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Abstract

Globalization has increased the importance of having
high quality, quickly generated, and easily accessible trans-
lations. For the past few years, neural machine transla-
tion (NMT) has been the major chosen solution to fulfill this
need. Among the vast research done in the field, novel ways
of representing input data have been studied in an attempt
to enrich the information contained in each word represen-
tation. One of them is factors, a mechanism where each
word, instead of being represented by only the word itself,
is defined by a bundle of features.

In our work, we test and evaluate the usability of the
factors’ code in Marian, an open-source NMT toolkit. We
show how using factors impacts the quality of translations
and the performance of this framework in terms of inference
and training speed. We also contribute to its codebase by
implementing concatenation as a method of combining the
embeddings of the word and the factors.

We conduct three experiments, where we use factors for
three different use cases and show how they improve the
quality of the NMT systems’ translations. We use them to in-
ject terminology at run time, and show how combining word
and factor embeddings by concatenating them is the most
valuable option. We use them to represent subword splits,
comparing two different methods previously proposed to do
so. Finally, we use them to encode morphological infor-
mation in an attempt to improve the translation quality of
morphologically rich languages, showing promising results
for the English-Romanian language pair.

1. Introduction
Globalization brings the need for communicating with

people from all around the world, in any language, enhanc-
ing the importance of having high quality, quickly gener-
ated, and easy accessible translations. While human transla-
tors can produce high quality translations, they can be costly
and time consuming. Machine Translation (MT) seeks to
close this gap, by producing more cost-effective transla-

tions, in a more scalable manner.

The increasing availability of large amounts of data, and
the advances done in the scope of Deep Learning [1], led
to Neural Machine Translation (NMT), [2, 3] an approach
to MT based on neural networks. Motivated by the desire
to enrich the information contained in each word represen-
tation, Bilmes et al. [4] introduced the concept of factors,
where each word, instead of being represented by only the
word itself, is defined as a bundle of different features. Fac-
tors were first incorporated in NMT by Sennrich and Had-
dow [5], who applied factors to the source side, and by
Wilken and Matusov [6], who used them for target data.
Given the versatility of factors, these works used them to
encode many kinds of different information, namely part-
of-speech tags, morphological information, capitalization,
as well as information about how a word is split into its
subword units [7]. The usage of factors proved to be bene-
ficial to improve different aspects of NMT systems, such as
the generation of unknown words, the grammatical coher-
ence of sentences, the disambiguation of homonyms, and
decreasing decoding time, by reducing the size of the vo-
cabulary for example. More recently, Dinu et al. [8] and
Exel et al. [9] proposed factors as a solution to tackle the
problem of domain adaptation by injecting custom termi-
nology into neural machine translation at run time.

Accompanying all these developments, a variety of dif-
ferent NMT open-source toolkits have been developed.
Among them, the Marian toolkit [10] stood out from the
remaining ones, given its pure implementation in C++, its
minimal dependencies, and its competitive benchmarks re-
lated to training and inference speed, as well as its cost-
effectiveness [11]. However, some toolkits like Nematus
[12], Sockeye [13] or Open-NMT [14] have already re-
leased software versions with the implementation of source
and target factors, which has not happened with Marian un-
til this date. Motivated by the reported positive results of
using factors, the Connecting Europe Facility (CEF) de-
cided to incorporate the inclusion of user-supplied factors
as one of the milestones of their “User-Focused Marian”
action, focused on improving Marian to address the needs
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of CEF eTranslation, an automated translation tool from the
EU, and to broaden its user base. It is in the scope of that
project that this work has been developed.

Regarding the aeronautics industry, it has been reported
that language barriers affect performance negatively, espe-
cially when it comes to maintenance [15, 16], as most of
the maintenance personnel does not speak English as native
language. Misunderstandings can lead to prolongations of
the time it takes to restore an asset to operational readiness.
Allowing maintenance technicians to communicate in their
native language would aid in the technicians’ training pro-
cesses, as often training in English takes a part of it. There-
fore, the new advances in machine translation, which have
increased the speed and accuracy of automatic translation,
while lowering the cost of having access to them, can help
mitigate the reported problems caused by faulty communi-
cation.

Furthermore, factors in particular can have a key role
in enriching the quality of these translations, not only by
improving the performance of the system as a whole, but
mainly due to their use for domain adaptation, allowing the
injection of specific terminology to the generated transla-
tion, useful for the aeronautics industry as it is a field which
has a considerable term base.

The main contributions of this work are the following:

• We extend the work from [8], by comparing different
factor embedding options. We show that concatenation
is the best option, and we also extended the experiment
to three other language pairs;

• We compare two different approaches to represent the
subword splits with factors ([5] and [17]). Also, we
show that using factors for this use-case, despite result-
ing in positive results for English-German as reported
in the literature, when extending it to other language
pairs, the same positive behavior is not noticed;

• We used factors to improve the translation of morpho-
logically rich languages, showing promising results for
the English-Romanian language pair;

• We tested and evaluated the usability of the factors’
code in the Marian toolkit. Furthermore, we con-
tributed to the open source Marian’s code base by
means of the CEF’s Marian action,1 with the imple-
mentation of concatenation as an option to combine
word and factor embeddings, as the original code only
had sum as an available option.

This work is organized as follows: Section 2, covers the
state of the art regarding factored neural machine transla-
tion (FNMT), detailing the changes that need to be done in

1Code submission available in: https://github.com/marian-
cef/marian-dev

an NMT architecture to incorporate factors. Our implemen-
tation of concatenation to combine word and factor embed-
dings is also explained, alongside the factor implementa-
tion in Marian. We then show three different applications
for factors, the same three applications for which we used
them in our experiments in Section 3, in which we report
and analyze the results of the experiments that we carried
out. Section 4 does an overview of the main achievements
obtained with this work, leaving also some suggestions for
future improvements.

2. Factored Neural Machine Translation
2.1. Factors

Factors can be defined as a mechanism by which we can
represent words in a sentence, not only by the words them-
selves but as a bundle of features. With this, we can asso-
ciate to each word several types of attributes as a way of
enriching the information that each word contains when it
is provided to the system. When representing a word with
a set of F different features, the first feature (k = 1), is
called lemma and it is either the original word or a simpli-
fied version of it, depending on what is represented in the
remaining features k ∈ {2, ..., F}, which we call factors.

2.1.1 Source Factors

Sennrich and Haddow [5] changed a NMT architecture sim-
ilar to [18] so that it would be able to process source factors.
The main change was applied to the embedding layer. In
the unaltered architecture, the word embeddings vector Ei

of a word xi in a sentence x = (x1, ..., xN ) is obtained
using an embedding matrix U . In the factored architec-
ture, each word is represented by a total of F different fea-
tures, therefore, separate embedding vectors are computed
for each one, which are then concatenated. Summarily:

Ei =

F∥∥∥
k=1

UT
k xik (1)

where ‖ denotes vector concatenation, Uk ∈ RKk×mk is the
kth feature embedding matrix, Kk is the vocabulary size of
the kth feature, mk is the embedding size of the kth feature,
and xik ∈ RKk is an one-hot encoding vector indicating the
value of the kth feature.

2.1.2 Target Factors

Garcı́a-Martı́nez et al. [6] changed a NMT architecture sim-
ilar to [18] to be able to handle target factors. First of all,
the decoder embedding layer needed a factored embedding
layer, similar to the one seen in Section 2.1.1. Furthermore,
at the end of the decoder, the architecture was changed in
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a way that instead of producing only one output (the pre-
dicted word), it predicted both the lemma and its factors in
each time step. In the unaltered architecture, a predicted
word ŷ(t) can be obtained by multiplying the last hidden
state h(t) with the output embedding matrix V . If instead of
a single word one wants to output a bundle of F features,
then F different embedding matrices are needed, therefore
predicting each feature ŷ(t)k with:

ŷ
(t)
k = softmax(V T

k h
(t) + ck), (2)

where ck ∈ RKk ∈ and Vk ∈ Rm×Kk are the kth feature
bias and output embedding matrix respectively, and m the
size of the last hidden state (in this case the same as the
embedding size, m).

Garcı́a-Martinez et al. [6] also found that applying a
lemma dependency to the prediction of the factors improved
the accuracy of the factor predictions and consequently the
system results.

2.2. Factors in Marian

2.2.1 Source Factors

The implementation of source factors in Marian has some
differences when compared to the one analyzed in section
2.1.1. Instead of having several embedding matrices for
each one of the different features used to represent a word,
Marian only has one large embedding matrix where all this
information is encoded. Also, instead of concatenating the
lemma and the factor embeddings, these are summed.

To embed a sentence x with N words, x = (x1, ..., xN ),
where each word is represented by F different features, we
start by creating a large embedding matrix U ∈ RK×m,
where K is the vocabulary size of all the features vocabu-
laries Kk combined,

∑F
k=1Kk = K. In fact, this matrix

could be seen as the concatenation (by the rows) of the dif-
ferent factors embedding matrices Uk ∈ RKk×mk seen in
section 2.1.1, with the constraint that they all have the same
embedding dimension mk = m.

When we process the input sentence, we start by con-
structing a sparse binary matrix M ∈ RN×K . Each row
of this matrix has a multi-hot encoded vector that encodes
the information represented in each word of the sentence
x. Marian concatenates all factor vocabularies into one, and
so, we are able to encode in a single vector which are the
lemma and factors represented in a given word, by means
of multi-hot encoding. This matrix is then multiplied with
the embedding matrix U , resulting in the word embeddings
E ∈ RN×m. With this multiplication, we end up summing
the embeddings of the lemma and factors. A schematic rep-
resentation of this process can be seen in Figure 1.

Even though this approach is beneficial from a compu-
tational point of view, as it limits the embedding process to
a single matrix product, it has some drawbacks. Firstly, it

Figure 1. Representation of original lemma and factor embedding
process of a sentence in Marian. Combining them with sum. For
simplicity in this example a word is represented by a lemma and
two factors (F = 3).

forces that all the factors must have the same embedding
dimension as the lemma. Secondly, this approach forces
the factor embeddings to be summed with the lemma em-
beddings, not allowing other options such as concatenation.
Thirdly, it does not favor tied embeddings [19] when only
source or target factors are used, due to the fact that the
same embedding matrix has to encode the lemma and the
remaining factors, and so, if one side encodes both lemma
and factors, while the other side only encodes lemmas, the
size of the source and target matrices would not match and
therefore they would not be eligible to be tied.

In an attempt to overcome these problems, we decided
to implement a new method of combining lemma and fac-
tor embeddings, more similar to what we saw in section
2.1.1. To do so, we split the embedding process of the lem-
mas from the embedding process of the remaining factors.
We created two embedding matrices Ulemma ∈ RK1×m

and Ufactors ∈ R(K−K1)×mf , mf being the embedding
size of the factors, and K1 the vocabulary size of the lem-
mas. To embed the lemmas, we can make use of the em-
bedding matrix as a lookup table, and therefore avoid the
matrix dot product, thus obtaining the lemma embeddings
Elemma ∈ RN×m. Then for the remaining factors we cre-
ate a multi-hot embedding matrix Mfactors ∈ RN×(K−K1)

that is then multiplied with the factors embedding matrix
Ufactors, thus obtaining the factor embeddings Efactors ∈
RN×mf . Finally, the lemmas and factors embeddings are
concatenated, in order to obtain the final embeddings E =
Elemma‖Efactors.

This approach favors the tying of the lemma embedding
matrix of the source and target side even if only one of them
uses factors. Furthermore, with this we are able to control
the embedding size of the factors. A schematic representa-
tion of this process can be seen in Figure 2.

2.2.2 Target Factors

Regarding the target side, the implementation of the algo-
rithm that predicts the different factors has also a different
approach than the one explained in Section 2.1.2. There
are four different factor prediction options in Marian (al-
though one of them is only used for debugging purposes),
that replace the last typical linear layer of the decoder archi-
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Figure 2. Representation of the implemented lemma and factor
embedding process of a sentence in Marian. Combining them
with concatenation. For simplicity in this example a word is rep-
resented by a lemma and two factors (F = 3).

tectures, all using a lemma dependency when predicting the
factors. All these different methods start by obtaining the
lemma prediction ŷ(t)1 by simply applying equation 2. This
equation uses the output embedding matrix V1 ∈ Rm×K1 ,
which is the output embedding matrix for feature k = 1,
the lemmas. In Marian, as we did not have for the input
embedding layer, we do not have several separate output
embedding matrices Vk, but only one large output embed-
ding matrix V . Although, as we mentioned in Section 2.2.1,
and as it can also be seen schematically in Figure 1, the in-
put embedding matrix U is in fact a concatenation by the
rows of the sub embedding matrices Uk. Therefore, follow-
ing the same pattern, in order to obtain V1, we just need to
select the rows from V correspondent to the first feature,
and therefore, we obtain V1, allowing us to use equation 2.
The relevant factor prediction methods available in Marian
are the following:

• Soft Transformer Layer - This name comes from the
fact that the prediction of each factor is done with a
condition mechanism that mimics a transformer layer
[20]. After obtaining the lemma prediction ŷ

(t)
1 , a

multi-headed scaled dot product attention layer [20] is
applied, receiving as inputs both the embedding of the
predicted lemma and the outputted last hidden state by
the decoder. Subsequently, as in a typical transformer
layer, this is passed through a feed forward neural net-
work (FFN), applying an “Add & Norm” layer after
both the attention layer and the FFN. To the output of
this condition mechanism h

(t)
k , equation 2 is applied,

and the factor prediction ŷ(t)k is obtained.

• Lemma Custom Projection - After obtaining the
lemma prediction ŷ(t)1 , this is projected to a new di-
mension m′, with a new trainable parameter D1 ∈
RK1×m′

, being reprojected again to dimension m by
D2 ∈ Rm′×m. Secondly, the lemma dependency is
summed to the outputted hidden state instead of con-
catenated. Summarily:

ŷ
(t)
k = softmax

(
V T
k

(
D1D2y

(t)
1 + h(t)

)
+ ck

)
(3)

for k ∈ {2, ..., F}. If m′ = m, only D1 is used.

• Lemma Dependent Bias - to predict each factor with
this method, a lemma dependent bias is computed for
each factor, which is later added to the factor logits
vector. The factor logits of the kth feature, is ob-
tained with equation 2, but without the application of
the softmax function. The lemma dependent bias bk
is obtained by multiplying the predicted lemma logits
and a trainable parameter B ∈ RK1×Kk . The factors
are then obtained with,

ŷ
(t)
k = softmax(V T

k h
(t) + ck + bk), (4)

for k ∈ {2, ..., F}.

2.3. Factors Applications

2.3.1 Factors To Apply Terminology Constraints

Dinu et al. [8] proposed a successful method to inject cus-
tom terminology into neural machine translation at run time
by using factors. The idea was to train the model in a way
that it learned a “copying behavior”, by providing the tar-
get term in the source side, enforcing the translation to pro-
duce that term. These target terms were integrated into the
source sentences by appending them to their source version.
The factors are used to signal this “code-switching” in the
source sentence. Three factors were used (the numbers 0,
1, and 2), one to indicate source terms (1), another for the
added target terms (2), and finally another for the words that
were already part of the source sentence (0).

The lemma and the factor were embedded with a strategy
similar to what we saw in Section 2.1.1, where lemma and
factors have separate embedding matrices, and the resultant
embeddings are concatenated. This was evaluated for the
English-German language pair.

We extended this work by evaluating the impact of using
factors to inject terminology at run time in other language
pairs, and also compared different methods to combine the
embeddings of the lemma and factors. This experiment is
reported in Section 3.3.

2.3.2 Factors To Replace Subword Joining Markers

Both Sennrich and Haddow [5], and Wilken and Matusov
[17], used factors to encode subword tags [7] information,
following two distinct approaches:

• Sennrich and Haddow [5] used an annotation similar
to the IOB format, having a factor that indicated if a
certain subword unit was part of the beginning (B) of a
word, the inside of a word (I), or the end of a word (E).
(O) was used if a symbol corresponded to a full word,
i.e, a word not split after applying BPE.
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• Wilken and Matusov [17] used an annotation method
that indicated when two consecutive subwords had to
be merged. They used the factor “T” to indicate if a
subword unit should be concatenated to the previous
subword unit in a sentence, and used the factor “F”
otherwise.

Both works tested this for the English-German language
pair, reporting slight increases in BLEU score when com-
paring their systems to baselines.

In Section 3.4, we show how we extended their works,
both by comparing directly these two encoding methods,
but also by experimenting with other language pairs rather
than English-German, to evaluate if using factors to encode
subwords split information also has a positive impact on
them.

2.3.3 Factors to Encode Morphological Information

Garcı́a-Martı́nez et al. [6] deconstructed words into its mor-
phological lemma and the respective morphological tags,
both predicted by a morphological analyzer. The morpho-
logical tags were all concatenated into a string that was later
treated as a single factor. Therefore, each word was repre-
sented by two features (F = 2), the lemma and the mor-
phological tags factor.

After obtaining the predicted sequence of both the
lemma and factors, for each pair of predictions, in post-
processing, a morphological inflector is responsible for
combining the lemma and its morphological information to
generate the final word. New words not initially in the vo-
cabulary, like a specific inflection of a certain word, could
thus be generated. The authors reported slight increases in
BLEU score for the English-German language pair when
following this approach. Furthermore, the number of un-
known words was reduced to more than half.

Motivated by the work done by Garcı́a-Martı́nez et al.
[6], we followed their approach of encoding morphological
information into factors and tried to improve the translation
of morphologically rich languages. These experiments are
reported in Section 3.5.

3. Experimental Analysis

3.1. Datasets

In our experiments, we used four different language
pairs: English-German (en-de), English-Latvian (en-lv),
English-Norwegian (en-no) and English-Romanian (en-ro).
For en-de, we used the data from the WMT 2018 English-
German news translation shared task [21]. We gathered
both the Europarl corpora [22] and the news commentary
data corpora to form the training set. For the develop-
ment (dev) and test sets, we used the 2013 and 2017 WMT

English-German news translation shared task ([23], [24])
test sets respectively.

For the en-lv and en-ro language pairs, we joined the Eu-
roparl [22], DGT [25], JRC-Acquis [26], and EMEA cor-
pora, all available through the OPUS data base [27], to cre-
ate our datasets. For en-no, we used the Tilde-Model [28],
data from the National Library of Norway, and finally data
from the ELRC-SHARE repository. After collecting the
data from these three language pairs, we removed empty
and duplicate lines, as well as lines that were equal for the
source and target side. We randomly selected 2.2 million
sentences for the training data and 3000 for the dev set. Due
to the smaller dimension of the en-no corpora, no random
selection was needed, only the division between training
and dev was done. Regarding test set, for en-lv we used
the 2017 WMT English-Latvian news translation shared
task [24] test set, and for en-ro the 2016 WMT English-
Romanian news translation shared task [29] test set. For
en-no, since it was never a language pair of WMT, when
dividing the en-no corpora between train and dev sets, also
3000 random sentences were selected for the test set.

3.2. Baselines

3.2.1 Preprocessing Steps

After gathering the corpora for each language pair, we
applied the same preprocessing sequence to all datasets.
Firstly, we started by normalizing the punctuation and to-
kenizing the data. We subsequently applied truecasing, and
finally, we applied BPE [7] to segment sentences into sub-
word symbols, using 32000 merge operations, and the vo-
cabulary threshold option set to 50. The BPE learned the
merges over a concatenated corpus of the two languages in
the language pair. Finally, we built shared vocabularies, in
order to later tie the embeddings [19]. All the scripts used
for the stages of the preprocessing pipeline prior to BPE
were done with scripts from Moses [30].

3.2.2 Hyperparameters

The version of Marian used was 1.9.0. We trained Trans-
former models [20] with six encoder and decoder layers.
The model dimension and consequently the embedding size
was set to 512, the FFN size was set to 2048 with a depth
value of 2, and we used 8 attention heads for the multi-head
attention layers. Regarding batches, we used the Marian op-
tion of “batch-fitting”, which determines the batch size au-
tomatically based on sentence-length to fit reserved mem-
ory (8500 Mb). We used dropout [31] of 0.1. Regarding
optimization we used the Adam optimizer [32] (β1 = 0.9,
β2 = 0.98, ε = 10−9). Also, label-smoothing of 0.1 [33],
a gradient clipping with a maximum gradient norm of 5
and exponential smoothing were applied. We limited the
length of source sentences to 100 tokens. For decoding, we
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used beam-search, with a beam size of 12. We used early-
stopping so that training would stop when the model did not
improve for 5 epochs. Finally, the source, target, and output
embeddings matrices were tied [19]. All the baselines and
FNMT architectures were trained under the same hyperpa-
rameter setup expect where noticed.

3.3. Factors To Apply Terminology Constraints

3.3.1 Experimental Setup

This experiment is an extension of the work done by Dinu
et al. [8], analyzed in section 2.3.1. The goal of this exper-
iment is to compare the method of combining lemma and
factors embeddings, using our implementation of concate-
nation (Section 2.1.1), to the default Marian option to do so,
which is combining them with sum (Section 2.1.1).

As seen in Section 2.3.1, Dinu et al. [8] added target
terms to the source sentences, so that the model would learn
to bias the translation to contain the provided terms. The
target terms of the terminology were added to the input as
inline annotations. We also use a factor group with three
possible values (“p0”, “p1”, and “p2”) to indicate if a word
is either part of a source term (“p1”), part of a target term
(“p2”), or if it is not part of a terminology pair (“p0”). The
letter ”p” is used due to the fact that in Marian all the factors
of the same factor group must share the same prefix. The
factors were added before the truecasing step. After apply-
ing BPE [7], if a word that was part of a term was split, the
factors were shared among its subword units. In Marian,
factors are placed directly in the corpus, by separating the
lemma and the factors with a pipe character (“|”).

Following the choices from [8], if a certain sentence has
multiple matches from a term base, we keep the longest
match. Furthermore, when checking for matches of a term
inside a source sentence, we apply an “approximate match-
ing”, using a simple character sequence match, allowing a
word in the text to be considered a match even if, for exam-
ple, it happens to be inflected. Moreover, we also limit the
amount of data added to 10% of the corpus as we want the
model to work equally well when there are no terms pro-
vided as input.

Regarding the term bases used, for English-German,
English-Latvian, and English-Romanian we used the Eu-
ropean Union IATE term base, and for English-Norwegian
we used two glossaries from eurotermbank. We then filtered
out entries occurring in the top 500 most frequent English
words as well as single character entries. The terminology
used for the test and dev sets was terminology unseen dur-
ing training.

For concatenation, we followed [8] and embedded the
factors with a size of 16, and tied the source, target, and
output lemma embedding matrices. As explained in Section
2.2.1, when we choose the option of combining the lemmas
and factor embeddings with sum, they are embedded with

the model embedding size. Also, tying the embeddings of
the source and target side, when only one of them uses fac-
tors and when combining the lemma and factor embeddings
by summing is, at first sight, difficult to do (Section 2.1.1).
We worked around it by creating “dummy” factors for the
target side that are actually never added to the target data,
only to make the lemma and factor embeddings large matrix
match in size, and therefore, tie the embeddings.

3.3.2 Results Analysis

By analyzing Table 1, starting by looking at the column
that contains the results of the terminology percentage that
was correctly translated, we can realize that the factored
model outperforms the baseline for all language pairs. Fur-
thermore, when comparing the two methods of combining
lemma and factor embeddings, concatenation produces a
slight increase (+0.5% to +2%) in the correctly translated
terms percentage for all language pairs. Regarding the gen-
eral quality of the translations, we can not take the same
conclusion, as by analyzing the columns of the BLEU and
COMET scores, the factored model that leads to the better
results is not consistent for all the language pairs.

It is also noticeable that the COMET values for en-no
differ a lot from the range of values for the other language
pairs. This happens because the models for en-no gener-
ated some hallucinations in some of its translations. As
COMET is not bounded unlike BLEU, these sentences are
scored with greatly negative values, decreasing that way the
average of the corpus score. Although, by looking at the
leftmost column, we see that independently of that, the re-
sults for correctly translated terminology were positive.

Regarding tied embeddings, before realizing how to tie
the lemma embeddings with the workaround explained in
Section 3.3.1, we tried using lemma and factor embeddings
combined with sum, without tying the source and target em-
beddings matrices. The results can be seen in Table 2.

By analyzing it, we see that the quality of the translations
drops considerably (-3.13 BLEU and -0.1468 COMET)
when comparing the untied and the tied model, what was
expected. Regarding the percentage of correctly translated
injected terminology, the untied model still slightly out-
performs the baseline (+2%), although it underperforms (-
5.8%) when compared to the tied model. With this, we can
infer that tying the lemma embeddings is also important to
guarantee a better performance of the information carried
within the factors.

3.4. Factors To Replace Subword Joining Markers

3.4.1 Experimental Setup

In this experiment, we use factors to replace the subword [7]
joining marker (“@@”) and use factors both on the source
and the target side.
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Term% BLEU COMET

en-de
Baseline 78.0 24.75 0.3918
Factored model - sum 85.8 24.78 0.3863
Factored model - concatenation 86.3 24.86 0.4009

en-lv
Baseline 56.8 15.90 0.3769
Factored model - sum 71.2 15.96 0.3698
Factored model - concatenation 73.9 15.67 0.3830

en-no
Baseline 83.1 22.04 -0.4013
Factored model - sum 91.7 22.17 -0.4067
Factored model - concatenation 93.2 22.00 -0.4145

en-ro
Baseline 81.8 24.13 0.4048
Factored model - sum 92.9 24.60 0.4065
Factored model - concatenation 94.9 24.29 0.3865

Table 1. Results of the experiment where factors are used for terminology injection.

Term% BLEU COMET

NMT baseline 78.0 24.75 0.3918
Untied FNMT model 81.0 21.65 0.2395
Tied FNMT model 85.8 24.78 0.3863

Table 2. Results comparing tying and not tying the lemma embed-
dings. Both FNMT models used sum as the method to combine
factor and lemma embeddings. Evaluated for the en-de language
pair.

This experiment has the following objectives: Compare
the different decoding options present in Marian (Section
2.2.2), in terms of performance and speed; compare two ap-
proaches taken in the literature ([5], [17]) to encode sub-
word splits into factors; and evaluate if replacing BPE joint
markers with factors improves the quality of the translations
for the four language pairs explored in this work.

Regarding the comparison of the two methods, firstly,
following [5] (Section 2.3.2) we also used a factor group
with 4 possible values (“bb”, “bm”, “bf”, and “bn”). The
factor “bb” indicates if a certain unit in the text forms the
beginning of a word, “bm” indicates the middle of a word,
“bf” indicates the end of a word, and finally “bn” indicates
that a certain unit is a full word.

For the other method, following [17] (Section 2.3.2) we
use a factor group with 2 possible values (“jt”, “jn”). These
two factors indicate either if a certain token in a sentence
should be joined with the previous token (“jt”), or if it
should not be joined (“jn”).

Before comparing the two approaches, we compared the
different factor prediction options available in Marian and
detailed in section 2.2.2. For the lemma custom projection,
we tried three different lemma projection sizes: 16, 100,
and 512. To compare this, we used the second method of
encoding the BPE splits information, the one that uses the

factors “jt” and “jn” (the one based in [17]).
We later used the option “softmax transformer layer”

for comparing the two approaches to encode BPE splits
information into factors, and to extend the experiment to
the other language pairs. As concatenation was not imple-
mented for the target side, the regular Marian factors em-
bedding was used (Section 2.2.1), and all the embedding
matrices were tied.

3.4.2 Results Analysis

By analyzing Table 3, where we have the comparison of
the different Marian factor prediction options, we can see
that if evaluating based on BLEU, the model that generated
the best translations was the one that uses the soft trans-
former layer to predict the factors, while the model that had
the highest COMET score was the model that reprojects the
lemma embeddings to a layer with size 512. We can also
see that the only model that underperformed the baseline
in both BLEU and COMET is the one that predicts factors
with the lemma custom projection of size 16, probably due
to not capturing enough features given the short dimension
of the lemma reembedding size.

In terms of speed, in the “Words/s” column of Table 3,
the values reported are an average of the words processed
per second during training. The rightmost column reports
the time in seconds that it took to translate the en-de new-
stest set (3004 sentences) with a batch size of 16. This
was trained and evaluated in a GeForce RTX 2080 Ti GPU.
We can see that using target factors decreases the speed of
both training and inference. All the methods to predict fac-
tors were slower than the baseline, which means that, even
though the vocabulary size is reduced when replacing the
BPE joint markers “@@” by factors (from 30915 tokens
to 28653), it does not balance the increase in the number
of trainable parameters and in the complexity of the model,
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BLEU COMET Words/s (Training) Dec. Time [s]

en-de

Baseline 24.75 0.3918 17197 50.35
Soft transformer layer 24.89 0.3919 13336 62.13
Lemma Custom Projection (16) 24.59 0.3772 15797 56.94
Lemma Custom Projection (100) 24.70 0.3924 15165 57.27
Lemma Custom Projection (512) 24.78 0.3981 13530 61.23
Lemma Dependent Bias 24.78 0.3821 15191 56.30

Table 3. Results on the comparison of the different factor prediction options available in Marian. The BPE splits factor encoding method
is the one based on [17].

BLEU COMET

en-de
Baseline 24.75 0.3918
Factored model (1) 24.85 0.3719
Factored model (2) 24.89 0.3919

en-lv
Baseline 15.90 0.3769
Factored model (1) 15.97 0.3442
Factored model (2) 15.50 0.3707

en-no
Baseline 22.04 -0.4013
Factored model (1) 21.10 -0.4451
Factored model (2) 21.11 -0.4184

en-ro
Baseline 24.13 0.4048
Factored model (1) 24.06 0.3531
Factored model (2) 23.76 0.3960

Table 4. Results on encoding BPE splits as factors with two differ-
ent methods, for different language pairs. (1) - BPE factor encod-
ing based on [5]. (2) - BPE factor encoding based on [17].

thus not allowing for a decrease in training and translation
times. The soft transformer layer and the lemma custom
projection with a size of 512 are the slowest as they are the
ones that introduce the highest number of trainable param-
eters. However, these also turn out to be the cases that gen-
erate the better translations, so these should be the choice
when time is not an issue. Furthermore, the lemma depen-
dent bias and the lemma custom projection with a medium
size (100) appear to be the methods with the best balance
between speed and quality of the translations.

Regarding the comparison of the two methods to encode
BPE splits as factors when looking at Table 4, we can see
that if compared with BLEU, the method proposed by Sen-
nrich and Haddow [5] seems to be more effective for en-lv
and en-ro that the method proposed by Wilken and Matusov
[17]. However, when looking at the COMET column the
same conclusion cannot be taken, as the method proposed
by Wilken and Matusov [17] outperforms the method pro-
posed by Sennrich and Haddow [5] for all the language pairs
with a considerable margin (between +0.02 and +0.0429).
Besides this, when comparing the highest scoring factored
model with the baseline for each language pair, only for

the en-de language pair we see a positive result for which
the best scoring factored model (the one with the method
proposed by Wilken and Matusov [17]), outperformed the
baseline on BLEU and on COMET. Even though the in-
crease on the latter is too small (+0.0001), at least we can
conclude that the performance has not been compromised.
For the remaining language pairs, only for the language pair
en-lv we see a factored model outperform the baseline on
BLEU (+0.07), although the same comparison by COMET
(-0.0327) does not report the same positive result.

We can conclude that even though encoding BPE splits
with factors seems to have a positive impact for English-
German, as also reported in the literature [5, 17], when ex-
tending it to other languages where this was never tested, it
does not lead to the same performance improvements. Nev-
ertheless, the method proposed by Wilken and Matusov [17]
proved to be more effective than the method proposed by
Sennrich and Haddow [5].

3.5. Factors to Encode Morphological Information

3.5.1 Experimental Setup

In order to encode morphological information into factors,
there are a total of three systems that should be used. Firstly,
a morphological tagger [34] to predict the morphological
tags of a certain word. Secondly, a lemmatizer [34] which
reduces each word to its morphological lemma. And thirdly,
a morphological inflector [35], that after the translation is
predicted by the NMT model combines the lemma and the
respective morphological tags and generates the final form
of a certain word with the correct inflection. The models
were trained under the Universal Dependencies (UD) Tree-
banks [36], although the UD schema was converted to the
UniMorph schema [37] instead. This schema attempts to
standardize the tags used to represent morphological fea-
tures. Results on the accuracy obtained for these three mod-
els after they were trained can be seen in Table 5.

Regarding the factors used, we combined all the mor-
phological tags into a single string so that they would be
treated as a single factor. Furthermore, the word is replaced
by its morphological lemma. For example, the word ”does”
would be represented as, ”do|mV;FIN;IND;PRS;3;SG”.
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Tagger Lemmatizer Inflector

German 82.34 96.17 91.93
Latvian 88.92 93.26 88.69
Norwegian 93.76 97.33 93.12
Romanian 94.84 96.68 91.62

Table 5. Accuracy obtained for the morphological tagger, lemma-
tizer and morphological inflector.

Furthermore, if a certain token does not carry morpho-
logical information, as punctuation characters for example,
the factor “mNOFACT” was used. If factors are used for
the target side, after predicting the lemma and the factors
with the FNMT model, if a certain token is predicted with
the “mNOFACT” factor, the predicted lemma is kept un-
changed.

The factors with the morphological tags and the replace-
ment of the words with their morphological lemmas was
done before the truecasing step, for the non-English lan-
guage of a given language pair. After applying BPE [7], the
factors information was shared among the subword units of
a split word.

Given the neural nature of the tagger and the lemmatizer,
the time needed to preprocess the data increased dramati-
cally. In order to decrease the preprocessing time, we re-
duced the training sets to half the size, therefore retraining
also the baselines with the shorter datasets so that the com-
parison between the NMT model and FNMT model could
be fair. Both directions of each language pair were used.

The lemma and factor embeddings were combined by
summing them (Section 2.2.1), and when using them on the
target side, the method used to predict the factors was the
softmax transformer layer (Section 2.2.2). The source and
target embedding matrices were tied using the workaround
described in Section 3.3.1.

3.5.2 Results Analysis

BLEU COMET

de-en Baseline 27.66 0.3125
Factored model 27.19 0.2908

lv-en Baseline 12.87 -0.1521
Factored model 12.43 -0.1492

no-en Baseline 23.73 -0.5505
Factored model 23.00 -0.5562

ro-en Baseline 23.77 0.0942
Factored model 26.65 0.2468

Table 6. Results on using factors to encode morphological infor-
mation for the source language when translating to English.

Starting by analyzing the results of translating to English
(x-en), reported in Table 6, we can see that the factored
model only resulted in an improvement for the ro-en lan-
guage pair, for which we can see an increase in both BLEU
and COMET scores.

Regarding the translations from English to the language
with the morphology encoded in the factors (en-x), if we
look at the first two columns of Table 7, we see that all
the factored systems underperformed when compared to the
baseline. Only for en-ro and when evaluated with BLEU,
we see a slight increase, although that improvement is not
reflected in the respective COMET score.

As explained in Section 3.5.1, when splitting the words
into morphological lemma and respective morphological
tags for the target side, once both the lemma and the factor
are predicted, we must use the inflector to combine them
and generate the final word. In order to evaluate if the lack-
ing in performance was due to an underperforming inflec-
tor, we computed BLEU solely based on lemmas. To do so,
we lemmatized the reference and removed all the factors
from the FNMT hypothesis. In order to have something to
compare this to, we lemmatized all the baseline hypothesis
as well. This evaluation is also useful to understand if the
FNMT model is at least choosing the correct words. These
results can be seen in the third column of Table 7. Firstly all
the BLEU scores are higher when compared to the inflected
corpus (first column) which is expected, as mis-inflections
are not taken into account in this scenario. When compar-
ing the factored model with the baselines we see that except
for en-ro once again, the factored models are still under-
performing, suggesting that despite the errors injected by
the inflector and the missed predicted factors, the factored
model is struggling to choose the correct words when com-
pared to the baseline.

When looking for answers for these unsatisfying results,
by analyzing the hypothesis outputs we saw that the tagger
and subsequently the lemmatizer were having some unex-
pected behaviors especially for pronouns and determiners.
Given this, the FNMT models were retrained with data that
only had words represented by lemma and morphological
tags if they were nouns, verbs, adjectives, or adverbs, as
these groups of words are the ones where inflections are
most common and relevant. If we look at the two right-
most columns of Table 7, we can see that even though the
factored models got closer to the baselines, they were still
underperforming, with again the exception of en-ro. This
suggests that limiting the prediction of lemmas and morpho-
logical tags to that restricted group of POS words stabilized
the translations, even though not enough to say that using
factors to encode morphology brings benefits when trans-
lating from English, with the exception of the translation to
Romanian.

Finally, comparing the overall results of the translations
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All words w/ factors Some POS w/ factors

BLEU COMET BLEU (lemmas) BLEU COMET

en-de Baseline 24.36 0.3605 27.52 24.36 0.3605
Factored model 21.18 0.1527 26.15 22.40 0.2420

en-lv Baseline 11.82 -0.0296 14.24 11.82 -0.0296
Factored model 10.01 -0.2727 13.70 10.78 -0.2045

en-no Baseline 20.98 -0.4464 22.10 20.98 -0.4464
Factored model 16.97 -0.6205 20.63 18.21 -0.5462

en-ro Baseline 19.15 0.1858 23.40 19.15 0.1858
Factored model 19.20 -0.1093 25.16 19.26 -0.0568

Table 7. Results on using factors to encode morphological information for the target language when translating from English. The baseline
results were duplicated between the “All words w/ factors”, and “Some POS w/ factors” columns, to ease the comparison between them
and the results of the factored models.

in both directions of all the language pairs used, it was al-
ready expected that we got higher results when translating
to English than from English, as usually, systems that trans-
late to English tend to score higher due to the low morpho-
logical richness of this language. Furthermore, the higher
scores in the factor models that translate to English and
consequentially only use factors on the source side could
be explained with the fact that there is no need to use the
inflector, having, therefore, one fewer step in the transla-
tion pipeline and consequently one system fewer introduc-
ing possible failures. Moreover, the fact that all the models
used to predict morphology related features (tagger, lemma-
tizer, and inflector), have in average a 10% margin for error
(Table 5), could lead to the injection of noise into the cor-
pus and harm the quality of the translations of the factored
models.

We conclude that with the current setup, representing
words by their morphological lemmas and respective mor-
phological information encoded in factors only brings ben-
efits to translate between English and Romanian.

4. Conclusion

The main goal of this thesis was to test and evaluate the
usability of the factors’ code in the Marian toolkit, fulfill-
ing the first milestone of the CEF’s “User-Focused Mar-
ian” agreement. We contributed to the open source Mar-
ian’s codebase with the implementation of concatenation as
an option to combine lemmas and factor embeddings. We
analyzed the performance of factored neural machine trans-
lation models by conducting three experiments that use fac-
tors for three different use cases.

In the first experiment, we used factors to inject custom
terminology into NMT at run time. We saw that our im-
plementation to combine lemmas and factor embeddings
by concatenating them outperformed in terms of correctly
translated terminology the method originally implemented

in Marian, which is combining them with sum. We ex-
tended the work done by Dinu et al. [8], by comparing these
two embedding options and also by extending their research
to three other language pairs, showing positive results for all
of them. We also showed the importance of tying the lemma
embeddings for improving the performance of the usage of
factors.

The second experiment used factors to replace the sub-
word joining markers. We compared two methods of repre-
senting this subword splits proposed by Sennrich and Had-
dow [5], and Wilen and Matusov [17], and concluded that
the latter is the one that leads to better results. Furthermore,
we showed that even though improving the translation qual-
ity for the en-de language pair, this usage of factors does
not have a positive impact on the remaining tested language
pairs. This experiment was also used to do a detailed anal-
ysis regarding the different factor prediction methods avail-
able in Marian, evaluating them in terms of quality of the
translations generated, and speed of both training and infer-
ence.

Finally, in the third experiment, we used factors to en-
code morphological information, aiming to improve the
translation quality of morphologically rich languages. Con-
siderable improvements were obtained for both translation
directions of the en-ro language pair. For the remaining lan-
guage pairs, the results were underwhelming, in particular
when translating from English to the remaining languages.

Regarding future work, given that the implementation of
concatenation as a method to combine the lemma and factor
embeddings in Marian was only done for the source side,
the factor decoding mechanisms already available in the
codebase could be adapted to also incorporate this. Further-
more, when using factors to encode morphology, instead of
gathering all the morphological information into one sin-
gle factor, one could try to split the different morphological
groups among different factors.
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[21] OndÅ™ej Bojar, Christian Federmann, Mark Fishel, Yvette
Graham, Barry Haddow, Matthias Huck, Philipp Koehn, and
Christof Monz. Findings of the 2018 conference on machine
translation (wmt18). In Proceedings of the Third Confer-
ence on Machine Translation, Volume 2: Shared Task Pa-
pers, pages 272–307, Belgium, Brussels, October 2018. As-
sociation for Computational Linguistics. 5

11



[22] Philipp Koehn. Europarl: A Parallel Corpus for Statistical
Machine Translation. In Conference Proceedings: the tenth
Machine Translation Summit, pages 79–86, Phuket, Thai-
land, 2005. AAMT. 5
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