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Abstract

The microservices architecture has become mainstream for the development of business applications

because it supports the adaptation of scalability to the type of demand, but, most importantly, allows

a faster development because it fosters an agile development process based on small teams focused

on the product. Consequently, a trend in migrating the existing monolith systems to a microservices

architecture was born. Current approaches to the identification of candidate microservices in a monolith

neglect the cost of redesigning the monolith functionality due to the impact of the CAP theorem. In this

thesis we propose a redesign process, guided by a set of complexity metrics, that allows the software

architect to analyse and redesign the monolith functionality given a candidate decomposition. We ad-

dress two new research questions: (1) What set of operations can be provided to the architect such that

the functionalities can be redesigned by applying microservices pattern? (2) Is it possible to refine the

complexity value associated with the monolith migration when there is additional information about the

functionalities redesign? - Regarding the first question we propose a set of operations that the architect

can use in the redesign process. To answer the second question we define new metrics that provide a

more precise value on the cost of the migration. Both questions are evaluated in the context of candidate

decompositions of two monolith systems, LdoD e Blended Workflow.

Keywords

Microservices; Monolith Application; CAP theorem; Metrics; Design Patterns.

3





Resumo

A arquitetura de microsserviços tornou-se a tendência para o desenvolvimento de aplicações porque

suporta a adaptação da escalabilidade ao tipo de procura, mas, mais importante, permite um desen-

volvimento mais rápido porque promove um processo de desenvolvimento ágil baseado em peque-

nas equipas focadas no produto. Consequentemente, surgiu uma tendência de migração dos sis-

temas monolı́ticos existentes para uma arquitetura de microsserviços. As abordagens atuais para a

identificação de microsserviços num sistema monólito negligenciam o custo de redesenhar a funcional-

idade do monólito devido ao impacto do teorema CAP. Nesta tese propomos um processo de redesenho,

guiado por um conjunto de métricas de complexidade, que permitam ao utilizador analisar e redesen-

har a funcionalidade do monólito a partir de uma decomposição candidata. Abordamos duas novas

questões de pesquisa: (1) Que conjunto de operações pode ser fornecido ao arquiteto para que as

funcionalidades possam ser redesenhadas aplicando padrões de microserviços? (2) É possı́vel refinar

o valor de complexidade associado à migração do monólito quando há informações adicionais sobre o

redesenho das funcionalidades? - Em relação à primeira questão, propomos um conjunto de operações

que o arquiteto pode utilizar no processo de redesenho. Para responder à segunda pergunta, definimos

novas métricas que fornecem um valor mais preciso sobre o custo da migração. Ambas as perguntas

são avaliadas no contexto de decomposições de dois sistemas monolı́ticos, LdoD e Blended Workflow.

Palavras Chave

Microsserviços; Aplicações Monoliticas; Teorema CAP; Métricas; Padrões de Desenho.
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Microservices architecture [1] composes an application as a suite of independently deployable ser-

vices and emerged from the need to have highly available and scalable systems that can be developed

by multiple teams in an agile environment. On the other hand, the monolith architecture consists of one

large application block that contains all the application business logic, that is implemented, deployed and

scaled as a whole. As its size increases, it imposes several drawbacks such as the lack of agility, modifi-

ability and deployability. Hence, for some applications, including for some well-known applications such

as Netflix and Amazon [2], there is the need to migrate existing monolith systems to a microservices

architecture.

The migration between architectures is a complex process that requires the identification of candidate

microservices and the transition from an isolated transactional environment to a distributed transactional

environment. Therefore, it is necessary to find the best decomposition for the domain model and for the

functionalities execution flow that best suit the application, weigh the transition’s complexity and compare

it to the benefits to decide if the migration is worth it.

Our work is to improve the existing Mono2Micro application by developing new metrics that can

better explain and analyse the complexity originated on an architectural transition such that the software

architect responsible for assessing the migration can make the best decision possible.

1.1 Context

This thesis leverages on two previous works [3, 4] where a tool was developed that collects informa-

tion from monolith systems and, based on similarity measures, suggests a microservices candidate

decomposition. Its level of complexity can be assessed through a complexity metric. In [3], the work is

separated in three stages:

1. Through static analysis of the monolith source code, a callgraph is generated that shows the

business functionality call chain which can be used to retrieve the domain entities accessed by

each method.

2. Provide a microservices candidate decomposition by identifying clusters based on a similarity mea-

sure. The clusters, or microservices, are defined using an Hierarchical Clustering algorithm1 that

takes as inputs the weight attributed to the relation between two domain entities. The weight from

entity E1 to entity E2 is the quotient between the number of controllers that access both entities

and the amount of controllers that access only E1.

3. Show in a visualization tool the different partitioning hypothesis in the form of a graph, where the

developer can analyse and assess each one.

1docs.scipy.org/doc/scipy/reference/cluster.html
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Later, in [4] the initial work is extended. In this work the main relevant topic to our work is the de-

veloped complexity metric, that calculates the impact that the relaxing of atomic transactional behaviour

has on the functionalities redesign and implementation. The others aspects introduced are:

• The extraction from the monolith source code of additional information. For each functionality,

which domain entities are accessed and in what mode, read or write. By combining the different

entities access an access sequence can be constructed for each controller.

• Defines additional similarity measures used in the identification of candidate microservices decom-

positions.

• Enhances the visualization tool to analyse the microservices decompositions by comparing several

decompositions using the developed metric. Also, the architect is provided with a modeling tool

that allows him/her to change a decomposition. Based on those changes the new complexity value

if updated and presented.

1.2 Problem

The transition between architectures imposes a cost because the application cannot preserve the ex-

act behaviour that existed in the monolith. This is due to the introduction of distributed transactions,

as the monolith functionalities will be implemented through multiple independent microservices, as op-

posed to the single isolated unit in the monolith. Therefore, transaction management is more complex

in a microservices architecture because transactions cannot be executed according to the Atomicity,

Consistency, Isolation, Durability (ACID) properties, which introduces extra complexity for developers to

handle.

This extra complexity is explained by the Consistency, Availability, Partition Tolerance (CAP) theorem

[5], where given the microservices partitioned nature and its core requirement of high availability, the

level of information consistency must be sacrificed. To solve this problem, the two-phase commit protocol

[6] and sagas [7] were suggested to handle distributed transactions. However the two-phase commit

protocol does not scale with many replicas, being the use of sagas, in the context of microservices

architectures [8, 9], the main alternative to the two-phase commit protocol. On the other hand, the

Application Program Interface (API) Gateway pattern has been proposed [8, 9] to implement queries in

a distributed system.

Hence, in a microservices architectural transition the cost of adapting each functionality is based on

three main factors:

• The business logic of each functionality must change due to the new partitioned environment.

Since the two-phase commit protocol does not scale in large scale systems, with multiple replicas,

3



each functionality must be adapted to be executed as a saga, with multiple ACID transactions, one

in each microservice, instead of one single ACID transaction.

• One additional problem is the new levels of consistency that the application must deal with. As

explained by the CAP theorem, in a partitioned environment with high availability, the consistency

across the system can not be ensured and the application must now deal with a new consistency

model. For instance, the eventual consistency model, that may cause temporary inconsistency

within the system.

• As a consequence of applying the SAGA pattern, the four ACID properties guaranteed in the

monolith when executing a transaction do not exist. A saga can not ensure the isolation between

concurrent executions that access to the same entities. Therefore, each functionality must also be

changed to accommodate the countermeasures necessary to ensure isolation.

Concluding, the transition to a distributed system and the introduction of sagas lead to a relaxed

consistency that, some times, can be perceived by the end-user, which may affect the application re-

quirements. Also, the functionality design and implementation becomes more complex because the use

of sagas is more cumbersome, for instance there is the need to implement compensating transactions

for each possible fault and the need to implement countermeasures that tackle the lack of isolation

between sagas. All these problems generate a migration complexity that must be assessed.

1.3 Research Questions

In this thesis we leverage on the previous works and extended it by, given a decomposition and a com-

plexity value, supporting the redesign of the functionalities and queries where microservices patterns

such as the SAGA and the API Gateway patterns are applied, while the complexity value is tuned.

As explained, due to the high availability requirement in a microservices architecture, the transition

from a monolith to a partitioned microservices system imposes a relaxed consistency model. This

situation has been coined in [10] as the Forgetting about the CAP Theorem migration smell, which has

been ignored by the literature, where its impact in the identification of candidate decompositions and in

the migration design and implementation was ignored.

We will focus on the impact that the new consistency levels may have on the application function-

alities, which, in the vast majority of the cases, may require their redesign and reimplementation. That

impact, or complexity, will be captured by integrating new information provided during the functionality

redesign, while integrating the microservices patterns.

In the previous thesis [4], a metric was composed that evaluates the functionality migration complexity

based only on the number of other functionalities that access the same entities. This metric does not
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incorporate the use of microservices design patterns, recommended by the literature [8, 9] to obtain

the optimal microservices architecture. With our approach we intend to improve the previous work and

answer to the following research questions:

1. What set of operations can be provided to the architect such that the functionalities can be re-

designed by applying microservices pattern?

2. Is it possible to refine the complexity value associated with the monolith migration when there is

additional information about the functionalities redesign?

1.4 Contributions

By leveraging on the previous work, our main contributions will be:

• We define a set of operations to be used in the functionalities redesign to transform a monolith

execution flow into a distributed microservices execution flow that follows the microservices design

patterns.

• We refine the existing metric into a set of complexity metrics to measure the microservices system

quality in terms of the cost associated with the relaxation of the transaction model.

• We enhance the visualization tool with modeling capabilities that supports the functionality re-

design by applying the set of operations. During the redesign process the architect is informed in

real-time about the functionality complexity value that is calculated after each change.

• We provide a visualization tool that allows the architect to compare different redesigns for the same

functionality based on the metrics values and their execution flow.

• A research paper entitled Monolith Migration Complexity Tuning Through the Application of Mi-

croservices Patterns [11] presented at the European Conference on Software Architecture (ECSA

2020) where the initial version of this work is presented.

1.5 Organization of the Document

This thesis is organized as follows: Chapter 2 presents the state of the art in microservices design

patterns, an analysis on metrics for microservices evaluation and also researches about visualization

tools. In chapter 3 our approach to the specification of the set of operations is explained as well as

our developed metrics to assess cost of migration. In section 4 we describe how we implemented our

approach, in particular the data structures developed and how the proposed operations affect them. In 5
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the features added to the visualization tool according to the solution architecture are shown. In chapter 6

we evaluate our set of operations and metrics with two monolith systems with expert decompositions.

Chapter 7 concludes this thesis with final remarks and an overall summary of the work, and describes

the possibilities for future work.
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In this section we start by discussing the problems that arise with the architectural transition from

monolith to microservices and how some design patterns and countermeasures can be applied to solve

those problems. Secondly, we present existing research that focuses on the architectural transition and

on microservices patterns: what patterns there are, how and when to use them. Additionally, we present

research that has formulated metrics to evaluate their microservices systems, what is the rationale

behind the metrics, their benefits and drawbacks. To conclude we show researches that implement and

use a visualization tool for assessing microservices systems.

2.1 Background

2.1.1 Distributed Transactions in Microservices

As explained in section 1.2, when transitioning from a monolith to a microservices architecture, the vast

majority of the systems must use the SAGA pattern to implement distributed transactions as opposed

to the two-phase commit protocol [6], as suggested and explained in [8, 9]. The SAGA pattern can

be applied to Create, Update and Delete (CUD) functionalities, and consist in dividing a transaction in

multiple local transactions, where each local transaction is executed inside a single service following the

ACID properties. A saga can have two different structures:

• Choreography - where the decision and sequencing is distributed through the saga participants.

• Orchestration - where the decision and sequencing is decided in one orchestrator class, inside a

cluster.

If a functionality is executed as a saga, then each local transaction has a type depending on its

location on the execution flow. One local transaction can be of three types:

• Pivot - a transaction that if succeeds then the saga is going to succeed.

• Retriable - transactions that occur after the pivot transactions, do not rollback.

• Compensatable - the transactions that may have to rollback.

In a saga there is at most one pivot transaction, and all transactions that are not retriable nor the

pivot transaction, are compensatable.

Independently of the structure, the usage of sagas can guarantee the properties atomicity, consis-

tency, and durability but cannot ensure the isolation property. The lack of isolation causes anomalies

that consist in a transaction reading or writing information in a way that it would not if all the transactions

were executed sequentially, not concurrently. These anomalies are:

• Lost updates - when a saga overwrites data without reading changes performed by others sagas.
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• Dirty reads - when a saga reads data changed by others sagas that have not been committed.

• Nonrepeatable reads - a saga reads the same data twice and gets different results.

To handle the concurrency anomalies, the application business logic must implement countermea-

sures to fix the lack of isolation. These are countermeasures that can be used to prevent side effects

from the lack of isolation, which must be accommodated within the business logic. They are:

• Semantic lock - Is an application level lock that sets some flag to indicate that some information is

modified but not yet committed.

• Commutative updates - Design updates operations such that they can be commutative, i.e, if they

can be executed in any order.

• Pessimist view - Reorders the steps of a transaction to minimize business risk due to a dirty read.

• Reread value - It prevents lost updates by rereading a value before updating it. If the value has

changed then the transaction must abort.

• Version file - Turns non-commutative operations into commutative operations by recording the

operations that are performed on a record so that it can reorder them.

• By value - Selects concurrency mechanism based on business risks. Dynamically evaluates be-

tween performing sagas or the tow-phase commit protocol.

Each one has their benefits and drawbacks. The Commutative Updates countermeasure forces the

redesign of every functionality to become commutative with the other functionalities, which in some

cases might be impossible due to the functionality business logic, leaving it restricted to the minority

of functionalities that can be commutative. The Pessimist View is similar to the commutative updates

solution. Since it forces the functionalities to change their execution flow, it may not be possible to use it

in every functionality. The Reread Value can be useful to correct the Lost Updates or the Nonrepeatable

Reads anomalies but it does not resolve the dirty reads anomaly, because, for instance, a controller

might read a dirty value twice while the concurrent transaction executes, and it gets the same value in

both readings, but latter the second transaction aborts, making the controller readings absolute. The

Version File countermeasure can be applied only in some systems that do not require constant interac-

tion with the end user, since it first records the submitted transactions into a file to later organize them

into commutative operations and executes them. The By Value solution is difficult to implement because

it forces the functionalities to be implemented using sagas and the Two-Phase Commit protocol. On top

of that, the application must have a set of rules to decide when to execute each functionality using a

saga or the Two-Phase Commit protocol. The rules must be statically assigned into the system by the
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developers or they must be dynamically calculated. In either case, the rules definition is complicated

and imposes an additional overhead in the architectural decision.

On the other hand the Semantic lock is easier to implement and is more advantageous. It corrects

all the isolation faults by creating intermediate states as application-level locks that indicate if an entity

was written by one saga, alerting others concurrent sagas to these events. It can be integrated with the

SAGA pattern typically indicating the current saga state.

2.1.2 Queries in Microservices

Queries also need to be modified in an architectural transition. Similar to what happens with distributed

transactions, queries will also be divided in multiple local queries, each one executed inside a microser-

vice. There are two possible approaches in the literature [8,9] to realize queries in microservices:

• API Gateway - A Gateway is created and is responsible for performing the queries. To execute

a query, the gateway contacts each microservice where the required information resides, then

combines its results and returns the query value.

• Command-Query-Responsability-Segregation (CQRS) - It separates the read and write operations

over an entity into a ”command” and a ”query” side. The ”command” site is responsible for the CUD

operations while the ”query” side manages the reads operations, using different interfaces for each

side.

The CQRS pattern offers high performance when multiple operations are performed over the same

information. However, it is a very complex pattern to implement, forces the separation between func-

tionalities that read and write an entity and is necessary to develop different interfaces to each side,

making it not suitable to every system. On the other hand the API Gateway pattern is easier to imple-

ment, but imposes the overhead of creating the gateway and is more difficult to ensure transactional

data consistency.

2.2 Related Work

In [9] a qualitative study of 35 practitioner descriptions of best practices and patterns on microservices

data management architectures is performed based on the model-based qualitative research method

described in [12], that can be used to study established practices in a field. The model-based qualitative

research method starts with some research questions that are investigated based on a pattern mining

technique which starts with the authors’ own experiences, searches systematically for other known uses

in real-life systems, and then applies a series of feedback loops to improve the pattern.
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Based on that model, the authors developed an architectural design decisions model that groups

the microservices practices and patterns studied. It contains one decision category, Data Management

Category, relating five top-level decisions that are necessary to manage data in microservices. The

decisions are the realization of queries, microservices transaction management, data sharing between

microservices, microservices database architecture and the structure of API presented to clients. For

each decision an UML style diagram is composed where the patterns to use and the decisions that

are necessary to make with each one are specified. Accompanied with every diagram the authors

give an explanation about the patterns, their advantages and drawbacks. To evaluate their work, the

authors measure the improvement yielded by their study compared to the individual sources, specifi-

cally microservices.io [8], the most complete and detailed source they have found. They studied the

microservices.io texts in detail and after careful analysis, the authors conclude that their study has an

improvement of 210% in completeness because it captures 325 elements against only 105 elements in

microservices.io.

In [13] a framework called Functionality-oriented Service Candidate Identification (FoSCI) is de-

veloped with the main responsibility of identifying service decomposition candidates, including entity

and interface identification. It identifies service candidates through extracting and processing execution

traces. Its process is divided into three main steps:

1. Representative Execution Trace Extraction - Extraction of representative execution traces based

on an execution log file.

2. Entity Identification - Based on the execution traces, the tool identifies functional atoms and uses

a multi-objective optimization technique to group them as class entities.

3. Interface Class Identification - For each service candidate, its interface classes with its operations

are identified.

Additionally, an evaluation tool is composed to assess the service candidates conformance with 8

metrics that quantify three quality criteria of service candidates. The metrics are derived from the revi-

sion history stored in the application version-control system and provides the evolution path a software

system experienced. The quality criteria are:

• Independence of Functionality - a functionality should be a well-defined, independent, and co-

herent function provided by an application, which should be a business capability accessible by

external clients.

• Modularity - Focuses on the coupling and cohesion of the system. Measures if internal entities

within a service behave coherently, while entities across services are loosely coupled.

• Evolvability - Measures a service’s ability to evolve independently.
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For the Independence of Functionality the authors created three measures. The first is called ifn

(interface number) and measures the number of published interfaces of a microservice. The rational

behind it, is that the smaller the ifn, the more likely the service assumes a single responsibility. The

second metric is called chm (cohesion at message level) and evaluates the cohesiveness of interfaces

published by a service at the message level, where the higher the chm, the more cohesive the service

is. The last metric is the chd (cohesion at domain level) metric and it measures the cohesiveness

of interfaces provided by a service at the domain level. The higher the chd, the more functionally

cohesive this service is. To evaluate the modularity of a decomposition two metrics were composed.

The first metric is called SMQ (Structural Modularity Quality and measures the modularity quality from a

structural perspective. The higher the SMQ, the better modularized the service is. The second metric is

called CMQ (Conceptual Modularity Quality) and it measures the modularity quality from a conceptual

point of view, where the higher CMQ, the better. To assess the decompositions’ evolvability the authors

created three measures, where the first is called icf (internal co-change frequency) and measures how

often entities inside a service change together as recorded in the revision history. A higher icf indicates

the entities are more likely to evolve together. The second metric is called ecf (external co-change

frequency) and it evaluates how often entities in different clusters change together based on the revision

history. A lower ecf is better and indicates that entities in different services are more likely to evolve

independently. The last metric is REI (Ratio of ECF to ICF) and, as the name suggests, measures the

quotient between the two previous metrics. If the ratio value is lower than one then is good because

changes are more likely to occur only inside one cluster.

To evaluate their approach, the authors compare FoSCI with three existing methods to identify service

candidates decompositions, using six open-source projects. The evaluation indicated that their method

outperforms the other three baseline methods with respect to their composed metrics, but it lacks an

evaluation with more reliable and accepted metrics.

Comparing their work to ours, while they have a similar pipeline for the microservices identification,

their metrics focus on different microservices qualities. Our focus is on the functionalities redesign com-

plexity through the application of design patterns while they focus on the three quality criteria presented.

In [14] a similar work is performed. The authors present three formal coupling strategies that rely on

meta-information from monolith code bases to construct graph representations of the monoliths that are

in turn processed by a clustering algorithm to generate recommendations for microservice decomposi-

tions. Their pipeline consists of three phases, the monolith stage, the graph stage and the microservices

stage, with two transformations between the stages: the construction step transforms the monolith into a

graph representation and the clustering step decomposes the graph representation of the monolith into

microservices candidates. Their extraction strategies are:

• Logical Coupling Strategy which is formulated around the single responsibility principle that states
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that a software component should have only one reason to change.

• Semantic Coupling Strategy that assess if each service corresponds to one single defined bounded

context from the problem domain.

• Contributor Coupling Strategy that based on the implementation history, incorporates team-based

factors into a formal procedure to group class files according to the authors of changes in the

version control system.

To evaluate their system they used an open-source Java project and focused on the system per-

formance and quality. For the performance, each one of the extraction strategies execution time was

measured and concluded that they show good performance levels. For the quality aspect they formulate

two metrics, the team size reduction metric and the average domain redundancy metric. The team size

metric is computed as the average team size across all microservices candidates divided by the team

size of the original monolith, and the domain redundant metric indicates the amount of domain-specific

redundancy between the proposed microservices. For both metrics, they concluded that from the three

strategies the semantic coupling showed the best results.

This research is similar to the previous works [3,4] in what concerns the identification of candidates

decompositions but when focusing on the main aspects of our work, they do not address the complexity

that a decomposition has due to the transactional model transition and how the use of design patterns

can improve the complexity. With their metrics they focus on non-functional requirements like the team

size or the redundancy in the code.

The idea of an implementation cost can be viewed as the modifiability cost in a software system,

which is closely related with maintainability. In [15], a literature review is conducted in order to investi-

gate metrics that can be used to calculate the maintainability of a Service-based System (SBS). They

define maintainability as the degree of effectiveness and efficiency with which a software system can be

modified to correct, improve, extend, or adapt it. This definition is very close to one of our goals, as we

intend to determine the cost associated with a system migration, which can be seen as a case of system

adaptation. As a result they present the metrics grouped in four different categories that influence the

system maintainability:

• Size - they define size as the number of services, stating that it is easier to maintain a small system

than a big one. The metric presented to evaluate the maintainability based on this category is

called Weighted Service Interface Count and calculates the amount of exposed interfaces on a

given service.

• Complexity - defined as the amount and variety of internal work carried out as well as the degree

of interaction between its services necessary to achieve this. Three metrics were presented to
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assess the complexity level. The first is the Total Response for Service and for a given operation

in a system interface, calculates the number of sequences of other operations and implementation

elements that can be executed. The second is called Number of Versions per Service and calcu-

lates the amount of versions that are used in a service. And the last is the Service Support for

Transactions which represents the percentage of services with support for transactions.

• Coupling - defined as the degree of the strength of interdependencies of a service with other ser-

vices. Four metrics were presented and started with the Service Interdependence in the System

which has the number of service pairs that are bi-directionally dependent on each other. The sec-

ond is called Absolute Importance of a Service and calculates the number of clients that invoke at

least one operation of a service. The third is the Absolute Dependence of the Service and deter-

mines the number of consumers that depend on a service. The last is the Absolute Importance of

the Service and quantifies the number of other services that a service depends on.

• Cohesion - defined as the extent to which the operations of a service contribute to one and only

one task or functionality. The authors researched three metrics and the first is the Service Interface

Data Cohesion measures the cohesion of a given service S with respect to the similarity of param-

eter data types of the operations of its interface. The second is called Service Interface Usage

Cohesion and determines the percentage of operations in a service interface that are called by

the same clients. Lastly, there is the Total Service Interface Cohesion that is simply a normalized

version of the two previous metrics. It adds both values and then divides it by two.

The authors also explore how these metrics can be adapted to a microservices system, considered

as a fine-grained variant of SBS. For them, the main aspects that differentiate microservices from

SBS are the large number of small services, technological heterogeneity and decentralization of control

and lightweight communication. With only a few limitations, the authors consider that the majority of

metrics presented can also be applied to microservices. Among the variety of metrics discussed, the

one that is closer to our complexity metrics is the Service Support for Transactions (SST), that calculates

the percentage of services involved in a distributed transaction. Because the transition to distributed

transactions is cumbersome, a high SST indicates a high complexity.

In [16] they implement a system that retrieves dynamic information from a microservices system and

develop a tool called MAAT that evaluates the collected information, formalises an architecture model

and evaluates the architecture with a set of metrics. The MAAT approach uses the Goal Question

Metric [17] to generate metrics that can evaluate the principles discovered during the previous analysis.

The metrics have as base the metrics defined in [15] and try to assess the level of conformity that a

microservices system has in relation to microservices design principles by using those metrics. Those

principles are collected from the literature and from a group of interviews performed to a group of people
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responsible for implementing five different microservices systems. Such principles include, for example,

the need to have microservices with small size, the need to have the mapping between one task and

one microservice, the need to have loose coupling and high cohesion, and more. For each principle one

or more metrics are defined and after the phase of data collection, the architecture model is evaluated

with them. Some of these metrics addresses problems like:

• the size of a microservice - evaluated by the number of synchronous and asynchronous interfaces

of a service.

• the responsibility of a microservice - a service should only have one responsibility - also evaluated

by the number of synchronous and asynchronous interfaces of a service and by the distribution of

synchronous calls.

• loose coupling and high cohesion - evaluated by the number of synchronous and asynchronous

dependencies. Denotes the number of service calls, either via synchronous or asynchronous

communication dependencies.

To present the results to the user the tool MAAT provides a visualization tool that presents the model

evaluated with all the constructed metrics, representing different types of communication: asynchronous

and synchronous. It allows to select a specific metric and the results for that metric is shown in the model,

with the help of a color scheme that highlights the problematic zones in the architecture according to

that metric. Their tool is incorporated into a real system and the tool is evaluated by the project team

members.

What differentiates it from our work is that in [16] they focus on a large spectrum of principles, and

try to formulate metrics that evaluate them. Whereas, in our approach we focus on an in-depth study

of the decomposition complexity by analysing the individual complexity contribution of each business

functionality. The visualization tool is similar, but our focus is in a task model provided to the architect

that can aid him/her in the complexity analysis. Additionally, the extended part created during this

research is more focused on a functionality level, offering the possibility of carrying out its redesign,

which makes it also a modelling tool.

In [18] the authors assess the quality of a candidate decomposition resulting from an architectural

transition by defining design constraints and in turn metrics that evaluate those constraints, based on

microservices patterns from [8]. To verify if the architectural model is following the best practices de-

scribed by the design patterns, they select a few of them and find out what are their characteristics.

Then, develop a constraint for each pattern and based on that constrain construct a set of metrics to

perform the evaluation. They define metrics for two general design constraints:

1. The need to, in a microservices system, all the services to be independently deployed.
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2. The need to avoid sharing components or entities between services.

From these design metrics the more similar to our approach is the second, however they do not

focus on the implementation cost that derives from an architectural change. To evaluate these metrics

the authors perform a manual analysis on a group of systems where they investigate if the system follows

a microservices architecture and the design constraints imposed by the patterns. Based on this manual

evaluation a value is given to the system that is later compared with the value returned by the metric.

To observe the differences between them, the cosine similarity is computed and based on these values

an evaluation is performed. This work is similar to ours, but, once more, they focus on different aspects

of a microservices system and do not address the problem that is originated in data consistency and

explained by the CAP theorem.

In [19] they focus on recovering the microservices architecture from a pre-existing microservices

system. They aim at constructing a model for the microservices architecture and evaluate if it follows the

microservices qualities, like single responsibility in a service or high cohesion and low coupling. Their

process of architectural recovery is divided into two different phases:

1. First they perform the architectural recovery phase, where they follow a process similar to the

previous and current work on the Mono2Micro application, since they perform a static and dynamic

analysis to recover information to extract the microservices architectural model of a system.

2. Secondly, they perform an architecture refinement phase where the architect refines the model

from phase one to enhance it with measures that are more suitable for its needs.

This work differs from ours since it does not construct any metrics to evaluate the functionalities

complexity in a given decomposition. However, their work offers the possibility to the user to change the

captured model and adapt it to what he/she considers the best for the given system, which is similar

to our approach in the functionality redesign process when the user can apply the proposed set of

operations to modify the functionality execution trace.

In [20] they propose a visualisation tool to assess the decomposition from a monolith to a microser-

vices system. Their process is decomposed in three phases.

1. They start by generating a Calling Context Tree (CCT) that is similar to a call graph that contains

information about the estimated amount of communication between microservices. They filter the

CCT such that calling contexts that are unnecessary are removed, for instance a call to a library.

2. Secondly they generate an initial microservices design by employing two different clustering al-

gorithms. The first is a semantic based clustering algorithm that uses the k-means++ with ttf-

idf-based similarity and considers text features in source files. It groups classes into a cluster

depending on the content of each class. The second is a CCT-based clustering that forms clus-

ters based on the amount of communication between components with the purpose of reducing
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the amount of communication, providing high performance. They calculate the similarity between

functions, giving high similarity scores to functions on the same call flow, that they consider to be

highly correlated.

3. The last step is the presentation of the decompositions in the visualisation tool to be refined by the

architect. A decomposition is presented as a directed graph where the nodes represent classes

and the edges represent function calls. It presents the classes that belong to the same cluster by

colouring them with the same colour.

To refine the decomposition the tool provides three actions to the users:

• Create a new microservice with the selected class.

• Move the selected class into another microservice.

• Clone the selected class into all the microservices that communicate with the class.

Additionally, the tool contains extra features like the display of a list containing the descending order

of number of API calls of a class. This list is a system recommendation of a set of classes that should

be addressed to reduce the amount of services communication.

The authors evaluate the tool by assessing it against two systems that have a monolith and a mi-

croservices model and implementation, i.e, systems that started to be a monolith and transited to a mi-

croservices architecture. They compared the decompositions generated by their clustering algorithms

with the case studies models produced by the developers, and also performed an evaluation on the

refined actions performed by the developers. They evaluate the refinements by formulating a pairwise

similarity metric that evaluates how many relationships between two classes are consistent in the cases

of the official model, provided by the systems developers, and the one proposed by the tool. Also, an-

other evaluation was performed to assess the number of API calls between microservices before and

after the refinements. With these evaluations they intend to verify if through the user’s actions the de-

compositions provided by the tool is improved, i.e, if it is more similar to the oficial mode or if it has less

communication between classes. The results from the decompositions comparison shows that their tool

can effectively design microservices applications, and the results from the refinement evaluation shows

that after the refinement the level of similarity between models are high and that the number of API calls

was reduced.

Comparing it to our work, the decompositions generation based on clustering algorithms and an

initial visualization tool are already performed in the Mono2Micro tool by previous contributions, however

in this work we intend to implement the third step of the tool process in [20], where we give to the

architect, or to the developers, the change to refine the microservices decomposition model based on

the microservices design patterns and the recalculation of the complexity metric. It should be noted
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that in our case the goal is not to diminish the complexity, because the Mono2micro application should

already present the decomposition with lower complexity, however is to provide to the architect a set of

choices (the proposed set of operations) that the he/she can apply to incorporate the design patterns.

In [21] the authors present a tool to find microservices candidate decompositions based on static

analysis of the source code and dynamic analysis of the system’s runtime behavior. Additonality, a

visualization tool showing the execution traces is presented. To test their approach the authors used a

legacy lottery application and applied their research in three stages:

1. Familiarization - Used to gather information about the application. The authors used documen-

tation provided by the developers and conducted some interviews with them in order to create a

context diagram of the application.

2. Modeling - Used to clarify the application behaviour and derive an architectural overview of the

system. Once more with the help of developers and domain experts the application use cases

and domain contexts were identified. Later, a mapping between the use cases and the domain

contexts was constructed that revealed the connection between actors and code structures.

3. Partitioning - Using the collected domain knowledge, the authors identity target boundaries in the

context model. These boundaries represent scopes in which each domain term has a unique

definition, i.e., bounded contexts that are used during the decomposition process.

After dividing the application into a conceptual domain model, the next step was, by using static

analysis, to bound source code packages to the use cases defined in the modeling phase, that in turn

are associated with bounded contexts, which allows to perform a direct bonding between code packages

and bounded contexts. After this phase some ambiguities in the mappings were identified and resolved

using dynamic analysis. The bounded contexts were refined in order to resolve the ambiguities and

to discover additional microservices candidates. For instance, to resolve one mapping ambiguity that

caused a mutual dependency between two services the authors performed a service redesign that in

turn caused a functionality redesign, similar to our approach, that reconstructed the execution trace of

that functionality.

In [22], Ntentos et al. assess how a set of microservices applications conform to coupling and

cohesion patterns and practices. First, the authors form a qualitative study in microservices by gathering

relevant literature and knowledge sources about established architecture practices and patterns. Based

on this study a meta-model description of microservice architectures was built, verified and refined

through iterative application in modelling a number of real world systems. Also, the authors propose

three decisions that must be adopted in microservices systems to have high cohesion and low coupling:

• Inter-Service Coupling through Databases - address how each service employs data persistence

such that microservices qualities are guaranteed. The pattern or practice that ensures a lower
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coupling between services is the No Persistent Data Storage or the Database per Service. The

first is only applicable for services whose functions are performed on transient data and the second

states that each service has its own database and manages its own data independently. The

pattern which affects more negatively loose coupling is the Shared Database where services write

to and read data from a common database. This pattern can be applied in two levels, the Data

Shared via Shared Database where multiple services share the same table, causing a strong

coupled system or Databased Shared but no Data Sharing where each service writes to and

reads from its own tables, which has a lower impact on coupling.

• Inter-Service Coupling through Synchronous Invocations - assess how each service is dependent

on others services. Ideally communication between the microservices should be, as much as

possible, asynchronous. This can be achieved through the use of various technologies such as

the Publish/Subscribe pattern, the use of a Messaging middleware, the Data Polling pattern or the

Event Sourcing patterns [8].

• Inter-Service Coupling through Shared Services - evaluates how services are shared with others

services, i.e, what other services one service needs to implement some functionality. The need

for other services leads to chains of transitive dependencies between them, which is problematic

when a service is unaware of its transitive dependencies. The authors define three cases, the first

being the Directly Shared Service which is the simplest case and occurs when one microservice

is required by more than one other service. The second is the Transitively Shared Service and

occurs when a microservice is linked to other services via at least one intermediary service. The

last one is the Cyclic Dependency which is formed when there is a direct or transitive path that

leads back to its origin.

For each of the decisions presented the authors formulate a ground truth through a manual evalua-

tion by the authors of each system on the decisions that are present in the systems, in a scale that varies

from Supported, Partially Supported or Not Supported. Then for each decision group two metrics are

formulated and evaluated by comparing the results to the ground truth. Their metrics evaluate different

aspects of each decision that assess how a system supports high cohesion and low coupling, for in-

stance the percentage of services that use an individual database or a shared database, the percentage

of services that communicates with other services via asynchronous relay or the total number of other

services that one service depends on. The metrics evaluation showed that the results are quite close to

the manual ground truth. Comparing it to our work, the authors aim at evaluating already implemented

microservices systems and do not focus on the architectural transition. Also, the authors focus on cou-

pling and cohesion qualities that must be present in microservices applications while we try to evaluate

the complexity of each functionality redesign.
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Considering the use of microservices design patterns in the functionality redesign that are transited

from the monolith due to the relaxation of the transactional model, we intend to improve the existing

complexity metric by incorporating new information provided by the architect during the redesign pro-

cess. However, firstly, to be able during the redesign process to design an execution flow correctly given

the new microservices distributed environment a set of operations were constructed to guide the archi-

tect. Thus, we expect that by using this set of operations during the functionalities redesign process,

that incorporate the use of microservices design patterns into the functionalities, we can extract new

information that can be used to formulate new complexity metrics that can express more precisely the

functionality complexity on a given decomposition.

Due to the functionality fragmentation across multiple distributed microservices, the functionality has

to be changed and adapted to the new model. Since we no longer have a single ACID transaction but

multiple ACID transactions, one per microservice that participates in the functionality execution, but still

want to ensure the same behaviour as in the monolith there is the need to use the design patterns that

allow us to maintain it. For instance, in the monolith since there is only one ACID transaction if a fault

occurs the whole transaction is aborted and its effects are not visible to the outside system. However,

in a microservices system if a fault occurs in a microservice and its transaction is aborted, then it has

to warn all the other microservices that participate in the functionality execution to undo any possible

modifications that may have been made as a result of these execution, otherwise an inconsistent state

is created.

Additionally, in the monolith the transactions guarantee the properties of atomicity, consistency, isola-

tion and durability, however with distributed transactions that use the SAGA patterns there is no guaran-

tee of isolation. For instance, if two concurrent transactions access the same entity, if the first transaction

modifies one value without committing it and that value is read by the second transaction, then a dirty

read occurs and the second transaction might be executed based on an incorrect value if the first trans-

action aborts.

As a result the integration of microservices design patterns with compensating measures, as the

semantic lock, becomes essential. Nonetheless their use is not a silver bullet and impose a cost. To

start, there is a cost in each functionality for each semantic lock introduced by it, executed as a saga,

because its business logic needs to be changed. Secondly, a functionality needs to be modified to adapt

to the semantic locks introduced by other functionalities in entities it reads.

Beyond the impact that a functionality redesign has on it, we also consider the impact it has on the

other functionalities. When a functionality creates a semantic lock in some entities it updates then all the

other functionalities that read that same entity must be modified to accommodate the existence of the

semantic locks.

These new metrics provide different information and their joint use allows to locate the focus of
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complexity introduced in the redesign of a functionality.

In this section we describe our approach to the generation of a set of operations to be used on

the functionalities redesign in order to incorporate the microservices design pattern such that the new

complexity metrics can be applied. We start by explaining the set of operations and how they focus on

characteristics of the SAGA pattern allowing its incorporation into the functionalities. Then, we present

the new set of complexity metrics and their explanation, concluding with the visualization tool that serves

as a proof of concept, where, given a decomposition and a functionality from its application, the opera-

tions can be applied and the new metrics calculated.

3.1 Functionality Redesign

We start by presenting a set of formal definitions that will help to specify and understand the operations

and metrics.

Definition: Monolith. A monolith is a pair (F,E), where F represents its set of functionalities, the

functionalities are represented with lower case f , and E represents its set of domain entities, which are

accessed by the functionalities, the domain entities are represented with lower case e.

The entities are accessed by the functionalities in two modes, read and write. Therefore, M =

{r, w} represents the access modes in a monolith, and an access is a pair domain entity access mode,

represented by (e,m).

The accesses of a functionality f are represented as a sequence of accesses s, where S repre-

sents all the sequences of accesses done in the monolith by its functionalities to the domain entities,

f.sequence denotes the sequence of access of functionality f , s.entities denotes the entities accessed

in sequence s.

It is also defined the auxiliary function entities(s : S,m : M) : 2E , which returns the entities accessed

in s in mode m:

entities(s,m) = {e ∈ E : (e,m) ∈ s} (3.1)

When a monolith is decomposed into a set of candidate microservices, each candidate microservice

is a cluster of domain entities.

Definition: Monolith Decomposition. A monolith decomposition into a set of candidate microser-

vices is defined by a set of clusters C of the monolith domain entities, where each cluster c represents

a candidate microservice and c.entities denote the domain entities in cluster c, such that all domain

entities are in a cluster (3.2), and in a single one (3.3).
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⋃
c∈C

c.entities = E (3.2)

∀ci 6=cj∈Cci.entities ∩ cj .entities = ∅ (3.3)

Given e ∈ E and a decomposition C, e.cluster denotes the entity’s cluster, and given a set of entities

E′ ⊆ E, E′.cluster denotes its set of entities clusters:

E′.cluster = {c ∈ C : ∃e∈E′e ∈ c.entities} (3.4)

Given a monolith candidate decomposition, the monolith functionalities are decomposed into a set

of local transactions, where each local transaction corresponds to the ACID execution of part of the

functionality domain entity accesses in the context of a candidate microservice.

Definition: Functionality Decomposition. A monolith functionality f is decomposed, in the context

of a candidate decomposition C, by a sequence of sequences of access to domain entities, denoted

by f.subsequences, where all domain entities in a subsequence are in the same cluster (3.5), and two

consecutive subsequences occur in different clusters (3.6). In order to have a consistent subsequence

associated with a functionality f in a decomposition, the condition in (3.7) must hold:

∀s∈f.subsequences∃c∈C : s.entities ⊆ c.entities (3.5)

∀0≤i<f.subsequences.size−1f.subsequences[i].entities.cluster 6= f.subsequences[i+ 1].entities.cluster

(3.6)

concati=0..f.subsequences.size−1(f.subsequences[i]) = prune(f.sequence) (3.7)

Where the prune function removes, for each sequence of accesses inside each cluster c ∈ C, the

accesses according to the following rules:

1. If a domain entity is read, all subsequent reads of that entity are removed.

2. If an domain entity is written, all subsequent accesses of that entity are removed.

A sequence of domain entity accesses where these two rules hold is pruned, it only contains the

read and write accesses that are visible outside the cluster, the ones that are relevant for the semantic

lock countermeasure.
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In the redesign of a functionality in the context of a decomposition we define the set of local transac-

tions participating in the saga that implements the functionality.

Definition: Local Transaction. A local transaction lt of a functionality f , is a pair (s, t), where s is a

pruned sequence of access domain entities, all its accesses are to domain entities of the same cluster

(3.8), and t is the transaction type, which can be compensatable, pivot, and retriable.

∃c∈C : s.sequence.entities ⊆ c.entities (3.8)

T denotes the set of transaction types, LT denotes the set of local transactions in a decomposition,

lt denotes a local transaction, lt.cluster denotes the cluster where the lt occurs, lt.sequence denotes the

sequence of accesses, and lt.type denotes the type of the local transaction.

A local transaction sequence should be pruned, for each domain entity in the sequence there is

0..1 read accesses and 0..1 write accesses, and when there is a read and a write access to the same

domain entity, the read access has to occur first. These are the accesses that have impact outside the

local transaction atomic execution.

The redesign of a functionality in the context of a decomposition corresponds to the application of a

set of operations to a graph which represents the functionality execution, where the nodes represent the

functionalities’ local transactions and the edges the remote invocations between transactions.

Definition: Functionality Execution Graph. A functionality f redesign in the context of a monolith

decomposition is represented by a graph g, where the nodes are local transactions, denoted by g.lt, the

edges are remote invocations between local transactions, denoted by g.ri, and the data dependencies

existing in the functionality business logic are denoted by g.dd:

• g.lt is the set of local transactions, such that:

1.
⋃

lt∈g.lt lt.sequence.entities = f.sequence.entities

2. #{lt ∈ g.lt : lt.type = pivot)} ≤ 1

• g.ri is the set of local transactions pairs that represent the remote invocations:

1. ∀(lti,ltj)∈g.ri{lti, ltj} ⊆ g.lt

2. ∀(lti,ltj)∈g.ri¬∃ltk 6=i∈g.lt(ltk, ltj) ∈ g.ri

3. The remote invocations define a partial order between the local transactions, denoted by <g,

and build using the transitive closure of the following initial elements ∀(lti,ltj)∈g.ltlti <g ltj .

Therefore, given lti, ltj ∈ g.lt if lti <g ltj then lti executes before ltj .

The redesign of a functionality in the context of a decomposition starts with its initial graph, which is

generated from the functionality decomposition.
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Definition: Initial Graph. The initial graph gI of a functionality f has as vertices the local trans-

actions lt associated to each one of the subsequences of f (3.9), and has as edges the pairs of local

transactions associated with consecutive subsequences (3.10). It is trivial to observe that the initial

graph gI is a well-formed graph of f .

gI .lt = {lt ∈ LT : lt.sequence ∈ f.subsequences ∧ lt.type is not defined} (3.9)

(ltj , ltk) ∈ gI .ri→∃0≤i<f.subsequences.size−1 :

ltj .sequence = f.subsequences[i] ∧ ltk.sequence = f.subsequences[i+ 1]
(3.10)

A semantic lock is an intermediate state set by a compensatable local transaction, a write access,

that is visible by the other functionalities, and that may eventually be undone.

Definition: Local Transaction Semantic Lock. Given an execution graph g of a functionality f , and

one of its local transactions lt, lt.sl denotes the domain entities with a semantic lock in lt (3.11).

lt.sl =
⋃

(e,m)∈lt.sequence

(lt.type = compensatable ∧m = w) (3.11)

Definition: Functionality Semantic Lock. Given an execution graph g of a functionality f , g.sl

denotes the domain entities with a semantic lock in g:

g.sl =
⋃

lt∈g.lt

lt.sl (3.12)

Definition: Final Graph. A final graph gF of a functionality f is a graph of f where all transactions

have a type and all the transactions that follow the pivot transaction are retriable (3.13). Additionally,

it is not possible to have a remote invocation between local transactions belonging to the same cluster

(3.14). Given that a graph has at most one pivot transaction, and in a final graph all transactions have a

defined type, it is trivial to observe that all the transactions that do not occur after the pivot transaction

should be compensatable.

lti ∈ gF .lt : lti.type = pivot =⇒ ∀jtj :lti<gF
ltj ltj .type = retriable (3.13)

∀(lti,ltj)∈gF .ri{lti.cluster 6= ltj .cluster} (3.14)

Definition: Redesign Process. The redesign of a functionality f is a process that starts with its initial

graph gI and through the application of graph operations produces a final graph gF , where, in a first step,
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the software architect will perform operations over the execution graph to redesign the execution flow of

f , and, finally the architect will characterize the type of local transactions, such that the SAGA pattern is

applied to the functionality f in the context of the monolith decomposition.

We propose three basic operations and a composed operation to support the redesign of a func-

tionality. The basic operations are: Sequence Change, where the order by which the local transactions

are invoked is changed; Local Transaction Merge, where two local transactions belonging to the same

cluster are merged; and, Add Compensating, where a new local transaction is added when it is neces-

sary to undo the changes done by local transactions. Additionally, we propose a composed operation,

Define Coarse-Grained Interactions, where repetitive fine-grained interactions between two candidate

microservices are synthesized into a single coarse-grained interaction.

By applying these operations, the software architect transforms the sequence of local transactions in

the initial graph to a saga like interaction, either an orchestration or a choreography, where in the former

case there is a cluster that coordinates the execution flow between the local transactions.

3.1.1 Operations

Definition: Add Compensating. Given a graph g of functionality f and two local transactions ltc and

ltj , where:

• ltc /∈ g.lt - The new local transaction added must be new.

• ltj ∈ g.lt - ltj must be an existing local transaction.

• ltj .cluster 6= ltc.cluster - The clusters of ltc and ltj must be different.

• ltc.sequence.entities =
⋃

lti∈g.lt{e ∈ entities(lti.sequence, w) : lti.cluster = ltc.cluster ∧ lti.type =

compensatable ∧ lti <g ric[1]} - The access sequence of ltc must only contain entities that were

previously accessed in write mode by a compensatable local transaction. This condition is par-

ticularly important because compensating transactions must only affect entities that have been

updated before in the saga.

• ∀(e,m)∈ltc.sequencem = w - The access mode for the entities in ltc sequence must be write.

(a) Before the operation (b) After the operation

Figure 3.1: Result of applying the Add Compensating operation
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Then a new graph g′ = (g.lt ∪ {ltc}, g.ri ∪ {ric}) is produced by creating a new remote invocation

between ltj and ltc, ric = (ltj , ltc), as explained in figure 3.1. This operation is used to create new local

transactions that access some of the domain entities changed by other local transactions. It can be used

to create the compensating transactions that are necessary for each compensatable transaction.

Definition: Sequence Change. Given a graph g of functionality f , three distinct local transactions,

lt1, lt2, lt3 ∈ g.lt and a remote invocation ri = (lt1, lt2) ∈ g.ri where:

• lt1 6= lt2 6= lt3 6= lt1 - All local transactions are different for each others.

• lt3 <g lt2 - lt3 must be executed before lt2.

It is possible to replace ri by ri′ = (lt3, lt2), such that g is transformed to g′ = (g.lt, g.ri\{ri}∪ ri′), a

graph of f as exemplified in figure 3.2. It is trivial to observe that the transformed graph is a well-formed

graph of f in the context of the decomposition, because lt3 executes before lt2 we can conclude that the

resulting order continues to be a partial order and all local transactions are remotely invoked by at most

one local transaction.

(a) Before the operation (b) After the operation

Figure 3.2: Result of applying the Sequence Change operation

The change sequence operation is used to change the flow of execution of the functionality in the

context of the decomposition and it is possible to apply when no local transaction in the invocation chain

between lt3 and lt2 requires data produced by lt2. For instance, to change the local transaction (hence

the cluster) that is responsible to trigger the execution of another particular local transaction, which may

be useful to centralize the control of execution in a microservice that coordinates the execution of other

local transactions, and so reduce the transactional complexity behaviour.

Definition: Local Transaction Merge. Given a graph g of functionality f and two local transaction

lt1, lt2 ∈ g.lt, such that they belong to the same cluster, lt1.cluster = lt2.cluster, and they have adjacent

executions, either:

1. Have consecutive executions and are connected by a remote invocation, such that:

(lt1, lt2) ∈ g.ri (3.15)
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2. Or they share the same caller that has one remote invocation for each local transaction, such that

∃lti∈g.lt : (lti, lt1) ∈ g.ri ∧ (lti, lt2) ∈ g.ri (3.16)

A new graph g′ of f is produced, where, considering the two cases:

1. For the first case, the g′ local transactions set is formed by the g local transactions set excluding

lt1 and lt2, plus the new local transaction ltm, such that:

g′.lt = g.lt \ {lt1, lt2} ∪ ltm

where ltm.sequence = prune(concat(lt1.sequence, lt2.sequence))
(3.17)

The new g′ remote invocations set is formed by the former g remote invocations set removing

the remote invocation that lt0 calls lt1, the remote invocation between lt1 and lt2, all the remote

invocations that start in lt1 or lt2 and adding the remote invocation between lt0 and the new local

transaction ltm and one remote invocation between the ltm and each local transaction that was

called by lt1 or lt2, such that:

g′.ri = g.ri \ {(lt1, lt2)} \ {(lto, lt1) : (lto, lt1) ∈ g.ri} \ {(ltk, ltl) ∈ g.ri : ltk = lt1∨

ltk = lt2} ∪ {(lto, ltm) : (lto, lt1) ∈ g.ri} ∪ {(ltm, lti) : (lt1, lti) ∈ g.ri ∨ (lt2, lti) ∈ g.ri}
(3.18)

2. For the second case, the g′ local transactions set is equal to the first case, while the g′ remote

invocations set is formed by removing from g remote invocations set the remote invocations to lt1

and lt2 and all the remote invocations that start in lt1, lt2 or lti, and adding the remote invocation

between lti and the new local transaction ltm and one remote invocation between the ltm and

each local transaction that was called by lt1, lt2 or lti, such that:

g′.ri =g.ri \ {(ltk, ltl) ∈ g.ri : ltk = lt1 ∨ ltk = lt2 ∨ ltk = lti} ∪ {(lti, ltm)}

∪ {(ltm, ltl) : (lt1, tll) ∈ g.ri ∨ (lt2, tll) ∈ g.ri ∨ (lti, tll) ∈ g.ri}
(3.19)

The local transaction merge operation is used when, in the redesign process, two local transactions

become adjacent in the execution graph, and can be included into a single local transaction. From the

transactional perspective, it is necessary to integrate their execution sequences, what is achieved with

the prune function, and in the second case, is the software architect that decide the order by which the
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sequences are integrated. As result of applying this operation, the number of intermediate states in

result of the distributed execution of the functionality is reduced.

Definition: Define Coarse-Grained Interactions: Given a graph g of functionality f , two candidate

microservices, represented by the clusters c1 6= c2 and two remote invocations {(lt11, lt21), (lt12, lt22)} ∈

g.ri, such that:

• The remote invocations are between the given microservices, c1 = lt11.cluster = lt12.cluster∧c2 =

lt21.cluster = lt22.cluster.

• lt11 executes before lt12, lt11 <g lt12.

Then a new graph g′ of f is produced by applying the basic operations change sequence and local

transaction merge. First, change sequence operation is applied to lt11 and (lti, lt12), to produce a new

graph with remote invocation (lt11, lt12) as described in figure 3.3. Note that is possible to apply the

operation, because lt11 <g lt12 and so there exists the remote invocation (lti, lt12).

(a) Before the operation (b) After the operation

Figure 3.3: First step in the Define Coarse-Grained Interaction operation.

Then, local transaction merge operation is applied to lt11, lt12 to produce a new local transaction lt1m

which has remote invocations to lt21 and lt22 as described in figure 3.4.

(a) Before the operation (b) After the operation

Figure 3.4: Second step in the Define Coarse-Grained Interaction operation.

Finally, local transaction merge operation is applied to lt21 and lt22 which results in the local trans-

action lt2m and a coarser-grained remote invocation (lt1m, lt2m) as described in figure 3.5. Note that

this operation can be applied to any number of remote invocations between two cluster, in the given

conditions.
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(a) Before the operation (b) After the operation

Figure 3.5: Last step in the Define Coarse-Grained Interaction operation.

This operation is used to create two coarse-grained local transactions, one in c1 and another in c2,

by joining local transactions that are executed in those clusters, in order to reduce the number of re-

mote invocations. It must be used when, after the automatically generated decomposition, the software

architect realizes that there are several recurring fine-grained interactions between two candidate mi-

croservices, due to an object-oriented programming style in the monolith, which promotes the use of

fine-grained invocations between the domain entities.

After the operations have been applied to the initial graph gI of functionality f , the last step of the

redesign is to produce a final graph gF through the characterization of each one of the local transactions.

Therefore, the software architect must select one transaction in the graph to be the pivot transaction.

Transactions that follow the pivot transaction are guaranteed to succeed are classified as retriable, and

all other local transactions are classified as compensatable. The compensatable transactions that have

semantic locks need to have at least one compensating transaction because some of the transactions

that execute after it in the saga might fail.

3.2 Metrics

We start by explaining in detail the metric developed in the previous work [4] that serve as base for

our work. Given a monolith decomposition, the base metric measures the complexity associated with

the migration of a monolith system to a microservices architecture. It considers the complexity of each

functionality redesign for the overall complexity of redesigning the monolith system, due to relaxing the

functionality execution isolation, because the redesign of a functionality has to consider the intermediate

states introduced by the execution of other functionalities.

Definition: Functionality Complexity in a Decomposition. Given a candidate decomposition C of

a monolith, the complexity associated with the migration of a monolith functionality f is given by

∑
si∈f.subsequences

#
⋃

(e,m)∈si

{fi ∈ F \ {f} : (e,m−1) ∈ prune(fi.sequence)} (3.20)

Where fi is a distributed transaction, it executes in more than one cluster, and m−1 represents the
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inverse access mode, r−1 = w and w−1 = r.

The overall idea behind the metric is to count, for each subsequence of a functionality, executing

inside a cluster, the impact domain entities accesses have. The impact of a write depends on other

functionalities that read it, and, therefore, they may have to consider this new intermediate state, while

the impact of a read depends on how many other functionalities write it, and, therefore, introduce new

intermediate states to be considered by the functionality. This metric reflects how many other function-

alities need to be considered in the redesign of a functionality, thus, how the functionality redesign is

intertwined with others functionalities business logic redesign.

However, during the redesign process, while the functionalities are redesigned, the concepts of local

transaction and remote invocation are introduced, which allows a refinement of the previous metrics,

such that, during the redesign process, the software architect can have more precise values about the

complexity.

Therefore, and because the metric will be used to inform the functionality redesign activity, we distin-

guish between the complexity of redesigning the functionality from the complexity that the functionality

redesign adds to the redesign of other functionalities.

Definition: Functionality Redesign Complexity. The complexity of redesigning a functionality f ,

executed as a graph g, is the sum of the complexity of each one of its local transaction:

complexity(f) =
∑

lt∈g.lt

complexity(lt) (3.21)

The complexity of one local transaction depends on the number of semantic locks that are introduced,

because each semantic lock corresponds to an intermediate state for which may be necessary to write a

compensating transaction, and it also depends on the intermediate states set by other functionalities that

the local transaction may have to consider in its reads. Note that, during the redesign of a functionality,

some of the functionalities that f interacts with may not have been redesigned yet, and so, the metric

should take into account both situations.

Definition: Local Transaction Redesign Complexity. The complexity of lt is given by the number

of semantic locks implemented in entities of lt.sequence, plus the number of other functionalities that

write in entities read in lt, or which have semantic locks in those entities:

complexity(lt) = #lt.sl +
∑

(e,r)∈lt.sequence

#{fi ∈ F \ {f} : (e, w) ∈ writes(fi)} (3.22)

where

writes(fi) =

{
{(e, w) : (e, w) ∈ prune(fi.sequence)} if fi not redesigned
{(e, w) : (e, w) ∈ gi.sl} if fi redesigned as gi

(3.23)

Note that when a functionality is redesigned some writes may not be considered, because if they
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belong to pivot or retriable local transactions, they will not introduce intermediate states, and so, the

metric will provide a more precise value.

The redesign of a functionality impacts on other functionalities redesign complexity. For instance,

if a semantic lock is created in one entity e due to the execution of a functionality fi then every other

functionality fj (where i 6= j) that read the same entity e must have to be changed to accommodate the

existence of the semantic lock. Hence, the cost of redesigning fj depends on the amount of semantic

locks created by fi in entities that fj access.

Definition: System Added Complexity. Given the redesign of a functionality f executed as a graph

g, the system added complexity introduced by redesign g, is given by:

addedComplexity(f, g) =
∑

lt∈g.lt

∑
fi∈F\{f}

#(reads(fi).entities ∩ lt.sl.entities) (3.24)

where

reads(fi) =

{
{(e, r) : (e, r) ∈ prune(fi.sequence)} if fi not redesigned
{(e, r) : ∃lt∈gi.lt(e, r) ∈ lt.sequence} if fi redesigned as gi

(3.25)

The redesign of functionality f may introduce inconsistent states in the application when it has two or

more semantic locks. However, this situation only occurs when the entities belong to different clusters,

because inside one cluster the entities are updated simultaneously by ACID transactions. Hence, we

consider that a functionality changes a cluster when it introduces a semantic lock in one of its entities. If

we consider that a functionality f writes in more than one cluster, this behaviour may introduce inconsis-

tency views for any other functionality fi that reads two or more of the changed clusters. Therefore, any

functionality fi that reads domain entities in different clusters, previously changed by f , might encounter

inconsistent states.

From a redesign point of view, the inconsistency state complexity is particular relevant for functional-

ities that only read and have a single local transaction for each cluster they access. We call queries to

this type of functionalities.

Definition: Query. A query q is functionality which graph g has the following properties:

1. Its local transactions are read only, ∀lt∈g.ltlt.sequence.mode = {r}

2. They only access a cluster at most once, ∀lti 6=ltj∈g.ltlti.cluster 6= ltj .cluster

Note that, if there is a functionality that only has read accesses, it is possible, by applying the redesign

operations, to generate an execution graph that is a query. We define the cost of implementing a query

as the inconsistency state it has to handle.

Definition: Query Inconsistency Complexity. Given a query q, its inconsistency complexity is the

sum of all the other functionalities that write in at least two clusters that q also reads:
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queryInconsistencyComplexity(q) =

#{fi ∈ F \ {q} : #clusters(entities(prune(q.sequence)) ∩ writes(fi).entities) > 1} (3.26)

where writes(fi) is defined as in the local transaction complexity metric.
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In this section we present the data structures implemented in the Mono2Micro application backend

and frontend systems that together form the functionality execution graph described in section 3.1. We

leverage on the structure implemented in the previous work [4], that can be seen in figure 4.1, where

we only show the classes and its attributes that are connected with our work. After presenting the data

structures added to the existing system, we will show, for each of the proposed operations, what effects

it has on each structure and how one operation changes the functionality execution graph.

Figure 4.1: UML class diagram of the previous Mono2Micro system.

We have the java class Codebase that contains the information collected during the monolith analy-

sis. Among other attributes, the Codebase.java contains a list of dendrograms. A dendrogram is repre-

sented by the Dendrogram class, where each dendrogram contains a list of all decompositions created

for it. One decomposition is represented by the Java class Decomposition.java and is the representation

of a candidate decomposition. Among other attributes, a decomposition is identified by a string with its

name, it contains one float with the overall base complexity and contains a list of clusters, instances of

the class Cluster.java and a list of controllers, where each controller is represented by the Java class
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Controller.java. A cluster is identified by its name and its id and contains a set of shorts, where each

short is the identifier of a an entity that belongs to the cluster.

Each controller corresponds to a business functionality and contains a name that identifies the con-

troller, for example ActivityModel.addActivity, a float for the base complexity metric value, a map that as-

sociates the entities accessed by the controller to the access mode and a Directed Acyclic Graph (DAG)

that constitutes the controller access sequence, named controllerDAG. The controllerDAG is formed, as

explained in section 3.1, as a sequence of access sequences, where each access sequences is a node

in the DAG and also a local transaction and the DAG edges are the remote invocations. The DAG can

have a sequential trace or a three depending on the type of analysis made. If the code analysis made

previously to the source code is a static analysis then the DAG will have a sequential trace will each

node only having one remote invocation to other node. On the other hand if the analysis made was

a dynamic analyses then the DAG trace is formed as a trace, where a node can have various remote

invocations to others nodes.

4.1 Data Structures

The existing structure was not adequate for two reasons. First, it was to rigid and did not have enough

flexibility that would allow us to have multiple executions traces for the same controller and to manipulate

the execution trace accordingly to the operations performed by the architect. Secondly, we needed to

store additional information on each structure, for instance the different complexities in each functionality

redesign and the type of each local transaction. Therefore we improved the existing structure starting

by the Controller.java class implemented in the previous work. A full preview of the updated structure is

shown in figure 4.2.

We extended the controller class by introducing the type attribute that identifies if the controller is a

saga or a query so we could calculate the corresponding metrics. Also, we added a map that contains

for each cluster the entities that the given controller accesses inside it called entitiesPerCluster and a

list of functionality redesigns. The map entitiesPerCluster associates a cluster to a set of entities and

is necessary to the metrics calculation. Clusters and entities are identified by a unique numeric id and

stored as a short to optimize the use of memory, for when the traces are very long.

The FunctionalityRedesign class corresponds to a possible execution flow that the user creates for

the given controller. All controllers have an initial functionality redesign which is the monolith execution

flow as described in the initial graph definition at section 3.1. This initial redesign is formed by trans-

lating the DAG created for each controller during the creation of their decomposition into the structure

presented - the list of LocalTransaction objects connected through the remote invocations list that each

stores. Since it is possible to have multiple redesigns for the same functionality, each controller can be
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Figure 4.2: UML class diagram of the existing Mono2Micro system.

associated with various FunctionalityRedesign objects. On the other hand, a functionality redesign is

primarily composed of several instances of the LocalTransaction class that contain its remote invoca-

tions.

Each functionality redesign constitutes a functionality execution graph, as defined in the functionality

redesign section, and is represented by the FunctionalityRedesign.java class. For each functionality

redesign we have:

• A string name that identifies the redesign.

• A boolean attribute that establishes if the redesign must be used in the metrics calculation when

a controller has several different redesigns. It is necessary because one controller execution flow

has impact on the others controllers metrics, so we need to know which redesign the user wants

to use for the metrics calculation.

• A list of instances from the class LocalTransaction that together construct an execution graph.

• If the controller is a saga then we have two integers, one for each new metric, the Functionality
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Complexity and the System Added Complexity. On the other hand if the controller is a query then

we have an integer for the query metric, the Query Inconsistency Metric.

• A integer that identifies the pivot transaction within this redesign. The possible values are the local

transactions’ unique identifiers. This is only applicable if the controller is a saga, because there is

no pivot transaction in a query.

To form the functionality redesign graph one functionality redesign is mainly composed by local trans-

actions that store the other local transactions id with which has remote invocations. Each local transac-

tion is composed by:

• The string name that the user can change through the change name operation.

• The integer id is a unique identifier that identifies one local transaction.

• The short cluster is the cluster where the local transaction is executed.

• The set clusterAccesses is the set of entities accessed by the local transaction, already pruned.

Corresponds to a subsequence from the functionality access sequence and is stored as a set of

AccessDto because that is the format that comes from the code analysis and is also the better

format to send to the frontend application. An AccessDto stores the entity id as a short and the

access mode.

• The list remoteInvocations is composed by other local transaction ids which are called by the local

transaction, i.e., one id for each local transaction called in one remote invocation. The remote

invocations dictate the local transactions execution order such that if a local transaction A has

inside its remoteInvocations list the id of local transaction B then A is executed before B.

• The attribute type is the local transaction type and can be compensatable, pivot or retriable as

previously described.

To resume, we have implemented the functionality execution graph described in section 3.1 basically

as a list of LocalTransaction objects. Each graph is formed by iterating through the redesign attribute

in the FunctionalityRedesign class that contains the set of local transactions described in the graph

specification. Each LocalTransaction object is responsible for holding its remote invocations by storing

in the list remoteInvocations the local transactions ids to which have a remote invocation. Therefore, the

set of remote invocations described in the graph specification can be composed by concatenating the

lists of remote invocations of each local transaction.

The backend is responsible for generating the initial graph, corresponding to the monolith trace, using

the information collected during the monolith analysis. When requested by the frontend, the backend

sends the graph but all changes performed during the redesign process are completed in the backend.
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The frontend only needs to send the arguments necessary for each operation back to the backend, that

executes the operation and returns the new graph, modified with the operations effects. Next, we will

explain what each proposed operation does to the presented data structures. To help to understand,

each operation has a listing with the pseudo-code of each operation.

4.2 Operations effects in the Data Structures

To perform the Add Compensating operation the user must start by selecting the local transaction that

will call the new compensating local transaction and the set of entities that will be accessed. The fron-

tend must send to the backend the caller id and the entities chosen by the user, and this will follow the

algorithm in 4.1. It will search the local transaction with the specified id, create a new local transac-

tion with the retriable type (because all compensating transactions execute after the pivot transaction)

that accessess the entities sent and create a remote invocation between the caller and the new local

transaction by adding the compensating id to the caller’s list of remote invocations.

Listing 4.1: AddCompensation algorithm pseudo-code

1 public void addCompensating(String clusterName , String entities , String

fromLTID) {

2

3 integer newLTID = calculateLTID ();

4 LocalTransaction newLT = new LocalTransaction(newLTID , entities ,

clusterName);

5 LocalTransaction fromLT = findLT(fromLTID);

6

7 fromLT.addRemoteInvocation(newLTID);

8 this.redesign.add(newLT);

9 }

To execute the Change Sequence operation the user must select the local transaction lt that wants

to change and the local transaction that will be the new caller for the selected local transaction. The

frontend performs an initial checking to verify if the caller local transaction is not in lt transitive closure,

because if it is then a cyclic dependency would be created. After that initial check the frontend sends

the two local transaction ids to the backend that follows the algorithm in 4.2. It starts by inserting a

new remote invocation in the caller local transaction object by inserting the lt id, then searches for the

previous lt caller and deletes the remote invocation to lt.
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Listing 4.2: SequenceChange algorithm pseudo-code

1 public void sequence_change(String ltID , String newCallerID , String

oldCallerID) {

2

3 LocalTransaction oldCallerLT = findLT(oldCallerID);

4 LocalTransaction newCallerLT = findLT(newCallerID);

5

6 oldCallerLT.removeRemoteInvocation(ltID);

7 newCallerLT.addRemoteInvocation(ltID);

8

9 }

The Define Coarse-Grained Interactions is the most complex operation to implement. The user

can only select a set of local transactions that are executed inside two clusters because the frontend

application filters out the local transactions that are not executed in the clusters selected by the user.

After choosing the set of nodes, the frontend orders them and sends their ids to the backend that follows

the algorithm in 4.3. It starts by creating two access sequences for the two new local transactions, the

from and to local transaction. The access sequences of each are formed by selecting the nodes that

are executed in each cluster, then the concatenation of access sequences of each node is performed

followed by applying the prune function defined in section 3.1. The set of local transactions selected

initially by the user is deleted and the two new local transactions are formed and added to the set of

local transactions. One remote invocation is created between the two new nodes by inserting the to id

in the set of remote invocations of the from local transaction. Every remote invocation that existed from

a local transaction being merged is replaced by a remote invocation from the new to local transaction

by adding the respective local transaction id to the to remote invocations set. To conclude the backend

calculates the root node (the local transaction that calls the first local transaction called in the graph

between the selected local transactions) and replaces the remote invocation that connects the node to

the local transaction being removed by a remote invocation to the new from local transaction.

Listing 4.3: DCGI algorithm pseudo-code

1 public void dcgi(String fromCluster , String toCluster , List <String >

localTransactions) {

2

3 List <Strings > fromClusterLTs = filterLTs(localTransactions , fromCluster);

4 List <Strings > toClusterLTs = filterLTs(localTransactions , toCluster);

5

6 String fromLTAccessSequence = constructAccessSequenceWithPruneFunction(
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fromClusterLTs);

7 String toLTAccessSequence = constructAccessSequenceWithPruneFunction(

toClusterLTs);

8

9 integer fromLTID = calculateLTID ();

10 integer toLTID = calculateLTID ();

11

12 List <integer > fromLTRemoteInvocations = new ArrayList <>();

13 fromLTRemoteInvocations.add(toLTID);

14

15 List <integer > toLTRemoteInvocations = new ArrayList <>();

16

17 for(String ltID : localTransactions){

18 LocalTransaction lt = findLT(ltID);

19 toLTRemoteInvocations.addAll(lt.getRemoteInvocations ());

20 }

21

22 this.redesign.removeAll(localTransactions);

23 LocalTransaction root = findCaller(localTransactions [0]);

24 root.remoteInvocations.remove(localTransactions [0]);

25 root.remoteInvocations.add(fromLTID);

26

27 LocalTransaction fromLT = new LocalTransaction(fromLTAccessSequence ,

fromCluster , fromLTAccessSequence , fromLTRemoteInvocations);

28 LocalTransaction toLT = new LocalTransaction(toLTAccessSequence ,

toCluster , toLTAccessSequence , toLTRemoteInvocations);

29

30 this.redesign.add(fromLT);

31 this.redesign.add(toLT);

32

33 }
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5
Visualization and Modeling Tool
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The existing tool was improved as a proof of concept to incorporate the proposed operations and the met-

rics calculation that allow the architect to perform the functionalities redesign. The tool was implemented

using the Java programming language with the Spring-boot framework for the backend, whilst the fron-

tend was developed using ReactJS. Because we are adding new functionalities to the Mono2Micro

application, we leverage on the existing work and to get to the functionalities redesign process, the

tool needs as input a data collection file that represents the monolith’s codebase. The codebase is

obtained using static or dynamic analysis and contains the information about the invocation tree inside

the system, After submitting it, a candidate decomposition can be created and the architect can see

the functionalities execution flow on the given decomposition as well the new metrics values, as seen in

figure 5.1.

Figure 5.1: Initial view presenting the monolith execution flow as well its metrics values.

In figure 5.1 we can see at the top the values for the functionality and system complexities. The first

node of an execution flow is always the controller, and each local transaction, or node, is identified by an

unique id and by the cluster where it is executed. The edges correspond to a remote invocation and by

hovering an edge the user can see the accessed entities in the next local transaction.

Now the architect can start the redesign process and create an execution flow he/she considers more

adequate to execute in the microservices system using the design patterns. The architect has at his/her

disposal five different operations:

• Sequence change - Corresponds to the homonym functionality defined in section 3.1.

• Add Compensating - Corresponds to the homonym functionality defined in section 3.1.
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• Define Coarse-Grained Interactions - Corresponds to the homonym functionality defined in section

3.1.

• Select Pivot Transaction - This operation is applied at the end of the redesign process to incor-

porate the SAGA patterns into a functionality. By specifying the pivot transaction the tool is able

to define what transactions are compensatable or retriable, and consequently define the semantic

locks introduced by the functionality.

• Rename - This operations allows the user to change the name one local transaction has.

To execute any operation the architect must start by selecting a node from the graph that represents

a local transaction. Choosing the Sequence Change operation the architect then must select another

node that will be the new caller for the node selected in first place. After selecting the second node, the

operation can be submitted, as seen in figure 5.2.

Figure 5.2: Inputs necessary to execute the Sequence Change operation.

(a) Before the operation (b) After the operation

Figure 5.3: Result of applying the Sequence Change operation with the input as 5.2

After submitting the operation, the tool starts by checking if the new caller node is not executed

after the first selected node. If it is, then an error message appears explaining that the operation is not

possible since it would create a circular dependency in the graph. If the check is passed, the second

selected node will now call the first selected node, and its previous remote invocation from its caller will
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be deleted. In the case presented in figure 5.2, the node 1: Models will now be called by the node

ActivityModelController.addActivity. The result is shown in figure 5.3, where 5.3(a) and 5.3(b) are the

graph before and after the operation respectively.

To execute the Add Compensating operation, after selecting the first node that will be the caller for

the new local transaction, the tool asks which cluster the new compensating local transaction will be

executed. Then, the user selects the entities to be updated in the new local transaction from a set of

entities, where only the entities touched in write mode by this functionality are present. After it, the user

can submit the operation as presented in 5.4.

Figure 5.4: Inputs necessary to execute the Add Compensating operation.

As a result a new local transaction and a remote invocation from the first selected node to the new

node are created. The result of applying the operation described in 5.4 is shown in 5.5.

(a) Before the operation (b) After the operation

Figure 5.5: Result of applying the Add Compensating operation with the input as 5.4

When executing the Define Coarse-Grained Interactions, two clusters must be selected. The first

cluster is the cluster where the first selected node executes, whilst the second node is selected by the

user from a list. After selecting the two clusters, a user can select the local transactions it wants to merge

from a list which contains only local transactions executed in one of the selected clusters, or simply by

clicking in the nodes. After selecting the local transactions the operation is ready to be submitted as

shown in 5.6.

As a result, all the local transactions that are executed in one cluster are merged forming two new

local transactions, one per selected cluster, and one remote invocation between them. The result of

45



Figure 5.6: Inputs necessary to execute the Define Coarse-Grained Interaction operation.

applying the operation described in 5.6 is presented in 5.7.

(a) Before the operation (b) After the operation

Figure 5.7: Result of applying the Define Coarse-Grained Interaction operation with the input as 5.6

The last operation from the redesign process that the user can select is the Select Pivot Transaction

operation. When selecting this operation the user is submitting to the system the transaction that will

be the pivot transaction and the system calculates which transactions are compensatable or retriable.

This should be the final operation to apply in the redesign process and after submitting the operation

the user is presented with a menu of redesigns that the system contains for the selected functionality.

Before submitting it the user is requested to write the name that will identify the redesign. In figure 5.8

we can see an example of this operation being used.

Figure 5.8: Select the Pivot Transaction operation example.
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The tool also allows to compare two different redesigns for the same functionality, which is helpful be-

cause it allows the user to have a close look at the differences between two redesigns and consequently,

to make a better decision about the chosen redesign. In the comparing view, presented in figure 5.9, the

selected redesigns are shown side-by-side with their functionality and system complexities values if the

functionality is a saga or with the query inconsistency complexity if it is a query. The user can navigate

the execution flow of each one and compare them.

Figure 5.9: Comparing redesigns view.

To calculate the metrics values, the tool needs to know which redesign to use. When there is only

one redesign for a functionality there is no problem because the tool uses it, the monolith execution

trace, to calculate the metrics. But when there are multiple redesigns the tool must know which redesign

to use to calculate the functionalities new metrics values. Therefore, if there are multiple redesigns

for a functionality, the tool allows the user to select the redesign it must use in the metrics calculation.

Additionally, the tool also allows the user to delete a redesign.
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To evaluate the operations and metrics presented we analyzed two systems: LdoD (122 controllers,

67 domain entities) and Blended Workflow1 (98 controllers, 49 domain entities)2. Both systems are a

client-server application that use the Model-View-Controller (MVC) architecture, constructed using the

Java programming language and the Spring-Boot framework, where each controller correspond to a

functionality.

The set of redesign operations were defined, and formalized, after an extensive experimentation that

identified which changes have to be applied to the decomposition of a functionality to create a suitable

SAGA implementation, while preserving its semantics. Note that the operations were constructed to

implement the SAGA pattern but they can also be applied to use the API Gateway pattern since it is only

necessary to create a local transaction in each service that the query access.

Since the operations and metrics are applied in the context of a candidate decomposition, any de-

composition would serve. For our analysis we used the expert decompositions of these systems. As the

main goal of this work is to refine the existing complexity metric we start by showing that the base metric

and the new metrics are correlated, when applied for the initial graph where every local transaction is

typed as compensatable. If the new metrics and the base metric are correlated then we can leverage

on the previous work and in the analysis performed on the base metric. In figure 6.1 we can observe

the correlation graphs, for the sagas functionalities, where each point represent for one functionality its

values according to the base metric and to the sum of the refined metrics, Functionality Redesign Com-

plexity (FRC) and System Added Complexity (SAC). It can be observed that the metrics are correlated.

To validate the proposed operations and the new set of metrics we need to analyse a set of function-

alities. However, applying the operations to compose a new execution trace is a manual time intensive

process that needs to be done by the systems experts. Therefore we started by filtering the function-

alities in each system. The goal is to have two sets of functionalities, one with the functionalities that

perform some create, update or delete operation (CUD operations), i.e, functionalities that write domain

entities and that will be implemented using the SAGA pattern, and another with the functionalities that

only read entities, i.e, functionalities that are queries and which implementation is done using other type

of patterns, e.g. API Gateway pattern. Then, for the CUD system, we performed a quartile analysis

over the complexities where we got 4 distinct groups of functionalities, grouped by their complexity. We

randomly picked three functionalities from each group and after careful analysis of the source code we

applied the operations to redesign the functionality for the given decomposition. This process allow us

to analyse different functionalities with different complexities that are a representation of the entire ap-

plication. The redesign goal was done to achieve a saga orchestration style as recommended in [8], to

minimise the remote invocations between services and reduce the network latency effect. As to the read

set, because it is a simpler process where the new query metric can be calculated automatically by the

1https://github.com/socialsoftware/blended-workflow
2https://github.com/socialsoftware/edition
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(b) Blended Workflow

Figure 6.1: Correlation between the base metric and the sum of Functionality complexity and System complexity
metrics.

tool we evaluate every query, compare the new values to the base metric and how it is related to the

number of accessed clusters.

6.1 Operations Evaluation

Our main goal is to be able to apply the new metrics to the functionalities’ traces. Therefore we created

the set of operations that allow us to modify the monolith execution trace into a microservices distributed

execution trace, such that after it, the metrics can be applied. Hence, we need to assess whether the

operations are adequate to carry out this transformation.

In tables 6.1 and 6.2 are the operations evaluation performed in 12 functionalities for the LdoD and

Blended Workflow systems respectively. For each of the selected functionalities the number of transac-

tions of each type, the total number of local transactions and the total number of accessed clusters are

presented for the final execution graph. Additionally, it presents the sum of the two complexity metrics,

for the initial and final graph. Firstly, we can observe that all the final complexity values are lower than

its initial values, which show us that the operations can be applied to every functionality and permits

the complexity refinement. Secondly, we can observe that to preserve the data dependencies in the

functionality, it is not possible to apply the operations until the number of local transactions is equal to

the number of accessed clusters.

Would be expected that more complex functionalities needed more local transactions. While in gen-
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Local Transactions Metrics

Functionality C P R Total # Access
Clusters Sum for the gI Sum for the gF

Q1: confirmRegistration 1 1 1 3 2 173 64
Q1: approveParticipant 3 1 0 4 3 213 147
Q1: submitParticipation 2 1 1 4 2 321 87
Q2: createTopicModelling 0 1 4 5 3 343 143
Q2: removeTweets 0 1 3 4 4 442 82
Q2: getTaxonomy 0 1 4 5 3 529 192
Q3: deleteTaxonomy 0 1 2 3 4 1014 164
Q3: mergeCategories 0 1 7 8 3 1671 253
Q3: dissociate 1 1 12 14 4 2075 489
Q4: createLinearVirtualEdition 5 1 2 8 3 3467 609
Q4: associateCategory 7 1 4 12 4 3470 1067
Q4: signUp 0 1 4 5 4 3861 376

Table 6.1: Local transactions types in the functionalities of LdoD. C - Compensatable; P - Pivot; R - Retriable; #
Accessed clusters - number of accessed clusters.

Local Transactions Metrics

Functionality C P R Total # Access
Clusters Sum for the gI Sum for the gF

Q1: createActivity 0 1 2 3 3 302 130
Q1: createEntityDependence
Condition 0 1 1 2 2 410 195

Q1: updateView 2 1 0 3 3 415 257
Q2: associateDefPathCondition
ToGoalAct 2 1 0 3 2 750 400

Q2: createSpec 0 1 1 2 2 801 79
Q2: removeSequenceCondition
ToActivity 2 1 3 6 2 1110 455

Q3: cleanGoalModel 1 1 3 5 4 1759 534
Q3: addSequenceConditionTo
Activity 1 1 1 3 2 1860 489

Q3: addActivity 6 1 2 9 3 3323 1493
Q4: mergeGoals 16 1 2 19 4 12764 2781
Q4: extractProductGoals 9 1 2 12 3 14699 2269
Q4: extractActivity 25 1 3 29 4 20628 5636

Table 6.2: Local transactions types in the functionalities of Blended Workflow. C - Compensatable; P - Pivot; R -
Retriable; # Accessed clusters - number of accessed clusters.

eral the presented values that may suggest it, there are a few cases like the signUp and the createLin-

earVirtualEdition functionalities that can be considered outliers. These cases show us that the correla-

tion between initial complexity and amount of local transactions is not linear and that the number of local

transactions is also dependent on the business logic of each functionality.

In what concerns the local transactions types, one clear and obvious conclusion, since the complexity

depends on the number of local transactions, is that the sum of the refined metrics increases with the

number of transactions. We can also observe that the number of compensatable transactions impacts
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on the complexity. This is due to the fact that the existence of compensatable transactions involves the

creation of semantic locks (if the access mode is write) and also the creation of more transactions to

implement the compensating transactions logic needed in case of a transaction abort.

6.2 Sagas Complexity Metrics Evaluation

Tables 6.3 and 6.4 show the complexities for each functionality analyzed in the systems LdoD e Blended

Workflow respectively. We can observe that for both systems the reduction in the functionality complex-

ity surpasses, in average, 40%. This shows the advantage of the proposed redesign operations and the

refined metrics. Additionally, we also observe the relation between the functionality associateCategory

and signUp. Before redesign the associateCategory has a lower complexity value than signUp. How-

ever after the redesigning, and the application of the SAGA pattern, that relation is reversed and the

complexity value for the associateCategory is higher than for signUp. This shows that the impact of the

redesign operations is not equal and depends on the functionality business logic. Additionally, it shows

an advantage of allowing the software architect to redesign the trace that results from the automatic

decomposition of the monolith, in particular the verification of whether the most complex functionalities,

according to the base metric, can or not be significantly reduced.

Functionality Initial
FRC

Final
FRC % Reduction Inital

SAC
Final
SAC % Reduction

Q1: confirmRegistration 67 64 5 % 106 0 100 %
Q1: approveParticipant 190 147 23 % 23 0 100 %
Q1: submitParticipation 169 87 49 % 152 0 100 %
Q2: createTopicModelling 157 143 9 % 186 0 100 %
Q2: removeTweets 134 82 39 % 308 0 100 %
Q2: getTaxonomy 317 192 39 % 212 0 100 %
Q3: deleteTaxonomy 253 164 35 % 761 0 100 %
Q3: mergeCategories 453 253 44 % 1218 0 100 %
Q3: dissociate 772 489 37 % 1303 0 100 %
Q4: createLinearVirtualEdition 1790 383 79 % 1677 226 87 %
Q4: associateCategory 1803 662 63 % 1667 405 76 %
Q4: signUp 1490 376 75 % 2371 0 100 %

Average: 41 % 97 %

Table 6.3: Functionality complexity and System complexity for the functionalities in the LdoD system. FRC - Func-
tionality Redesign Complexity; SAC - System Added Complexity.

By analysing the SAC values, in both system we got a significant reduction in the complexity values

after the redesign, which allows us to provide the architect with more precise values on the impact the

functionalities redesign has on the system. For instance, only the functionalities associateCategory and

createLinearVirtualEdition have a non zero value in the LdoD system, which indicates that only these

functionalities, of the functionalities analyzed, introduce complexity into others functionalities redesign
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Functionality Initial
FRC

Final
FRC % Reduction Inital

SAC
Final
SAC % Reduction

Q1: createActivity 164 130 21 % 138 0 100 %
Q1: createEntityDependence
Condition 260 195 25 % 150 0 100 %

Q1: updateView 204 134 34 % 211 123 42 %
Q2: associateDefPathCondition
ToGoalAct 318 214 33 % 432 186 57 %

Q2: createSpec 632 79 88 % 169 0 100 %
Q2: removeSequenceCondition
ToActivity 861 376 56 % 249 79 68 %

Q3: cleanGoalModel 1155 456 61 % 604 78 87 %
Q3: addSequenceConditionTo
Activity 1324 279 79 % 536 210 61 %

Q3: addActivity 1775 721 59 % 1548 772 50 %
Q4: mergeGoals 8471 1474 83 % 4293 1307 70 %
Q4: extractProductGoals 9573 1072 89 % 5126 1197 77 %
Q4: extractActivity 13849 2930 79 % 6779 2706 60 %

Average: 58 % 73 %

Table 6.4: Functionality complexity and System complexity for the functionalities in the Blended Workflow system.
FRC - Functionality Redesign Complexity; SAC - System Added Complexity.

despite that in the initial monolith trace all functionalities had a non zero value. A strong example is the

functionality signUp, which at the beginning was considered to have the most impact on the system,

but ended up having no impact on the system since it does not create any semantic locks. We can

conclude that with these new metrics we can offer to the user more information and more precisely about

the affected areas in the system, since the refined metrics separate the base metric into two different

concerns - functionality complexity that translates the complexity introduced in a business functionality

and system added complexity that translates the complexity introduces to the system by the redesign of

one business functionality.

We can analyse the different results in the SAC metric we got in the two different systems. In

the LdoD system only two functionalities have a non zero SAC value, while in the Blended Workflow

system only three functionalities have a zero value. This difference can be explained by the source code

complexity of each application. The Blended Workflow system has a more complex code, where various

conditions must be met at different stages of each business functionality, that imposes the need to

create various compensating and compensatable transactions with semantic locks to safeguard against

any error that might occur while executing one saga. On the other hand, the LdoD system has a lower

source code complexity where, in most cases, to execute a functionality no conditions must be verified,

or when there are conditions that must be guaranteed they can be confirmed at the beginning of the

saga. This lower source code complexity makes possible to implement a saga with no, or very few,

compensatable transactions and semantic locks, that in turns results in a low SAC value. We can

conclude from this analysis that is important to have different systems with different code complexities
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because their functionalities will also have different complexities which can be captured by the new

presented metrics. Hence, by comparing the end values for both metrics for a set of functionalities from

different applications we can also verify that the new metrics can show, with some certainty, what system

have a lower transition cost.

When analyzing together all tables from the operations and metrics analysis, it is visible the relation

between the existence of compensatable transaction and a positive value for the SAC. There are some

exceptions, like the functionality approveParticipant in the LdoD system that contains 3 compensatable

transactions and 0 system complexity. After analysing the final redesign graph we noted that the 3

compensatable transactions were read only transactions. They are considered compensatable because,

by definition, all the local transaction that do not occur after the pivot transaction are compensatable, but

in this case they do not need a compensating transaction in case of a transaction abort. However, as

previously noted in the relation between the number of compensating transactions and complexity, we

can conclude that most of the compensating transactions require semantic locks, which increases the

functionality complexity. The Blended Workflow system is one clear example of this correlation, where

we can see that the only functionalities that have a zero final system added complexity are also the

functionalities that do not have compensatable transactions.

By analysing these 24 controllers and the values obtained we can conclude that our metrics clearly

offer more precise information about the complexity in general and about the systems parts that are

affected during one functionality redesign. While before the redesign the new metrics do not offer new

additional information comparing with the base metric, by capturing new information during the redesign

process by using the proposed set of operations we can clearly reduce the functionalities complexity

and also offer distinct information about the complexity location.

6.3 Queries Complexity Metric Evaluation

The new Query Inconsistency Complexity (QIC) metric is not derived from the base metric, however we

evaluate how both are correlated for both systems and the results can be seen in figure 6.2. It is visible

that the new metric is not highly correlated to the base metric as are the sagas’ new metrics. This was

expected because QIC is a brand new metric that was developed to captured the specific complexity of

applying the pattern API Gateway. Nevertheless, by observing both graphs, it seems to exist a saturation

line that limits how QIC can grow in comparation with the base metric. This is explained because the

amount of accessed clusters by each query limits the QIC values while in the base metric its values

are dependent on the amount of read and writes performed in a entity, which can grow more linearly.

For instance, if one query only accesses two clusters then for each saga that accesses the same two

clusters it will only count that amount of functionalities, while in the base metric it counts the number of
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writes performed in the entities, which is in almost all cases bigger.
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Figure 6.2: Correlation between the base metric and Query Inconsistency Metric.
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Figure 6.3: Correlation between the number of accessed clusters and Query Inconsistency Metric.

Because the number of clusters might limit the Query Inconsistency Metric we also analyse how both

correlate and the results are visible in figure 6.3. We have got two different results, one for each system.

On one hand, in the LdoD system there is some correlation between the number of accessed clusters

and the QIC values. On the other hand, in the Blended Workflow system there is no correlation between

the values. One aspect that is important to note is that the LdoD system is partitioned in five services

and that are queries that accesses different amount of clusters, while the Blended Workflow system is
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only partitioned in four services and there is only queries accessing two or three clusters. This limitation

in the variety of accessed clusters in the Blended Workflow application might be affecting the results

since we do not have a wide spectrum of values. Nevertheless, if we focus on the LdoD application

then as the number of accessed clusters grow the QIC values also grow, which shows that the new

metric provides coherent values since as the number of accessed clusters increase the probability of

encountering inconsistent states in different services also increase. In real life applications that can

contain hundreds of microservices it is expected that the QIC metric provides coherent value for the

inconsistency complexity in queries.

6.4 Summary

In summary, our analysis has shown that:

• The new presented metrics are highly correlated with the base metric, which allows us to leverage

on the previous work.

• Our proposed set of operations can be applied to create a distributed transactions following the

SAGA pattern.

• Our proposed set of operations help refine and reduce the complexity of each functionality.

• After the redesign, the new metrics can better identify functionalities that have a high complexity.

• When analysing the whole set of functionalities from different systems we can analyse and con-

clude what systems are more complex to transit.

• The new proposed metric for queries reflect with some certain the probability that each query might

encounter when accessing different services.

Going back to the research questions raised:

1. What set of operations can be provided to the architect such that the functionalities can be re-

designed by applying microservices pattern?

2. Is it possible to refine the complexity value associated with the monolith migration when there is

additional information about the functionalities redesign?

To answer them, first we have defined a suitable set of operations that the architect can use in the

design stage in order to design functionalities in a microservices architecture. Secondly, by separating

the base metric in two distinct metrics we can target different affected areas during the functionalities

design and implementation, and we obtained more precise values for the functionality migration cost.
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6.5 Threats to Validity

In terms of internal limitations, the use of the expert decomposition has no impact on the validation

conclusions, actually, to evaluate the metrics refinement and the operations, any candidate decomposi-

tion could be used. The validation of the operations was done to a small subset of functionalities, but

a systematic method to select them was chosen and functionalities with different levels of complexity

were also chosen. Also, the redesign was done to follow an orchestration style for the functionalities

sagas. However, considering that: (1) we are evaluating the applicability of the redesign operation; (2)

evaluating whether the new metrics can provide a more precise value, this is not biased by following a

orchestration style, though the complexity values could change for depending on the redesign chosen,

affecting the complexity reduction. Nevertheless this is not a defect but instead an advantage of the new

metrics, that can clearly differentiate the complexity of two redesigns, as it can be seen by the different

values obtained before and after the redesign process.

In terms of external validity, we believe that our conclusion can be generalized to the monolith sys-

tems that were implemented using a rich domain model, which is the case of the two analyzed systems,

that were implemented using fine-grained object-oriented interactions.
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In this thesis we addressed the problem that arises from an architecture transition from a monolith

to a microservices architecture and present a set of complexity metrics that are based on the previous

developed metric to assess the migration cost. We focused on the complexity of redesign the existing

business functionalities to the new microservices environment, due to the lack of isolation, and started

by presenting a set of operations for the redesign process. Without applying this set of operations our

new metrics could not be applied because it was possible to apply the microservices design patterns

that the metrics rely on. The SAGA pattern is applied to the CUD functionalities and the number of

semantic locks is used to calculate the complexity. On the other hand a new metric was developed to

assess the inconsistency complexity that the queries implemented using the API Gateway pattern might

encounter. By dividing the existing complexity metric into two distinct metrics, it becomes possible to

distinguish between the complexity inherent to each functionality redesign, and the complexity added in

the redesign of other functionalities. As a proof of concept we improved the existing tool to incorporate

the functionality redesign process with the proposed set of operations and the new metrics. As result of

the evaluation, we observed that through the application of the operations a suitable execution flow of

the functionality, following the SAGA pattern for the CUD transactions and the API Gateway pattern for

the queries, is obtained. Regarding our sagas complexity metrics evaluation, they allow us to reduce the

initial complexity value and properly identify and distinguish the business functionalities that are more

complex to implement in a candidate microservices decomposition. Part of this work is already published

in the European Conference on Software Architecture (ECSA 2020) [11]. The code is publicly available

in a GitHub repository1.

7.1 Future Work

Since some of the initial monolith execution traces are very cumbersome and complex, reaching hun-

dreds of nodes and edges, one possible extension to be made would be an automatic tool that gives

suggestions to the user of where and what operations to apply. These tools would analyse the execution

traces and detect where a specific operation can be applied making the existing tool more powerful and

alleviating the user work.

Another possible extension would be the detection of dependencies in the execution flow. As it is

currently, the static and dynamic analysis are not capturing the data dependencies that may exist, it is

only capturing the entities accessed and the order in which they are accessed. We consider a data

dependency as a link between two local transactions where the first local transaction produces some

information that the second requires in order to execute. During the redesign process we had to make

this analysis manually by looking at the source code and detecting whether a local transaction could

1github.com/socialsoftware/mono2micro
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be changed by any operation such that any existing data dependence would not be broken. These

restrictions should be incorporated in the system such that the user during the redesign process does

not break any dependency that would alter the business functionality.

One possible solution that we could already have implemented in this work would be to have a more

restricted dependencies model, where we would define a model that in the worst case would be more

severe than the real system. This model would be obtained by assuming that if a local transaction writes

some entity which a future local transaction reads then a data dependency exists between them. Note

that in reality this dependency might not exist. Consider that the first local transaction updates argument

a of entity X and the second local transaction reads the same entity X but the argument b. In this

possible model a data dependency would be created when in reality there is no dependency between

the local transactions. However, there are other types of dependencies that we would need to consider.

In this restricted dependencies model we are only considering dependencies between local transactions

that execute in the same cluster. Since in microservices different clusters manage different entities, for

two different local transactions to access the same entity they must be executed in the same cluster. So

we must also evaluate the dependencies that might exist between local transactions that are executed

in different clusters. But the current available data given by the static and dynamic analysis does not

provide enough information to detect those dependencies because we do not know what information

is passed between local transactions. As we can not detect or theorize about the second types of

dependencies, the more restricted dependencies model that we start considering does not cover all

possible dependencies.

Having this theory as a base, a future work could be developed to improve the current system by

restricting how the proposed set of operations can be applied during the redesign process having in

mind the dependencies that exist in the business functionality.
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