increased the speed and accuracy of translations and lowered

the cost.

Furthermore, the European Space Agency (ESA) has 22 member states with different official lan-

guages. multilingual machine translation can take an important role to spread the work developed across

the different countries and to facilitate mutual assistance between member states.

2



1.2 Contributions

The main contributions of this thesis are:

• We build multilingual NMT models handling the 24 European official languages, translating be-

tween any pair of languages among those 24 (while using only one model or a combination of two

models). Our systems demonstrate good results, exhibit strong translation accuracy with much

fewer parameters, improving the quality of low-resource languages (when compared with bilingual

baselines), while keeping competitive results for high-resource languages;

• We inject tiny task-specific layers (adapters) into pre-trained models. The implementation is avail-

able online.1 We provide in-depth analysis of various aspects of adapters that are crucial to achieve

better quality in multilingual NMT. We demonstrate that is possible to close the gap to bilingual

baselines with a small number of additional parameters;

• We provide a through empirical analysis and comparison among various strategies, including var-

ious choices of pivot languages.

1.3 Thesis Outline

Chapter 2 presents a brief introduction to the theoretical concepts needed for the development of this

thesis.

Then, Chapter 3 covers a description of the state-of-art in multilingual neural machine translation

and it presents our contributions. Afterwards, the experiments performed and the results obtained are

discussed in Chapter 4. We present the bilingual baselines, and then the results with fully shared

models. Then, we explore the use of adapters (tiny residual layers) to improve the performance of the

multilingual systems. Finally, results achieved when using different pivot languages (English, French and

German) are presented and analyzed.

Chapter 5 sums up the main achievements of this thesis and leaves suggestions for future work.

1Code available online at:https://github.com/JoaoMCAlves/Multilingual-Adapters
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Chapter 2

Background

This chapter introduces the theoretical concepts that are needed to understand the work developed

in this thesis. The focus of this chapter will be neural machine translation and some of the concepts

associated to it. First, the existing neural machine translation models are presented. Then, a few

concepts related with word representations are described. Finally, the BLEU score, a commonly used

metric in NLP, is presented.

2.1 Neural Machine Translation

Neural machine translation is an approach to machine translation that takes advantage of the use of

neural networks. In this section, it is going to be presented the neural networks that are usually used to

perform neural machine translation and conclude which one is the best to serve our purpose.

2.1.1 Encoder-Decoder Approach

An Encoder-Decoder Network (Sutskever et al. [5],Cho et al. [15]) is the connection of two neural net-

work, an encoder network and a decoder network. The encoder is responsible for encoding the input

sentence into a context vector. The source sentence can be mapped into a fixed-dimensional vector or

into a set of vectors. After that, the decoder is responsible for generating a target sentence based on

this hidden representation.

In the field of neural machine translation, work focuses on recurrent neural networks (usually long

short-term memories) and transformer models. In both cases, the encoder and the decoder have similar

functions. In the next subsections, we explain these two models in detail.

2.1.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are neural networks that have an ”internal” memory. RNNs are recur-

rent, because they perform the same steps for every input, while the output of the current input depends

5



on the past one that was calculated. After the output is calculated, it is sent back into the recurrent

network. The RNNs are trained using an algorithm called backpropagation through time (Werbos [16]).

The current state (ht) is a function of tanh of the previous state (ht−1) and the current input (xt):

ht = tanh(Whhht−1 +Wxhxt)

where Whh is the weight at previous hidden state, Whx is the weight at current input state and tanh

is used as an activation function to implement a non-linearity that squashes the values to the range -1

to 1. Finally the output is given by :

yt =Whyht

where Why is the weight at the output state.

Although RNNs can achieve good results, they present a few disadvantages. One commonly re-

ported problem is that during training time the gradients become increasingly small throughout time

steps (the vanishing gradient problem), making it hard for the model to capture long dependencies. To

overcome this issue new solutions have arrived: Gated Recurrent Units (GRUs) (Chung et al. [17]) and

Long Short Term Memories (LSTMs) (Hochreiter and Schmidhuber [18]). Another disadvantage of this

architecture is that RNNs generate the hidden state based on the hidden previous steps states. This pre-

cludes parallelization within training examples. When the length increases this is an important limitation.

transformers overcome this issue, as we will show in Section 2.1.3.

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) networks are a modified (and more complex) version of RNNs, in-

troduced by Rumelhart and McClelland [19]. They solve the problem of vanishing gradient. They have

the ability of learning long-term dependencies. The structure of an LSTM cell is in Figure 2.1. LSTMs

introduces three new components:

• Forget Gate - as the name suggests, this gate is responsible for discarding details that are not

important to generate the next hidden state. It does that using a sigmoid function. Using the

previous state (ht−1) and the current input (xt), it generates a number between 0 and 1 for each

number in the cell state (Ct−1), where 0 means omitting it and 1 means keeping it, according to:

ft = σ(Wf .[ht−1, xt] + bf )

• Update/Input Gate - this gate is responsible to decide which values from the input should be used

to modify the memory. Firstly, a sigmoid function decides which values to let through. Then a

tanh function gives weight to the values which are passed, deciding which are more important on
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a scale that goes from -1 to 1.

it = σ(Wi.[ht−1, xt] + bi)

Ct = tanh(WC .[ht−1, xt] + bC)

• Output Gate . this gate decides which part of the current cell should be in the output.

ot = σ(Wo.[ht−1, xt] + bo)

ht = ot × tanh(Ct)

With this three mechanisms, LSTMs are able to solve the issues of the original RNNs.

Figure 2.1: LSTM Cell.

2.1.3 Transformer

The transformer is considered the state of art for many tasks in natural language processing. Earlier

models tended to have problems when decoding long sentences. To solve this problem the Attention

mechanism was introduced. Attention (Bahdanau et al. [6]) is a mechanism that was developed to

increase the performance of encoder-decoder models. At each time step, when the model tries to

predict the next output word, the mechanism will focus on the parts of the input sentence where the

most relevant information is. The transformer is a model that takes advantage of this mechanism to

improve the training speed and the performance of natural language processing tasks, in particular

neural machine translation.

In this subsection, we explain how it is implemented. First, we explain how the attention mechanism

works. After describing this, we are ready to explain the components of the transformer: the embedding

layer, the encoder and the decoder. Figure 2.2 depicts the transformer architecture.

Attention Mechanism

The self-attention or scaled dot-product attention allows the model to associate each individual word in

the input to other words in the input. To perform the self-attention, the input is feed to three different
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Figure 2.2: Transformer Architecture. Taken from Vaswani et al. [7].

linear layers to create three vectors: key (K), query (Q) and value (V).

Then, the query and key vectors are multiplied to produce a score matrix that indicates how much

focus a word should put on the other words, so each word will have a score that corresponds to other

words. The higher the score, the higher is the focus given to that word. Then, these scores are divided

by the square root of the dimension of the keys (or the queries or the values because they have the

same dimension). This is done just to allow stable gradients as multiplying can lead to exploding values.

Then a softmax function is applied, to have values between 0 and 1. Furthermore when softmax is

used, higher scores are heightened and lower scores are depressed which allow the model to be more

confident on which words should take attention to. Then, the attention scores are multiplied by the value

vector to get an output vector. The attention-mechanism can be described by the following equation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Each layer are used multiple self-attention heads. This is done because each head can learn different

features, giving the encoder a higher representation power.
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Figure 2.3: Transformer Attention Mechanism.Taken from Vaswani et al. [7].

Embedding

The first step is feeding our input into a word embedding layer. A word embedding layer can be seen

as a table where each word is represented by a vector of continuous values. The next step is injecting

positional information into the embedding. This is done because the transformer encoder does not have

recurrent connections as RNNs, so we need to add information about the positional embedding. This

is done using trigonometric functions (sine and cosine). These functions are used because they have

linear properties that the model can learn easily to attend to. The authors proposed to create a vector

using the cosine function for every odd index on the input vector, and a vector using the sine function for

every even index. Then, they proposed to add these vectors to their corresponding input embeddings.

This gives the necessary information on the position of each vector.

Encoder

As described in the previous section, the encoder is responsible for mapping all the input sentence into

an abstract continuous representation that holds the information of the entire sequence.

The encoder is composed of a stack of layers (the original paper uses six layers, but this number is

configurable). The layers are all identical to each other, but they do not share the weights. Each layer

has two sub-layers, a self-attention layer (also called multi-head attention) followed by a feed-forward

layer. There are also residual connections around each of the two sub-modules followed by a layer

normalization. The residual connections allow the gradients to flow through the network directly and the

layer normalizations are used to stabilize the network which reduces the training time.

First, the output of the embedding layer is fed to the multi-head attention. Then the multi-head

attention output is added to the original which is called a residual connection. The output of the residual

connection goes through a layer normalization.
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Finally, the normalized residual output is fed to a feed-forward linear network for further processing.

This feed-forward linear network is just a combination of two linear layers with a ReLU (rectified linear

unit) activation function in between them. The output of this linear is again added to the input and again

normalized.

The transformer uses more than one layer because by doing that, it allows different layers to learn

different attention representations.

Decoder

The decoder takes the continuous vector representation that is given by the encoder and generates the

output step by step, while is also fed previous output decoder recurrently, until an ”end of sequence”

token is generated. As in the case of the encoder, the decoder is also a stack of layers (it has the same

number of layers as in the case of the encoder).

The decoder has similar layers as the encoder. Each layer has two multi-head attention layers and

a feed-forward layer with residual connections and layer normalization after each sub-layer. The two

multi-head attention layers have different functions.

The decoder takes its previous outputs as inputs as well as the encoder outputs that contain the

attention information from the input. The input goes through a positional embedding layer. The positional

embeddings are fed into the first multi-head attention layer which computes the attention score for the

decoder input.

This multi-head layer has a different function. Since the decoder is an auto-regressive network, it is

important not to look into future tokens/words. Masking is used to prevent the decoder to look into future

words. This mask is called look-ahead mask. The mask is ahead before calculating the softmax. The

mask is a matrix of the same size of the attention scores that is filled with zeros and negative infinities.

The right triangle is filled with negative infinities which will lead to zeros when the softmax is calculated.

By doing this, we are forcing the model not to look at future words. The output of this first multi-head

attention has information about how the model should focus on the decoder’s input.

The output of the second multi-head attention layer goes through a point-wise feed-forward layer for

further processing. Then it goes through a final linear layer that acts as a classifier. The output of the

classifier is fed into a softmax layer. The softmax layer will produce a number that goes from 0 to 1 for

every word. It corresponds to the probability of the word generated. Finally, the transformer takes the

index of word with higher probability and that is the predicted word.

2.1.4 Comparison of Transformer and RNNs

After having presented the different architectures, it is important to understand which one can achieve

better results in neural machine translation. The work developed by Lakew et al. [20] has shown that

transformer achieves better results than RNN in most of the translation tasks. They have tested both

models in bilingual models, multilingual models and zero-shot translation. Although recent versions of

RNNs as LSTMs have a longer reference window. In theory, if the computational power was infinite,
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transformer would have the ability to have an infinite reference window. Moreover, they proved that in

multilingual models, when using transformers, the transfer learning is more effective than in the case of

using RNNs.

2.1.5 Word Representation

Neural networks deal with numerical data. Because of that, it is necessary to preprocess words and

represent them as vectors. It is possible to identify two possible approaches to this problem: one hot

encoding and dense feature embedding.

With one hot encoding, each vector has same size as the vocabulary. We would have a vector of

zeros except for the cell at the index representing the corresponding word in the vocabulary. Although

this approach is very easy to implement, it does not allow to extract relations between words. The

representations are all going to be independent of each other.

The alternative is to use dense feature embeddings. While vectors obtained with one hot encoding

are binary, word embeddings are low-dimensional floating-point vectors. Words that have a stronger

relation between them will be closer in the representation space. The other main advantage of dense

feature embedding is that it requires less computational power. Usually, the dimension of the vector that

represents each word is inferior to the dimension of the vocabulary. This is not possible to obtain in

one-hot encoding as the word representations are all independent.

2.1.6 Vocabulary

To generalize to unseen sentences, it is necessary to decompose these sentences into a set of basic

units. In natural language processing, this set of basic units is called the vocabulary. Given a new text,

it is preprocessed and decomposed into its basic units. A well-defined vocabulary needs to fulfil two

conditions:

• produce a minimal number of unknown tokens, which means to have a high coverage;

• have a reasonable size to limit computational cost.

The first NMT models used word-level approaches (Bahdanau et al. [6], Cho et al. [21]). Some

issues arose due to the difficulty of capturing all words within a limited vocabulary. To solve this issue,

character-level systems were then proposed (Wang et al. [22], Ling et al. [23]). This approach solved

the problem of capturing all words but increased the computational cost due to the increased sequence

lengths. Subword level vocabularies (Sennrich et al. [24]) are the ones that achieve a good balance

between the coverage and the computational cost.

Byte Pair Encoding (BPE)

As explained above, subword level vocabularies achieve a good balance between the coverage and the

computational cost. Byte Pair Encoding (BPE) (Sennrich et al. [24]) is a common algorithm to create
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subwords. This approach is based on the idea that different words share some parts (units) which the

translation can be obtained by concatenation of this subwords. It is particularly important in languages

where there are a huge number of compound words (e.g. German).

After having the corpus preprocessed, the first step to use this algorithm is to define the desired

vocabulary size. Then, it is necessary to split words to sequence of characters and to append the

suffix “@@” to the end of the word with its frequency. We begin with subword units that correspond

to the characters. After this, a new subword is generated which corresponds to the highest frequency

occurrence. The last step is repeated until we reach the desired vocabulary size or until the highest

frequency occurrence corresponds to 1.

To conclude, BPE gives us a good balance between character level and word level representation. It

is a good choice to deal with large corpora.

2.1.7 Evaluation Metrics

Metrics for automatic evaluation have been very important for the rapid progress of machine translation.

Before their creation, it was necessary to rely on the work of human annotators which is a slow and

expensive process.

BLEU Score

One of the most used evaluation metrics is the BLEU (Bilingual Evaluation Understudy) score. This

metric is quick and inexpensive in terms of computational cost and it correlates highly with human

evaluation. Furthermore, it is easy to understand and it is language independent.

A perfect result corresponds to 1.0 BLEU, whereas a complete mismatch corresponds to 0.0 BLEU.

It is usually reported on a scale from 0 to 100.

But how is it calculated? As it is described in Papineni et al. [25] BLEU may be defined as:

BLEU = BP × exp

(
N∑

n=1

wn log pn

)
(2.1)

where BP is the brevity penalty (used to penalize translation shorter than the references, n the number

of n-grams and pn the n-gram modified precision. By default N is equal to 4 and wn = 1
N .

The brevity penalty can be calculated as:

BP =

1, ifc > r

exp(1− r
c ), ifc < r

(2.2)

where c is the length of the candidate and r the length of the reference.

When the machine translation is identical to the reference, BLEU is 1.0. That is the reason why even

a human translator usually does not obtain 1.0. It is possible to have a correct translation that does not

achieve a high BLEU score. This means that a good translation does not imply having a BLEU score of

1.0.
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2.2 Summary

This chapter introduced the necessary background for this master thesis. First, it introduced the models

that are used in Machine Translation: RNN (and in particular LSTMs) and the transformer. Then, we

described why the transformer is the usual choice nowadays. The attention mechanism, a powerful tool,

makes it possible to capture long term dependencies.

Next, we presented a few concepts related to word representations in NLP. In particular we explained

the importance of creating a good vocabulary and explained what are the current approaches in multi-

lingual NMT.

Then, BLEU was presented. BLEU is one of the most used metrics in neural machine evaluation

tasks.
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Chapter 3

Multilingual Neural Machine

Translation

Multilingual translation models are systems that share a single translation model between multiple

language-pairs. According to the language-pairs and translation directions chosen, the multilingual neu-

ral machine translation (MNMT) systems can be used in different configurations:

• many-to-one - multiple source languages and one target language. This can be described as a

multi-domain problem;

• one-to-many - one source language and multiple target languages. In this case, we have a multi-

task problem;

• many-to-many - multiple source and target languages.

In this chapter, we present the state of the art approaches for multilingual neural machine translation.

First, we present the overall architectures that these systems can have: multilingual systems with

language-specific encoders and decoders and universal encoder-decoder systems. Then we ex-

plore one of the main advantages of using multilingual NMT systems: transfer learning. Especially,

we focus on an extreme case of transfer learning: zero-shot translation. We further divide zero-shot

translation into two sub-categories: pivot-based zero-shot translation and direct zero-shot translation.

Afterwards, adapters are presented. Adapters are residual layers introduced in a pre-trained model.

Bapna and Firat [26] was the first work to use them in multilingual neural machine translation. We extend

their work by introducing some changes that further improves their performance. Our approach allows

us to use adapters even in direct zero-shot translation.

3.1 Overall Architecture

One advantage of multilingual models is the number of models (and consequently the number of pa-

rameters) that they require. If we want to translate between N languages, if we follow a naive approach

and use individually trained models, it would require N × (N − 1) models. If N is too large, it will be
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impractical to deploy and maintain this huge number of models. Multilingual approaches reduce the

number of parameters required: depending on the approach chose the number of parameters can be

constant (Universal Encoder-Decoder Models) or it can grow linearly with the number of languages,

O(N) (Models with Language-Specific Encoders and Decoders). In this subsection, we present

these two different approaches.

3.1.1 Multilingual models with Language-Specific Encoders and Decoders

Language-specific approaches, as the name suggests, require specific encoders or decoders for each

language. Some additional features are added to produce shared representations. Although they lead

better with the problem of accommodating more language-pairs, they do not take full advantage of the

transfer learning feature. Furthermore, the training process tends to be slower and there is an increase

in memory requirements due to the increase in the number of parameters.

The first multilingual neural attempt was proposed in Dong et al. [8]. The authors proposed a one-

to-many model with a single encoder but separate decoders and attention mechanism for each target

language. The study has hown that it was possible to improve the results of low-resource languages

by using a mix of low-resource languages and high-resource languages. This architecture was able to

make full use of the source language data (English) across different language-pairs. Lakew et al. [27]

proposed a similar approach.

Then in Luong et al. [28], the authors proposed a many-to-many model with multiple encoders and

decoders, one for each source and target language. Here, the different models shared the recurrent

connections and the corresponding embedding space (single shared vector space) with a fixed length

representation across all source and target pairs. The authors did not use an attention mechanism. As

we mentioned earlier, this kind of approaches does not take full advantage of positive transfer learn-

ing (sharing information across similar languages) which may result in worse results for low-resource

languages.

Firat et al. [29] proposed a many-to-many model (with up to 6 languages) with language-specific

encoders and decoders with a single attention mechanism. This was the first work to introduce the idea

of direct zero-shot translation. Once again, they showed improvements in low-resource settings. The

authors argue that they may use, for each language, encoders and decoder with different architectures

or different sizes. Vázquez et al. [30] had a similar approach to the multilingual problem. The study

proposed language-specific encoders and decoders but with a shared independent attention bridge.

The authors did experiments using many-to-one, one-to-many and many-to-many models.

In Zoph et al. [31], the core idea was to train a high-resource language-pair (parent model) and then

copy the parameters to a low-resource model (child model). The authors found they could achieve better

results by fixing certain parameters of the parent model and fine-tune the rest with the child model. They

also used an attention mechanism that allows the target decoder to look back at the source encoder.

Lu et al. [32] proposed the idea of an explicit neural interlingua: an intermediate language that is

able to represent all languages embeddings. The neural interlingua receives language-specific encoder
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embeddings and produces output embeddings which are agnostic to all languages. Each language has

its specific encoder and decoder,

Escolano et al. [33] proposed an alternative to introducing new encoders and decoders per language

without retraining the entire system. The study propose to use language-specific encoders and decoder

with a common intermediate representation space. The authors do not share any parameter across

encoders or decoders. They initially train a set of language-specific encoders and decoders. Then, if

they want to add new languages, they only need to train the new encoders/decoders.

3.1.2 Universal Encoder-Decoder Models

A universal encoder-decoder model uses only one encoder and one decoder for all language-pairs. The

main advantage of this approach is its simplicity: it does not require special components or any special

attention mechanisms. It allows integrating any language in the source or target side of the encoder-

decoder architecture with only one encoder and one decoder. Moreover the model can achieve good

results with a much smaller number (and constant) of parameters. A universal encoder-decoder model

is able to accommodate all translation directions within a single model which reduces the training time

and simplifies the processes of deployment and maintenance. However, the model capacity is a strong

limitation to this kind of approaches. It has been shown that increasing the capacity is directly related

with better results, but scaling capacity leads to a significantly larger computational footprint. Moreover,

if we want to add a new language or new data, the whole system needs to be retrained and the quality

of translations drops when we add too many languages, especially for those with the most resources

(Arivazhagan et al. [9]). This problem is more evident when languages are not from the same language

family. However, it is important to notice that naively increasing the model capacity might result in poor

transfer performance to low-resource languages. Arivazhagan et al. [9] and Zhang et al. [34] claim that

the model capacity is one of the most important factors, so it is crucial to find the optimal capacity for

our system.

Johnson et al. [11] and Kudugunta et al. [35] proposed a many-to-many model that shares all param-

eters across all language pairs. To do that, the authors used a shared vocabulary for all languages in

the dataset. They only introduced a special token at the beginning of every source sentence indicating

the target language. The authors expected to obtain good translation results mainly when the target

languages are related. The authors were able to perform direct zero-shot translation without any special

treatment.

Further work proposed sharing all parameters except the attention mechanism, showing improve-

ments over sharing all parameters (Ha et al. [36] and Blackwood et al. [37]). Ha et al. [36] added a

special token at the beginning and at the end of every source sentence indicating the target language.

In Blackwood et al. [37], the authors tested adding different tokens at the beginning of their source

sentences: target specific, source specific and pair specific. The study had the best results when target-

specific tokens were used. The authors performed their experiments using four languages from the

Europarl corpus (Iranzo-Sánchez et al. [38]). They achieved better quality translation for all possible
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translation directions, compared to a model which shares all parameters. Moreover, they have tested

three different attention mechanisms: target-specific attention, source-specific attention and paired at-

tention which represents a specific language combination. In each situation, each attention mechanisms

has a set of attention weights and bias parameters. The best results were achieved with a target-specific

attention model.

Recently, Platanios et al. [39] also proposed to share the entire network but introduced a new mech-

anism: Contextual Parameter Generator (CPG). This mechanism learns to generate the parameters

that the system should use based on the source and the target languages. The contextual parameter

generator receives the source and the target language embeddings as inputs, and generates the param-

eters for the encoder and for the decoder (LSTMs networks). The rest of the model parameters remain

unchanged and are shared across all languages. The authors treat language as context with which to

encode or decode. They embedded languages in separate vector spaces.

3.1.3 Vocabulary

The construction of the vocabulary is a critical factor when developing a new massively multilingual

translation system due to the high number of different character sets and morphological variance. It is

possible to divide the existing approaches into three categories:

• Separate vocabularies for each language (Dong et al. [8], Luong et al. [40], Firat et al. [29])

• Shared vocabularies for all languages (Post et al. [41], Ha et al. [36], Johnson et al. [11])

• Hybrid solutions (Lakew et al. [27])

When constructing a shared vocabulary there are some problems that may arise: what should be

its dimension and how should the vocabulary be created not to favor some languages over others due

to the imbalance of the dataset size. Moreover, this method relies on the idea that the languages share

a good number of word pieces. If this is not the case, then either the decoder’s output layer will be

very large (which slows the training) or we can have too many unknown tokens. Arivazhagan et al. [9]

has explored the effect of varying the vocabulary size for a massively multilingual model. The authors

concluded that the shared vocabulary size grows dramatically when we add a large number of languages

(especially if they do not use the same scripts).

On the other hand, if the choice is having separate vocabularies for each languages, these prob-

lems do not arise. The only question that is necessary to take into account is the number of vocabularies

that we are going to deal with. If the choice is to build a massively multilingual NMT system, it is neces-

sary to deal with a huge number of vocabularies.

Lakew et al. [27] tried to have the best of both worlds with an hybrid approach. The authors pro-

posed to add new languages to a system by adapting the vocabulary. They started with a shared vocab-

ulary constructed with the initial languages available. When they added new languages, they adapted

their vocabularies (dynamic vocabulary).

Regarding the architecture choice, if we use a universal encoder-decoder approach it is necessary

to have a shared vocabulary. If the choice is a language-specific encoder-decoder approach, this archi-
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tecture allows each language to have its own vocabulary because they are trained in parallel but it is

possible to have a shared vocabulary too.

3.2 Transfer Learning and Zero-Shot Translation

Transfer Learning is the mechanism that enables the knowledge from a learned task to improve the

performance on a related task, which typically reduces the amount of data needed to achieve the same

results. In Natural Language Processing (Pan and Yang [42], Ruder [43]), transfer learning has already

been applied to different tasks such as speech recognition (Kunze et al. [44]), document classification

(Lu et al. [45]) or sentiment analysis (Dong and de Melo [46]).

In multilingual NMT, low-resource languages take advantage of being trained together with high-

resource ones. This mechanism is even stronger across similar languages. The most common tech-

nique consists of training together low-resource and high-resource languages. Zoph et al. [31] tried a

different approach. The authors used a pre-trained model (parent model) with a high-resource language-

pair and then copied the parameters to the model that is going to be used to translate the low-resource

language-pair (child model). By doing this, they reduced the performance on the low-resource languages

too.

An extreme case of transfer learning is zero-shot translation. In this case there is no parallel data

between the languages that we are considering. It is possible to divide zero-shot translation into two

categories: direct zero-shot translation and pivot-based zero-shot translation.

3.2.1 Pivot-Based Zero-Shot Translation

The most common alternative to multilingual systems is pivot-based zero-shot translation using bilingual

direct models. It is a useful method for translating between languages with little parallel data by utilizing

parallel data in an intermediate language which usually is English. As English is by far the language

with the largest volume of parallel data, it is an easy choice. The text is firstly translated from the source

language to the pivot language, and then from the pivot language to the target language. In this process

it is necessary to use two different systems, a source-pivot one and a pivot-target one.

Although this strategy usually achieves good results, it has a few disadvantages. The two-step trans-

lation strategy has the potential to propagate errors. As it is a two-step translation system, it requires

doubling the latency and computational overhead (due to translating the source sentence twice) which is

a concern for large-scale NMT models. Moreover, there is the possibility of losing important information

when the source is translated to the pivot language.

It is very common to use bilingual direct models to perform pivot-based zero-shot translation. In this

master thesis, we are going to combine a multilingual approach with pivot-based zero-shot translation.

First, we are going to train a many-to-one multilingual model and a one-to-many multilingual model.

Then we are going to use them to perform pivot-based zero-shot translation, using the many-to-one

model followed by the one-to-many model. We aim to achieve similar performance results or even better
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than the ones obtained with bilingual models for pivoting.

Use of different Pivot Language

English is the usual choice as pivot language. English is a popular language due to the parallel corpora

available. However, there are factors such as language relatedness that can affect the choice of the

pivot language for a certain language-pair.

For example, if we want to translate from Spanish to Portuguese, we could first translate from Spanish

to English and then translate from English to Portuguese. As an alternative, we could use French as the

pivot language, translating first from Spanish to French and then from French to Portuguese. French,

Spanish and Portuguese are all Romance languages, they belong to the same language family. Would

the results be better? In this master thesis, we explore the use of two different pivot languages: French

(fr) and German (de). We provide comparison between these two pivot languages and English (Section

4.8). We use French as pivot language to translate between Romance languages and German as a

pivot language to translate between Germanic languages.

3.2.2 Direct Zero-Shot Translation

Direct zero-shot translation does not require the intermediate step of translating into a pivot language.

The multilingual system is trained with multiple source and target languages, and it has the ability of

translating between them. Although pivot-based zero-shot translation yield higher BLEU scores than

direct translation, recent works (Zhang et al. [34], Arivazhagan et al. [9]) suggest that in the near future,

direct zero-shot translation is going to be able to perform as good or better than pivot-based zero-shot

translation. New techniques and the increasing computational power have been responsible for that.

Firat [12] was the first to attempt direct zero-shot translation. They tried to perform it with several

encoders and decoders but the results were very poor. The authors concluded that it requires an addi-

tional fine-tuning step. They used synthetic training data generated through pivoting to train translation

directions that do not have parallel data available.

Escolano et al. [33] also performed direct zero-shot translation using a language-specific encoder-

decoder architecture but the results were behind the ones achieved with Universal-Encoder approaches.

Universal Encoder-Decoder approaches have demonstrated the ability of translating between any language-

pair, without using pivot languages and without any special treatment. The shared representation space

across languages induces transfer learning. In Johnson et al. [11], the authors obtained reasonable

results but they tested their direct zero-shot systems on related languages and large-scale datasets.

Blackwood et al. [37] was able to improve translation quality even in low-resource translation direc-

tions. Other works (Chen et al. [47], Currey and Heafield [48]) generate pseudo-parallel data using

pivot-language monolingual data and incorporated it into the training process.

One problem associated to direct zero-shot translation is the off-target translation issue. It is very

common to identify translations into a wrong language (usually English, especially if an English-centric

dataset is used). In Section 4.7.2 we show some examples of this phenomenon. Zhang et al. [34] pro-
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posed three different mechanisms to overcome this issue: use of layer normalization conditioned on the

target language, use of a linear transformation between the encoder and the decoder also conditioned

on the target side and introduction of a new backtranslation algorithm (ROBT , which stands for Random

Online Backtranslation).

3.3 Adapters

Adapters are tiny residual layer that are introduced in the middle of a pre-trained model to improve its

performance. This approach shares a large set of parameters across all tasks and introduces a small

number of task-specific ones. Adapters have been introduced as an alternative to fine-tune all weights

of the pre-trained model.

The main advantage of adapters is that they do not require full fine-tuning of all parameters of the

pre-trained model. The pre-trained model can be trained ahead of time and then the adapters can be

introduced. Once the adapters are introduced, the parameters of the pre-trained model are frozen, and

the only parameters that are fine-tuned are the adapters. It allows the model to converge faster as it

is only necessary to train a few numbers of parameters (especially when compared with the total size

of the model). Furthermore, it is possible to train adapters separately or simultaneously. The main

disadvantage of this approach is the necessity of having a component for each task. If the number of

tasks (in machine translation each language represents a task) increases, the number of parameters

will increase too.

They were initially introduced for computer vision (He et al. [49]. Regarding Natural Language Pro-

cessing, Houlsby et al. [50] proposed its use for language modelling. Later, Pfeiffer et al. [51] achieved

strong results in multi-task and cross-lingual transfer learning.

In the field of multilingual neural machine translation, adapters were introduced by Bapna and Firat

[26] to recover the performance that is usually lost in the high-resource settings when they are trained

together with low-resource languages. Fine-tuning with adapters, allows the model to see larger portions

of the data for the language-pairs that have adapters.

In this subsection, the different possible architectures of these layers are presented, followed by

an explanation of its training process. Then, the current approaches in the field of multilingual neural

machine translation are presented. Afterwards, this work is extended by introducing some changes that

further improve its performance, and allow their use in a direct zero-shot scenario.

3.3.1 Adapters’ Architecture

Houlsby et al. [50] were the first to propose the use of adapters for NLP tasks. The authors demonstrated

that the placement and architecture of the adapters in the transformer is not a trivial problem. They

experimented different architectures and placements and concluded that a two-layer feed-forward neural

network with a bottleneck works well. They placed two of these adapters within each transformer layer

(both in the encoder and decoder), one after the multi-head attention and one after the feed-forward
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layer (Figure 3.1). During fine-tuning, they only needed to re-train the layer normalization layers and the

adapters.

Figure 3.1: Simplified representation of the adapters proposed in [50]. Taken from [50].

More recently, Pfeiffer et al. [52] performed an exhaustive search over different Adapter architectures.

The best performing architecture ended up being a single adapter after the Feed-Forward network with

a residual connection connecting the output of the Feed-Forward with the output of the Adapter. The

residual connection enables a pass-through and by doing this, it allows keeping at least the performance

of the pre-trained model.

In the field of multilingual NMT, Bapna and Firat [26] achieved better results using only one adapter

(after the feed-forward layer). However, they have introduced a layer normalization and recurrent con-

nections. They introduced a layer normalization in each adapter to avoid retraining all the existing layer

normalization layers, as was done by Houlsby et al. [50]. The residual connections are introduced to

allow the module to represent a no-operation if necessary. The hidden dimension of the adapter is the

hyperparameter that is fine-tuned. They argue that this strategy allows them to adjust the capacity of the

adapter easily, depending on the task they want to perform, adjusting only one hyperparameter. In Fig-

ure 3.2, it is shown this adapter layer and its placement in the transformer layers, after the feed-forward

network of each layer.

We decided to implement the same architecture as Bapna and Firat [26], a layer normalization fol-

lowed by a feed-forward network and recurrent connections. Our work is different from Bapna and Firat

[26] because we propose the use of adapters for all language-pairs (and not only for high-resource

ones) and propose to condition the adapters only on one language instead of a language-pair. The

implementation is available online. 1

3.3.2 Adapters’ Training Process

The injection and training of adapters is a two-step algorithm: firstly, it is necessary to train a fully shared

model on all language-pairs, and then there is a fine-tuning using only adapters. The adapters can be

1Code available online at:https://github.com/JoaoMCAlves/Multilingual-Adapters
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Figure 3.2: Adapters proposed by Bapna and Firat [26] and their placement in the Transformer’s layers.
Taken from Bapna and Firat [26].

updated sequentially on each task or they ca be trained simultaneously. Regarding the training data used

to fine-tune the adapters, it is possible to use the same training data used for training the fully-shared

system or it is possible to choose a different dataset.

Adapters are trained in the same way as full fine-tuning of the pre-trained model. The data is passed

through all layers of the transformer. It is used in the same settings as the fully shared system but the

learning rate schedule is reset. All the parameters are frozen, except the adapters.

3.3.3 Proposed Changes: Language-Specific Adapters

In the case of the many-to-many systems, if we want to have adapters for all languages, the naive

approach would be injecting language-pair specific adapters (as was suggested in Bapna and Firat

[26]). However, there are a few issues that arise: the first and obvious one is that we would need to

have twice the number of adapters compared to the previous experiments (N − 1 from any language to

English and N − 1 from English to any language).

Moreover, it would not allow us to use adapters to perform direct zero-shot translations. The work

developed by Bapna and Firat [26] did not take into consideration the possibility of performing direct

zero-shot translation. As the adapters would be conditioned on English either in the source or in the

target, we would have a problem if we wanted to translate between non-English languages.

In an extreme case, we could have an adapter for each possible language combination. However, as

we might not have parallel data for every language-pair, we would not be able to train all the adapters

and it would imply having O(N2) adapters. Adapters have a small number of parameters, but if we have

such a huge number of adapters, the number of parameters is going to increase quadratically with the

number of languages.

To solve this problem we decided that it could be beneficial to have adapters conditioned only on one

language, instead of a language-pair. We propose three different architectures based on the language
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that conditions the choice of the adapters:

• source-specific adapters both in the encoder layers and in the decoder layers;

• target-specific adapters both in the encoder layers and in the decoder layers;

• source-specific adapters in the encoder layers and target-specific adapters in the decoder layers.

In the three different configurations, we are going to have the same number of adapters in each layer.

The number of adapters per layer is going to be equal to the number of languages of our dataset, N .

In this chapter we have described a few different works that tried to condition components/mechanisms

on the source or the target language. For example, Blackwood et al. [37] tried different kinds of attention:

target-specific attention, source-specific attention and paired attention. They also added different tokens

to their source sentences: source tokens, target tokens and pair tokens. In both situations, the best

results were obtained when conditioning on the target language. Zhang et al. [34] conditioned some

components of the transformer on the target language (layer normalization and linear transformation be-

tween the encoder and the decoder) and was able to achieve very good results. Due to these reasons,

we are expecting to achieve the best results when conditioning all the adapters on the target side or

when using a mixed approach, conditioning on the source side in the encoder and on the target side in

the decoder.

Direct Zero-Shot Translation

Bapna and Firat [26] did not focus on direct zero-shot translation. The language-pair specific adapters

were conditioned on English either on the source or on the target side. To translate between non-English

languages, it would not be possible to take advantage of adapters. The language-specific adapters do

not have this problem. As they are conditioned only on one language, it is always possible to use them

regardless of architecture choice.

For example, if we want to translate from Portuguese to Spanish:

• if we choose to use source-specific adapters both in the encoder layers and in the decoder layers,

the model is going to use the adapters conditioned on Portuguese both in the encoder and in the

decoder;

• if we choose to use target-specific adapters both in the encoder layers and in the decoder layers,

the model is going to use the adapters conditioned on Spanish both in the encoder and in the

decoder;

• if we choose to use source-specific adapters in the encoder layers and target-specific adapters

in the decoder layers, the model is going to use the adapters conditioned on Portuguese in the

encoder and the adapters conditioned on Spanish in the decoder.
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3.4 Summary

This chapter presented the existing approaches to the problem of multilingual neural machine translation.

Multilingual NMT systems are appealing for some reasons. The first one is the number of models and

consequently the number of parameters that they require. Another benefit is the fact that multilingual

models can improve the performance on low and medium resource languages, especially when they

are trained together with similar high-resource languages. Positive transfer learning from high-resource

languages to low-resource ones helps to improve the results. In extreme cases, it is possible to translate

between language-pairs that were never seen during training time (zero-shot translation). Multilingual

systems can be the solution to the data scarcity problem, using languages with large-scale parallel data

to improve the translation quality of those with less parallel data.

espite the potential benefits of multilingual approaches, they tend to underperform bilingual base-

lines, especially for high-resource languages (Johnson et al. [11], Arivazhagan et al. [9]). They tend

to have considerably worse results when many languages are accommodated (Aharoni et al. [10]), in

particular when languages are not related. Adding more languages may result in a bottleneck because

the models have a limited capacity.

First, we described the different possible architectures: Universal Encoder-Decoder approaches and

Language-specific Encoders and Decoders approaches. Afterwards, we explained the concept of trans-

fer learning. In particular, we explored an extreme case of transfer learning: zero-shot translation.

Zero-shot can be divided into two categories: direct zero-shot translation and pivot-based zero-shot

translation. Regarding pivot-based zero-shot translation, we analysed the possibility of having different

pivot languages.

Finally, we presented a strategy to improve the results of fully shared systems: the injection of

adapters. The main advantage of this approach, when compared with others, is that it does not re-

quire full fine-tuning. adapters are residual layers introduced in the middle of a pre-trained model used

to improve its performance. We propose the use of language-specific adapters instead of language-

pair specific adapters. The main advantages of this approach are that it requires an inferior number of

adapters and it allows the use of adapters for direct zero-shot translation. We will validate these models

empirically in Chapter 4.
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Chapter 4

Experimental Analysis

In this chapter, we describe our experiments, and present and analyse the results . First, we present

the datasets used in our experiments. Then, we describe the baselines that are going to be compared

against. After this, we are ready to present the results that we have obtained using multilingual NMT

models. First, we present the results achieved using fully shared models (Section 4.5) in three different

settings: many-to-one, one-to-many and many-to-many.

Afterwards, the results achieved with adapters are presented in Section 4.6. For this approach,

two sets of experiments are presented. First, we introduce language-pair specific adapters on top of

the many-to-one and one-to-many model. Then we introduce language-specific adapters on top of the

many-to-many model.

Later we evaluate the translation between non-English languages (Section 4.7). As it was exposed

in Chapter 3 there are two possible approaches: pivot-based zero-shot translation and direct zero-shot

translation. We report the results for both approaches and then compare them with the results achieved

with bilingual direct models.

Finally, we evaluate the impact of using different pivot languages. Pivoting through English is the

common approach. Our goal is to evaluate the influence of factors like language relatedness in the final

results. In Section 4.8 we explore the use of German and French as pivot languages.

4.1 Datasets

The data has a significant impact on the systems that we want to develop.

In our case, the main goal is to cover 24 EU Official Languages: English (en), Bulgarian (bg), Czech

(cs), Danish (da), German (de), Greek (el), Spanish (es), Estonian (et), Finnish (fi), French (fr), Hungar-

ian (hu), Italian (it), Latvian (lv), Lithuanian (lt), Dutch (nl), Polish (pl), Portuguese (pt), Romanian (ro),

Slovak (sk), Slovenian (sl), Swedish (sv), Irish (ga), Maltese (mt) and Croatian (hr).

For the majority of them, we used the Europarl dataset (Iranzo-Sánchez et al. [38]) as the training,

development and test corpus. However, three languages are not covered by Europarl: Irish, Croatian

and Maltese, so it was necessary to find alternatives. For Irish we have used DGT corpus (Steinberger
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et al. [53]) and for Croatian and Maltese the TildeMODEL corpus (Rozis and Skadinš [54]). As the

domain is not exactly the same, the transfer learning process is harder.

Statistics for the corpora are mentioned in Table A.1.

It is important to take into consideration that even our lowest resource languages exceed the amount

of data available in a majority of the previously studied datasets, especially if we compare with other

works that were performed like Arivazhagan et al. [9] or Kudugunta et al. [35]. For example in Kudugunta

et al. [35] parallel sentences per language-pair range between 104 to 109. In our case, the low-resource

ones have around 400k sentence pairs, and the high-resource ones have around 2M sentence pairs.

Given the amount of data, some techniques that were developed for extremely low-resource datasets

may not be as effective in our case. Because of that, we are not going to use oversampling strategies

such as sampling temperature (Artetxe and Schwenk [55]). In this thesis, we are going to consider

low-resource languages the ones that have fewer than 1M sentence pairs. The others are considered

high-resource languages.

In order to be able to compare the results achieved for direct zero-shot Translation and Pivot when

using languages of Europarl, we have created a test set and a development set common to all languages

that Europarl supports. Namely, we used the data from the first semester of 2009 to accomplish this.

The development set has 4000 sentences and the test set has 4630 sentences. After doing this, we

guaranteed that there were no duplicates in the train set.

4.2 Data Preprocessing and Vocabulary Construction

The preprocessing step and the construction of the vocabulary take an important role in the creation of

every neural machine translation system. We tokenized and truecased all the sentences using scripts

from the Moses toolkit (Koehn et al. [56]).

We used Byte Pair Encoding (BPE) (Sennrich et al. [24]) to segment sentences into subword symbols

and to construct all our vocabularies. For the bilingual experiments, the size of the shared vocabulary

was 10k tokens and for multilingual experiments, we used a shared vocabulary containing 32k tokens.

We decided to use this size based on the work developed by Arivazhagan et al. [9].

4.3 Metrics

As we are dealing with a large number of languages, it is important to find clear ways to present the

results. Rather than providing the BLEU score for each language-pair, we are going to compute some

average BLEU scores:

• BLEU20 - average BLEU over all 20 language-pairs covered by Europarl

• BLEU23 - average BLEU over all 23 language-pairs

• BLEUHR - average BLEU over the high-resource language-pairs

• BLEULR - average BLEU over the low and medium resource language-pairs
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Furthermore, it is possible to find complete results in appendix A.

4.4 Bilingual Baselines

To compare the performance of our multilingual models, we trained bilingual baselines using the training

dataset that we have described before. We performed all our experiments using the open-source Fairseq

toolkit (Ott et al. [57]).

The experiments were performed with transformer base settings (Vaswani et al. [7]), containing

around 75M parameters. For these experiments, we used transformers with 6 layers in both the encoder

and the decoder, model dimension set to 512, hidden dimension size of 512 and 8 attention heads. For

optimization, we use Stochastic Gradient Descent with Adam Optimizer (Kingma and Ba [58]), (β1 = 0.9,

β2 = 0.98) with label smoothing of 0.1 and scheduled learning rate (warm-up step 16k). Furthermore,

we use dropout of 0.3. BLEU scores are calculated on the checkpoint with the best validation BLEU

score employing beam search with a beam size of 5.

We plot the BLEU scores for different language-pairs in Figure 4.1. From left to right, languages

are arranged in increasing order of available training data. We plot the two main directions separately

in different plots. When English is the target language, we represent it as Any→English. The same

logic was applied for the opposite directions (when English is the source language), where we have

English→Any. The results of the multilingual models will be presented exactly the same way.

From Figure 4.1, it is possible to conclude that the translation quality is slightly better for high-

resource languages. Furthermore, the translation quality is superior when English is the target language.

Furthermore, the results on high-resource languages tend do be better than the ones for low-resource

ones, especially when translating from English.

4.5 Fully Shared Models

Using the dataset that we described before, we trained three fully shared multilingual models: 1) many-

to-one model from 23 languages to English, 2) one-to-many model from English into 23 languages and

3) many-to-many model trained using all 46 translation directions (to and from English).

For all settings, we train a single Transformer Base with the same hyper-parameters settings as the

bilingual models. The only difference is the use of a shared BPE vocabulary with 32k tokens. Moreover,

we followed the approach of Johnson et al. [11] and added a target-language token at the end of each

source sentence. In all cases, we report test results (in terms of BLEU score) for the checkpoint that

performed best on the validation set.

Another fact that is important to consider is the difficulties to accommodate out-of-domain language-

pairs. As we have referred before, Europarl does not cover three official European languages: Croatian,

Irish and Maltese. The deterioration in these languages is much higher, so we decided not to represent

them in the same graphs as the other languages.
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Figure 4.1: Quality of individual bilingual models on all 20 language-pairs covered by Europarl, measured
in terms of BLEU score. Languages are arranged in increasing order of available data from left to right.
The first plot reports BLEU for translating to English from any of the languages. The second one reports
BLEU for translating from English to any of the other languages. Performance on individual language-
pairs is reported using dots and a trailing average is used to show the trend.

4.5.1 Results

First, we trained a many-to-one and a one-to-many model. After having trained these models, we trained

a many-to-many NMT model on the concatenation of the one-to-many dataset and the many-to-one

dataset. By doing this we are able to perform direct zero-shot translation (translation between any

language-pair) even if they do not have parallel data.

We plot the results when translating to and from English in Figure 4.2. Once again, we represented

the two main translation directions in separate graphs. In the first plot, we represent the performance

of the many-to-many model and the many-to-one when translating from all languages to English. In the

second one, we represent the performance of the many-to-many and the one-to-many models when

translating from English to other languages. Furthermore, we present some average metrics in Table

4.1. Complete results can be found in Tables A.2 and A.3.

The many-to-one shared model achieved worse results than the bilingual baselines if we consider

all the languages of our dataset (-1,25 BLEU23, 2-1, Table 4.1), but they were able to outperform the

bilingual baselines if we consider only the languages that are covered by Europarl (+0,07 BLEU20,

2-1, Table 4.1). It outperforms bilingual baselines when translation to English for low settings (+0,84

BLEULR 2-1, Table 4.1). This phenomenon was already described in previous works like Aharoni et al.

[10] and Neubig and Hu [59]. A multilingual system with shared weights promotes transfer learning from
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Figure 4.2: Quality of many-to-many, many-to-one and one-to-many models. Languages are arranged
in increasing order of available data from left to right. The first plot reports BLEU for translating to
English from any of the other 23 languages. The second one reports BLEU for translating from English
to any of the other languages. Results are reported relative to those of bilingual baselines. Performance
on individual language-pairs is reported using dots and a trailing average is used to show the trend.
The colors corresponds to the following strategies : (i) Blue: Models trained in one translation direction
(many-to-one and one-to-many respectively) (ii) Red: Model trained in both translation directions (to and
from English). Performance on individual language-pairs is reported using dots and a trailing average is
used to show the trend.

Any→En BLEU23 BLEU20 BLEULR BLEUHR

1.Bilingual 46.32 42.72 41.24 43.66
2.All→ En 45.07 42.79 43.66 42.93
4.All→ All 42.92 40.93 40.04 41.29

En→Any BLEU23 BLEU20 BLEULR BLEUHR

1.Bilingual 36.90 37.14 33.67 40.51
3.En→ All 34.25 35.03 32.02 37.84
4.All→ All 33.04 33.85 31.05 36.47

Table 4.1: Average translation quality (BLEU score) of multilingual models trained. All → All reports
the performance of the multilingual model trained on all translation directions, En → All reports the
performance of the model trained on all language-pairs with English as the source and All→ En reports
the performance on the model trained on all language-pairs with English as the target.

high-resource languages to low-resource ones. On the other hand, the high-resource language-pairs

have a decrease in their performance (-0,73 BLEUHR 2-1, Table 4.1). That might be explained by two

different reasons:

• the different language-pairs are competing for capacity, and due to the limited model size, the
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high-resource ones have difficulties to accommodate all the space that they need;

• the model converges before it trains on significant portions of the high-resource data.

Regarding the one-to-many setup, when we compare the results achieved with bilingual baselines,

it is easy to realize that none of the language-pairs had an improvement in their performance. The

deterioration in the performance is higher for high-resource languages (-2,67 BLEUHR 3-1, Table 4.1),

while the performance on low-resource languages does not deteriorate that much (-1,64 BLEULR 3-

1, Table 4.1). As was described in Arivazhagan et al. [9], the many-to-one model can be seen as a

multi-domain model, where each source language represents a specific domain. On the other hand,

the one-to-many models can be seen as a multi-task model, with each target language representing a

different task. This can help us understand why the process of transfer is far more evident in the case

of many-to-one: transferring across multiple domains may be easier than transferring across multiple

tasks. We can conclude that is harder to accommodate multiple languages in the target side.

Analysing the results of Figure 4.2, we notice both the many-to-one model and the one-to-many

model achieve much better results than the many-to-many model. The deterioration is higher when

translating to English (-2,15 BLEU23 4-2, Table 4.1) than when translating from English (-1,21 BLEU23

4-3, Table 4.1). The many-to-many model must accommodate twice as many translation directions with

the same number of parameters. In this case, we have 46 translation directions instead of 23. Due to

this, the many-to-many model suffers more relevant capacity issues.

Finally, it is important to take into account that we compared the different models under the same

training conditions. We did not change the hyperparameters for each configuration to simplify experi-

mentation. Probably if we change some hyperparameters, specially in the many-to-many settings, we

would be able to achieve better results.

The obtained results were already expected according to the state-of-the-art (Arivazhagan et al. [9],

Aharoni et al. [10]). In the majority of the cases, bilingual baselines outperformed the results achieved by

multilingual models. In the next section, our goal is to improve the results and to close the gap between

bilingual models and our multilingual models.

4.6 Adapters

After training fully shared models on all language-pairs, we inject and fine-tune adapters on top of them.

It is important to take into consideration that our main goal is to close the gap to bilingual baselines, so

we are always going to present the results in terms of the difference to the bilingual baselines.

First, we inject adapters on top of the many-to-one and one-to-many models. In this case, we inject

language-pair specific adapters. Then we inject language-specific adapters on top of the many-to-many

model.

For fine-tuning, we use the same hyper-parameter used during global pre-training but reset optimizer

accumulator and restart from the first step.
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4.6.1 Language-Pair Specific Adapters

In this subsection, the goal is to understand how language-pair specific adapters work. We have fine-

tuned the many-to-one and the one-to-many with language-pair specific adapters on top. First, intro-

duced a variable number of adapters, depending on the training data available for each language-pair,

and evaluated the influence on the results. Then, we studied the effect of varying the dimension of the

adapters.

Number of Adapters used

As it was explained in Section 3.3, we tested two different settings:

• injecting adapters only for high-resource languages;

• injecting adapters for all languages;

We tested it both on the many-to-one and the one-to-many models. We plot results in Figure 4.3.

Further results can be found in Table 4.2. Complete results are in Appendix A.

Figure 4.3: Effects of injecting adapters. Languages are arranged in increasing order of available data
from left to right. The first plot reports BLEU for translating to English from any of the languages. The
second one reports BLEU for translating from English to any of the other languages. Results are re-
ported relative to those of bilingual baselines. Performance on individual language-pairs is reported
using dots and a trailing average is used to show the trend. The colors corresponds to the following
strategies : (i) Blue: Fully Shared Model (ii) Green: Fully Shared with adapters for high-resource lan-
guages (iii) Red: Fully Shared with adapters for all languages. Performance on individual language-pairs
is reported using dots and a trailing average is used to show the trend.
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Any→ En BLEU23 BLEU20 BLEULR BLEUHR

1.Fully Shared Model 45.07 42.79 42.08 42.93
2.Fully Shared Model w/Adapter HR 45.30 43.05 42.29 43.29
3.Fully Shared Model w/Adapter all 45.91 43.33 42.60 43.49

En→ Any BLEU23 BLEU20 BLEULR BLEUHR

4.Fully Shared Model 34.25 35.03 32.02 37.84
5.Fully Shared Model w/Adapter HR 34.75 35.59 32.17 39.98
6.Fully Shared Model w/Adapter all 35.83 36.49 33.73 39.07

Table 4.2: Average translation quality (BLEU score) of multilingual models trained. Fully shared model
reports the performance of the multilingual model sharing all parameters (in the first case many-to-one, in
the second one one-to-many), Fully Shared Model w/Adapter HR reports the performance of the shared
models fine-tuned with adapters only for high-resource languages, Fully Shared Model w/Adapter all
reports the performance of the shared models fine-tuned with adapters only for all languages.

First, we are going to analyse the first graph : translating from any language to English. Adapters

clearly help to improve the performance of the model. There is an interesting phenomenon: even when

we introduce adapters for high-resource languages only, the results for low-resource languages improve.

This may be related to the fact that the embedding layer is not frozen. However, the best results are

achieved when adapters were injected for all languages. This configuration achieved the best results for

every single language.

Now, let’s analyse the second plot: translating from English to any language. As we have seen

before and unlike the many-to-one model, there is a degradation in the results for all languages pairs

when a fully shared model is used. Analysing the graph, it is possible to conclude that when we in-

ject adapters only for high-resource settings, there is a huge improvement for high-resource languages

(+2,14 BLEUHR, 5-4, Table 4.3). The introduction of language-pair specific for all language-pair was

capable of achieving better results in general (+1,08 BLEU23, 6-5, Table 4.3) but worst results if we con-

sider only high-resource languages (-0,91 BLEUHR, 6-5, Table 4.3). For some low-resource languages,

it was even able to surpass bilingual baselines: Bulgarian, Latvian, Estonian, Slovakian and Czech.

It is clear that the performance improves by a huge margin after training the adapter’s parameters.

Furthermore, it is also true that injecting adapters for all language-pairs seems to be the better choice as

it can achieve better results in general. From now on, we are going to inject adapters for all languages

as the results are clearly better.

Adapters with different dimensions

The adapter architecture that we have chosen to implement has only one hyperparameter (Section 3.3):

the hidden dimension of the adapter. To analyse the impact of this hyperparameter, we have introduced

adapters with different hidden dimension on top of the many-to-one model. In Section 3.3, we have seen

that it is better to inject adapters for all languages, so we did it here too.

We have tested two different dimensions (256 and 800) and we have compared the results with the

ones obtained without adapters. Once again, we plot the scores relative to the bilingual baselines. We

depict the results in Figure 4.4. Further results are presented in Table 4.3. Complete results are in
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Appendix A.

Figure 4.4: Effects of varying the hidden dimension of the adapter architecture . Languages are arranged
in increasing order of available data from left to right. The plot reports BLEU for translating to English
from any of the languages. Results are reported relative to those of bilingual baselines. Performance
on individual language-pairs is reported using dots and a trailing average is used to show the trend.
The colors corresponds to the following strategies : (i) Blue: Many-to-One fully shared model (ii) Red:
Many-to-One w/Adapters for all languages (hidden dimension 256) (iii) Green: Many-to-One w/Adapters
for all languages (hidden dimension 800). Performance on individual language-pairs is reported using
dots and a trailing average is used to show the trend.

Any→ English BLEU23 BLEU20 BLEULR BLEUHR

1.Fully Shared Model 45.07 42.79 42.08 42.93

2.Fully Shared Model w/Adapters (256) 45.56 43.15 42.42 43.30
3.Fully Shared Model w/Adapters (800) 45.91 43.33 42.60 43.49

Table 4.3: Average translation quality (BLEU score) of multilingual models trained. Fully Shared Model
reports the performance of the many-to-one model that shares all parameters, Fully Shared Model
w/Adapters (256) reports the performance of the many-to-one model with adapters on top with b=256,
Fully Shared Model w/Adapters (800) reports the performance of the many-to-one model with adapters
on top with b=800.

The results in Figure 4.4 indicate that the model performance improves when we increase the size of

the adapters. If we look carefully, it is possible to see that the performance is better for every language-

pair when we increase the dimension of the adapters (+0,35 BLEU23, 3-2, Table 4.3). Both low-resource

and high-resource take advantage of it. If we look at Table 4.3, the results are consistent, all the metrics

have the highest results when is used the model with b=800.

It is possible to conclude that increasing the size of the adapters helps to improve the performance of

the model. This shows the flexibility of the adapters, according to the target task it is possible to change

the adapter size to achieve the desired results. However, it is important to take into consideration that

adapters are designed to be small layers: if we increase too much their size, we are going to increase

the model size too, and in extreme cases, adapters could be bigger than the single model. It is very

important to control this trade-off.
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4.6.2 Language-Specific Adapters

As described in Section 3.3, injecting language-pair specific adapters on top of the many-to-many model

would not be a good choice. It would require a considerable number of adapters (and consequently a

considerable number of parameters) and it would not allow us to take advantage of them to perform

direct zero-shot translation. To solve this issue, we experimented three different adapter configurations:

1. Source-specific adapters both in the encoder and decoder layers;

2. Target-specific adapters both in the encoder and decoder layers;

3. Source-specific adapter in the encoder layers and Target-specific adapters in the decoder layers.

We plot the results in Figure 4.5. Further results are summarized in Table 4.4. Complete results are

available in Appendix A.

Any→En BLEU23 BLEU20 BLEULR BLEUHR

1.Many-to-Many 42.92 40.93 40.04 41.29
2.Many-to-Many w/Source Adapters 44.70 42.10 41.36 42.30
3.Many-to-Many w/Target Adapters 43.75 41.71 40.96 41.94

4.Many-to-Many w/Source+Target Adapters 44.42 42.14 41.41 42.32

En→Any BLEU23 BLEU20 BLEULR BLEUHR

1.Many-to-Many 33.04 33.85 31.05 36.47
2.Many-to-Many w/Source Adapters 33.82 34.63 31.97 37.11
3.Many-to-Many w/Target Adapters 35.70 36.33 33.59 38.88

4.Many-to-Many w/Source+Target Adapters 35.28 36.00 33.33 38.51

Table 4.4: Average translation quality (BLEU score) of multilingual models trained. Many-to-Many re-
ports the performance of the fully shared model trained on all translation directions, Many-to-Many
w/Source Adapters reports the performance of the Fully Shared Model with adapters conditioned on
the source language, Many-to-Many w/Target Adapters reports the performance of the Fully Shared
Model with adapters conditioned on the target language, Many-to-Many w/Source+Target Adapters re-
ports the performance of the Fully Shared Model with adapters conditioned on the source language in
the encoder and conditioned on the target language in the decoder.

The injection of target-specific adapters show the largest benefit for English→X translation (+2,66

BLEU23, 3-1, Table 4.4). Furthermore, the results were consistent, if we consider only the low-resource

settings, the improvement was of +2,54 BLEULR and if we consider the high-resource ones it was

+2,41 BLEUHR. For X→English translation, it shows a smaller benefit (+0,83 BLEU23, 3-1, Table 4.4).

Once again, the results were better for low-resource (+0,91 BLEULR, 3-1, Table 4.4) and high-resource

settings (+0,64 BLEUHR, 3-1, Table 4.4). As the adapters are conditioned on the target language, the

capacity is mainly increased for English→X and consequently, the results are better in this translation

direction.

On the other hand and as it was expected, source-specific adapters yield a larger benefit for

X→English tasks (+1,78 BLEU23, 2-1, Table 4.4) and a smaller benefit for English→X tasks (+0,78

BLEU23, 2-1, Table 4.4). For both translation directions, the results have improved for low-resource and

high-resource configurations.
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Figure 4.5: Effects of conditioning the adapters on different conditions. Languages are arranged in
increasing order of available data from left to right. The first plot reports BLEU for translating to English
from any of the other 23 languages. The second one reports BLEU for translating from English to any
of the other languages. Results are reported relative to those of bilingual baselines. Performance on
individual language-pairs is reported using dots and a trailing average is used to show the trend. The
colors corresponds to the following strategies : (i) Blue: Fully Shared Model (ii) Orange: Fully Shared
Model with adapters conditioned on the target language (iii) Red: Fully Shared Model with adapters
conditioned on the source language (iii) Green: Fully Shared Model with adapters conditioned on the
source language in the encoder and conditioned on the target language in the decoder. Performance on
individual language-pairs is reported using dots and a trailing average is used to show the trend.

Although target and source-specific adapters were able to achieve good results (target adapters are

better when translating from English to any language, and source adapters are better when translat-

ing from any language to English), a combination of source-specific adapters in the encoder and

target-specific adapters in the decoder was able to achieve more balanced results, if we consider

both translation directions. If we consider only English→X translation, it performs slightly worst than

target adapters (-0,42 BLEU23, 4-3, Table 4.4). But if we consider X→English translation, it was able to

achieve better results than the exclusive use of source adapters (+0,67 BLEU23, 4-2, Table 4.4).

To sum up, the use of target adapters both in the encoder and in the decoder was the ap-

proach that achieved the best results when translating from English to any language, both for
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low-resource a high-resource settings. The combination of source adapters (in the encoder side)

and target adapters (in the decoder side) was the setting that achieved the best results when

translating from any language to English. Later, we are going to evaluate the performance of the

three settings when used to generate direct zero-shot translations.

4.7 Translation between Non-English Languages

In the previous sections, we have presented the results when translating to and from English. In this

section, our goal is to translate between any language-pair that we have in our dataset. We are going to

present the results for two different approaches: pivot-based zero-shot translation and direct zero-

shot translation. For pivot-based translation, we are going to compare the performance when we use

only bilingual models for pivoting and when we use a many-to-one model followed by a one-to-many

model. In the case of direct zero-shot translation, we are going to compare the performance of the fully

shared models with the models with and without adapters on top. Finally, we trained a few direct bilingual

models to compare the performance of these two methods with direct translation.

As it was described in Chapter 3, pivot-based translation approaches exploit the fact that the trans-

lation can be decomposed into a sequence of two steps: firstly translate from the source language to

English and then translate from English to the target language. direct zero-shot translation does not re-

quire the intermediate step that we have for pivot translation. In this case, the goal is to directly translate

from the source to the target language. This can only be performed using a multilingual many-to-many

model.

4.7.1 Results on Pivot-Based Zero-Shot Translation

Regarding Pivot translation, we did two different experiments: pivoting using the bilingual models

and pivoting using a many-to-one model followed by a one-to-many model. In the case of using

the bilingual models, we need to have 46 models if we want to cover all the EU official languages (23

models from different languages to English and 23 models trained in the opposite direction). If we use

the many-to-one and the one-to-many models, we only need to have 2 models. We use the one-to-many

and the many-to-one models with language-pair specific adapters on top because this was the approach

that achieved better results in the previous experiments (Section 4.6.1).

Although it is possible to perform zero-shot translation between any language-pair in our dataset, it

is important to take into consideration that it is only possible to evaluate pivot translation between lan-

guages that are covered by Europarl. It is necessary to have a common test set between the languages

to be able to evaluate the performance of the systems in this situation.

In Table 4.5 we compute the average values when each language is either the source (left side) or

the target (right side). Tables with all results are in Appendix A.

The results achieved by the bilingual models were better than the ones obtained by the shared

models. However, shared models achieved competitive results, being better for some languages com-
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Source Pivot Bilingual Pivot Shared Target Pivot Bilingual Pivot Shared
ro 29.59 29.75 ro 28.45 27.69
bg 28.54 28.63 bg 30.48 30.83
sl 28.01 28.20 sl 28.41 28.20
hu 25.21 24.94 hu 22.86 22.56
pl 26.81 26.82 pl 23.46 23.56
lt 25.00 24.91 lt 21.39 21.58
lv 27.54 27.34 lv 26.39 26.59
sk 28.20 28.28 sk 27.37 27.44
cs 28.35 28.41 cs 25.44 25.58
et 27.49 27.17 et 20.86 20.69
el 30.14 29.51 el 29.4 29.12
sv 28.39 27.85 sv 31.19 30.65
it 26.36 25.88 it 29.11 28.40

de 27.80 27.23 de 25.99 25.17
fi 24.25 23.33 fi 22.20 21.33

da 28.57 28.00 da 33.26 32.22
pt 29.73 29.07 pt 32.81 32.37
es 29.65 29.06 es 33.92 33.60
nl 26.45 25.85 nl 30.44 29.51
fr 27.99 27.30 fr 35.18 34.99

Average 27.71 27.38 Average 27.93 27.60
BLEULR 27.72 27.63 BLEULR 25.86 25.80
BLEUHR 27.69 27.06 BLEUHR 30.46 29.80

Table 4.5: Pivot-Based zero-shot translation results.

bination. If we compute an average of all the possible translation combinations, the degradation is only

-0,33 BLEU points.

If we analyse only the left side of the table (source side) it is possible to conclude that, for high-

resource languages, the results are always better when using bilingual models for pivoting and for some

low-resource languages, it is possible to achieve better results when using the many-to-one model fol-

lowed by the one-to-many model: Romanian (ro), Bulgarian (bg), Slovenian (sl), Polish (pl), Slovakian

(sk) and Czech (cs).

If we take a look at the right-most column of Table 4.5, the conclusions are very similar, for high-

resource settings bilingual models always achieve better results. For low-resource settings, Bulgarian

(bg), Latvian (lv), Polish (pl), Slovakian (sk) and Czech (cs) achieved better results when using the

shared models for pivoting,

Taking into consideration the number of models (and consequently the number of parameters) nec-

essary to perform each of the strategies, we believe that using the shared models for pivoting is the best

approach. Instead of using 46 models, we only need 2 and the results achieved are quite comparable

(in some cases are even better) to the ones obtained with bilingual models.

4.7.2 Results on Direct Zero-Shot Translation

Many-to-Many models have the advantage over the single-task models of being able of translating be-

tween any pair of supported languages, even when parallel data is not available. Obviously, it is only

able to perform translation between languages it has seen individually as a source or target languages

during training time. As was described in the previous sections, transfer learning across different target
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languages in a one-to-many model was already a hard process. It is not difficult to realize that in direct

zero-shot translation that is going to be even harder. In this case, it is necessary to first transfer learning

between different source languages and then between different target languages.

In this subsection, our goal is to perform direct zero-shot translation using the many-to-many models.

As we have described before, we have trained three different settings using adapters on top of the many-

to-many model. We have already concluded that they yield benefits when translating to and from English.

But how do they impact the performance of direct zero-shot translation? We performed direct zero-shot

translation using the many-to-many fully shared model and the models with adapters on top. The results

are in Table 4.6. Once again, we compute the average values when each language is either the source

(left side) or the target (right side). The complete results that we have obtained are in Appendix A.

Many-to-Many Many-to-Many
Target Source+Target Target Source+Target

Source Fully Shared Adapters Adapters Target Fully Shared Adapters Adapters
ro 9.19 24.10 22.88 ro 18.71 25.32 25.81
bg 7.86 22.80 21.86 bg 19.52 27.67 27.12
sl 6.69 22.00 21.69 sl 14.22 24.59 22.80
hu 8.06 19.89 19.49 hu 12.56 19.95 18.36
pl 3.87 19.95 20.46 pl 16.62 20.56 20.11
lt 9.67 20.32 19.93 lt 9.68 18.56 17.28
lv 12.12 22.72 22.63 lv 15.96 23.69 23.05
sk 7.19 22.86 22.02 sk 16.53 23.29 23.26
cs 7.54 23.29 23.38 cs 13.38 19.77 20.46
et 9.99 22.15 21.74 et 12.75 18.01 17.88
el 17.12 25.65 24.83 el 15.22 25.80 25.07
sv 21.85 25.06 24.73 sv 13.01 24.02 25.04
it 15.87 22.87 22.68 it 10.03 23.96 21.67

de 18.66 24.38 23.72 de 9.51 20.86 20.66
fi 11.29 19.19 18.99 fi 9.79 17.17 16.50

da 21.63 25.23 24.80 da 9.29 25.76 25.66
pt 19.81 25.87 25.81 pt 12.13 25.32 25.68
es 18.26 25.66 25.24 es 14.54 27.83 28.34
nl 21.36 23.64 23.24 nl 10.53 24.25 24.41
fr 19.99 24.57 24.25 fr 17.01 29.80 29.11

Average 13.40 23.11 25.24 Average 13.55 23.31 22.91
BLEULR 9.03 22.34 21.90 BLEULR 15.01 22.47 21.93
BLEUHR 18.75 24.05 23.72 BLEUHR 11.76 24.33 24.12

Table 4.6: Direct zero-shot translation results.

If we use the fully shared model to generate direct zero-shot translations, the results that we obtain

are poor, especially if we compare with the ones that we obtained using pivot-based techniques (Table

4.5).

Regarding the use of source-specific adapters, the results that we obtained are also poor. We can

say that the translations generated are completely useless. If we manually analyse some of them it is

easy to realise that almost everything is in English. Conditioning the translation on the source language

clearly is not the best approach to achieve good results for direct zero-shot translation. As the results

were so poor (around 3-4 BLEU points), we decided not to present them in Table 4.6.

Using only target adapters improve a lot the results achieved in direct zero-shot translation. Our

results show that there an improvement of +9,71 BLEU points in average when compared with the Fully
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shared model. If we analyse Table 4.6, we can conclude that the improvement is higher for low-resource

language pairs (BLEULR). Later, we are going to analyse a few examples manually to try to understand

how the target-specific adapters impacted the translations.

Finally, the combination of source adapters (in the encoder) and target adapters (in the decoder) was

able to achieve good results too, but not as good as the ones obtained with only target-specific adapters.

For some language-pairs, it was the approach that achieved the best results, but in general, we can say

that the use of only target-specific adapters yields a larger benefit.

Qualitative Analysis

We have selected a few examples that help us show the problems that each model faces and the

improvements that they give us. We present in Table 4.7 examples of the source sentence (1), the

reference for translation (2), the translations generated by the fully shared model (3) and the translations

generated by the model with target adapters (4). We present the results with target adapters because it

was the strategy that achieved better results in general.

Example 1: fr-pt
1. Source nous ne pouvons légiférer dans lapos; abstrait !

2. Reference não podemos criar leis no abstracto !
3. Zero-Shot - Fully Shared não podemos legislar no abstract !

4. Zero-Shot - w/Target Adapters não podemos legislar no abstracto !
Example 2: ro-pt

1. Source este o dilemă pe care trebuie să o soluţionăm ı̂mpreună .
2. Reference é um quebra-cabeças que devemos resolver em conjunto .

3. Zero-Shot - Fully Shared it is a dilemma que we need to resolve together.
4. Zero-Shot - w/Target Adapters é um dilema que temos de resolver juntos .

Example 3: sl-es
1. Source Gospa predsednica , rada bi se dotaknila sorodne zadeve .

2. Reference señora Presidenta , me gustarı́a tratar un tema que está relacionado .
3. Zero-Shot - Fully Shared Madam President , I would like to touch on related matters .

4. Zero-Shot - w/Target Adapters señora Presidenta , me gustarı́a referirme a related matters .
Example 4: sl-es

1. Source poleg tega to nima nič opraviti z Evropsko unijo .
2. Reference además , esto no tiene nada que ver con la Unión Europea .

3. Zero-Shot - Fully Shared furthermore , this has nothing to do with the European Union .
4. Zero-Shot - w/Target Adapters además , esto no tiene nada que ver con la Unión Europea .

Table 4.7: Examples of direct zero-shot translations generated by multilingual models.

If we analyse manually some of the translations generated by the fully shared model, it is possible to

identify the off-target translation issue when we use the fully shared model. It corresponds to translate

into a wrong target language. As we are using an English-centric dataset, the model, during training

time, it is exposed to more English sentences (both on the source and target side). As a result of that,

it is very common to find English words in the translations. Some times, it is even possible to find

translation examples that are completely in English (examples 3 and 4). When we introduce the target-

specific adapters, there is a clear improvement on the off-target translation issue, which may explain the

increased translation performance.

These examples help us understand the importance of target adapters in direct zero-shot transla-
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tions. When we use the fully shared many-to-many model without any modification it is possible to find

many instances of off-target translations (examples 1 and 2) and in some cases sentences that have

only English words (examples 3 and 4). After injecting the target adapters this problem is solved in the

majority of the cases.

4.7.3 Comparison between Direct Zero-Shot Translation, Pivot-Based Zero-Shot

Translation and Direct Translation

In the previous sections, we have analysed pivot-based zero-shot translation and direct zero-shot trans-

lation. In this subsection, we have trained a few direct bilingual models to be able to compare the

results with the ones that we have obtained for pivot-based zero-shot translations and direct zero-shot

translations.

The first thing that we need to take into consideration is the number of models that we need to

perform translation between any EU official language in each of the approaches. If we want to cover

translation between all 23 language-pairs we would need:

• 552 models - if we use bilingual direct models;

• 46 models - if we perform pivot translation using bilingual model, 23 that translate from any lan-

guage to English and 23 that translate from English to any language;

• 2 models - if we perform pivot translation with shared models, one model that translates from

any language to English (many-to-one) followed by a model that translates from English to any

language (one-to-many);

• 1 model - if we perform direct zero-shot translation.

Moreover, pivot-based translation requires twice the translation time when compared with bilingual

direct models or direct zero-shot translation.

The results are in Table 4.8. Regarding direct zero-shot translation, these results were obtained with

the model with target-specific adapters on top.

Looking at the results in Table 4.8 it is possible to draw some conclusions. Comparing the results

of pivot translation experiments towards the direct translation results, we can see that in general the

pivot translation performs worse than the direct translation approach (-0.13 BLEU points on average).

However, the pivot results are very competitive, and in some cases are even better.

It is also important to try to understand in which cases the direct bilingual models perform better. If we

analyse it, we can see that it mainly happens when we are dealing with language-pairs from Romance

family: it-fr, pt-fr, es-fr, fr-it, fr-pt and fr-es.

Regarding direct zero-shot translation performance, it is still behind the performance of pivoting

through a common language, but the results are promising. The injection of target-specific adapters

substantially narrows the performance gap with bilingual models as we have seen before.

To sum up, it is difficult to say which is the best approach. Bilingual direct models are still the ones

that can achieve better results for most of the language combinations. However pivot-based translation
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Direct Pivot-Based Pivot-Based Direct
Bilingual Bilingual Shared Models Zero-Shot w/Target Adapters

de-fr 34.87 35.06 34.51 30.56
it-fr 35.91 34.83 34.54 30.84
pt-fr 39.45 38.63 37.81 34.28
es-fr 39.04 38.18 37.74 34.03
fr-de 25.89 26.26 25.00 22.39
fr-it 31.41 30.89 29.69 27.18
fr-pt 35.38 34.67 33.55 29.57
fr-es 35.72 35.53 34.60 31.70

da-de 27.04 27.04 25.96 24.31
nl-de 27.22 27.05 26.04 24.64
pl-de 24.70 24.75 24.26 17.13
sv-de 27.01 26.82 25.74 23.62
de-da 32.77 33.29 32.01 28.27
de-nl 31.26 31.25 29.84 27.38
de-pl 22.59 23.21 22.92 20.76
de-sv 30.46 31.27 30.53 26.86

Average 31.30 31.17 30.30 27.10

Table 4.8: Average translation quality (BLEU score) of different approaches for translating between non-
English languages.

is able of achieving very competitive results with a lower number of models. Regarding direct zero-

shot translation, it is not able to achieve comparable results yet, adapters clearly helped many-to-many

models to boost their performance, but they were not able to completely close the gap. The choice is a

trade-off between the number of models and the desired level of quality.

4.8 Use of Different Pivot Languages

To perform translation between languages that do not have parallel data we have tried two different

techniques: direct zero-shot translation and pivot-based translation. As we were using an English-centric

dataset, the pivot language that we have used so far was English.

Later we have asked ourselves if we could improve the performance if we use a different pivot lan-

guage. English is the usual choice, but we want to check if the usage of a language that belongs to the

same language family helps to improve the translation performance in the case of pivot translation.

We have identified two languages with potential to be used as pivot languages: German (de) and

French (fr). These languages were chosen because they present a big volume of data and are repre-

sentative of different language families. After having chosen these two languages, we have selected the

languages that could be helped with this strategy:

• In the case of French we have chosen: Portuguese (pt), Spanish (es), Italian (it) and German

(de);

• In the case of German we have chosen: Polish (pl), Dutch (nl), Swedish (sv), French (fr) and

Danish (da).
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We trained dedicated bilingual model for each language to and from English, and to and from the

desired pivot language (French or German depending on the previous list). To train these models, we

used the Europarl dataset. For these experiments, we used Transformer Base with 6 layers in both the

encoder and the decoder, model dimension set to 512, hidden dimension size of 512 and 8 attention

heads. For optimization, we use Stochastic Gradient Descent with Adam Optimizer (Kingma and Ba

[58]), (β1 = 0.9, β2 = 0.98) with label smoothing of 0.1 and scheduled learning rate (warm-up step 16k).

We use dropout of 0.3. BLEU scores are calculated on the checkpoint with the best validation BLEU

score employing beam search with a beam size of 5.

After having trained the bilingual dedicated models, we used them for pivoting. We compare the

translation quality of models of pivot translation in Tables 4.9 (for French) and 4.10 (for German).

de it pt es
English French English French English French English French

de - - 28.75 27.40 32.73 30.34 33.63 31.45
it 24.47 22.92 - - 32.80 32.01 33.43 32.46
pt 27.75 25.93 32.31 31.61 - - 38.12 36.32
es 27.53 25.87 31.87 31.09 36.98 35.26 - -

Table 4.9: Average translation quality (BLEU) of pivot translations using different pivot languages: En-
glish and French.Rows indicate source language, columns indicate target language.

da nl fr pl sv
English German English German English German English German English German

da - - 32.11 29.93 36.14 33.08 23.70 21.48 34.77 30.90
nl 34.50 31.08 - - 35.64 33.32 23.45 21.04 32.22 28.48
fr 33.99 29.95 31.10 29.12 - - 23.25 20.92 31.78 27.73
pl 30.89 28.24 29.00 27.22 33.57 30.74 - - 29.30 26.67
sv 36.90 32.45 31.31 29.12 35.93 32.57 23.77 21.47 - -

Table 4.10: Average translation quality (BLEU) of pivot translations using different pivot languages:
English and German.Rows indicate source language, columns indicate target language.

Somewhat surprisingly, we see that it is clear that English is the best pivot language. The reasons

behind it may be:

• the bilingual models to and from French have a worse performance (in terms of BLEU score) than

the bilingual models to and from English. As the models that are used for pivoting are worse,

consequently the pivot results are worse too. In the case of German, degradation is even higher;

• French and especially German are morphologically rich languages. The degradation in the case

of using German as pivot language (-3,35 BLEU points on average when compared with results

obtained using English) is much higher than in the case of French (-1,48 BLEU points).

Probably, if we have larger datasets, some of the problems might be solved. As we are dealing with

morphologically rich languages, the size of the dataset has a huge impact on the final results.
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4.9 Summary

Throughout this chapter, we have explored different ways of improving multilingual neural machine trans-

lation systems. The focus was on translating between all the official European languages.

As our main goal was to close the gap to bilingual dedicated models, first we have trained dedicated

bilingual baselines for each language-pair available in our dataset. Then, we took the easiest way and

trained fully shared models on three different configurations: many-to-one, one-to-many and many-to-

many. After having concluded that fully shared models are still behind bilingual direct models (especially

for one-to-many and many-to-many configurations), we explored the use of adapters on top of them to

improve the results.

Adapters clearly help to close the gap between bilingual models (our baselines) and multilingual

models. Probably if we increase even more the size of the adapters, the results would be even better.

However, it is impossible to forget that the aim of this architecture is to introduce only a small number of

parameters. If we increase too much the hidden dimension, we can possible loose the main advantage

that adapters have.

Regarding translation between non-English languages, we tried two different approaches: pivot-

based zero-shot translation and direct zero-shot translation. pivot-based was the one that achieved the

best results (in some cases it was even possible to surpass bilingual baselines). Nevertheless, the

introduction of target-specific adapters on top of a many-to-many fully shared system clearly helped us

to close the gap to bilingual baselines.

Finally, we performed some experiments using different pivot languages. Contrary to what we ex-

pected, English achieved the best results for all the pivot translation that we have performed.
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Chapter 5

Conclusions

In this chapter, the main achievements of this thesis are presented and we suggest some possible

directions for future work.

5.1 Achievements

The goal of this thesis was to develop multilingual neural machine translation systems that cover all

24 European official languages. We show that it is possible to train multilingual models in large scale

settings and that they can improve performance over bilingual baselines, especially for low-resource

language-pairs.

We started by training fully shared models on three different configurations (many-to-one, one-to-

many and many-to-many). We compared the results of these systems with bilingual baselines. Although

the results were competitive, bilingual baselines were able to achieve better results in almost every

translation direction.

In order to improve the performance of fully-shared multilingual NMT systems, we followed Bapna

and Firat [26] and introduced adapters on top of the three fully shared models. Adapters enable a mul-

tilingual model to adapt to multiple target tasks without forgetting the original parameters of the model.

In the case of the many-to-one and one-to-many models, we used language-pair specific adapters and

evaluated the influence of varying the size of the adapters and the number of adapters. We concluded

that the use of larger adapters yield improvements in terms of the BLEU score achieved. Furthermore,

we concluded that the best choice was to use adapters for all language-pairs. In the case of the many-

to-many model, we explored different kind of adapters. We tried to use adapters compatible with the

idea of direct zero-shot translation. So, we injected three different adapters on top of the fully shared

many-to-many systems: adapters conditioned on the source language both in the encoder and in the

decoder, adapters conditioned on the target language both in the encoder and decoder and adapters

conditioned on the source language in the encoder and on the target language in the decoder. The

exclusive use of source adapters was the approach that achieved worst results in all scenarios. When

translating from English to other languages, the exclusive use of target adapters was the best choice.
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When translating from other languages to English, the hybrid approach was the one that had the best

performance. In terms of direct zero-shot translation (when translating between non-English languages),

target adapters, both in the encoder and decoder, were the ones that achieved the best results.

Regarding pivot-based zero-shot translation, we explored the use of different pivot languages. En-

glish is the usual choice as pivot language but we explored the use of French and German to translate

between Romance and Germanic languages, respectively. We were expecting to have better results

when using French or German for pivoting between languages from the same family. However, that did

not occur. The best results were obtained when using English as the pivot language.

5.2 Future Work

In this work, we have injected adapters in all layers of fully-shared transformer systems. It would be

interesting to test the use of these tiny residual layers in only some layer, i.e., only in the decoder side.

Possibly, we could conclude that they have an higher influence in certain layers and increase their size

in these layers or remove the adapters from the layers where they do not have impact.

Recent works (Pfeiffer et al. [52]) proposed to combine different adapters (AdapterFusion) for dif-

ferent Natural Language Processing tasks such as sentiment analysis, commonsense reasoning, para-

phrase detection, and recognizing entailment. They use a mechanism very similar to the transformer’s

attention. The output of the feed-forward layer is their query vector (Q) and the output of each adapter

is used both as the value (V) and key (K) vectors. One interesting direction direction to be explored is

the use of this technique for multilingual neural machine translation. Sharing knowledge from multiple

adapters could possible improve, even more, the results obtained due to transfer learning.

We believe our findings may inspire future research on multilingual NMT.
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Appendix A

A.1 Dataset Details

Language Code Train Set Dev Set Test Set

Romanian ro 375976 4000 4630
Bulgarian bg 383740 4000 4630
Slovenian sl 594094 4000 4630
Hungarian hu 594608 4000 4630

Polish pl 600283 4000 4630
Latvian lt 603327 4000 4630
Latvian lv 608279 4000 4630
Slovak sk 608864 4000 4630
Czech cs 615801 4000 4630

Estonian et 619805 4000 4630
Greek el 1243699 4000 4630

Swedish sv 1826250 4000 4630
Italian it 1886848 4000 4630

German de 1896440 4000 4630
Finnish fi 1900165 4000 4630
Danish da 1930805 4000 4630

Portuguese pt 1937771 4000 4630
Spanish es 1941571 4000 4630
Dutch nl 1965015 4000 4630
French fr 1988104 4000 4630
Maltese mt 1824202 4000 4000
Croatian hr 685201 4000 4000

Irish ga 155572 4000 4000

Table A.1: Training, Validation and Test Sets size on the 23 languages→ English. The code corresponds
to the ISO 639-1 code of each language.
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A.2 Complete Results when translating to/from English

X-en Bilingual Many-to-One Many-to-Many
Fully Shared HR languages All languages Fully Shared Source Target Source+Target

adapters adapters adapters adapters adapters

ro-en 46.21 47.44 47.69 48.23 45.76 47.04 46.61 46.99
bg-en 43.62 45.09 45.49 45.96 43.34 44.57 44.22 44.59
sl-en 41.69 43.42 43.55 43.8 41.48 42.73 42.44 42.82
hu-en 39.28 39.79 39.88 40.39 37.49 38.95 38.3 38.91
pl-en 39.82 39.07 39.3 39.5 36.84 38.2 37.81 38.54
lt-en 36.43 37.13 37.21 37.44 35.17 36.23 35.86 36.44
lv-en 40.98 41.5 41.84 42.08 39.49 41.15 40.57 41.05
sk-en 41.61 42.97 43.26 43.32 40.96 42.14 41.95 42.21
cs-en 42.85 43.7 43.94 44.23 41.77 42.81 42.71 42.82
et-en 39.88 40.66 40.69 41.08 38.13 39.82 39.11 39.76
el-en 49.02 48.55 48.88 49.13 46.62 47.66 47.23 47.7
sv-en 45.29 44.6 45.02 45.03 43.01 44.14 43.54 44.05
it-en 39.34 38.97 39.38 39.47 37.51 37.99 38.16 38.23

de-en 42.21 41.68 41.77 42.21 40.01 41.02 40.64 41.03
fi-en 37.33 36.34 36.5 36.74 34.37 35.47 34.98 35.42

da-en 45.8 44.98 45.03 45.46 43.23 44.39 44.02 44.42
pt-en 47.72 46.79 47.28 47.49 45.23 46.25 46 46.21
es-en 48.52 47.64 48.22 48.41 45.83 46.94 46.56 47.09
nl-en 42.8 42.26 42.42 42.9 40.82 41.76 41.32 41.93
fr-en 43.94 43.13 43.55 43.73 41.63 42.74 42.2 42.53
mt-en 67.68 59.94 59.81 61.91 58.14 60.88 58.42 60
hr-en 61.75 72.53 48.29 50.61 43.15 48.77 44.68 46.58
ga-en 81.58 48.46 72.84 76.91 67.07 76.38 69 72.28

Table A.2: Results achieved when translating from any language to English.
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en-X Bilingual One-to-Many Many-to-Many
Fully Shared HR languages All languages Fully Shared Source Target Source+Target

adapters adapters adapters adapters adapters

en-ro 39.25 33.23 33.60 38.40 38.42 40.21 40.97 41.16
en-bg 40.23 39.78 40.03 41.31 38.12 39.00 40.79 40.36
en-sl 38.21 36.76 36.75 38.07 34.58 35.71 37.61 37.19
en-hu 29.20 26.96 27.00 28.43 25.38 26.16 28.21 27.67
en-pl 29.57 28.13 28.43 29.66 26.62 27.50 29.27 28.95
en-lt 27.22 26.26 26.21 27.49 24.66 25.47 27.13 26.84
en-lv 35.04 34.17 34.49 35.45 32.69 33.39 35.06 34.79
en-sk 36.09 35.31 35.37 36.51 33.66 34.52 35.87 35.63
en-cs 33.97 33.22 33.46 34.32 31.67 32.51 33.67 33.51
en-et 27.89 26.41 26.32 27.67 24.74 25.26 27.35 27.23
en-el 41.58 39.78 39.42 40.77 38.20 38.87 40.81 40.07
en-sv 43.19 40.05 41.69 41.80 38.63 39.45 41.54 41.13
en-it 36.68 34.57 35.48 35.59 33.10 33.76 35.35 34.89

en-de 34.56 31.89 32.69 32.75 30.40 30.91 32.35 32.30
en-fi 28.52 25.68 27.05 27.13 23.96 24.70 26.59 26.11

en-da 46.12 41.95 43.38 43.77 40.73 41.26 43.39 43.11
en-pt 44.98 43.00 43.89 43.98 41.65 42.20 44.02 43.50
en-es 46.35 44.25 45.18 45.14 43.21 43.82 45.38 44.84
en-nl 38.98 35.73 36.90 37.11 34.60 35.18 36.86 36.70
en-fr 45.23 43.42 44.52 44.40 41.97 42.68 44.43 44.03
en-mt 53.11 47.90 47.93 49.68 46.10 47.26 50.14 49.38
en-hr 52.64 39.41 39.50 44.58 36.92 38.06 44.22 42.12
en-ga 69.82 60.08 59.99 63.58 56.99 58.49 64.02 61.44

Table A.3: Results achieved when translating from English to any language

A.3 Zero-Shot Translation Complete Results
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared w/adapters Fully Shared w/Target adapters Source+Target adapters

bg - - - - - -
cs 26.33 26.09 26.78 7.94 18.72 19.10
da 34.32 32.74 33.87 4.14 25.78 24.89
de 26.45 25.39 25.98 4.44 20.67 19.35
el 31.05 30.63 31.36 10.48 28.14 25.96
es 34.92 34.42 35.12 7.16 27.03 27.08
et 21.23 20.76 21.46 9.11 17.99 17.45
fi 22.07 20.67 21.76 5.70 15.66 15.31
fr 35.90 35.49 36.19 9.44 29.32 28.65
hu 23.24 22.04 23.18 7.11 19.73 17.30
it 29.57 28.48 29.35 4.09 22.81 18.74
lt 21.98 21.57 22.61 5.43 18.99 16.42
lv 27.47 27.01 27.81 10.67 24.39 22.94
nl 30.76 29.22 30.30 3.98 22.55 23.33
pl 24.05 23.42 24.58 14.26 20.96 20.05
pt 33.82 33.33 34.05 6.08 23.57 24.37
ro 29.77 25.53 29.47 14.22 26.03 25.94
sk 28.34 27.87 28.65 10.92 23.03 23.14
sl 29.32 28.74 29.48 7.27 24.99 20.93
sv 31.60 30.58 31.95 6.92 22.77 24.30

Table A.4: Zero Shot translation results - Source language bg. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.78 30.83 31.68 12.17 28.62 27.95
cs - - - - - -
da 33.17 31.74 32.83 3.22 24.63 25.42
de 26.21 25.34 25.78 3.61 20.21 20.68
el 29.75 29.02 29.71 8.17 25.77 25.15
es 33.93 33.28 33.93 6.30 25.99 28.09
et 21.29 20.53 21.50 8.54 17.97 18.37
fi 22.10 20.47 21.56 4.71 16.07 16.19
fr 35.05 34.45 35.37 9.24 29.30 29.00
hu 23.00 22.16 23.24 8.03 20.22 18.53
it 28.79 27.70 28.31 4.50 23.28 21.29
lt 21.79 21.32 22.40 3.90 18.45 17.20
lv 26.96 26.65 27.56 9.04 24.33 23.66
nl 30.46 29.08 29.91 4.43 23.17 24.55
pl 24.02 23.56 24.43 14.00 21.30 21.47
pt 32.62 31.86 32.61 4.90 23.42 24.82
ro 28.68 24.35 28.15 12.74 25.05 25.71
sk 29.41 29.41 30.07 12.29 26.44 26.95
sl 29.49 28.88 29.70 7.58 25.88 24.00
sv 31.19 30.04 31.13 5.93 22.42 25.10

Table A.5: Zero Shot translation results - Source language cs. Rows indicate the target language.

58



Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 31.40 30.73 31.7 26.85 28.78 28.44
cs 26.07 25.18 25.95 20.3 22.67 22.63
da - - - - - -
de 27.04 25.31 25.96 18.56 24.31 23.47
el 30.51 29.04 29.93 24.87 27.34 26.56
es 34.72 33.49 33.89 25.66 30.75 30.25
et 21.75 20.36 21.33 17.57 19.42 19.27
fi 23.28 21.03 22.07 16.03 19.24 18.73
fr 36.14 34.71 35.52 28.10 31.68 31.39
hu 23.14 21.57 22.56 17.65 20.46 19.30
it 29.79 28.00 28.61 17.84 25.07 24.07
lt 21.57 20.90 21.54 16.08 19.28 18.76
lv 27.23 26.19 27.71 22.90 24.98 24.38
nl 32.11 29.53 30.59 22.95 27.72 27.51
pl 23.70 22.64 23.58 18.83 20.83 20.40
pt 33.53 32.13 32.65 20.71 28.08 28.10
ro 29.21 24.45 28.29 25.15 27.10 27.69
sk 27.68 26.89 27.77 22.26 24.77 24.11
sl 29.17 27.85 28.73 22.57 25.96 25.16
sv 34.77 32.52 33.63 26.03 30.95 30.91

Table A.6: Zero Shot translation results - Source language da. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 29.61 28.83 29.88 24.14 27.20 26.47
cs 25.11 24.43 24.99 17.09 21.63 21.92
da 33.29 30.97 32.01 15.94 28.27 28.39
de - - - - - -
el 29.17 27.84 28.58 21.15 25.57 25.13
es 33.63 32.51 32.96 22.94 29.25 29.08
et 20.54 19.44 20.25 15.94 18.24 18.18
fi 21.71 19.85 20.63 13.16 18.09 16.98
fr 35.06 33.72 34.51 23.30 30.56 26.68
hu 22.69 21.39 22.48 15.94 20.38 19.05
it 28.75 26.84 27.52 14.49 24.69 23.01
lt 20.95 20.25 21.01 13.59 18.61 18.04
lv 25.54 24.90 25.69 20.69 23.53 23.15
nl 31.25 29.01 29.84 16.73 27.38 26.86
pl 23.21 22.01 22.92 18.02 20.76 20.28
pt 32.73 31.09 31.72 17.49 27.34 26.77
ro 28.07 23.38 26.94 23.04 25.45 26.15
sk 27.36 26.39 26.95 21.01 24.16 23.86
sl 28.19 27.10 27.89 19.73 25.27 24.23
sv 31.27 29.27 30.53 20.06 26.86 26.41

Table A.7: Zero Shot translation results - Source language de. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 33.59 32.70 33.53 26.66 30.91 30.08
cs 27.57 26.80 27.56 17.40 22.79 22.30
da 36.07 33.64 34.56 11.71 28.75 28.76
de 28.50 26.34 26.99 12.47 22.86 22.20
el - - - - - -
es 37.17 35.89 36.36 18.77 32.09 31.35
et 22.28 21.20 22.07 15.56 19.19 18.65
fi 23.77 21.81 22.71 12.80 18.93 17.92
fr 38.13 36.94 37.53 21.38 32.75 31.59
hu 24.31 22.92 23.86 15.01 21.24 19.60
it 31.21 29.39 30.13 11.37 26.25 23.74
lt 22.51 21.98 22.74 12.81 19.77 18.33
lv 28.63 27.41 28.46 21.37 25.39 24.67
nl 32.47 30.46 31.22 12.95 26.75 26.42
pl 24.89 23.82 24.84 18.61 21.60 20.93
pt 36.05 34.56 35.32 14.86 29.17 28.61
ro 31.50 26.45 30.44 24.58 28.56 28.87
sk 29.32 28.52 29.18 20.50 25.47 24.67
sl 30.70 29.59 30.29 17.25 26.82 25.15
sv 33.98 31.73 32.94 19.18 28.02 27.85

Table A.8: Zero Shot translation results - Source language el. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 32.59 31.85 32.75 26.77 30.11 29.48
cs 27.23 26.32 27.00 18.58 22.69 22.67
da 35.79 33.16 34.37 12.39 28.28 28.59
de 27.53 25.76 26.48 13.30 22.91 22.71
el 32.67 31.05 32.06 22.16 28.95 28.67
es - - - - - -
et 22.06 20.73 21.46 16.38 19.23 19.20
fi 23.29 21.03 22.15 13.75 18.72 18.16
fr 38.18 36.88 37.74 22.62 34.03 33.33
hu 23.75 22.38 23.47 16.38 21.09 19.97
it 31.87 30.01 30.87 13.85 27.85 25.47
lt 22.26 21.42 22.20 13.06 19.62 18.73
lv 27.71 26.80 27.82 21.39 24.95 24.39
nl 32.40 30.10 31.11 14.79 27.01 27.14
pl 24.46 23.75 24.66 18.88 21.99 21.42
pt 36.98 35.26 36.06 16.76 31.46 31.91
ro 31.65 26.37 30.43 25.70 29.58 30.11
sk 28.89 28.20 28.94 22.07 25.24 25.17
sl 30.22 28.79 29.79 19.21 26.41 25.26
sv 33.76 31.49 32.73 18.91 27.38 27.23

Table A.9: Zero Shot translation results - Source language es. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 29.39 28.87 29.72 14.68 25.68 25.35
cs 24.57 24.36 24.87 8.68 17.17 18.59
da 32.15 30.15 31.06 5.29 24.27 25.02
de 25.28 24.10 24.47 5.57 19.27 19.71
el 28.02 27.24 27.73 11.72 23.37 22.98
es 32.51 31.72 32.30 9.29 25.58 26.01
et - - - - - -
fi 22.70 20.73 21.69 7.39 17.94 16.81
fr 33.94 33.12 33.68 14.43 27.72 26.93
hu 22.86 21.23 22.33 10.72 19.29 17.33
it 27.74 26.37 27.18 5.93 22.16 19.02
lt 21.30 20.73 21.45 7.06 18.14 16.95
lv 26.73 26.00 26.86 12.86 23.50 22.81
nl 29.46 27.91 28.66 6.13 22.90 23.09
pl 22.90 22.18 23.10 14.73 19.53 19.01
pt 31.06 30.16 30.74 8.65 23.20 23.23
ro 27.22 23.00 26.55 15.21 22.95 23.36
sk 26.75 26.05 26.86 12.54 22.06 21.95
sl 27.77 26.54 27.38 9.64 23.01 20.74
sv 29.91 28.51 29.53 9.37 23.08 24.23

Table A.10: Zero Shot translation results - Source language et. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 27.61 26.39 27.29 16.69 22.86 22.69
cs 22.99 21.98 22.33 11.27 17.02 17.60
da 30.61 27.72 28.89 5.79 23.34 23.51
de 23.55 21.99 22.32 8.59 18.29 18.43
el 26.53 24.77 25.47 13.85 21.90 21.39
es 30.57 28.84 29.47 10.60 24.07 24.05
et 19.78 18.25 18.98 13.21 16.55 16.37
fi - - - - - -
fr 31.91 30.20 30.83 16.41 24.94 24.86
hu 21.48 19.59 20.48 12.42 17.80 16.39
it 26.57 24.68 25.20 7.85 20.19 18.38
lt 19.88 18.85 19.44 7.89 16.62 15.64
lv 24.12 23.18 23.93 16.07 20.86 20.49
nl 27.89 25.48 26.40 8.97 21.35 21.68
pl 21.28 19.85 20.78 14.32 17.06 16.70
pt 29.40 27.69 28.25 11.47 21.64 21.86
ro 25.34 20.76 24.32 17.59 21.28 21.66
sk 24.48 23.22 23.76 15.08 19.64 19.48
sl 25.57 23.83 24.58 12.11 20.51 19.66
sv 28.83 26.46 27.76 11.02 21.64 22.74

Table A.11: Zero Shot translation results - Source language fi. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.87 30.00 30.96 26.26 28.50 28.10
cs 25.18 24.56 25.16 19.83 22.37 21.90
da 33.99 31.11 32.21 17.58 27.60 27.70
de 26.26 24.45 25.00 16.35 22.39 22.05
el 30.58 28.89 29.73 23.65 27.87 27.42
es 35.53 34.11 34.60 24.31 31.70 31.57
et 20.53 19.38 20.27 16.37 18.32 18.46
fi 22.04 19.93 20.85 14.04 17.31 16.89
fr - - - - - -
hu 22.64 21.16 22.29 17.34 20.27 19.38
it 30.89 29.00 29.69 18.64 27.18 25.84
lt 20.96 20.17 21.01 14.90 18.87 17.93
lv 26.29 25.22 26.05 21.49 23.77 23.60
nl 31.10 28.89 29.88 20.04 26.50 26.31
pl 23.25 22.14 23.22 18.87 20.96 20.59
pt 34.67 32.92 33.55 20.66 29.57 29.65
ro 29.53 24.65 28.61 26.36 28.26 28.88
sk 27.08 26.36 27.12 22.24 24.33 24.04
sl 28.63 27.02 27.79 20.35 25.26 24.44
sv 31.78 29.48 30.76 20.57 25.71 25.97

Table A.12: Zero Shot translation results - Source language fr. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 28.81 28.27 29.1 13.59 24.88 24.54
cs 24.01 23.52 24.17 7.68 16.05 17.69
da 31.12 29.24 30.31 4.23 23.01 22.60
de 24.64 23.41 24.00 5.00 18.87 19.12
el 27.87 26.84 27.49 10.66 23.29 22.49
es 31.94 31.29 31.86 8.33 25.23 25.50
et 20.12 19.17 19.88 9.69 16.64 16.51
fi 21.54 19.81 20.75 5.33 15.88 14.64
fr 33.42 32.54 33.32 12.20 27.44 26.54
hu - - - - - -
it 27.43 26.20 26.98 5.94 21.90 19.19
lt 20.47 19.72 20.46 4.49 16.56 15.37
lv 24.89 24.30 25.30 10.53 21.51 20.90
nl 29.22 27.42 28.17 6.59 22.64 21.90
pl 22.51 21.55 22.52 14.54 19.04 18.34
pt 30.86 29.87 30.59 8.00 23.05 22.87
ro 26.65 22.42 25.94 14.70 22.33 22.95
sk 26.02 25.29 26.11 9.81 20.39 20.72
sl 27.01 26.10 27.05 8.00 22.37 20.81
sv 29.24 27.79 28.87 7.38 21.68 22.17

Table A.13: Zero Shot translation results - Source language hu. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 29.07 28.15 29.25 23.25 26.47 25.98
cs 23.34 22.70 23.47 16.14 20.21 20.02
da 31.23 28.83 29.96 8.78 24.74 25.13
de 24.47 22.69 23.31 11.72 20.55 20.17
el 27.98 26.76 27.71 16.39 25.60 24.88
es 33.43 32.45 33.11 17.44 29.54 29.53
et 18.93 17.77 18.60 14.28 16.96 16.59
fi 20.34 18.47 19.38 11.30 15.97 15.74
fr 34.83 33.74 34.54 18.85 30.84 30.65
hu 21.53 19.90 20.68 14.92 19.05 18.01
it - - - - - -
lt 19.54 18.72 19.63 12.19 17.61 16.76
lv 24.19 23.25 24.24 19.40 21.98 21.86
nl 29.18 27.00 27.93 12.44 23.89 24.16
pl 22.21 21.37 22.33 17.41 19.90 19.53
pt 32.80 31.20 31.93 14.12 27.08 27.46
ro 27.36 22.83 26.36 22.22 25.69 26.16
sk 25.15 24.17 24.99 19.53 22.37 21.96
sl 26.05 25.02 25.93 16.18 22.95 22.22
sv 29.18 27.18 28.34 14.96 23.06 24.06

Table A.14: Zero Shot translation results - Source language it. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 27.42 26.99 27.86 13.51 24.49 23.77
cs 22.66 22.31 22.89 8.96 16.76 17.14
da 28.67 27.34 28.08 5.51 21.90 21.83
de 22.76 21.95 22.28 4.38 17.20 17.39
el 25.63 25.16 25.57 10.08 21.67 21.52
es 29.91 29.22 29.90 7.85 23.91 24.17
et 18.97 17.88 18.71 10.27 15.70 15.65
fi 19.86 18.54 19.36 6.65 15.62 14.45
fr 30.79 30.49 31.17 13.44 25.68 24.89
hu 20.59 19.64 20.51 9.15 17.26 15.76
it 25.57 24.71 25.38 5.76 20.61 18.35
lt - - - - - -
lv 24.03 23.72 24.22 15.18 21.82 21.06
nl 27.00 25.77 26.63 5.95 21.19 20.99
pl 21.02 20.54 21.28 14.46 17.77 17.69
pt 28.73 28.05 28.78 8.20 21.78 22.02
ro 25.07 20.99 24.85 12.50 21.17 21.50
sk 24.42 23.54 24.33 12.53 19.88 19.81
sl 24.97 24.23 24.89 10.53 20.97 19.33
sv 26.92 25.92 26.64 8.78 20.62 21.26

Table A.15: Zero Shot translation results - Source language lt. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.49 29.80 30.70 17.98 27.51 26.96
cs 25.32 24.90 25.54 10.83 18.68 20.22
da 32.35 30.55 31.57 6.53 25.18 25.73
de 25.00 24.10 24.61 5.90 19.70 20.04
el 28.73 27.70 28.67 13.22 24.05 24.11
es 32.62 31.92 32.58 14.13 26.84 27.52
et 21.28 20.42 21.20 13.72 18.72 18.54
fi 22.18 20.49 21.40 9.14 17.83 17.35
fr 33.97 33.26 33.99 16.21 28.46 27.67
hu 22.92 21.59 22.50 12.09 19.45 18.14
it 28.08 26.69 27.57 8.51 22.88 21.04
lt 21.90 21.36 22.09 8.06 19.03 18.01
lv - - - - - -
nl 29.81 28.06 28.91 8.78 23.59 24.29
pl 23.24 22.51 23.51 16.95 20.28 20.16
pt 31.48 30.75 31.22 10.72 24.22 24.79
ro 27.82 23.57 27.18 17.60 24.01 24.60
sk 27.39 26.88 28.11 14.72 22.81 22.92
sl 28.17 27.39 28.11 13.89 24.49 22.81
sv 30.48 29.03 30.02 11.22 23.99 25.11

Table A.16: Zero Shot translation results - Source language lv. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.23 29.49 30.45 26.04 27.98 27.50
cs 25.47 24.75 25.20 21.23 23.01 22.69
da 34.50 31.92 32.92 26.61 30.70 30.10
de 27.05 25.62 26.04 22.01 24.64 24.25
el 29.54 28.25 28.96 24.96 27.02 26.47
es 34.20 33.02 33.71 28.42 30.88 30.57
et 20.77 19.34 20.40 17.32 19.2 18.81
fi 22.41 19.93 21.06 15.67 17.86 17.20
fr 35.64 34.25 35.08 28.92 31.36 31.11
hu 22.94 21.52 22.67 18.57 21.02 20.14
it 29.14 27.48 28.10 21.55 25.06 23.80
lt 21.39 20.51 21.24 17.04 19.29 18.78
lv 26.29 25.36 26.12 22.52 24.39 24.01
nl - - - - - -
pl 23.45 22.28 23.34 19.15 21.27 20.96
pt 33.20 31.56 32.27 25.70 28.78 28.43
ro 28.35 23.54 27.40 25.02 26.66 26.9
sk 27.38 26.43 27.20 22.88 24.64 24.34
sl 28.61 27.12 28.07 23.24 25.67 25.15
sv 32.22 30.11 31.34 25.08 27.70 27.88

Table A.17: Zero Shot translation results - Source language nl. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 28.98 28.80 29.95 6.69 25.83 26.08
cs 24.49 24.23 24.98 3.89 13.66 18.20
da 30.89 29.20 30.37 1.92 20.94 22.06
de 24.75 23.61 24.26 2.20 17.13 17.47
el 27.63 26.98 27.58 3.96 23.01 21.38
es 32.23 31.85 32.44 3.60 21.94 24.41
et 19.78 18.93 19.78 4.13 15.44 16.02
fi 21.02 19.35 20.35 3.45 14.43 14.31
fr 33.57 33.03 33.83 5.35 26.15 27.19
hu 21.79 20.96 21.77 3.79 18.26 16.43
it 27.95 26.79 27.55 3.04 21.09 18.98
lt 20.69 20.02 21.25 2.14 16.71 14.81
lv 25.18 24.71 25.66 4.49 21.65 20.98
nl 29.00 27.73 28.60 2.80 20.92 21.96
pl - - - - - -
pt 31.32 30.58 31.36 3.49 20.11 22.96
ro 27.02 22.87 26.51 5.85 21.75 22.32
sk 26.50 26.12 26.93 5.74 19.66 21.52
sl 27.23 26.74 27.4 3.44 22.21 19.33
sv 29.30 28.04 29.02 3.50 18.13 22.30

Table A.18: Zero Shot translation results - Source language pl. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 32.90 32.04 32.93 27.78 30.32 30.14
cs 26.95 26.18 27.06 19.40 22.96 23.27
da 35.92 33.05 34.24 14.46 28.43 29.04
de 27.75 25.96 26.40 15.20 23.49 23.29
el 32.46 31.02 31.73 24.45 29.39 29.08
es 38.12 36.59 37.38 25.42 34.35 34.99
et 21.65 20.55 21.41 16.16 18.89 19.08
fi 23.13 20.84 21.84 14.02 18.08 18.00
fr 38.63 37.30 37.81 25.30 34.28 34.18
hu 23.93 22.32 23.51 17.34 21.27 20.29
it 32.31 30.46 31.15 15.10 27.84 26.67
lt 22.24 21.43 22.34 14.76 19.93 19.09
lv 27.70 26.72 27.61 22.75 25.27 25.07
nl 32.23 29.77 30.90 15.62 26.61 27.04
pl 24.92 23.95 24.86 20.04 22.54 22.01
pt - - - - - -
ro 31.58 26.42 30.46 26.46 29.55 30.36
sk 28.96 27.88 28.60 22.60 25.44 25.52
sl 30.07 28.89 29.76 20.58 26.36 25.77
sv 33.38 31.11 32.36 18.99 26.61 27.54

Table A.19: Zero Shot translation results - Source language pt. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 32.92 32.51 33.69 19.64 30.73 29.75
cs 26.63 26.76 27.45 9.48 18.97 19.37
da 35.10 33.41 34.54 3.34 24.37 21.83
de 27.33 26.09 26.7 4.69 20.63 19.69
el 32.06 31.61 32.37 9.99 28.94 27.29
es 36.97 36.45 37.02 7.77 28.91 30.62
et 21.79 21.09 21.94 10.31 18.90 18.02
fi 22.62 21.21 22.29 6.80 17.56 15.93
fr 37.68 37.32 38.06 12.33 33.04 31.47
hu 24.02 23.09 23.97 8.61 21.09 18.23
it 31.09 30.08 30.81 5.11 25.58 21.75
lt 22.24 22.13 22.87 6.08 19.04 16.21
lv 27.68 27.5 28.3 11.79 24.81 23.55
nl 31.80 30.38 31.34 5.33 24.54 24
pl 24.69 24.01 25.23 16.3 21.72 20.45
pt 35.79 35.01 35.8 6.88 25.76 26.55
ro - - - - - -
sk 28.85 28.66 29.45 13.71 23.87 23.45
sl 30.17 29.75 30.48 8.39 25.8 21.97
sv 32.87 31.81 32.98 8.13 23.58 24.51

Table A.20: Zero Shot translation results - Source language ro. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.9 30.9 31.75 11.85 28.53 27.13
cs 27.42 27.24 27.84 8.57 20.86 21.35
da 32.8 31.54 32.51 3.05 23.76 22.77
de 26.27 25.4 26.02 3.69 20.12 19.59
el 29.46 29.09 29.58 7.57 25.54 24.63
es 33.68 33.3 33.86 6.37 25.74 27.07
et 21.24 20.41 21.58 8.47 17.65 17.69
fi 22.34 20.81 21.52 4.61 16.02 15.33
fr 34.96 34.71 35.2 9.12 29.35 28.39
hu 23.15 22.14 23.14 7.76 20.34 17.78
it 28.58 27.75 28.46 4.35 23.29 20.03
lt 21.74 21.46 22.21 4.04 18.64 16.37
lv 27.02 26.76 27.59 8.58 24.63 23.27
nl 30.51 29.11 30.07 4.22 22.88 23.12
pl 24.13 23.61 24.42 14.15 21.38 20.89
pt 32.64 32.62 32.74 4.98 23.14 23.28
ro 28.31 24.27 27.98 11.8 24.46 24.88
sk - - - - - -
sl 29.66 29 29.95 7.5 26.35 21.34
sv 30.94 29.97 30.83 5.91 21.71 23.45

Table A.21: Zero Shot translation results - Source language sk. Rows indicate the target language.
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Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.58 30.65 31.57 10.19 28.06 27.00
cs 26.44 26.21 26.94 6.33 16.87 19.59
da 33.02 31.62 32.74 2.53 22.85 21.53
de 26.12 25.26 25.89 3.18 19.39 19.49
el 29.06 29.12 29.77 6.94 25.74 24.64
es 33.88 33.54 34.24 5.39 24.51 26.59
et 21.01 20.42 21.36 7.85 17.72 17.86
fi 22.21 20.60 21.71 5.09 16.00 14.97
fr 34.75 34.66 35.29 8.34 28.60 27.72
hu 23.26 22.18 23.39 7.78 20.28 17.48
it 28.40 27.54 28.27 3.89 22.64 18.59
lt 21.83 21.30 22.14 3.94 18.17 16.43
lv 26.82 26.24 27.29 8.66 23.76 22.94
nl 30.35 29.17 29.95 4.03 22.43 22.68
pl 24.05 23.5 24.44 13.19 20.72 20.42
pt 32.51 32.12 32.94 4.32 21.87 22.50
ro 28.48 24.30 28.11 9.51 24.30 24.70
sk 28.50 28.01 28.91 10.85 23.57 24.21
sl - - - - - -
sv 31.01 29.94 30.94 5.16 20.55 22.75

Table A.22: Zero Shot translation results - Source language sl. Rows indicate the target language.

Pivot-Based Zero-Shot Direct Zero-Shot
Bilingual Fully Shared adapters Fully Shared Target adapters Source+Target adapters

bg 30.99 30.19 31.09 26.22 28.35 27.90
cs 25.64 24.93 25.89 20.64 22.60 22.41
da 36.90 33.93 35.14 23.48 32.59 32.65
de 26.82 25.14 25.74 19.81 23.62 23.39
el 29.95 28.58 29.33 24.93 26.95 26.63
es 34.48 33.07 33.70 26.52 30.49 29.98
et 21.29 20.16 20.99 17.46 19.38 19.05
fi 23.28 21.00 22.14 16.40 19.07 18.64
fr 35.93 34.45 35.09 28.20 30.70 30.84
hu 23.10 21.59 22.66 18.00 20.51 19.69
it 29.37 27.63 28.50 18.83 24.93 23.84
lt 21.14 20.63 21.44 16.46 19.23 18.58
lv 26.89 25.83 26.97 22.91 24.64 24.27
nl 31.31 29.10 30.28 23.27 26.69 26.79
pl 23.77 22.56 23.62 18.99 21.01 20.71
pt 33.17 31.68 32.48 22.55 27.91 27.69
ro 28.97 24.22 28.13 25.15 26.97 27.69
sk 27.59 26.68 27.52 22.77 24.69 24.19
sl 28.84 27.52 28.46 22.64 25.85 24.96
sv - - - - - -

Table A.23: Zero Shot translation results - Source language sv. Rows indicate the target language.
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