
Factored Models for Neural Machine Translation

Pedro Dias Coelho

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. André Filipe Torres Martins
Eng. Christine Anne Maroti

Examination Committee

Chairperson: Prof. Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Prof. André Filipe Torres Martins

Member of the Committee: Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur

January 2021

ii

Acknowledgments

First and foremost I must thank my parents for always providing me all the needed resources to conclude

my academic path, and for always supporting and encouraging my choices. A special thank you to my

sister, for her advice and patience throughout the time I was writing this document.

Secondly, to my supervisor André Martins for all his valuable inputs and discussions, and for allowing

me to develop a Thesis that joining my two most keen interests, software engineering, and AI. Also to

my co-advisor Christine Maroti for her valuable help and continuous guidance.

Thirdly, to the NMT team from Unbabel for all the technical support and shared knowledge, with a

special mention to António Lopes and Austin Matthews. Doing this work with Unbabel was a challenging,

rewarding, and positive experience at all levels. Thank you for providing me all the necessary resources

to develop this work.

Fourthly, to my colleagues of the Driverless Team of FST Lisboa, for making my last year in IST such

an incredible experience and for the understanding that they always had when I had to focus more on

the development of this work.

Last but for sure not least to all my close friends. You were undoubtedly one of the main pillars in this

5-year journey in IST and it would be impossible to finish it without your help. To all of you, my deepest

thank you.

iii

iv

Resumo

Com a globalização, tornou-se cada vez mais importante traduzir texto com elevada qualidade. Ulti-

mamente, a Tradução Automática Neuronal (TAN) tem sido a principal solução escolhida para suprir

esta necessidade. Dentro da vasta pesquisa feita nesta área, formas inovadoras de representar os da-

dos têm sido estudadas, numa tentativa de enriquecer a informação contida na representação de cada

palavra. Uma delas são os fatores, um mecanismo através do qual as palavras, ao invés de serem

representadas apenas por elas próprias, são definidas por um conjunto de caracterı́sticas.

No presente trabalho, testamos e avaliamos a usabilidade do código referente aos fatores no Mar-

ian, uma ferramenta open-source para TAN. Mostramos o impacto que usar fatores tem na qualidade

das traduções e no desempenho desta ferramenta em termos de velocidade de treino e de inferência.

Para além disso, contribuı́mos para o código base desta ferramenta através da implementação da

concatenação como um possı́vel método para combinar as representações (embeddings) das palavras

e dos fatores.

Realizamos três experiências nas quais usamos fatores para três diferentes aplicações, e mostramos

como isso melhorou a qualidade das traduções dos sistemas de TAN. Usamo-los para injectar termi-

nologia em tempo de execução, e mostramos como combinar as representações das palavras e fatores

através da concatenação é a melhor opção. Usamo-los para representar divisões em subpalavras,

comparando dois métodos previamente propostos para o efeito. Finalmente, usamo-los para codificar

informação sobre morfologia, numa tentativa de melhorar a qualidade da tradução de linguagens mor-

fologicamente ricas, obtendo resultados promissores para o par de linguagens Inglês-Romeno.

Palavras-chave: Aprendizagem profunda, processamento de linguagem natural, tradução

automática neural, tradução automática neural fatorizada.

v

vi

Abstract

Globalization has increased the importance of having high quality, quickly generated, and easily acces-

sible translations. For the past few years, neural machine translation (NMT) has been the major chosen

solution to fulfill this need. Among the vast research done in the field, novel ways of representing input

data have been studied in an attempt to enrich the information contained in each word representation.

One of them is factors, a mechanism where each word, instead of being represented by only the word

itself, is defined by a bundle of features.

In our work, we test and evaluate the usability of the factors’ code in Marian, an open-source NMT

toolkit. We show how using factors impacts the quality of translations and the performance of this

framework in terms of inference and training speed. We also contribute to its codebase by implementing

concatenation as a method of combining the embeddings of the word and the factors.

We conduct three experiments, where we use factors for three different use cases and show how they

improve the quality of the NMT systems’ translations. We use them to inject terminology at run time, and

show how combining word and factor embeddings by concatenating them is the most valuable option.

We use them to represent subword splits, comparing two different methods previously proposed to do

so. Finally, we use them to encode morphological information in an attempt to improve the translation

quality of morphologically rich languages, showing promising results for the English-Romanian language

pair.

Keywords: Deep learning, natural language processing, neural machine translation, factored

neural machine translation

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xi

List of Figures . xiii

Acronyms . xv

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Outline . 4

2 Background 5

2.1 Neural Machine Translation . 5

2.1.1 Recurrent Neural Network . 5

2.1.2 Encoder-Decoder Approach . 8

2.1.3 Transformer . 8

2.1.4 Vocabulary . 12

2.1.5 Word Embeddings . 13

2.2 Evaluation Metrics . 14

2.2.1 BLEU . 14

2.2.2 COMET . 15

2.3 Marian . 15

2.4 Summary . 16

3 Factored Neural Machine Translation 17

3.1 Factors . 17

3.1.1 Source Factors . 18

3.1.2 Target Factors . 19

3.2 Factors in Marian . 20

3.2.1 Source Factors . 21

3.2.2 Target Factors . 23

ix

3.3 Factors Applications . 25

3.3.1 Factors To Apply Terminology Constraints . 25

3.3.2 Factors To Replace Subword Joining Markers . 26

3.3.3 Factors to Encode Morphological Information . 26

3.4 Summary . 28

4 Experimental Analysis 31

4.1 Datasets . 31

4.2 Baselines . 32

4.2.1 Preprocessing Steps . 32

4.2.2 Hyperparameters . 33

4.3 Factors To Apply Terminology Constraints . 33

4.3.1 Experimental Setup . 33

4.3.2 Results . 35

4.3.3 Results Analysis . 35

4.4 Factors To Replace Subword Joining Markers . 37

4.4.1 Experimental Setup . 37

4.4.2 Results . 38

4.4.3 Results Analysis . 39

4.5 Factors to Encode Morphological Information . 40

4.5.1 Experimental Setup . 40

4.5.2 Results . 42

4.5.3 Results Analysis . 43

4.6 Summary . 45

5 Conclusions 47

5.1 Achievements . 47

5.2 Future Work . 48

Bibliography 49

x

List of Tables

2.1 Example of the application of BPE to a sentence. 12

3.1 Two alternatives to add target terms to the source side when injecting terminology. 25

4.1 Training, development and test set dimensions. 32

4.2 Example input for the experiment where factors are used for terminology injection. 34

4.3 Results of the experiment where factors are used for terminology injection. 35

4.4 Example output for the terminology injection experiment. 36

4.5 Results comparing tying and not tying the lemma embeddings. 36

4.6 Example input for the experiment where factors are used to encode BPE splits. 38

4.7 Results on the comparison of the different factor prediction options available in Marian. . . 38

4.8 Results on encoding BPE splits with factors for different language pairs. 39

4.9 Accuracy obtained for the morphological tagger, lemmatizer and morphological inflector. . 41

4.10 Statistics regarding the number of factors used for the experiment where factors encode

morphology. 41

4.11 Example input for the experiment where factors are used for encoding morphological in-

formation. 42

4.12 Results on using factors to encode morphological information for the source language. . . 43

4.13 Results on using factors to encode morphological information for the target language. . . 43

4.14 Results on using factors to encode morphological information reevaluated with a more

in-domain test set. 43

xi

xii

List of Figures

1.1 Example of a FNMT architecture were factors are used to inject terminology. 3

2.1 RNN schematic graph. 6

2.2 LSTM schematic graph. 7

2.3 The Transformer - model architecture. 9

2.4 Transformer attention mechanisms. 11

3.1 Structure of a factored output layer with lemma dependency. 21

3.2 Original lemma and factor embedding process in Marian. Combining them with sum. . . . 22

3.3 Implemented lemma and factor embedding process in Marian. Combining them with con-

catenation. 23

3.4 Example of a FNMT system where factors are used to replace subword joining markers. . 27

3.5 Example of a FNMT system where factors are used to encode morphological information. 28

xiii

xiv

Acronyms

BPE Byte Pair Encoding

CEF Connecting Europe Facility

FNMT Factored Neural Machine Translation

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

NLP Natural Language Processing

NMT Neural Machine Translation

RNN Recurrent Neural Network

SMT Statistical Machine Translation

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Globalization brings the need for communicating with people from all around the world, in any language,

enhancing the importance to have high quality, quickly generated, and easy accessible translations.

While human translators can produce high quality translations, they can be cost and time consuming.

Machine Translation (MT) seeks to close this gap, by producing more cost-effective translations, in a

more scalable manner.

One of the earliest breakthroughs in machine translation was Statistical Machine Translation (SMT)

(Brown et al. [1]). As the name suggests, it uses statistical analysis and predictive algorithms to translate

from a certain language to another. Brown et al. [2] introduced what became known as the “five IBM

models”, a series of five statistical models that defined the concept of word-by-word alignment between

a pair of bilingual sentences, which consisted in mapping directly each word in a source sentence to a

word in a target sentence. These word-based models were later replaced by phrased-based systems

(Marcu and Wong [3], Koehn et al. [4]), which map longer sequences between language pairs.

The increasing availability of large amounts of data, and the advances done in the scope of Deep

Learning (Goodfellow et al. [5]), led to a different approach to MT, Neural Machine Translation (NMT)

(Kalchbrenner and Blunsom [6], Cho et al. [7]), based on neural networks. The earlier NMT architec-

tures included Recurrent Neural Networks (RNNs) (Elman [8]), Long Short-Term Memory (LSTMs) cells,

(Hochreiter and Schmidhuber [9], Sutskever et al. [10]), Gated Recurrent Units (GRU) (Cho et al. [7])

and Convolutional Neural Networks (CNNs) (Gehring et al. [11]). A stronger take to neural machine

translation was later took by the introduction of the attention mechanism (Bahdanau et al. [12], Luong

et al. [13]), which allows the model to learn which words from the source side to attend when generating

a certain word of the target side. Consequently, the transformer, a new architecture solely based on

attention mechanisms discarding completely recurrence and convolution, was introduced by Vaswani

et al. [14], which produced new benchmarks for NMT systems.

Parallel to all these developments in neural machine translation architectures, novel ways of repre-

senting input data were also studied. Motivated by the desire to enrich the information contained in each

1

word representation, Bilmes and Kirchhoff [15] introduced the concept of factors, where each word,

instead of being represented by only the word itself, is defined as a bundle of different features. In

machine translation, factors were first incorporated in SMT (Yang and Kirchhoff [16], Koehn and Hoang

[17]), being later extend to NMT by Sennrich and Haddow [18], who applied factors to the source side,

and by Garcı́a-Martı́nez et al. [19], who used them for target data. Given the versatility of factors, these

works used them to encode many kinds of different information, namely part-of-speech tags, morpholog-

ical information, capitalization, as well as carrying information about how a word is split into its subword

units (Sennrich et al. [20]). The usage of factors proved to be beneficial to improve different aspects

of NMT systems, such as the generation of unknown words, the grammatical coherence of sentences,

the disambiguation of homonyms, and decreasing decoding time, by reducing the size of the vocabulary

for example. More recently, Dinu et al. [21] and Exel et al. [22] proposed factors as a solution to tackle

the problem of domain adaptation by injecting custom terminology into neural machine translation at run

time.

Accompanying all these developments, a variety of different NMT open-source toolkits have been

developed. Among them, the Marian toolkit (Junczys-Dowmunt et al. [23]) stood out from the remaining

ones, given its pure implementation in C++, its minimal dependencies, and its competitive benchmarks

related to training and inference speed, as well as its cost-effectiveness (Junczys-Dowmunt et al. [24]).

However, some toolkits like Nematus (Sennrich et al. [25]), Sockeye (Hieber et al. [26]) or Open-NMT

(Klein et al. [27]) have already released software versions with the implementation of source and target

factors which has not happened with Marian until this date. Motivated by the reported positive results of

using factors, the Connecting Europe Facility (CEF) decided to incorporate the inclusion of user-supplied

factors as one of the milestones of their “User-Focused Marian” action, focused on improving Marian to

address the needs of CEF eTranslation1 and to broaden its user base. It is in the scope of that project

that this thesis has been developed.

Regarding the aeronautics industry, it has been reported that language barriers affect performance

negatively, specially when in comes to maintenance (Drury and Ma [28], Drury et al. [29]), as most of

the maintenance personnel does not have English as native language. Misunderstandings can lead to

prolongations of the time it takes to restore an asset to operational readiness. Allowing maintenance

technicians to communicate in their native language would aid in the technicians’ training processes, as

often training in English takes a part of it. Therefore, the new advances in machine translation, which

have increased the speed and accuracy of automatic translation, while lowered the cost of having access

to them, can help mitigate the reported problems caused by faulty communication.

Furthermore, factors in particular can have a key role in enriching the quality of these translations,

not only by improving the performance of the system as a whole, but mainly due to their use for domain

adaptation, allowing the injection of specific terminology to the generated translation, useful for the

aeronautics industry as it is a field which has a considerable term base. A graphical representation of a

translation process where factors are used for this use case, can be seen in Figure 1.1.

1eTranslation is an automated translation tool from the EU: https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/
eTranslation

2

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eTranslation
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eTranslation

Figure 1.1: Example of a FNMT architecture were factors are used to inject terminology. In this example,
when translating the English sentence “That wing has a winglet.” into German, we want to force the
translation of the term “winglet” to be “Winglet”. The wanted term translation is inserted into the source
sentence as an inline annotation and factors are used to signal the switch between words of the original
source sentence and the added target term. The factor “0”, is used for source words, the factor “1” for
the source term, and the factor “2” for the target term. After training, the model learns a “copy-behaviour”
and translates terms marked with “1”, by copying the terms marked with “2”.

1.2 Contributions

The main contributions of this thesis are the following:

• We extend the work from Dinu et al. [21], by comparing different factor embedding options. We

show that concatenation is the best option, and we also extended the experiment to other three

language pairs;

• We compare two different approaches to represent the subword splits with factors (Sennrich and

Haddow [18] and Wilken and Matusov [30]). Also, we show that using factors for this use-case, de-

spite resulting in positive results for English-German as reported in the literature, when extending

it to other language pairs, the same positive behavior is not noticed;

• We used factors to improve the translation of morphologically rich languages, showing promising

results for the English-Romanian language pair;

• We tested and evaluated the usability of the factors’ code in the Marian toolkit. Furthermore, we

contributed to the open source Marian’s code base by means of the CEF’s Marian action,2 with

the implementation of concatenation as an option to combine word and factor embeddings, as the

original code only had sum as an available option.

2Code submission available in: https://github.com/marian-cef/marian-dev

3

https://github.com/marian-cef/marian-dev

1.3 Thesis Outline

This thesis starts by introducing the needed background to understand the proposed work. This is done

in Chapter 2, where we introduce neural machine translation by explaining the main neural architectures

behind it (Sections 2.1.1, 2.1.2 and 2.1.3) and also the concept of vocabulary (Section 2.1.4) and the

concept of word embeddings (Section 2.1.5).

Chapter 3 starts by covering the work done regarding factors (Section 3.1), both for the source

(Section 3.1.1) and target (Section 3.1.2) side, also detailing the changes that need to be done in an

NMT architecture to incorporate them. Then, we explain how factors are implemented in Marian (Section

3.2), starting as well by the source side (Section 3.2.1), where our implementation of concatenation to

combine word and factor embeddings is also explained, moving then to the target side (Section 3.2.2).

Furthermore, we show three different applications for factors (Section 3.3), the same three application

for which we used them in our experiments. We look into the work already done for each use case and

introduce how we extended that same work.

The experimental analysis is done in Chapter 4. After detailing the datasets used (Section 4.1),

and the baselines training setup (Section 4.2), we report and analyze the results of three experiments.

Each of the experiments shows the applicability of factors for different goals, the first one for domain

adaptation and the injection of terminology (Section 4.3), the second one for representing the splits into

subword units (Section 4.4) and the third one for carrying morphological information (Section 4.5).

Finally, Chapter 5 concludes this thesis, and we do an overview of the main achievements obtained

with this work, leaving also some suggestions for future improvements.

4

Chapter 2

Background

The present chapter provides the key theoretical concepts that will be used throughout this thesis. It

starts by introducing neural machine translation (Section 2.1), describing the neural architectures as-

sociated to it, namely RNNs (Section 2.1.1), the encoder-decoder approach (Section 2.1.2) and the

transformer (Section 2.1.3). Furthermore, an explanation of the key concepts regarding word represen-

tations is given, namely the concept of the vocabulary (Section 2.1.4) and word embeddings (Section

2.1.5). Then, two evaluation metrics used in MT are presented (Section 2.2). Finally, the Marian toolkit,

on top of which the implementation work of this thesis has been developed, is described (Section 2.3),

and its benefits are highlighted.

2.1 Neural Machine Translation

According to Bahdanau et al. [12], neural machine translation is an approach to machine translation that

consists of training a single, large neural network (NN) end-to-end. This NN takes a sentence as input

and outputs an automatic translation. The NN is trained with parallel sentences, which are sentences in

two languages with the same meaning. This technique relies on different concepts of Deep Learning,

and this section serves the purpose of detailing them.

2.1.1 Recurrent Neural Network

A Recurrent Neural Network (RNN) (Elman [8]), is a special type of Neural Network, which, as the name

suggests, has a recurrent nature. These networks perform the same computation for every element of a

given sequence, making the output dependent on previous computations. We can think about this type

of NN as if it had a “memory” that retains information about what has been seen and computed so far.

Therefore, this kind of architecture is suitable for dealing with sequential data, where the different ele-

ments from the input (and/or output) data are dependent on each other, which is the case for translating

a sentence from one language into another.

Figure 2.1 shows how a forward pass works in a RNN. For each time step t, we provide the input x(t)

to the network in order to compute the hidden state h(t). This hidden state is the key to propagate the

5

information of previous states and therefore keep track of the context. h(t) is calculated with equation

2.1,

h(t) = g
(
b+Wh(t−1) + Ux(t)

)
, (2.1)

where W is a weight matrix for hidden-to-hidden connections, and U and b are a matrix and a bias for

input-to-hidden connections, respectively. g() is a generic activation function, like tanh for example. In

order to obtain the prediction ŷ(t), we use equation 2.2,

ŷ(t) = softmax(c+ V h(t)), (2.2)

where V and c are respectively a weight matrix and a bias for hidden-to-output connections.

Figure 2.1: RNN schematic graph. Adapted from Goodfellow et al. [5].

In this kind of NN, during training, we need to backpropagate the error from the different time steps.

This is done with an algorithm called backpropagation through time (BPTT) (Werbos [31]).

Although RNNs can solve some problems regarding NMT, this architecture has some disadvantages.

The main shortcoming is the vanishing gradient problem (Bengio et al. [32]), which could be described

as the difficulty that the network has in remembering long-range dependencies in long sequences of

inputs. When we are backpropagating the errors throughout the network, the values of the gradient

become smaller at each time step, leading the predictions to be biased towards recent inputs, receiving

little influence from the inputs far back in the sequence. In an attempt to solve this problem, LSTMs

(Long Short Term Memory) were introduced (Hochreiter and Schmidhuber [9]).

Long Short Term Memory

Long Short Term Memory (LSTM) networks (Hochreiter and Schmidhuber [9]) are a special type of RNN

and were developed to avoid the vanishing gradient problem. What differentiates them from the already

seen RNNs is the structure of the repeating module that predicts the hidden state. This is replaced by

an LSTM cell unit, which propagates through each time step not only the hidden state h(t) but also a

cell state C(t). The LSTM has the capability of adding and removing information from the cell state,

regulated by three structures called gates, which calculate which information to let through based on the

current input x(t) and the previous hidden state h(t−1). The gates are the following: the forget gate f (t),

6

that decides which information to get rid of from the previous cell state C(t−1); the input gate i(t), which

controls which part of the input is important to keep and pass to the cell state C(t); and the output gate

o(t), which decides what should be present in the output of the hidden state h(t) of a given LSTM cell.

These gates can be described by equations 2.3, 2.4 and 2.5 respectively,

f (t) = σ
(
Vfx

(t) +Wfh
(t−1) + bf

)
(2.3)

i(t) = σ
(
Vix

(t) +Wih
(t−1) + bi

)
(2.4)

o(t) = σ
(
Vox

(t) +Woh
(t−1) + bo

)
(2.5)

where Vf , Wf , Vi, Wi, Vo and Wo are weight matrices and bf , bi, and bo are biases.

Both the cell state C(t) and the hidden state h(t), are obtained with equations 2.7 and 2.8 respectively,

C̃(t) = tanh(VCx
(t) +WCh

(t−1) + bC) (2.6)

C(t) = f (t) � C(t−1) + i(t) � C̃(t) (2.7)

h(t) = o(t) � tanh(C(t)) (2.8)

where VC and WC are weight matrices and bC is a bias. C̃(t) represents the candidate values to update

the cell state C(t), with its usage controlled by the gate i(t). � represents the Hadamard product, i.e.,

the element-wise product. A prediction ŷ(t) for the time stamp t can later be done using equation 2.2.

A graphical representation of a LSTM cell is shown in Figure 2.2.

Figure 2.2: LSTM schematic graph.

Even though the LSTM networks mitigate the vanishing gradient problem (Bengio et al. [32]), they

are slower to train than RNNs. This happens in part due to the nature of these networks, that forces

us to pass input data sequentially, as we need inputs from previous states to make any operations in

the current state. This sequential flow prevents us from using parallelization, which impacts speed.

Transformers (Section 2.1.3) aim to solve this and other problems with this kind of architecture.

7

2.1.2 Encoder-Decoder Approach

The main objective of Neural Machine Translation is to transform a sequence of input data, a sentence

in a source language, into another sequence of data, a sentence in a target language. When we use

the vanilla RNNs and LSTMs (Section 2.1.1) we are limited to sequences of fixed and equal size. Also,

it is beneficial to have information about the entire input sequence, in order to start generating the target

sequence.

This motivated the introduction of the Encoder-Decoder architectures (Cho et al. [7], Sutskever et al.

[10]). These models can be split in two separate parts: the encoder, which after processing the input

sequence, outputs an encoder vector that aims to encapsulate the information of all input elements; and

the decoder, which uses the encoder vector as its initial hidden state and, conditioned on the source

sentence, generates the target sequence one word at a time. Both the encoder and decoder are a stack

of recurrent units as the ones presented in section 2.1.1.

This approach, however, has some drawbacks. The encoder vector needs to encode all the infor-

mation from the input sentence, which leads to a bottleneck problem. The fact that this is a fixed-length

vector is problematic for long sentences, where the size of this encoder vector may be too small to

encode everything we should know from the source sentence. Besides this, the words that should be

translated into each other might require reordering, which creates long distance dependencies that the

model struggles to capture. Bidirectional networks (Schuster and Paliwal [33]), were used to try to over-

come this barrier, but the introduction of the attention mechanism (Bahdanau et al. [12]) is what made

a bigger difference in the success of this task.

Attention

The attention mechanism introduced by Bahdanau et al. [12] and later refined by Luong et al. [13] allows

the decoder to make its predictions not only based on its hidden state but also on a representation of

every encoder step, essentially a weighted combination of all the hidden states from the encoder. More

importantly, it learns what to pay attention to, focusing at each time step only on the relevant parts of the

source sequence when generating each output element.

2.1.3 Transformer

The Transformer was a novel neural network architecture introduced by Vaswani et al. [14], mostly based

on attention mechanisms. Not only did this new model improve the quality of the output of NMT systems,

especially when dealing with longer sentences, but it also boosted the training speed of NMT models,

favoring parallelization and therefore making use of modern GPU parallel computation power.

In this subsection the details of the transformer are described, covering the three different sections of

the model, the Embedding Layer, the Encoder, and the Decoder. Later, the new attention mechanisms

introduced with this architecture, scaled-dot-product attention and multi-headed attention, are analyzed

in detail. A graphical representation of the model architecture is presented in Figure 2.3.

8

Figure 2.3: The Transformer - model architecture, from [14].

Embedding Layer

The first step of the Transformer, as in any NLP (Natural Language Processing) task, is the embedding

layer, where word embedding is applied to the words of a sentence. There are two embedding layers in

the transformer, one at the beginning of the encoder and another at the beginning of the decoder. Word

embeddings are discussed in more detail in section 2.1.5. For now, the important information to retain

is that word embeddings are learned vector representations of a particular word in a sentence, and that

both the input and output embedding layers map words to vectors. Since this architecture does not have

recurrence like RNNs (Section 2.1.1), there is no information regarding the absolute or relative position

of a certain word in a sentence. To this end, positional encoding is added to the input embeddings in

an attempt to inject information regarding the order of the sequence. The authors of [14] tested both a

trainable positional encoder (Gehring et al. [34]), and a fixed one (equations 2.9a and 2.9b),

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
(2.9a)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
(2.9b)

where pos stands for position, i for dimension, and dmodel the dimension of the input embedding. The

two choices led to similar results.

9

Encoder

The transformer’s encoder is in fact a stack of six encoders (the original paper suggests six but other

arrangements were attempted in later works), all identical in structure and without shared weights. This

is done in order to learn different input representations, boosting the predictive power of the network.

Each encoder layer is broken down into two main sub-layers, the self-attention sub-layer and a feed-

forward neural network. The input of each encoder layer is the output of the previous one in the stack,

except the first one, which receives the word embeddings.

The self-attention sub-layer allows the model to quantify how relevant each word in the input is to the

other words of the input sequence. To accomplish this, for every word, an attention vector that captures

the contextual relationships between words in the same sentence is computed. The details of how these

attention vectors are calculated will be described in the end of this subsection.

After the self-attention sub-layer, the vectors are passed through a fully-connected feed-forward neu-

ral network (Goodfellow et al. [5]) that consists of two linear transformations with a ReLU activation

(Glorot et al. [35]) in between. This is done to project the attention outputs potentially giving them a

richer representation. Each vector is fed to the same feed forward network (FFN) independently, allow-

ing these computations to be done in parallel.

By analyzing Figure 2.3, we can see that in the encoder, after each one of the two sub-layers men-

tioned, there is an “Add & Norm” layer. Here, both residual connections (He et al. [36]) and layer-

normalization (Ba et al. [37]) are applied. The former consists of adding the input of each sub-layer to its

output, which helps the network to train by allowing gradients to flow through the network directly. The

latter is done to stabilize the network, reducing the training time.

Decoder

The decoder has a similar structure to the encoder. It is also a stack of decoder layers (six also, as

suggested by the paper), with the same structure between them and without shared weights. Besides

the sub-layers already mentioned in the encoder (the self-attention sub-layer and the FFN) the decoder

has another attention sub-layer between these two that performs attention over the output of the encoder.

As in the encoder, each of these sub-layers is followed by a sub-layer where residual connection and

layer-normalization happen.

The decoder is auto-regressive, which means that at each step it predicts a token that is consumed

in the following iteration as additional input until a special end of sequence token is predicted. Given this

auto-regressive property, a change needs to be done in the self-attention sub-layer to ensure that the

predictions for a given position only depend on the known outputs from previous positions. To accomplish

this, we mask out the positions that correspond to future predictions and so, each position in a sequence

only attends to the positions in the sequence up to and including that same position.

The output of the masked self-attention sub-layer is fed to the second attention sub-layer of the

decoder, that also takes as input what is outputted by the encoder. Here, every position in the decoder

is allowed to attend over all positions in the source input sequence. The output of this “encoder-decoder

10

attention” sub-layer goes through a FFN with the same characteristics as the ones mentioned for the

encoder.

Finally, the output of the FFN is passed to a linear layer that is essentially a fully connected neural

network that acts as a classifier. Then this is fed to a softmax layer that transforms the scores given by

the linear layer into probabilities, the cell with the highest probability is chosen, and the word associated

with that index is the predicted word.

Scaled Dot-Product and Multi-Headed Attention

We now take a deeper look into how the attention is computed inside the transformer, and what are the

main innovations brought by the model.

In every attention sub-layer, we start by converting the inputs into three different vectors called Query

(Q), Key (K) and Value (V). These are obtained by feeding the inputs of the attention layer into three

different fully connected layers that output the three mentioned vectors. If we are dealing with a self-

attention layer, we only have one input so the Q, K and V are all computed from the same vector. If it is

a encoder-decoder attention layer, the Q is generated from the output of the previous decoder sub-layer,

and the K and V vectors are computed from the output of the encoder.

Then, a dot product matrix multiplication is applied to Q and K to produce a score matrix that deter-

mines how much focus a word should put on the other words. Then, we do the scaling step by dividing

the obtained score matrix by the square root of the dimension of the keys vector (dk), which allows for

more stable gradients, as multiplying values can have exploding effects. Then, these are passed through

a softmax function. If we are dealing with a decoder self-attention layer, the masking of the positions that

correspond to future predictions is applied before the softmax function. The result of this is multiplied

by the values vector and an output vector is obtained. This is shown schematically in Figure 2.4 and is

summarized as:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V . (2.10)

(a) Scaled Dot-Product Attention (b) Multi-Head Attention

Figure 2.4: Transformer attention mechanisms, from [14].

11

Besides scaling the dot-product attention, the transformer also introduced the concept of multi-

headed attention. Basically, we do the same scaled dot-product attention shown above, h times, with

different weight matrices, where h is the number of attention heads. We split Q, K and V into h dif-

ferent projections that perform the attention function in parallel, resulting in h different outputs that are

concatenated and re-projected by a linear layer into the expected dimension from the following sub-

layer. Vaswani et al. [14] suggest the use of eight different attention heads (h = 8). This mechanism is

graphically represented in Figure 2.4, and summarized as follows:

MultiHead(Q,K, V) = Concat(head1, ...,headh)W
O (2.11)

where headi = Attention(QWQ
i ,KW

K
i , V WV

i). Attention is equation 2.10 and WQ
i , WK

i , WV
i and WO

are projection matrices.

2.1.4 Vocabulary

When we are processing a sentence to be fed into a NMT model, we first need to break it into more

basic and separate units which are called tokens. A vocabulary is basically a set of this tokens. The

vocabulary size has a direct impact on the number of trainable parameters in a NMT system. Considering

this, we need to find a balance between the coverage of the sub units that might occur for a certain

language to avoid having out-of-vocabulary tokens (commonly replaced by an unknown symbol, denoted

as “<unk>”), and its computational cost. Subword-level vocabularies (Sennrich et al. [20]) are a common

choice to have well defined vocabularies that are not too large, and Byte Pair Encoding (BPE) is one of

the most common mechanism to obtain these subwords.

Byte Pair Encoding

In Sennrich et al. [20] the idea that different words share common smaller units, the so-called subwords,

is explored. The subwords can be separated, and later concatenated to its original form. The authors

highlight three groups of words for which the separation into subword units might be more plausible to

occur: named entities, cognates and loanwords, and morphologically complex words.

To obtain these subword representations, the authors of the paper adapted the byte pair encoding

algorithm (Gage [38]), and instead of merging frequent pairs of bytes, characters or character sequences

are merged. When a certain word is split into its subwords, the suffix “@@” is appended to them so that

it is easily recognizable where concatenations need to be performed to restore a split word. An example

of a sentence after applying BPE can be seen in Table 2.1.

Tokenized sentence It is a despicable practice .
Tokenized sentence after applying BPE it is a desp@@ ic@@ able practice .

Table 2.1: Example of the application of BPE to a sentence.

This approach has two main benefits. First, the correct translation of rare and unseen words is

12

increased. Second, it is reported that the reduced vocabulary size improves the performance of the

model in terms of memory usage, and also improves the quality of the translations.

2.1.5 Word Embeddings

If we look at NMT as a black box, it transforms a sequence of words into another sequence of words.

However, the neural networks of which these systems are composed deal with numerical data. Word

embeddings are the mechanisms that represent words as numerical vectors. To do so, there are two

possible approaches, one-hot encoding and dense feature embeddings.

To encode a word using one-hot encoding, a binary vector is produced, where each position cor-

responds to a word in the vocabulary. The vector is full of zeros with the exception of the index that

corresponds to the word being encoded which is a one. This approach has two major problems. First,

the vector ends up having the same dimension has the vocabulary, which is too large when compared

to the common dimension of the input used in the most common NMT architectures. Second, with this

encoding technique no information regarding similarities between the words is captured and provided to

the model.

Dense feature embeddings attempt to overcome this problem by projecting the words into an embed-

ding space with dimension d, where this dimension is usually much smaller than the vocabulary. In each

d-dimensional space, each word has a representation as a vector (the word embedding) of dimension d,

and semantically similar words receive similar representations. Word embeddings are a field of research

inside NLP, and different approaches to this problem have been proposed, although the most simple so-

lution is to learn a simple embedding matrix. This matrix has its first dimension with the same size of the

vocabulary, and the second with the same dimension of the embedding space d. This matrix is trained

alongside the NMT model and is expected to learn how to represent each word, presumably sharing

similar features between synonyms. This matrix can be seen as a simple lookup table. To encode a

sentence, we generate a vector with the indices of the words inside the vocabulary, and since the ith

row of the embedding matrix has the word embedding vector of the ith index in the vocabulary, we just

need to select the correct rows of the embedding matrix to form the embedded input of the model.

Tied Embeddings

In a typical NMT model, there are two different locations where word embeddings occur, as we do not

only have to embed the input sentence but also the target sentence when we are training the model. If

we use the simple embedding matrix method described above, there are in fact two embedding matrices

in the system that convert words into vector representations.

In the final stages of a generic NMT system there is another linear layer that performs the opposite

task (like in the transformer as we saw in section 2.1.3), which converts the output of the model into

a vector of scores. This conversion is done with a matrix that is very similar to the target embedding

matrix, as they share the same size (one dimension is equal to the target vocabulary size and the other

one, the output dimension of the model, which is usually the same as the input dimension). This matrix

13

can be referred to as the output embedding matrix, and it is also expected that after training, rows

corresponding to similar words share some similarities between them.

Given this similarity between the target input and output embedding matrices (Utarget and V respec-

tively), Press and Wolf [39] showed that we can improve the performance of NMT models by tying these

two matrices, i.e, forcing Utarget = V . Actually, results show that, surprisingly, the embedding matrix of

the tied model evolves in a more similar way to the output embedding than to the input embedding of

the untied model. Also when the preprocessing of the dataset is done using BPE (see section 2.1.4),

many of the subwords appear in both languages of the language pair if they share many characters

among them. Consequently, Press and Wolf [39] also propose to use a shared single vocabulary and

also tie the input embedding matrix (Usource), forcing Usource = Utarget = V . Another great improvement

of this approach is the fact that the number of trainable parameters decreases, which contributes to both

a decrease in memory usage and training time, while also improving the quality of the translations.

2.2 Evaluation Metrics

In order to evaluate the quality of the outputs of machine translation systems, and to overcome the need

to rely on human evaluation, which is time consuming, different automatic evaluation metrics have been

proposed, attempting to maintain a good correlation with human judgment. We will take a deeper look

into two evaluation metrics, BLEU (Papineni et al. [40]) and COMET (Rei et al. [41]).

2.2.1 BLEU

BLEU was proposed by Papineni et al. [40] and stands for Bilingual Evaluation Understudy. This metric

is widely used in NMT due to its simplicity, efficiency, language independence, and fair correlation with

human evaluation. BLEU is reported at corpus-level and its output scores lie between 0 and 1 (usually

presented as percentages). The higher the score value, the closer the candidate translation is to the

reference and consequently the better it is. In order to understand how BLEU is computed, two con-

cepts must be introduced, brevity penalty and n-gram modified precision, being a n-gram a contiguous

sequence of n items from a given sample of text.

Brevity Penalty (BP) attempts to penalize sentences that are shorter than the reference, and is

calculated with,

BP =

1 if c > r

e(1−
r
c) if c ≤ r

(2.12)

where c and r are the length (number of words) of the candidate and reference translations, respectively.

Regarding the n-gram modified precision, this differs from a normal precision calculation because the

counts of each translated n-gram are clipped to the maximum number of times they appear in a reference

translation.

14

The BLEU score is then calculated with,

BLEU = BP · exp

(
N∑

n=1

wnlog(pn)

)
(2.13)

where BP is the brevity penalty (equation 2.12), pn is the n-gram modified precision value, wn is the

uniform weight and is given by wn = 1
N , and finally N is the maximum length of the n-grams used. The

authors of the paper suggest N = 4.

BLEU has several advantages, although it has some limitations as well. There are several elements

that influence the final BLEU score, that are not usually reported along side the scores, which might

compromise the fairness of comparison between MT systems. The most relevant one is the fact that

different preprocessing steps (specially different tokenization methods) are applied to the test sets. In

an attempt to standardize the way BLEU score is computed and reported among different MT systems

evaluations, sacreBLEU1 was introduced (Post [42]), which has its own preprocessing steps built in.

2.2.2 COMET

COMET2 was proposed by Rei et al. [41] and stands for Crosslingual Optimized Metric for Evaluation

of Translation. The authors claim to have obtained new state-of-the-art levels of correlation with human

judgments. This automatic evaluation metric is neural based, and has the property of using the source

as an additional input to perform the evaluation per sentence, alongside the reference sentence and the

system hypothesis. To accomplish this, a multilingual embedding space is used, which allows to leverage

information from all three inputs. Even though it is possible to train a custom evaluation model with this

framework, a recommend pretrained model is available to use. This evaluation metric is segment-level

based, therefore the corpus-level score is an arithmetic mean between the segment-level scores. Its

scores are not bounded like BLEU for example, and the higher the COMET score the better the system

is. Also, when compared to BLEU, COMET has the advantage of capturing semantic similarities.

2.3 Marian

Marian3 (Junczys-Dowmunt et al. [23]) is an efficient neural machine translation framework written in

pure C++ with minimal dependencies (at the moment only CUDA is needed).

When compared to other available frameworks, Marian is specially competitive when it comes to

efficiency, speed, and cost-effectiveness. In Junczys-Dowmunt et al. [23] we can see a comparison

with the Nematus toolkit (Sennrich et al. [25]), where Marian outperformed it in terms of speed by being

four times faster during training with a single GPU, increasing this advantage if multi-GPU training is

used. In Junczys-Dowmunt et al. [24], we have a comparison in terms of cost-effectiveness, where

Marian outperformed the current baseline produced by the Sockeye toolkit (Hieber et al. [26]), with

1Code available in: https://github.com/mjpost/sacrebleu
2Code available in: https://github.com/Unbabel/COMET
3Code available in: https://github.com/marian-nmt/marian

15

https://github.com/mjpost/sacrebleu
https://github.com/Unbabel/COMET
https://github.com/marian-nmt/marian

substantially faster translations both on GPU and CPU, with minimal impact on quality. This was even

further optimized in Kim et al. [43]. In Junczys-Dowmunt et al. [23], it is reported that when training a

Transformer model, Marian can reach 9100 words per second on an NVIDIA Titan X Pascal, reaching a

maximum of 54900 words per second if 8 GPUs are used.

One of the main aspects that contributes to Marian’s boost in performance is the fact that it is self-

contained with its own back end, which provides reverse-mode automatic differentiation based on dy-

namic graphs. Even though this could be used to other tasks rather than MT, it was optimized specifically

for this and similar use cases. This includes, for instance, various fused RNN cells, attention mecha-

nisms or an atomic layer-normalization.

On top of the auto-diff engine, many efficient meta-algorithms were implemented in Marian. These

include multi-device (GPU or CPU) training, scoring and batched beam search, implementation of het-

erogeneous models like deep RNN models (Miceli Barone et al. [44]), the Transformer (Vaswani et al.

[14]) or language models, and multi-node training, to name a few.

Besides all the already mentioned features and optimizations available in Marian, also the extensi-

ble Encoder-Decoder framework should be highlighted, which eases the process of implementing new

architectures. With top level classes that can be inherited from when new configurations are attempted,

one can easily combine different encoder and decoder types (e.g. RNN-based encoder with a Trans-

former decoder), or to create new ones by only implementing the new inference steps, and then training,

scoring and translating with the new model becomes possible.

2.4 Summary

This chapter introduced the necessary background to better understand the work done in this thesis.

Firstly, we introduced the concept of neural machine translation (Section 2.1), giving an overview

throughout the different concepts of Deep Learning from which NMT relies on. We explained what are

RNNs and LSTMs (Section 2.1.1) and what is an encoder-decoder architecture, highlighting the con-

cept of attention (Section 2.1.2), which lead to the development of the transformer architecture (Section

2.1.3). We gave a more in dept overview of the latter, as it was the architecture chosen in our experi-

ments (Chapter 4). Furthermore, we introduced the concept of vocabulary in Section 2.1.4, where we

also explained what is BPE, a mechanism used to separate words into its subwords units, which takes

an important part in one of our experiments (Section 4.4). Word embeddings are introduced in Section

2.1.5, as well as the concept of tying the embeddings.

Then, we explained which are the automatic evaluation metrics used to evaluate the performance of

our NMT systems, namely BLEU (Section 2.2.1), and COMET (Section 2.2.2).

Finally we did an overview about Marian (Section 2.3), the neural machine translation framework

used in this thesis. We highlighted its main benefits presenting some benchmarks and how it compares

to other frameworks available.

16

Chapter 3

Factored Neural Machine Translation

The present chapter introduces the concept of Factored Neural Machine Translation (FNMT).

It starts by presenting the definition of factors (Section 3.1), followed by a historical overview of the

several developments done regarding their usage until they were incorporated into NMT, giving origin to

FNMT. Subsequently, an overview of the state of the art of this subject is done. We divide this analysis

between source factors (Section 3.1.1) and target factors (Section 3.1.2), looking over the changes that

need to be done to typical NMT architectures to incorporate them.

In Section 3.2, we detail how factors are implemented in Marian, once again dividing the analysis

between source factors (Section 3.2.1), and target factors (Section 3.2.2). Furthermore, alongside the

analysis of the original implementation of source factors in Marian (Section 3.2.1), we detail the changes

that we performed in our implementation of source factor embeddings.

Finally, in Section 3.3 we show for what applications factors can be used, exploring three different use

cases, overviewing the work already done for each one of them, and introducing how we later extended

that work.

3.1 Factors

Factors can be defined as a mechanism from which we can represent words in a sentence, not only

by the words themselves but as a bundle of features. With this, we can associate to each word several

types of attributes like part-of-speech tags, morphological information, or capitalization, to name a few,

as a way of enriching the information that each word contains when it’s provided to the system. When

representing a word with a set of F different features, the first feature (k = 1), is called the lemma

and it is either the original word or a simplified version of it, depending on what is represented in the

remaining features k ∈ {2, ..., F}, which we call factors. For example, if we use a factor to represent

the capitalization of a word (e.g. “c0” for a lowercase word, and “c1” for a word with the first letter

capitalized), the representation of the word “Portugal”, would be done by the lemma “portugal” and the

additional factor “c1”.

The development of factors has been formerly done in the field of language modeling. After statistical

17

language modeling (Bilmes and Kirchhoff [15]), they were introduced to neural language models by

Alexandrescu and Kirchhoff [45], and later extended to recurrent neural language models by Wu et al.

[46]. Regarding machine translation, a first attempt of improving the performance of statistical machine

translation systems by using factors was done by Yang and Kirchhoff [16], and later by Koehn and Hoang

[17], and Bojar [47] all focusing on improving the translation of morphologically rich languages.

All these works inspired later the usage of factors in neural machine translation. As we have seen

throughout Chapter 2, NMT transforms a sequence of data (source sentence) into another sequence

of data (target sentence). Given this, there are two scenarios regarding the way factors can be used.

Information can be appended to the words of the source sentence, resulting in source factors (also

called input factors), or they can be used for the target sentence, resulting in target factors (also called

output factors). The introduction of factors in NMT, which gave origin to factored neural machine trans-

lation (FNMT), was done by two breakthrough papers, Sennrich and Haddow [18] for source factors,

and Garcı́a-Martı́nez et al. [19] for target factors. Each approach requires different changes in the NMT

architectures detailed in Section 2.1, and those changes will be described in this section.

3.1.1 Source Factors

In an attempt to improve neural machine translation quality by enriching the input data with external

linguistic information, Sennrich and Haddow [18] showed how source factors containing various levels

of linguistic annotations can be incorporated into a NMT architecture, proving their worthiness.

To do so, an architecture similar to Bahdanau et al. [12] (Section 2.1.2) was used, and the main

innovation over it was introducing the representation of the encoder’s input as a combination of features,

inspired by Bilmes and Kirchhoff [15]. When we are dealing with source factors, the main change to the

neural architecture is applied to the embedding layer, keeping the rest of the model unchanged. In the

original architecture, the word embeddings Ei of a word xi in a sentence x = (x1, ..., xN) is obtained

following the method detailed in Section 2.1.5 using an embedding matrix U . On the other hand, in

the factored architecture, each word is represented by a total of F different features, which requires a

distinct approach.

In order to embed the lemma and the factors, separate embedding vectors are computed for each

feature, which are then concatenated. Summarily:

Ei =

F∥∥∥
k=1

UT
k xik (3.1)

where ‖ denotes vector concatenation, Uk ∈ RKk×mk is the kth feature embedding matrix, Kk is the

vocabulary size of the kth feature, mk is the embedding size of the kth feature, and xik ∈ RKk is a

one-hot encoding vector indicating the value of the kth feature.

The authors of Sennrich and Haddow [18], experimented with adding to each word four different

factors, namely: the morphological lemma of the word; subword tags information (more details about

it can be seen in Section 3.3.2); part-of-speech tags and dependency labels, and finally morphological

18

features. They reported an increase in BLEU score when adding all the features as factors, for both

translations directions of the English-German language pair. Tests to evaluate the impact of each factor

alone were also performed, concluding that each factor by itself improved the results, even though

not as much as using all of them at the same time. Furthermore, they concluded that the gain from

using different factors individually was not fully cumulative, which suggested that information encoded

in different factors overlaps. Tests were also performed for a lower resource language pair (English-

Romanian), also reporting positive results when using all the proposed factors.

3.1.2 Target Factors

Garcı́a-Martı́nez et al. [19] showed how target factors can be incorporated inside a NMT architecture.

To accomplish this, an architecture similar to Bahdanau et al. [12] (Section 2.1.2) was used. To

incorporate the target factor into it, changes in two different locations had to be performed. The encoder

remained unchanged from the original architecture, as both changes were applied to the decoder side.

First of all, the decoder embedding layer needed a factored embedding layer, similar to the one seen in

Section 3.1.1, so that the model was able to embed both the lemmas and its factors when processing the

target corpus of the parallel data during training. Furthermore, at the end of the decoder, the architecture

was changed in a way that instead of producing only one output (the predicted word), it predicted both the

lemma and its factors in each time step. Following the concept of target embeddings matrix introduced

in Section 2.1.5, in the unaltered architecture, after obtaining the last hidden state h(t), a predicted word

ŷ(t) can be obtained using equation 2.2. If instead of a single word one wants to output a bundle of F

features, then F different embedding matrices are needed, therefore predicting each feature ŷ(t)k with a

generalization of equation 2.2,

ŷ
(t)
k = softmax(V T

k h
(t) + ck), (3.2)

where ck ∈ RKk ∈ and Vk ∈ Rm×Kk are the kth feature bias and output embedding matrix respectively,

with Kk the size of the vocabulary of the kth feature, and m the size of the last hidden state (in this case

the same as the embedding size, m).

In their experiment, Garcı́a-Martı́nez et al. [19] deconstructed each word into its morphological

lemma, and the respective morphological tags (see Section 3.3.3). The morphological tags were all

concatenated into a string that was later treated as a single factor. Therefore, each word was repre-

sented by two features (F = 2): the lemma, and the morphological tags factor.

It should be noted that the decoder of the FNMT architecture, predicts lemmas and factors in a

synchronous stream, but in separate outputs. Therefore, it’s the lemma sequence that is responsible for

concluding the decoding predictions of a given sentence, by producing the end-of-sequence token. This

is motivated by the fact that the lemmas carry most of the “meaning” of the word.

Due to the new configuration of the decoder, which produced two outputs instead of one, the feedback

rule (i.e. the previous generated symbol reembedding) also needed to be revised. The authors of [19]

tried different configurations for feedback, such as: using only the lemma embedding; using only the

linguistic information factor embedding; using a summation of both embeddings, and finally whether

19

or not the network was able to learn a better combination of the lemmas and factors embeddings, by

applying to the summation and to the concatenation of both embeddings a linear and a non linear

operation. The results showed that when comparing by BLEU score, the feedback option that produced

the best results was the one with the non linear operation (tanh) applied to the concatenation of both

the embeddings of lemma and factors. However, even the best system was slightly under-performing in

terms of BLEU score when compared to an unfactored NMT system, trained on the same data with the

same hyper-parameters.

Given the results, the authors of [19] introduced a lemma dependency to the prediction of the factors,

in an attempt of improving the factor predictions and therefore improving the system results. The depen-

dency was implemented by concatenating the predicted lemma embeddings to the hidden layer used to

generate the factors. Two different approaches were taken. Either contextualizing a certain factor output

with the corresponding lemma being generated at the same time step or using the previously gener-

ated lemma to do so. Respectively, by extending equation 3.2, the prediction of a factor with lemma

dependency is done with equation 3.3 or 3.4:

ŷ
(t)
k = softmax

(
V T
k

((
UT
1 ŷ

(t)
1

)∥∥∥∥∥h(t)
)

+ ck

)
, 2 ≤ k ≤ F (3.3)

ŷ
(t)
k = softmax

(
V T
k

((
UT
1 ŷ

(t−1)
1

)∥∥∥∥∥h(t)
)

+ ck

)
, 2 ≤ k ≤ F. (3.4)

A schematic representation of this decoding layer with lemma dependency based on the lemma pre-

dicted at that same time step as the factor (equation 3.3), can be seen in Figure 3.1. Furthermore, the

introduction of a dependency of the previously generated factor was also experimented, essentially a

custom feedback specific to the layer responsible to output the factors predictions. The prediction of a

factor with factors dependency is done with:

softmax

(
V T
k

((
UT
k ŷ

(t)
k

)∥∥∥∥∥h(t)
)

+ ck

)
, 2 ≤ k ≤ F. (3.5)

From these three different architectures the one that showed the best results was the one that in-

cluded the previous factor dependency, resulting in a slight BLEU score increase when compared to the

baseline, even though the lemma dependency also generated really close BLEU scores to the same

baseline.

3.2 Factors in Marian

In this section, an explanation will be made regarding how both the embeddings of source factors and

the prediction mechanism of target factors are implemented in Marian. In the subsection related to

source factors, we will explain our implementation of concatenation to combine the embeddings of both

lemma and factors.

20

Figure 3.1: Structure of the factored output layer with lemma dependency. Crossed areas represent
matrix products. Bias terms were omitted for simplicity. In this example a word was represented by
a lemma and only one factor also for simplicity. ŷ(t) is obtained by combining ŷ

(t)
1 and ŷ

(t)
2 in post

processing. Adapted from [30].

3.2.1 Source Factors

The implementation of source factors in Marian has some differences when compared to the one an-

alyzed in section 3.1.1. Instead of having several embedding matrices for each one of the different

features used to represent a word, we have only one large embedding matrix where all this information

is encoded. Also, instead of concatenating the lemma and the factor embeddings, these are summed.

Let’s see how this is accomplished.

To embed a sentence x with N words, x = (x1, ..., xN), where each word is represented by F

different features, we start by creating a large embedding matrix U ∈ RK×m, where K is the vocabulary

size of all the features vocabularies Kk combined,
∑F

k=1Kk = K, and m is the embedding size. In

fact, this matrix could be seen as the concatenation (by the rows) of the different factors embedding

matrices Uk ∈ RKk×mk seen in section 3.1.1, with the constraint that they all have the same embedding

dimension mk = m.

When we process the input sentence, we start by constructing a sparse binary matrix M ∈ RN×K .

Each row of this matrix has a multi-hot encoded vector that encodes the information represented in each

word of the sentence x. These vectors differ from the one-hot encoded vector mentioned in Section

2.1.5, because, as the name suggests, instead of having one non-zero value, more than one non-zero

value can occur. When we do not have factors, we use one-hot encoding, as each word is represented

by a single entry in a certain vocabulary. Marian concatenates all factor vocabularies into one, and

consequently, we are able to encode in a single vector which are the lemma and factors represented in

a given word, by means of multi-hot encoding.

This matrix M is then multiplied with the embedding matrix U , resulting in the word embeddings

E ∈ RN×m. Taking into account that each row of the sparse matrix M , has the value 1, in the ith indexes

21

correspondent to the lemma and factors used in a given token when we multiply it by the embedding

matrix that contains in its ith rows the embeddings corresponding to that same lemma and factors, we

end up summing the embeddings of the lemma and factors. A schematic representation of this process

for the particular situation of representing words with lemma and two factors (F = 3), can be seen in

Figure 3.2.

Figure 3.2: Representation of original lemma and factor embedding process of a sentence in Marian.
Combining them with sum. For simplicity in this example a word is represented by a lemma and two
factors (F = 3). N is the sentence length, m the embedding size, K1, the vocabulary size of the lemma
vocabulary, and K2 and K3 the size of the vocabulary of each one of the factors. M is a sparse matrix
with multi hot encoding vectors in its rows, U is the embedding matrix and E the resulting embeddings.
Uk are the sub-embeddings matrices that form the larger embedding matrix U . U1 embeds the lemmas
and U2 and U3 the factors.

Even though this approach is beneficial from a computational point of view, as it limits the embedding

process to a single matrix product, this approach has some drawbacks. Firstly, it forces that all the

factors must have the same embedding dimension as the lemma, not allowing the choice of customized

embeddings for the different factors. Secondly, this approach forces that the factor embeddings must be

summed with the lemma embeddings, not allowing other options such as concatenation. Thirdly, it does

not favor tied embeddings (Section 2.1.5) when only source or target factors are used, due to the fact

that the same embedding matrix has to encode the lemma and the remaining factors, and so, if one side

encodes both lemma and factors, while the other side only encodes lemmas, the size of the source and

target matrices would not match and therefore they would not be eligible to be tied. We next describe

the solution we proposed that addresses these issues.

Implementation of Concatenation of the Embeddings

In an attempt of overcoming the problems mentioned above, we decided to implement a new method of

combining lemma and factor word embeddings, more similar to what we saw in section 3.1.1.

To do so, we split the embedding process of the lemmas from the embedding process of the remain-

ing factors. We created two embedding matrices Ulemma ∈ RK1×m and Ufactors ∈ R(K−K1)×mf , being

mf the embedding size of the factors, and K1 the vocabulary size of the lemmas. To embed the lemmas,

we can make use of the embedding matrix as a lookup table as explained in Section 2.1.5, and therefore

avoid the matrix dot product, thus obtaining the lemma embeddings Elemma ∈ RN×m. Then for the

remaining factors we create a multi-hot embedding matrix Mfactors ∈ RN×(K−K1) that is then multiplied

22

with the factors embedding matrix Ufactors, thus obtaining the factor embeddings Efactors ∈ RN×mf .

Finally, the lemmas and factors embeddings are concatenated, in order to obtain the final embeddings

E = Elemma‖Efactors.

This approach favors the tying of the lemma embedding matrix of the source and target side even if

only one of them uses factors. Furthermore, with this we are able to control the embedding size of the

factors. A schematic representation of this process for the particular situation of representing words with

lemma and two factors (F = 3), can be seen in Figure 3.3.

Figure 3.3: Representation of implemented lemma and factor embedding process of a sentence in
Marian. Combining them with concatenation. For simplicity in this example a word is represented by a
lemma and two factors (F = 3). N is the sentence length, m the embedding size of the lemma, mf , the
embedding size of the factors, K1, the vocabulary size of the lemma vocabulary, and K2 and K3 the size
of the vocabulary of each one of the factors. Mfactors is a sparse matrix with multi hot encoding vectors
in its rows, Ufactors is the embedding matrix for the factors and Efactors the resultant factor embeddings.
Similarly, Ulemma is the embedding matrix for the lemmas and Elemma the resultant lemma embeddings.
Both Efactors and Elemma are then concatenated resulting in the final embeddings E. Uk are the sub-
embeddings matrices that form the larger embedding matrices Ulemma, and Ufactors. U1 embeds the
lemmas and U2 and U3 the factors.

3.2.2 Target Factors

Regarding the target side, the implementation of the algorithm that predicts the different factors has

also a different approach than the one explained in Section 3.1.2. There are in fact four different factor

prediction options in Marian, that replace the last typical linear layer of the decoder architectures. All

four are going to be explained in this subsection. All these different methods start by obtaining the

lemma prediction ŷ(t)1 by simply applying equation 3.2. This equation uses the output embedding matrix

V1 ∈ Rm×K1 , which is the output embedding matrix for feature k = 1, the lemmas. In Marian, as we did

not have for the input embedding layer, we do not have several separate output embedding matrices Vk,

but only one large output embedding matrix V . Although, as we mentioned in Section 3.2.1, and as it

can also be seen schematically in Figure 3.2, the input embedding matrix U is in fact a concatenation

by the rows of the sub embedding matrices Uk. Therefore, following the same pattern, in order to obtain

V1, we just need to select the rows from V correspondent to the first feature, and therefore, we obtain

23

V1, allowing us to use equation 3.2.

Soft Transformer Layer

The name of this factor prediction algorithm comes from the fact that the prediction of each factor is done

with a condition mechanism that mimics a transformer layer (Section 2.1.3), as all the typical elements

of one (attention layer, feed forward layer, and “Add & Norm” layer) are present in it.

After obtaining the lemma prediction ŷ(t)1 , to predict each factor using the novel condition mechanism

that mimics a transformer layer, a multi-headed scaled dot product attention layer (Section 2.1.3) is

applied, receiving as inputs both the embedding of the predicted lemma and the outputted last hidden

state by the decoder. Subsequently, as in a typical transformer layer, this is passed through a FFN,

applying an “Add & Norm” layer after both the attention layer and the FFN.

To the output of this condition mechanism (h(t)k) is then applied equation 3.2, and the factor prediction

(ŷ(t)k) is obtained. This is then repeated to obtain the remaining factors.

Hard Transformer Layer

This factor prediction method is similar in every way to the soft transformer layer method, with the

exception that, when applying equation 3.2, to predict the lemma (ŷ(t)1), hardmax is used instead of

softmax.

Lemma Custom Projection

This method for including a lemma dependency in the prediction of the different factors is the most

similar to the one seen in section 3.1.2. After obtaining the lemma prediction ŷ
(t)
1 , the factors are ob-

tained with a variation of equation 3.3. Firstly, instead of embedding the predicted lemma with the input

embedding matrix, the lemma prediction ŷ(t)1 , is projected to a new dimension m′, with a new trainable

parameter D1 ∈ RK1×m′
, being reprojected again to dimension m by D2 ∈ Rm′×m. Secondly, the lemma

dependency is summed to the outputted hidden state instead of concatenated. Equation 3.3 becomes:

ŷ
(t)
k = softmax

(
V T
k

(
(D1D2)

T
y
(t)
1 + h(t)

)
+ ck

)
, 2 ≤ k ≤ F. (3.6)

Also, if m′ = m, only D1 is used.

Lemma Dependent Bias

To predict each factor with this method, a lemma dependent bias is computed for each factor, which is

later added to the factor logits vector. A logits vector is the name given to a vector before the application

of the softmax function. Therefore, the factor logits of the kth feature, is obtained with equation 3.2, but

without the application of the softmax function. The lemma dependent bias bk is obtained by multiplying

24

the predicted lemma logits and a trainable parameter B ∈ RK1×Kk . The factors are then obtained with,

ŷ
(t)
k = softmax(V T

k h
(t) + ck + bk), 2 ≤ k ≤ F. (3.7)

3.3 Factors Applications

In this section, we present three different possible applications for factors, which correspond to the three

different use cases for which we used them in our experiments (Chapter 4). For each one of them,

we overview the work done previously in the literature, explaining their experiments and showing their

results, finally pointing to how we extended their work with our own experiments.

3.3.1 Factors To Apply Terminology Constraints

Dinu et al. [21] proposed a novel method to inject custom terminology into neural machine translation at

run time. The idea was to train the model in a way that it learned a “copying behavior”, by providing the

target term in the source side, enforcing the translation to produce that term. These target terms were

integrated into the source sentences by appending them to their source version. The factors are used

to signal this “code-switching” in the source sentence. Three factors were used (the numbers 0, 1, and

2), one to indicate source terms (1), another for the added target terms (2), and finally another for the

words that were already part of the source sentence (0). The authors of [21] also tried to add the target

term into the source sentence by replacing the source term with the respective translation. An example

sentence with terminology injection using both methods can be seen in Table 3.1. In Figure 1.1 we can

see a graphical representation of a FNMT system that uses factors for this application.

Source (en) All alternates shall be elected .
Add by appending (en) All0 alternates1 Stellvertreter2 shall0 be0 elected0 .0
Add by replacing (en) All0 Stellvertreter2 shall0 be0 elected0 .0
Reference (de) Alle Stellvertreter werden für eine Amtszeit gewählt.

Table 3.1: Example input for the term injection experiment done by Dinu et al. [21]. Two alternatives
ways used to add target terms to the source side can be seen. The terminology entry pair is (alternates,
Stellvertreter). Adapted from [21].

The lemma and the factor were embedded with a strategy similar to what we saw in Section 3.1.1,

where lemma and factors have separate embedding matrices, and the resultant embeddings are con-

catenated. Using this factored approach proved to be better when compared to the baseline, increasing

the percentage of correctly translated terminology by around 15%, and increasing slightly the BLEU

score as well, even though no major increase was expected in the later as terminology affects only a

small part of the sentence. Comparing the two strategies for adding the target terms to the source side,

using the replacing method actually produced a slighter higher rate (2%) of corrected translated terms,

although on the other hand appending the target terms to their source version resulted in better BLEU

scores. Given this, train by appending seems a better solution, as one of the goals of this work was

25

to be able to inject custom terminology without changing the quality of the regular translations. When

compared to the best reported model in the space of constrained decoding algorithms for NMT at the

time, (Post and Vilar [48]), even though the correct terminology translated was a little underperforming

(less 5%), the decoding time was reduced by a factor of four, producing this way a solution with a much

higher speed vs performance trade-off.

We extended this work by evaluating the impact of using factors to inject terminology at run time in

other language pairs, and also compared different methods to combine the embeddings of the lemma

and factors. This experiment is reported in Section 4.3.

3.3.2 Factors To Replace Subword Joining Markers

Both Sennrich and Haddow [18] and Wilken and Matusov [30], used factors to encode subword tags

(Section 2.1.4) information, following two distinct approaches:

• Sennrich and Haddow [18] used an annotation similar to the IOB format, having a factor that

indicated if a certain subword unit was part of the beginning (B) of a word, the inside of a word (I),

or the end of a word (E). (O) was used if a symbol corresponded to a full word, i.e, a word not split

after applying BPE. A graphical representation of a FNMT system that uses this approach can be

seen in Figure 3.4 a).

• Wilken and Matusov [30] used an annotation method that indicated when two consecutive sub-

words had to be merged. They used the factor “T” to indicate if a subword unit should be concate-

nated to the previous subword unit in a sentence, and used the factor “F” otherwise. A graphical

representation of a FNMT system that uses this approach can be seen in Figure 3.4 b).

Despite the method used, the goal of replacing the subword joining markers with factors was mainly

done to allow that in a compound word, for example, a subword unit that could also appear as a single

word in the corpus could have the same representation in both situations apart from the factor, therefore

sharing the same embedding. Furthermore, this approach reduces the vocabulary size.

Both Sennrich and Haddow [18] and Wilken and Matusov [30], tested this for the English-German

language pair reporting slight increases in BLEU score when comparing their systems to baselines.

In Section 4.4, we show how we extended their works, both by comparing directly these two encoding

methods, but also by experimenting it in other language pairs rather than English-German, to evaluate if

using factors to encode subwords splits information also had a positive impact on them.

3.3.3 Factors to Encode Morphological Information

Garcı́a-Martı́nez et al. [19] used factors to encode morphological information for the target side. Their

main motivation was increasing vocabulary coverage and decreasing the number of unknown tokens

produced.

In their experiment, each word was deconstructed into its morphological lemma, and the respective

morphological tags, both predicted by a morphological analyzer. The morphological tags (POS tags,

26

(a) Factors used to replace subword joining markers with the method proposed by [18].

(b) Factors used to replace subword joining markers with the method proposed by [30].

Figure 3.4: Example of a FNMT system where factors are used to replace subword joining markers. In
this example, the English sentence “Stars are glimmering .”, that after applying BPE becomes “St@@
ars are gli@@ mmer@@ ing .”, is translated to the German sentence “Sterne funkeln .”, that after
applying BPE becomes “Ster@@ ne fun@@ k@@ eln .” We can see two different methods of encoding
the BPE splits information using factors.

tense, gender, number, and person) were all concatenated into a string that was later treated as a

single factor. Therefore, each word was represented by two features (F = 2), the lemma, and the

morphological tags factor. Moreover, the target vocabulary size was reduced, due to all the derived

forms of verbs, nouns, and adjectives not being kept.

After obtaining the predicted sequence of both the lemma and factors, for each pair of predictions, in

post-processing, a morphological inflector is responsible for combining the lemma and its morphological

information to generate the final word. New words not initially in the vocabulary, like a specific inflection

of a certain word, could thus be generated. The authors reported slight increases in BLEU score for

the English-German language pair when using the FNMT architecture that produced the highest score

(Section 3.1.1). Furthermore, the number of unknown words was reduced to more than half.

A graphical representation of a FNMT system that uses factors to encode morphological information

can be seen in Figure 3.5. To enrich the visual representation we represented factors both on source

and target sides, therefore the figure does not reflect exactly the work done by Garcı́a-Martı́nez et al.

[19] as they only used factors for the target side. On the bottom side of Figure 3.5, we can see how the

morphological analyzer deconstructs each word into its morphological lemma and the respective mor-

phological tags. On the upper side, after the FNMT model predicts both the lemma and the respective

morphological tags, the inflector is the mechanism that generates the correct inflection, generating the

27

final form of the predicted words.

Figure 3.5: Example of a FNMT architecture where factors are used to encode morphological informa-
tion. Each morphological tag has the following meaning: PRO - pronoun; 3 - third person; SG - singular;
FEM - feminine; V - verb; PRS - present; IND - indicative; N - noun;

Motivated by the work done by Garcı́a-Martı́nez et al. [19], we followed their approach of encod-

ing morphological information into factors and tried to improve the translation of morphologically rich

languages. These experiments are reported in Section 4.5.

3.4 Summary

This chapter presented the concept of factored neural machine translation which are NMT architectures

that use factors.

We started by explaining that factors (Section 3.1) are a mechanism from which we can represent

words in a sentence, not only by the words themselves but as a bundle of features. This is useful to

enrich the information contained in a word representation when it is provided to the NMT system. We

then gave an overview of the developments done throughout time regarding factors, until they were

incorporated into NMT.

After explaining what are factors, we focused on explaining how factors are used. We divided our

explanation by looking first at factors when used on the source side, called source factors (Section

3.1.1), and then to factors used on the target side, called target factors (Section 3.1.2). For both cases,

we explained what are the changes that need to be done in a NMT architecture to use them. For

source factors, the change must be applied to the embedding layer, where the different features must

be embedded and joined in a single final word embedding that is provided to the system. On the other

hand, for target factors, besides changing the embedding layer, also a change must be done to the

output layer as the model must not only predict a word at each time step, but also the factors associated

with it.

We then focused on the Marian toolkit, explaining how factors are implemented in it (Section 3.2).

Regarding source factors (Section 3.2.1), we showed that the only option available to combine the

embeddings of the lemma and the factors was by summing them. We showed that there are some

28

drawbacks associated with this solution which motivated us to implement concatenation as an option to

combine the embeddings. A comparison between our approach and the original implementation will be

done in Section 4.3. Regarding the target side (Section 3.2.2), we explored the different factor prediction

mechanisms that are available in the Marian toolkit. All these prediction options will be compared in

Section 4.4.

Finally, in Section 3.3 we showed three different possible applications for factors, which correspond

to the three use cases for which we used them in our experiments in Chapter 4. For all of them, we

review the work done in the literature and introduced how we extended their work. We first gave an

overview regarding the work done by Dinu et al. [21] to inject terminology into NMT using factors in

Section 3.3.1. The extension that we did to his work can be seen in Section 4.3. In Section 3.3.2 we

showed that factors can be used to encode BPE splits information and that it was done in the past with

two different approaches, which we compare in Section 4.4. Finally, in Section 3.3.3, we showed that

factors can be used to encode morphological information, which motivated us to attempt to improve the

quality of the translations of morphologically rich languages in Section 4.5.

29

30

Chapter 4

Experimental Analysis

In this chapter we describe the experiments performed, and subsequently, analyze their results.

We start by presenting the datasets used for all our experiments (Section 4.1). Then, we describe all

the preprocessing steps applied to the baselines (Section 4.2.1), and the hyperparameters setup used

when training them (Section 4.2.2).

Afterwords, we analyze the experiments done using factors in Marian. The experiments are divided

into three major groups taking into account the use case for which factors are used. In the first one

(Section 4.3), we use factors to apply terminology constraints. In the second one, we use factors to

encode subword units (Section 4.4), and finally, we use factors to encode morphological information

(Section 4.5). All those sections share the same structure. We start by detailing the experimental setups,

where the experiment is described, its goal is presented, and it is detailed the preprocessing steps done

and the decisions that were taken. This is followed by a subsection where the results are shown, and

subsequently by a subsection where those results are analyzed and conclusions are inferred.

4.1 Datasets

In our experiments, we used four different language pairs. All of them have English (en) as one of their

languages, while the other four chosen were: German (de), Latvian (lv), Norwegian (no), and Romanian

(ro). The choice of English-German was made due to being the language pair used in the work done by

Dinu et al. [21], and extending their research (Section 4.3), was our starting point. The remaining were

chosen due to being part of the CEF’s Marian agreement, under which this thesis was developed.

For English-German (en-de), we followed the data set up from Dinu et al. [21]. Therefore, we used

the data from the WMT 2018 English-German news translation shared task1 (Bojar et al. [49]). We

gathered both the Europarl corpora (Koehn [50]) and the news commentary data corpora to form the

training set. For the development (dev) and test sets, we used the 2013 and 2017 WMT English-German

news translation shared task23 (Bojar et al. [51], Bojar et al. [52]) test sets respectively. The dimensions

1Available in: http://www.statmt.org/wmt18/translation-task.html
2Available in: http://www.statmt.org/wmt13/translation-task.html
3Available in: http://www.statmt.org/wmt17/translation-task.html

31

http://www.statmt.org/wmt18/translation-task.html
http://www.statmt.org/wmt13/translation-task.html
http://www.statmt.org/wmt17/translation-task.html

of each dataset can be seen in Table 4.1.

For the English-Latvian (en-lv) and English-Romanian (en-ro) language pairs, we joined the Europarl

(Koehn [50]), DGT (Steinberger et al. [53]), JRC-Acquis (Steinberger et al. [54]), and EMEA corpora, all

available through the OPUS data base4 (Tiedemann [55]), to create our datasets. For English-Norwegian

(en-no), we used the Tilde-Model5 (Rozis and Skadiņš [56]), data from the National Library of Norway,67

and finally data from the ELRC-SHARE repository.8 After collecting the data from these three language

pairs, all the corpora was cleaned, in order to remove empty and duplicate lines, as well as lines that were

equal for the source and target side. After shuffling, we randomly selected 2.2 million sentences for the

training data and 3000 for the dev and test set. Due to the smaller dimension of the English-Norwegian

corpora, no random selection was needed, only the division between training, dev, and test sets was

done. Also, so that the results could be more comparable to other researches, two commonly used test

sets in literature were also used to evaluate our experiments. These are the 2017 WMT English-Latvian

news translation shared task9 (Bojar et al. [52]) test set, and the 2016 WMT English-Romanian news

translation shared task10 (Bojar et al. [57]) test set. For English-Norwegian, no extra test set was used

given that it was never a language pair used for a WMT news translation shared task. All the datasets

lengths can be seen in Table 4.1.

Training set Dev set Test set Test set (newstest)

en-de 2204455 3000 - 3004
en-lv 2200000 3000 3000 2001
en-no 1485400 3000 3000 -
en-ro 2200000 3000 3000 1999

Table 4.1: Training, development and test set dimensions (number of lines).

4.2 Baselines

In order to evaluate the performance of the FNMT systems, we trained NMT baselines to compare them

to. This section describes the preprocessing steps applied to the data sets (Section 4.2.1), as well as

the hyperparameters settings used for training (Section 4.2.2).

4.2.1 Preprocessing Steps

After gathering the corpora for each language pair, we applied the same preprocessing sequence to all

datasets. Firstly, we started by normalizing the punctuation and tokenizing the data. After tokenization,

we cleaned sentences that had a high length source-target or target-source ratio (higher than 9). We

4Available in: http://opus.nlpl.eu/
5Available in: https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
6Available in: https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-45/
7Available in: https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-46/
8Available in: https://elrc-share.eu/repository/search/?q=norwegian%20english&sort=resourcename_asc&page=1
9Available in: http://www.statmt.org/wmt17/translation-task.html

10Available in: http://www.statmt.org/wmt16/translation-task.html

32

http://opus.nlpl.eu/
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-45/
https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-46/
https://elrc-share.eu/repository/search/?q=norwegian%20english&sort=resourcename_asc&page=1
http://www.statmt.org/wmt17/translation-task.html
http://www.statmt.org/wmt16/translation-task.html

subsequently applied truecasing, and finally, we applied BPE11 (Sennrich et al. [24]) (Section 2.1.4) to

segment sentences into subword symbols, using 32000 merge operations, and the vocabulary threshold

option set to 50. The BPE learned the merges over a concatenated corpus of the two languages in the

language pair. Finally, we built shared vocabularies, in order to later tie the embeddings (Section 2.1.5).

All the scripts used for the stages of the preprocessing pipeline prior to BPE were done with scripts from

Moses12 (Koehn et al. [58]).

4.2.2 Hyperparameters

All the baselines were trained under the same hyperparameter setup. The version of Marian used

was 1.9.0. We trained a Transformer model (Vaswani et al. [14]) (Section 2.1.3), with six encoder and

decoder layers. The model dimension and consequently the embedding size was set to 512, the FFN

size was set to 2048 with a depth value of 2, and we used 8 attention heads for the multi-head attention

layers. Regarding batches, we used the Marian option of “batch-fitting”, which determines the batch size

automatically based on sentence-length to fit reserved memory (8500 Mb). We used dropout (Srivastava

et al. [59]) of 0.1. Regarding optimization we used the Adam optimizer (Kingma and Ba [60]) (β1 = 0.9,

β2 = 0.98, ε = 10−9). Also, label-smoothing of 0.1 (Szegedy et al. [61]), a gradient clipping with a

maximum gradient norm of 5 and exponential smoothing were applied. We limited the length of source

sentences to 100 tokens. For decoding, we used beam-search, with a beam size of 12. We used early-

stopping so that training would stop when the model did not improve for 5 epochs. Finally, the source,

target, and output embeddings matrices were tied (Section 2.1.5).

The setup for all the experiments throughout sections 4.3, 4.4, and 4.5, even for the FNMT architec-

tures, were the same as described in this subsection, except where noticed.

4.3 Factors To Apply Terminology Constraints

This experiment is an extension of the work done by Dinu et al. [21], analyzed in section 3.3.1. In this

work, lemma and factors were embedded with separate matrices which were later concatenated. The

goal of this experiment is to compare this method of combining lemma and factors embeddings, using

our implementation of concatenation (Section 3.2.1), to the default Marian option to do so, which is

combining them with sum (Section 3.2.1). We evaluate their impact on both the quality of the translations

and the percentage of correctly translated terms. Only source factors are used.

4.3.1 Experimental Setup

As seen in Section 3.3.1, Dinu et al. [21] added target terms to the source sentences, so that the model

would learn to bias the translation to contain the provided terms. The target terms of the terminology

were added to the input as inline annotations with two methods, either by appending the target term to its

11Code available in: https://github.com/rsennrich/subword-nmt
12Code available in: https://github.com/moses-smt/mosesdecoder

33

https://github.com/rsennrich/subword-nmt
https://github.com/moses-smt/mosesdecoder

source version or by directly replacing the original term with the target one. We use the former approach

as it was the one that provided the best balance between a good correctly translated terminology rate,

and the general quality of the translations.

We also use a factor group with three possible values (“p0”, “p1”, and “p2”) to indicate if a word is

either part of a source term (“p1”), part of a target term (“p2”), or if it is not part of a terminology pair

(“p0”). The choice of this particular vocabulary for this factor group was done to mimic the choice of

Dinu et al. [21] (where the numbers 0, 1, and 2 were used as factors), with the letter ”p” being used

due to the fact that in Marian all the factors of the same factor group must share the same prefix. The

same preprocessing pipeline described in Section 4.2.1 was applied, adding the factors to the source

text before the truecasing step. After applying BPE (Section 2.1.4), if a word that was part of a term

was split, the factors were shared among its subword units. In Marian, factors are placed directly in the

corpus, by separating the lemma and the factors with a pipe character (“|”). An example of a sentence

used in this experiment after being preprocessed can be seen in Table 4.2.

Source They need clear guidance.
Factored Source they|p0 need|p0 clear|p0 guidance|p1 An@@|p2 leitung|p2 .|p0
Reference Sie brauchen eine klare Anleitung.

Table 4.2: Example input for the experiment where factors are used for terminology injection, for en-de.
The terminology entry is (guidance, Anleitung).

Following the choices from [21], if a certain sentence has multiple matches from a term base, we

keep the longest match. Furthermore, when checking for matches of a term inside a source sentence,

we apply an “approximate matching”, using a simple character sequence match, allowing a word in the

text to be considered a match even if, for example, it happens to be inflected. Moreover, we also limit

the amount of data added to 10% of the corpus as we want the model to work equally well when there

are no terms provided as input.

Regarding the term bases used, for English-German, English-Latvian, and English-Romanian we

used the European Union IATE term base,13 and for English-Norwegian we used two glossaries from

eurotermbank.1415 We then filtered out entries occurring in the top 500 most frequent English words

as well as single character entries. For the IATE glossaries, we also made some filtering regarding

the quality scores given to the terminology pairs, only keeping the ones with the highest scores. We

also started by adding the terminology to the dev and test sets, so that those terms were subsequently

removed from the glossary used for the training sets, and therefore the tests were performed with unseen

terminology.

As explained in Section 3.2.1, when we choose the option of combining the lemmas and factor

embeddings with sum, their embedding size must match, and therefore, they were embedded with the

model size 512. For concatenation, we followed Dinu et al. [21] and embedded the factors with a size of

16. All the other hyperparameters were kept in accordance with Section 4.2.2. For concatenation, we

13Available in: https://iate.europa.eu
14Available in: https://www.eurotermbank.com/collections/49
15Available in: https://www.eurotermbank.com/collections/622

34

https://iate.europa.eu
https://www.eurotermbank.com/collections/49
https://www.eurotermbank.com/collections/622

tied the source, target, and output lemma embedding matrices. As explained in section 3.1.1, tying the

embeddings of the source and target side, when only one of them uses factors and when combining the

lemma and factor embeddings by summing is, at first sight, difficult to do. Although, we can work around

it by creating “dummy” factors for the target side that are actually never added to the target data, only to

make the lemma and factor embeddings large matrix match in size. As we will see in section 4.3.3, tying

the embeddings has also a considerable impact on the performance of the factors.

4.3.2 Results

The results of this experiment can be seen in Table 4.3. For the language pairs for which we had two

test sets (en-lv and en-ro), we evaluated the model on the WMT news task test sets (Section 4.1).

Term% BLEU COMET

en-de
Baseline 78.0 24.75 0.3918
Factored model - sum 85.8 24.78 0.3863
Factored model - concatenation 86.3 24.86 0.4009

en-lv
Baseline 56.8 15.90 0.3769
Factored model - sum 71.2 15.96 0.3698
Factored model - concatenation 73.9 15.67 0.3830

en-no
Baseline 83.1 22.04 -0.4013
Factored model - sum 91.7 22.17 -0.4067
Factored model - concatenation 93.2 22.00 -0.4145

en-ro
Baseline 81.8 24.13 0.4048
Factored model - sum 92.9 24.60 0.4065
Factored model - concatenation 94.9 24.29 0.3865

Table 4.3: Results of the experiment where factors are used for terminology injection.

4.3.3 Results Analysis

By analyzing Table 4.3, starting by looking at the column that contains the results of the terminology

percentage that was correctly translated, we can realize that the factored model outperforms the baseline

for all language pairs. Furthermore, when comparing the two methods of combine lemma and factor

embeddings, we also see a pattern among all the language pairs, as concatenation produces a slight

increase (+0.5% to +2%) over summation in the correctly translated terms percentage.

Regarding the general quality of the translations, we can not take the same conclusion that concate-

nation outperforms summing. By analyzing the columns of the BLEU and COMET scores, we notice that

for all the language pairs at least one of the two factored models outperformed the baseline. Although,

the factored model that leads to the better results is not consistent for all the language pairs.

It is also noticeable that the COMET values for en-no differ a lot from the range of values for the

other language pairs. This happens because the models for en-no generated some hallucinations in

some of its translations. As COMET is not bounded, unlike BLEU, these sentences are scored with

35

greatly negative values, decreasing the average score of the corpus. As BLEU is a bounded metric,

with its lowest possible score being zero, this is not reflected in its scores. Although, by looking at the

column of terminology percentage, we see that independently of that, the results for correctly translated

terminology were positive.

In Table 4.4 we can see two examples where combining the embeddings of lemma and factors by

concatenating them produces better results than summing them. In the first example (for en-de), we

wanted to force the translation of the word “homicide”, to be “Tötungsdelikt”. We can see that both the

baseline and the factored model with sum embeddings chose “Mord”, a synonym of “Tötungsdelikt”,

while the factored model with concatenation chose the correct term translation. In the second example,

we injected “sviets” as the wanted translation of the word “butter”, for the en-lv language pair. Both

the baseline and the factored model with sum embeddings chose the correct base word, although they

mis-inflected it, while the factored model with concatenation did not produce the same error.

Example 1: en-de

Source “It is a homicide”.
Reference “Es handelt sich um einen Tötungsdelikt”.
Baseline “Es ist ein Mord”.
Factored Model - Sum “Es ist ein Mord”.
Factored Model - Concat “Es ist ein Tötungsdelikt”.

Example 2: en-lv

Source Peanut butter has nothing to say to a baked onion.
Reference Zemesriekstu sviests un cepts sı̄pols nav saderı̄gi.
Baseline Zemesriekstu sviestam nav nekā sakāma ar ceptu sı̄polu.
Factored Model - Sum Zemesriekstu sviestam nav sakāms par izceptu sı̄polu.
Factored Model - Concat Zemesriekstu sviests nav nekas sakāms par ceptu sı̄polu.

Table 4.4: Two examples in which joining the embeddings of the factors and the lemmas by summing
them produces worse results than by concatenating them. For Example 1 (en-de), the terminology entry
is (homicide, Tötungsdelikt). For the second example (en-lv), the terminology entry is (butter, sviests).
The color red indicates the bad translation choice of the injected term.

During this experiment, an interesting find regarding tying the lemma embeddings was made. As

explained in Section 4.3.1, when combining the lemma and factor embeddings by summing them only

on the source side, we managed to find a way to tie the source and target embeddings matrices. Before

realizing how to tie the lemma embeddings with the workaround explained in Section 4.3.1, we tried us-

ing lemma and factor embeddings combined with sum, without tying the source and target embeddings

matrices. The results can be seen in Table 4.5.

Term% BLEU COMET

en-de
Baseline 78.0 24.75 0.3918
Untied factored model - sum 81.0 21.65 0.2395
Tied factored model - sum 85.8 24.78 0.3863

Table 4.5: Results comparing tying and not tying the lemma embeddings.

36

By analyzing it, we see that the quality of the translations drops considerably (-3.13 BLEU and -

0.1468 COMET) when comparing the untied and the tied model, what was expected. Regarding the

percentage of correctly translated injected terminology, the untied model still slightly outperforms the

baseline (+2%), although it underperforms (-5.8%) when compared to the tied model. With this, we

can infer that tying the lemma embeddings is also important to guarantee a better performance of the

information carried within the factors.

4.4 Factors To Replace Subword Joining Markers

In this experiment, we use factors to replace the subword (Section 2.1.4) joining marker (“@@”). Con-

trary to what we saw in Section 4.3, where we used only source factors, in this experiment we use factors

both on the source and the target side. This experiment has the following objectives:

• Firstly, compare the four different decoding options present in Marian (Section 3.2.2), in terms of

performance and speed.

• Secondly, compare two approaches taken in the literature (Sennrich and Haddow [18], Wilken and

Matusov [30]) to encode subword splits into factors.

• Thirdly, evaluate if replacing BPE joint markers with factors improves the quality of the translations,

for the four language pairs explored in this Thesis.

4.4.1 Experimental Setup

In section 3.3.2, we saw two different methods to encode subword splits into factors, proposed by Sen-

nrich and Haddow [18] and Wilken and Matusov [30].

Following Sennrich and Haddow [18] we also used a factor group with 4 possible values (“bb”, “bm”,

“bf”, and “bn”). The factor “bb” indicates if a certain unit in the text forms the beginning of a word, “bm”

indicates the middle of a word, “bf” indicates the end of a word, and finally “bn” indicates that a certain

unit is a full word.

For the other method, following Wilken and Matusov [30], we use a factor group with 2 possible

values (“jt”, “jn”). These two factors indicate either if a certain token in a sentence should be joined with

the previous token (“jt”), or if it should not be joined (“jn”).

The same preprocessing steps described in Section 4.2.1, are applied to the corpus in this experi-

ment, adding the factor information after applying BPE. An example of a sentence used in this experi-

ment after being preprocessed can be seen in Table 4.6.

After decoding, in postprocessing, the predicted tokens with the factors “bm”, and “bf” are joined with

the previous token in the sequence. In the other factored approach the tokens with the factor “jt”, are

joined with the previous token in the sentence.

Before comparing the two approaches, we compared the different factor prediction options available

in Marian and detailed in section 3.2.2. From the four options available, we compared three of them:

37

Source The final stop is Lerik.
Reference Endstation ist Lerik.
Reference with BPE End@@ station ist L@@ eri@@ k .
Factored Reference based on [18] End|bb station|bf ist|bn L|bb eri|bm k|bf .|bn
Factored Reference based on [30] End|jn station|jt ist|jn L|jn eri|jt k|jt .|jn

Table 4.6: Example input for the experiment where factors are used to encode BPE splits, for the en-de
language pair.

the soft transformer layer, the lemma custom projection, and finally the lemma dependent bias. The

hard transformer layer was not used, as the only difference to the softmax transformer layer is the usage

of hardmax instead of softmax, which is mainly used for debugging purposes, and so, having also this

option in the comparison would not bring any value. Moreover, for the lemma custom projection, we tried

three different lemma projection sizes: 16, 100, and 512. To compare this, we used the second method

of encoding the BPE splits information, the one that uses the factors “jt” and “jn” (the one based on [30]).

We later used the softmax transformer layer for comparing the two approaches to encode BPE splits

information into factors, and to extend the experiment to the other language pairs. As concatenation was

not implemented for the target side, the regular Marian factors embedding was used (Section 3.2.1), and

all the embedding matrices were tied.

4.4.2 Results

The results on the comparison of the different factor prediction methods available in Marian are reported

in Table 4.7, where we can see a comparison regarding the quality of the translations generated, by

looking at the BLEU and COMET columns. Furthermore, we also have a comparison regarding training

speed in the “Words/s” column, where the values reported are an average of the words processed per

second during training. The rightmost column reports the time in seconds that it took to translate the en-

de newstest set (3004 sentences) with a batch size of 16. This was trained and evaluated in a GeForce

RTX 2080 Ti GPU.

BLEU COMET Words/s (Training) Dec. Time [s]

en-de

Baseline 24.75 0.3918 17197 50.35
Soft transformer layer 24.89 0.3919 13336 62.13
Lemma Custom Projection (16) 24.59 0.3772 15797 56.94
Lemma Custom Projection (100) 24.70 0.3924 15165 57.27
Lemma Custom Projection (512) 24.78 0.3981 13530 61.23
Lemma Dependent Bias 24.78 0.3821 15191 56.30

Table 4.7: Results on the comparison of the different factor prediction options available in Marian. The
BPE splits factor encoding method is the one based on [30].

Then, in Table 4.8, we can see the results of using factors to encode BPE splits for various language

pairs. We can also see a comparison of the two methods to represent the subword splits with factors.

For the language pairs for which two test sets were available (en-lv and en-ro) (Section 4.1), the WMT

38

news task test sets were used.

BLEU COMET

en-de
Baseline 24.75 0.3918
Factored model (BPE encoding based on [18]) 24.85 0.3719
Factored model (BPE encoding based on [30]) 24.89 0.3919

en-lv
Baseline 15.90 0.3769
Factored model (BPE encoding based on [18]) 15.97 0.3442
Factored model (BPE encoding based on [30]) 15.50 0.3707

en-no
Baseline 22.04 -0.4013
Factored model (BPE encoding based on [18]) 21.10 -0.4451
Factored model (BPE encoding based on [30]) 21.11 -0.4184

en-ro
Baseline 24.13 0.4048
Factored model (BPE encoding based on [18]) 24.06 0.3531
Factored model (BPE encoding based on [30]) 23.76 0.3960

Table 4.8: Results on encoding BPE splits with factors with two different methods, for different language
pairs.

4.4.3 Results Analysis

By analyzing Table 4.7, where we have the comparison of the different Marian factor prediction options,

we can see that if evaluating based on BLEU, the model that generated the best translations was the one

that uses the soft transformer layer to predict the factors, while the model that had the highest COMET

score was the model that reprojects the lemma embeddings to a layer with size 512. We can also see

that the only model that underperformed the baseline in both BLEU and COMET is the one that predicts

factors with the lemma custom projection of size 16, probably due to not capturing enough features

given the short dimension of the lemma reembedding size. In terms of speed, we can see that using

target factors decreases the speed of both training and inference. All the methods to predict factors were

slower than the baseline, which means that, even though the vocabulary size is reduced when replacing

the BPE joint markers “@@” by factors (the vocabulary size for the baseline was 30915 tokens while

the vocabulary size in the factored models was 28653), it does not balance the increase in the number

of trainable parameters and in the complexity of the model, thus not allowing for a decrease in training

and translation times. Between the different methods, the soft transformer layer and the lemma custom

projection with a size of 512 are the slowest as they are the ones that introduce the highest number of

trainable parameters. Although, this also turns to be the case that generates the better translations, so

these should be the choice when time is not an issue. Furthermore, the lemma dependent bias and the

lemma custom projection with a medium size (100), appear to be the methods with the best balance

between speed and quality of the translations.

Regarding the comparison of the two methods to encode BPE splits as factors when looking at Table

4.8, we can see that if compared with BLEU, the method proposed by Sennrich and Haddow [18] seems

to be more effective for en-lv and en-ro that the method proposed by Wilken and Matusov [30]. However,

39

when looking at the COMET column the same conclusion cannot be taken, as the method proposed

by Wilken and Matusov [30] outperforms the method proposed by Sennrich and Haddow [18] for all the

language pairs with a considerable margin (between +0.02 and +0.0429). Besides this, when comparing

the highest scored factored model with the baseline for each language pair, only for the en-de language

pair we see a positive result for which the best scoring factored model (the one with the method proposed

by [30]), outperformed the baseline on BLEU and on COMET. Even though the increase on the latter

is too small (+0.0001) at least we can conclude that the performance has not been compromised. For

the remaining language pairs, only for the language pair en-lv we see a factored model outperform the

baseline on BLEU (+0.07), although the same comparison by COMET (-0.0327) does not report the

same positive result.

We can conclude that even though encoding BPE splits with factors seems to have a positive impact

for English-German, as also reported in the literature (Sennrich and Haddow [18], Wilken and Matusov

[30]), when extending it to other languages where this was never tested, it does not lead to the same

performance improvements. Nevertheless, the method proposed by Wilken and Matusov [30] proved to

be more effective than the method proposed by Sennrich and Haddow [18].

4.5 Factors to Encode Morphological Information

The goal of this experiment is to evaluate if representing words by their morphological lemmas and

respective morphological information encoded in factors has a positive impact on the performance of

NMT models. We experimented it for both directions of each language pair, which means, translating

from English and to English. The morphological factors were added always to the non-English language

in the language pair, as English is not particularly morphologically rich, and so, having its morphological

information encoded into factors did not seem relevant. Therefore, we used factors either on the source

or the target if the translation generated was to English or from English, respectively.

4.5.1 Experimental Setup

In order to encode morphological information into factors, there are a total of three systems that should

be used. Firstly a morphological tagger to predict the morphological tags of a certain word. Secondly,

a lemmatizer which reduces each word to their morphological lemma. And thirdly a morphological

inflector, that after the translation is predicted by the NMT model combines the lemma and the respective

morphological tags and generates the final form of a certain word with the correct inflection.

The morphological tagger and lemmatizer system16 used (Malaviya et al. [62]) form a sequence of

two neural models, where the first one, the morphological tagger, predicts a sequence of morphological

tags of a certain word, and subsequently, the lemmatizer uses the predicted tags and the word to predict

the morphological lemma. One of the positive aspects of this architecture is that it was developed to

work for several different languages, therefore being possible to use it for all the languages used in this

16Code available in: https://github.com/sigmorphon/contextual-analysis-baseline

40

https://github.com/sigmorphon/contextual-analysis-baseline

thesis. The models were trained under the Universal Dependencies (UD) Treebanks (Nivre et al. [63]),

although the UD schema was converted to the UniMorph schema (Sylak-Glassman [64]) instead.17 This

schema attempts to standardize the tags used to represent morphological features. As an example, the

word “does” would be tagged as being a verb, finite, with the indicative mood, in the present tense, third

person, and singular which in the UniMorph schema would be “V;FIN;IND;PRS;3;SG”.

The morphological inflector18 used (Peters and Martins [65]), can also be trained for all the languages

used in this thesis, and it was trained in the exact same data as the tagger and the lemmatizer. The

accuracy obtained after training the morphological tagger, lemmatizer and morphological inflector can

be seen in Table 4.9.

Tagger Lemmatizer Inflector

German 82.34 96.17 91.93
Latvian 88.92 93.26 88.69
Norwegian 93.76 97.33 93.12
Romanian 94.84 96.68 91.62

Table 4.9: Accuracy obtained for the morphological tagger, lemmatizer and morphological inflector.

Regarding the factors used, we combined all the morphological tags into a single string so that

they would be treated as a single factor. Furthermore, the word is replaced by its morphological

lemma. This way, using the previous example of the word ”does”, this word would be represented

as, ”do|mV;FIN;IND;PRS;3;SG”. As explained before, the letter “m” is only used because it is manda-

tory that in Marian all the factors from the same factor group share the same prefix. Furthermore, if

a certain token does not carry morphological information, as punctuation characters for example, the

factor “mNOFACT” was used. The size of each factored vocabulary is language dependent, as the num-

ber of morphological tags from the UniMorph schema that each language has differs. Some statistics

regarding the number of factors used, the number of different morphological tags that combined make

that factors, and the number of UniMorph schema morphological groups from which they belong can be

seen in Table 4.10.

Factors Morphological Tags Morphological Groups

German 1081 31 12
Latvian 1232 50 15
Norwegian 265 42 14
Romanian 550 48 14

Table 4.10: Statistics regarding the number of factors, morphological tags, and the number of differ-
ent groups from which the morphological tags belong, used for the experiment where factors encode
morphology.

The same preprocessing pipeline described in Section 4.2.1 was applied in this experiment. The

factors with the morphological tags and the replacement of the words with their morphological lemmas

17Data available in: https://github.com/sigmorphon/2019/tree/master/task2
18Code available in: https://github.com/deep-spin/sigmorphon-seq2seq

41

https://github.com/sigmorphon/2019/tree/master/task2
https://github.com/deep-spin/sigmorphon-seq2seq

was done before the truecasing step, for the non-English language of a given language pair. After

applying BPE (Section 2.1.4), the factors information was shared among the subword units of a split

word. An example of a sentence used in this experiment after being preprocessed can be seen in Table

4.11.

Source Sounds tricky?
Reference Klingt schwierig?
Factored Reference klingen|mV;FIN;IND;PRS;3;SG; schwierig|mADJ ?|mNOFACT

Table 4.11: Example input for the experiment where factors are used for encoding morphological infor-
mation. Example for de en-de language pair.

If factors are used for the target side, after predicting the lemma and the factors with the FNMT

model, the inflector is used to combine that information and generate the final word in postprocessing.

If a certain token is predicted with the “mNOFACT” factor, the predicted lemma is kept unchanged.

Given the neural nature of the tagger and the lemmatizer, the time needed to preprocess the data

increased dramatically. In order to decrease the preprocessing time, we reduced the training sets to half

the size reported in Table 4.1, therefore retraining also the baselines with the shorter datasets so that

the comparison between the NMT model and FNMT model could be fair. The same hyperparameters

described in 4.2.2 were used.

The lemma and factor embeddings were combined by summing them (Section 3.2.1), and when

using them on the target side, the method used to predict the factors was the softmax transformer layer

(Section 3.2.2). The source and target embedding matrices were tied using the workaround described

in Section 4.3.1.

4.5.2 Results

The results for the translations with English in the target side and therefore the language with the mor-

phological information encoded in factors in the source can be seen in Table 4.12. For the language

pairs for which two test sets were available (en-lv, and en-ro) (Section 4.1), the WMT news task test sets

were used.

Regarding translating from English to the languages with the morphological information encoded

as factors, the results can be seen in Table 4.13. As we can see in that table we did two different

experiments for this translation direction. While in one we factored all the words in the corpus, in the

other only the words of certain part-of-speech groups (nouns, verbs, adverbs, and adjectives) had their

representation changed to lemma and respective morphological tags. Furthermore, on the first of these

two experiments an evaluation solely based on the lemmas was also done. An analysis of these results

and the motivation to do these two extra evaluations will be made in Section 4.5.3.

Finally, for the English-Romanian and English-Latvian language pairs, since we had another extra

test set with data more similar to the training data, as explained in Section 4.1, we decided to also

reevaluate this experiment with those test sets and therefore, see the variations that evaluating in a

more in-domain data could bring. Those results can be seen in Table 4.14.

42

BLEU COMET

de-en
Baseline 27.66 0.3125
Factored model 27.19 0.2908

lv-en
Baseline 12.87 -0.1521
Factored model 12.43 -0.1492

no-en
Baseline 23.73 -0.5505
Factored model 23.00 -0.5562

ro-en
Baseline 23.77 0.0942
Factored model 26.65 0.2468

Table 4.12: Results on using factors to encode morphological information for the source language when
translating to English.

All words w/ factors Some POS w/ factors

BLEU COMET BLEU (lemmas) BLEU COMET

en-de
Baseline 24.36 0.3605 27.52 24.36 0.3605
Factored model 21.18 0.1527 26.15 22.40 0.2420

en-lv
Baseline 11.82 -0.0296 14.24 11.82 -0.0296
Factored model 10.01 -0.2727 13.70 10.78 -0.2045

en-no
Baseline 20.98 -0.4464 22.10 20.98 -0.4464
Factored model 16.97 -0.6205 20.63 18.21 -0.5462

en-ro
Baseline 19.15 0.1858 23.40 19.15 0.1858
Factored model 19.20 -0.1093 25.16 19.26 -0.0568

Table 4.13: Results on using factors to encode morphological information for the target language when
translating from English. The baseline results were duplicated between the “All words w/ factors”, and
“Some POS w/ factors” columns, to ease the comparison between them and the results of the factored
models.

BLEU COMET

lv-en
Baseline 60.57 0.6761
Factored model 58.01 0.6475

en-lv
Baseline 53.64 0.9485
Factored model 41.84 0.6677

ro-en
Baseline 37.85 -0.1214
Factored model 49.68 0.1078

en-ro
Baseline 31.51 -0.0622
Factored model 32.00 -0.1712

Table 4.14: Results on using factors to encode morphological information reevaluated with a more in-
domain test set.

4.5.3 Results Analysis

Starting by analyzing the results of translating to English (x-en), reported in Table 4.12, we can see that

the factored model only resulted in an improvement for the ro-en language pair, for which we can see

43

an increase in both BLEU and COMET scores. For the remaining language pairs, even though no other

surpassed the baseline, they were very close, especially when comparing with COMET.

Regarding the translations from English to the language with the morphology encoded in the factors

(en-x), if we look at the first two columns of Table 4.13, we see that all the factored systems underper-

formed when compared to the baseline. Only for en-ro and when evaluated with BLEU, we see a slight

increase, although that improvement is not reflected in the respective COMET score.

As explained in Section 4.5.1, when splitting the words into morphological lemma and respective

morphological tags for the target side, once both the lemma and the factor are predicted, we must

use the inflector to combine them and generate the final word. In order to evaluate if the lacking in

performance was due to an underperforming inflector, we computed BLEU solely based on lemmas. To

do so, we lemmatized the reference and removed all the factors from the FNMT hypothesis. In order to

have something to compare this to, we lemmatized all the baseline hypothesis as well. As the sentences

lose their linguistic meaning due to all the words not being inflected, we did not use COMET for this

analysis. This evaluation is also useful to understand if the FNMT model is at least choosing the correct

words. These results can be seen in the third column of Table 4.13. Firstly all the BLEU scores are

higher when compared to the inflected corpus (first column) which is expected, as mis-inflections are

not taken into account in this scenario. When comparing the factored model with the baselines we see

that except for en-ro once again, the factored models are still underperforming, suggesting that despite

the errors injected by the inflector and the missed predicted factors, the factored model is struggling to

choose the correct words when compared to the baseline.

When looking for answers for these unsatisfying results, by analyzing the hypothesis outputs we saw

that the tagger and subsequently the lemmatizer were having some unexpected behaviors, as some

words were being wrongly tagged when they were not supposed to generate tags (like punctuation

tokens or numbers), as well as words were being wrongly lemmatized, noticing some errors especially

for pronouns and determiners. Given this, the FNMT models were retrained with data that only had

words represented by lemma and morphological tags if they were nouns, verbs, adjectives, or adverbs,

as that group of words is the one were inflections are most common and relevant. If we look at the two

rightmost columns of Table 4.13, we can see that even though the factored models got closer to the

baselines, they were still underperforming, with again the exception of en-ro. This suggests that limiting

the prediction of lemmas and morphological tags to that restricted group of POS words, stabilized the

translations, even though not enough to say that using factors to encode morphology brings benefits

when translating from English, with the exception of the translation to Romanian.

We also decided to use the two extra test sets that we had for en-ro and en-lv, which contained data

more similar to the training data, and reevaluated the experiments in both directions of each language

pair. The goal with this was to understand if evaluating with more in domain data would close the gap

between baseline and underperforming factored models and increase it for cases where the factored

models outperformed the baselines, indicating that the factored models would benefit from being evalu-

ated in more in-domain data. When comparing the results from Table 4.14, with the previous ones seen

in Tables 4.12 and 4.13, the conclusion that we can take is that evaluating with more in-domain data

44

amplifies the gaps between baseline and the factored models either if the latter underperformed (lv-en,

en-lv) or outperformed (ro-en, en-ro) the baseline in the previously done evaluations.

Finally, comparing the overall results of the translations in both directions of all the language pairs

used, it was already expected that we got higher results when translating to English than from English,

as usually, systems that translate to English tend to score higher due to the low morphological richness

of this language. Furthermore, the higher scores in the factor models that translate to English and

consequentially only use factors on the source side could be explained with the fact that there’s no

need to use the inflector, therefore having one fewer step in the translation pipeline and consequently

one system fewer introducing possible failures. Moreover, the fact that all the models used to predict

morphology related features (tagger, lemmatizer, and inflector), have in average a 10% margin for error

(Table 4.9), could lead to the injection of noise into the corpus and harm the quality of the translations of

the factored models.

We conclude that with the current setup, representing words by their morphological lemmas and re-

spective morphological information encoded in factors only brings benefits to translate between English

and Romanian.

4.6 Summary

Throughout this chapter we presented the results from the three experiments that we performed, where

we evaluated the impact of using factors for three different use cases, namely, the application of termi-

nology constraints, encoding subwords splits, and encoding morphological information. Parallel to this

we also used the experiments to take considerations regarding the implementation of factors in Marian.

In the first experiment (Section 4.3), where we used factors to apply terminology constraints, we

showed that our implementation of combining lemma and factor embeddings by concatenating them

outperformed the method originally implemented in Marian, which was summing. Furthermore, we

showed that factors are a valuable solution to inject custom terminology at run time.

In the second experiment (Section 4.4), where we used factors to encode subwords splits after

applying BPE, we compared two different approaches to do so. Furthermore, we saw that for this

use case, factors are especially beneficial for the English-German language pair. We also compared

the different methods available in Marian to predict factors in terms of performance and speed of both

training and inference.

In the third experiment (Section 4.5), where we used factors to encode morphological information,

we saw that for this use case, factors can lead to considerable improvements in the quality of translation

in both directions of the English-Romanian language pair.

45

46

Chapter 5

Conclusions

In this chapter, we summarize the main contributions and achievements of this thesis, followed by a

suggestion of possible directions for future work.

5.1 Achievements

The main goal of this thesis was to test and evaluate the usability of the factors’ code in the Marian

toolkit, fulfilling the first milestone of the CEF’s “User-Focused Marian” agreement. We contributed to

the open source Marian’s codebase with the implementation of concatenation as an option to combine

lemmas and factor embeddings. We analyzed the performance of factored neural machine translation

models by conducting three experiments, that use factors for three different use cases, evaluating them

for the English-German, English-Latvian, English-Norwegian, and English-Romanian language pairs.

In the first experiment, we used factors to inject custom terminology into NMT at run time. We

saw that our implementation to combine lemmas and factor embeddings by concatenating them outper-

formed in terms of correctly translated terminology the method originally implemented in Marian, which

is combining them with sum. We extended the work done by Dinu et al. [21], by comparing these two

embedding options and also by extending their research to three other language pairs, showing positive

results for all of them. We also showed the importance of tying the lemmas embeddings for improving

the performance of the usage of factors.

The second experiment used factors to replace the subword joining markers. We compared two

methods of representing this subword splits proposed by Sennrich and Haddow [18], and Wilken and

Matusov [30], and concluded that the latter is the one that leads to better results. Furthermore, we

showed that even though improving the translation quality in the English-German language pair, this us-

age of factors does not have a positive impact on the remaining tested language pairs. This experiment

was also used to do a detailed analysis regarding the different factor prediction methods available in

Marian, evaluating them in terms of quality of the translations generated, and speed of both training and

inference.

Finally, in the third experiment, we used factors to encode morphological information, aiming to

47

improve the translation quality of morphologically rich languages. Considerable improvements were

obtained for both translations directions of the English-Romanian language pair. For the remaining

language pairs, the results were underwhelming, in particular when translating from English to the re-

maining languages.

5.2 Future Work

From the three use cases for which factors were used in this thesis, using them to encode morphological

information and therefore attempt to improve the translation quality of morphologically rich languages

is where there is more space for future development. Extending our research by using morphological

taggers, lemmatizers, and morphological inflectors with a higher rate of accuracy could lead to better re-

sults. Instead of using models thought in order to be used for several languages, using implementations

more specific for a certain language could lead to improvements. Furthermore, instead of gathering all

the morphological information into one single factor, one could try to split the different morphological

groups among different factors.

Finally, the implementation of concatenation as a method to combine the lemma and factor embed-

dings in Marian was only done for the source side. The factor decoding mechanisms already available in

the codebase could be adapted to incorporate this lemma and factor combination method that showed

promising results when compared to the original available embedding method.

48

Bibliography

[1] P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer,

and P. S. Roossin. A statistical approach to machine translation. Computational Linguistics, 16(2):

79–85, 1990. URL https://www.aclweb.org/anthology/J90-2002.

[2] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer. The mathematics of statistical

machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311, 1993. URL

https://www.aclweb.org/anthology/J93-2003.

[3] D. Marcu and D. Wong. A phrase-based, joint probability model for statistical machine translation.

In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing

(EMNLP 2002), pages 133–139. Association for Computational Linguistics, July 2002. doi: 10.

3115/1118693.1118711. URL https://www.aclweb.org/anthology/W02-1018.

[4] P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In Proceedings of the

2003 Human Language Technology Conference of the North American Chapter of the Association

for Computational Linguistics, pages 127–133, 2003. URL https://www.aclweb.org/anthology/

N03-1017.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. URL http://www.

deeplearningbook.org.

[6] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Proceedings of

the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1700–1709,

Seattle, Washington, USA, Oct. 2013. Association for Computational Linguistics. URL https://

www.aclweb.org/anthology/D13-1176.

[7] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using RNN encoder–decoder for statistical machine translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014. Association for Computational Linguistics.

doi: 10.3115/v1/D14-1179. URL https://www.aclweb.org/anthology/D14-1179.

[8] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179 – 211, 1990. ISSN 0364-

0213. doi: https://doi.org/10.1016/0364-0213(90)90002-E. URL http://www.sciencedirect.com/

science/article/pii/036402139090002E.

49

https://www.aclweb.org/anthology/J90-2002
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/W02-1018
https://www.aclweb.org/anthology/N03-1017
https://www.aclweb.org/anthology/N03-1017
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D14-1179
http://www.sciencedirect.com/science/article/pii/036402139090002E
http://www.sciencedirect.com/science/article/pii/036402139090002E

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9:1735–80, 12

1997. doi: 10.1162/neco.1997.9.8.1735.

[10] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. CoRR,

abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

[11] J. Gehring, M. Auli, D. Grangier, and Y. Dauphin. A convolutional encoder model for neural ma-

chine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 123–135, Vancouver, Canada, July 2017. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/P17-1012. URL https://www.aclweb.org/

anthology/P17-1012.

[12] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate. In Proceedings of the 2015 International Conference on Learning Representations, 2015.

URL https://arxiv.org/pdf/1409.0473.pdf.

[13] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine

translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 1412–1421, Lisbon, Portugal, Sept. 2015. Association for Computational Lin-

guistics. doi: 10.18653/v1/D15-1166. URL https://www.aclweb.org/anthology/D15-1166.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-

sukhin. Attention is all you need. In Advances in Neural Information Processing Systems, vol-

ume 30, pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[15] J. A. Bilmes and K. Kirchhoff. Factored language models and generalized parallel backoff. In

Companion Volume of the Proceedings of HLT-NAACL 2003 - Short Papers, pages 4–6, 2003.

URL https://www.aclweb.org/anthology/N03-2002.

[16] M. Yang and K. Kirchhoff. Phrase-based backoff models for machine translation of highly inflected

languages. In 11th Conference of the European Chapter of the Association for Computational

Linguistics, Trento, Italy, Apr. 2006. Association for Computational Linguistics. URL https://www.

aclweb.org/anthology/E06-1006.

[17] P. Koehn and H. Hoang. Factored translation models. In Proceedings of the 2007 Joint Confer-

ence on Empirical Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL), pages 868–876, Prague, Czech Republic, June 2007. Association for

Computational Linguistics. URL https://www.aclweb.org/anthology/D07-1091.

[18] R. Sennrich and B. Haddow. Linguistic input features improve neural machine translation. In Pro-

ceedings of the First Conference on Machine Translation: Volume 1, Research Papers, pages

83–91, Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/

W16-2209. URL https://www.aclweb.org/anthology/W16-2209.

50

http://arxiv.org/abs/1409.3215
https://www.aclweb.org/anthology/P17-1012
https://www.aclweb.org/anthology/P17-1012
https://arxiv.org/pdf/1409.0473.pdf
https://www.aclweb.org/anthology/D15-1166
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/N03-2002
https://www.aclweb.org/anthology/E06-1006
https://www.aclweb.org/anthology/E06-1006
https://www.aclweb.org/anthology/D07-1091
https://www.aclweb.org/anthology/W16-2209

[19] M. Garcı́a-Martı́nez, L. Barrault, and F. Bougares. Factored neural machine translation architec-

tures. In Proceedings of the International Workshop on Spoken Language Translation. IWSLT’16,

Seattle, USA, 2016. URL https://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_2.

pdf.

[20] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword units.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1715–1725, Berlin, Germany, Aug. 2016. Association for Computational

Linguistics. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.org/anthology/P16-1162.

[21] G. Dinu, P. Mathur, M. Federico, and Y. Al-Onaizan. Training neural machine translation to apply

terminology constraints. In Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics, pages 3063–3068, Florence, Italy, July 2019. Association for Computational

Linguistics. doi: 10.18653/v1/P19-1294. URL https://www.aclweb.org/anthology/P19-1294.

[22] M. Exel, B. Buschbeck, L. Brandt, and S. Doneva. Terminology-constrained neural machine trans-

lation at SAP. In Proceedings of the 22nd Annual Conference of the European Association for

Machine Translation, pages 271–280, Lisboa, Portugal, Nov. 2020. European Association for Ma-

chine Translation. URL https://www.aclweb.org/anthology/2020.eamt-1.29.

[23] M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak, H. Hoang, K. Heafield, T. Neckermann, F. Seide,

U. Germann, A. Fikri Aji, N. Bogoychev, A. F. T. Martins, and A. Birch. Marian: Fast neu-

ral machine translation in C++. In Proceedings of ACL 2018, System Demonstrations, pages

116–121, Melbourne, Australia, July 2018. Association for Computational Linguistics. URL http:

//www.aclweb.org/anthology/P18-4020.

[24] M. Junczys-Dowmunt, K. Heafield, H. Hoang, R. Grundkiewicz, and A. Aue. Marian: Cost-effective

high-quality neural machine translation in C++. In Proceedings of the 2nd Workshop on Neural

Machine Translation and Generation, pages 129–135, Melbourne, Australia, July 2018. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/W18-2716. URL https://www.aclweb.org/

anthology/W18-2716.

[25] R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler, M. Junczys-Dowmunt, S. Läubli,

A. V. Miceli Barone, J. Mokry, and M. Nadejde. Nematus: a toolkit for neural machine translation. In

Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the

Association for Computational Linguistics, pages 65–68, Valencia, Spain, April 2017. Association

for Computational Linguistics. URL http://aclweb.org/anthology/E17-3017.

[26] F. Hieber, T. Domhan, M. Denkowski, D. Vilar, A. Sokolov, A. Clifton, and M. Post. Sockeye: A toolkit

for neural machine translation, 2017. URL http://arxiv.org/abs/1712.05690.

[27] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. Rush. OpenNMT: Open-source toolkit for neural

machine translation. In Proceedings of ACL 2017, System Demonstrations, pages 67–72, Van-

51

https://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_2.pdf
https://workshop2016.iwslt.org/downloads/IWSLT_2016_paper_2.pdf
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P19-1294
https://www.aclweb.org/anthology/2020.eamt-1.29
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://www.aclweb.org/anthology/W18-2716
https://www.aclweb.org/anthology/W18-2716
http://aclweb.org/anthology/E17-3017
http://arxiv.org/abs/1712.05690

couver, Canada, July 2017. Association for Computational Linguistics. URL https://www.aclweb.

org/anthology/P17-4012.

[28] C. G. Drury and J. Ma. Do language barriers result in aviation maintenance errors? In Proceedings

of the Human Factors and Ergonomics Society Annual Meeting, volume 47, pages 46–50, Denver,

Colorado, October 2003. doi: doi.org/10.1177/154193120304700110.

[29] C. G. Drury, J. Ma, and C. V. Marin. Language error in aviation maintenance. Technical report,

University of Buffalo, August 2005.

[30] P. Wilken and E. Matusov. Novel applications of factored neural machine translation, 2019. URL

http://arxiv.org/abs/1910.03912.

[31] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the

IEEE, 78(10):1550–1560, 1990. doi: 10.1109/5.58337.

[32] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is

difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. doi: 10.1109/72.279181.

[33] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on Signal

Processing, 45(11):2673–2681, 1997. doi: 10.1109/78.650093.

[34] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence to se-

quence learning. In Proceedings of the 34th International Conference on Machine Learning, vol-

ume 70 of Proceedings of Machine Learning Research, pages 1243–1252, International Conven-

tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL http://proceedings.mlr.press/

v70/gehring17a/gehring17a.pdf.

[35] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Pro-

ceedings of Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr

2011. JMLR Workshop and Conference Proceedings. URL http://proceedings.mlr.press/v15/

glorot11a/glorot11a.pdf.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016. doi:

10.1109/CVPR.2016.90.

[37] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization, 2016. URL https://arxiv.org/pdf/

1607.06450.pdf.

[38] P. Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, Feb. 1994. ISSN

0898-9788.

[39] O. Press and L. Wolf. Using the output embedding to improve language models. In Proceedings

of the 15th Conference of the European Chapter of the Association for Computational Linguistics:

52

https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
http://arxiv.org/abs/1910.03912
http://proceedings.mlr.press/v70/gehring17a/gehring17a.pdf
http://proceedings.mlr.press/v70/gehring17a/gehring17a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.06450.pdf

Volume 2, Short Papers, pages 157–163, Valencia, Spain, Apr. 2017. Association for Computational

Linguistics. URL https://www.aclweb.org/anthology/E17-2025.

[40] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of ma-

chine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Compu-

tational Linguistics. doi: 10.3115/1073083.1073135. URL https://www.aclweb.org/anthology/

P02-1040.

[41] R. Rei, C. Stewart, A. C. Farinha, and A. Lavie. COMET: A neural framework for MT evaluation.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 2685–2702, Online, Nov. 2020. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/2020.emnlp-main.213.

[42] M. Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on

Machine Translation: Research Papers, pages 186–191, Belgium, Brussels, Oct. 2018. Association

for Computational Linguistics. URL https://www.aclweb.org/anthology/W18-6319.

[43] Y. J. Kim, M. Junczys-Dowmunt, H. Hassan, A. Fikri Aji, K. Heafield, R. Grundkiewicz, and N. Bo-

goychev. From research to production and back: Ludicrously fast neural machine translation. In

Proceedings of the 3rd Workshop on Neural Generation and Translation, pages 280–288, Hong

Kong, Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-5632. URL

https://www.aclweb.org/anthology/D19-5632.

[44] A. V. Miceli Barone, J. Helcl, R. Sennrich, B. Haddow, and A. Birch. Deep architectures for neural

machine translation. In Proceedings of the Second Conference on Machine Translation, pages

99–107, Copenhagen, Denmark, Sept. 2017. Association for Computational Linguistics. doi: 10.

18653/v1/W17-4710. URL https://www.aclweb.org/anthology/W17-4710.

[45] A. Alexandrescu and K. Kirchhoff. Factored neural language models. In Proceedings of the Human

Language Technology Conference of the NAACL, Companion Volume: Short Papers, pages 1–4,

New York City, USA, June 2006. Association for Computational Linguistics. URL https://www.

aclweb.org/anthology/N06-2001.

[46] Y. Wu, H. Yamamoto, X. Lu, S. Matsuda, C. Hori, and H. Kashioka. Factored recurrent neural

network language model in TED lecture transcription. In 2012 International Workshop on Spoken

Language Translation, IWSLT 2012, Hong Kong, December 6-7, 2012, pages 222–228. ISCA,

2012. URL http://www.isca-speech.org/archive/iwslt_12/sltc_222.html.

[47] O. Bojar. English-to-Czech factored machine translation. In Proceedings of the Second Workshop

on Statistical Machine Translation, pages 232–239, Prague, Czech Republic, June 2007. Associa-

tion for Computational Linguistics. URL https://www.aclweb.org/anthology/W07-0735.

[48] M. Post and D. Vilar. Fast lexically constrained decoding with dynamic beam allocation for neural

machine translation. In Proceedings of the 2018 Conference of the North American Chapter of

53

https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/2020.emnlp-main.213
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/D19-5632
https://www.aclweb.org/anthology/W17-4710
https://www.aclweb.org/anthology/N06-2001
https://www.aclweb.org/anthology/N06-2001
http://www.isca-speech.org/archive/iwslt_12/sltc_222.html
https://www.aclweb.org/anthology/W07-0735

the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 1314–1324, New Orleans, Louisiana, June 2018. Association for Computational

Linguistics. doi: 10.18653/v1/N18-1119. URL https://www.aclweb.org/anthology/N18-1119.

[49] O. Bojar, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, P. Koehn, and C. Monz.

Findings of the 2018 conference on machine translation (wmt18). In Proceedings of the Third

Conference on Machine Translation, Volume 2: Shared Task Papers, pages 272–307, Belgium,

Brussels, October 2018. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W18-6401.

[50] P. Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference Proceed-

ings: the tenth Machine Translation Summit, pages 79–86, Phuket, Thailand, 2005. AAMT. URL

http://mt-archive.info/MTS-2005-Koehn.pdf.

[51] O. Bojar, C. Buck, C. Callison-Burch, C. Federmann, B. Haddow, P. Koehn, C. Monz, M. Post,

R. Soricut, and L. Specia. Findings of the 2013 Workshop on Statistical Machine Translation.

In Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 1–44, Sofia,

Bulgaria, August 2013. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W13-2201.

[52] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, S. Huang, M. Huck, P. Koehn,

Q. Liu, V. Logacheva, C. Monz, M. Negri, M. Post, R. Rubino, L. Specia, and M. Turchi. Findings

of the 2017 conference on machine translation (wmt17). In Proceedings of the Second Confer-

ence on Machine Translation, Volume 2: Shared Task Papers, pages 169–214, Copenhagen, Den-

mark, September 2017. Association for Computational Linguistics. URL http://www.aclweb.org/

anthology/W17-4717.

[53] R. Steinberger, A. Eisele, S. Klocek, S. Pilos, and P. Schlüter. DGT-TM: A freely available trans-

lation memory in 22 languages. In Proceedings of the Eighth International Conference on Lan-

guage Resources and Evaluation (LREC’12), pages 454–459, Istanbul, Turkey, May 2012. Euro-

pean Language Resources Association (ELRA). URL http://www.lrec-conf.org/proceedings/

lrec2012/pdf/814_Paper.pdf.

[54] R. Steinberger, B. Pouliquen, A. Widiger, C. Ignat, T. Erjavec, D. Tufiş, and D. Varga. The JRC-

Acquis: A multilingual aligned parallel corpus with 20+ languages. In Proceedings of the Fifth

International Conference on Language Resources and Evaluation (LREC’06), Genoa, Italy, May

2006. European Language Resources Association (ELRA). URL http://www.lrec-conf.org/

proceedings/lrec2006/pdf/340_pdf.pdf.

[55] J. Tiedemann. Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth In-

ternational Conference on Language Resources and Evaluation (LREC’12), pages 2214–2218,

Istanbul, Turkey, May 2012. European Language Resources Association (ELRA). URL http:

//www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf.

54

https://www.aclweb.org/anthology/N18-1119
http://www.aclweb.org/anthology/W18-6401
http://www.aclweb.org/anthology/W18-6401
http://mt-archive.info/MTS-2005-Koehn.pdf
http://www.aclweb.org/anthology/W13-2201
http://www.aclweb.org/anthology/W13-2201
http://www.aclweb.org/anthology/W17-4717
http://www.aclweb.org/anthology/W17-4717
http://www.lrec-conf.org/proceedings/lrec2012/pdf/814_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/814_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/340_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/340_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf

[56] R. Rozis and R. Skadiņš. Tilde MODEL - multilingual open data for EU languages. In Proceedings

of the 21st Nordic Conference on Computational Linguistics, pages 263–265, Gothenburg, Sweden,

May 2017. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/

W17-0235.

[57] O. Bojar, R. Chatterjee, C. Federmann, Y. Graham, B. Haddow, M. Huck, A. Jimeno Yepes,

P. Koehn, V. Logacheva, C. Monz, M. Negri, A. Neveol, M. Neves, M. Popel, M. Post, R. Ru-

bino, C. Scarton, L. Specia, M. Turchi, K. Verspoor, and M. Zampieri. Findings of the 2016 con-

ference on machine translation. In Proceedings of the First Conference on Machine Translation,

pages 131–198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/W/W16/W16-2301.

[58] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen,

C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open source toolkit

for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association

for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,

pages 177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/P07-2045.

[59] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):

1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

[60] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. URL https://arxiv.

org/pdf/1412.6980.pdf.

[61] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architec-

ture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2818–2826, 2016. doi: 10.1109/CVPR.2016.308.

[62] C. Malaviya, S. Wu, and R. Cotterell. A simple joint model for improved contextual neural lemmati-

zation. In Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 1517–1528, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

doi: 10.18653/v1/N19-1155. URL https://www.aclweb.org/anthology/N19-1155.

[63] J. Nivre, Ž. Agić, L. Ahrenberg, M. J. Aranzabe, M. Asahara, A. Atutxa, M. Ballesteros, J. Bauer,

K. Bengoetxea, R. A. Bhat, E. Bick, C. Bosco, G. Bouma, S. Bowman, M. Candito, G. Ce-

biroğlu Eryiğit, G. G. A. Celano, F. Chalub, J. Choi, Ç. Çöltekin, M. Connor, E. Davidson, M.-C.

de Marneffe, V. de Paiva, A. Diaz de Ilarraza, K. Dobrovoljc, T. Dozat, K. Droganova, P. Dwivedi,

M. Eli, T. Erjavec, R. Farkas, J. Foster, C. Freitas, K. Gajdošová, D. Galbraith, M. Garcia, F. Ginter,

I. Goenaga, K. Gojenola, M. Gökırmak, Y. Goldberg, X. Gómez Guinovart, B. Gonzáles Saave-

dra, M. Grioni, N. Grūzı̄tis, B. Guillaume, N. Habash, J. Hajič, L. Hà Mỹ, D. Haug, B. Hladká,

55

https://www.aclweb.org/anthology/W17-0235
https://www.aclweb.org/anthology/W17-0235
http://www.aclweb.org/anthology/W/W16/W16-2301
https://www.aclweb.org/anthology/P07-2045
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.aclweb.org/anthology/N19-1155

P. Hohle, R. Ion, E. Irimia, A. Johannsen, F. Jørgensen, H. Kaşıkara, H. Kanayama, J. Kanerva,

N. Kotsyba, S. Krek, V. Laippala, P. Lê H`ông, A. Lenci, N. Ljubešić, O. Lyashevskaya, T. Lynn,

A. Makazhanov, C. Manning, C. Mărănduc, D. Mareček, H. Martı́nez Alonso, A. Martins, J. Mašek,

Y. Matsumoto, R. McDonald, A. Missilä, V. Mititelu, Y. Miyao, S. Montemagni, A. More, S. Mori,

B. Moskalevskyi, K. Muischnek, N. Mustafina, K. Müürisep, L. Nguy˜ên Thi., H. Nguy˜ên Thi. Minh,

V. Nikolaev, H. Nurmi, S. Ojala, P. Osenova, L. Øvrelid, E. Pascual, M. Passarotti, C.-A. Perez,

G. Perrier, S. Petrov, J. Piitulainen, B. Plank, M. Popel, L. Pretkalniņa, P. Prokopidis, T. Puolakainen,

S. Pyysalo, A. Rademaker, L. Ramasamy, L. Real, L. Rituma, R. Rosa, S. Saleh, M. Sanguinetti,

B. Saulı̄te, S. Schuster, D. Seddah, W. Seeker, M. Seraji, L. Shakurova, M. Shen, D. Sichinava,

N. Silveira, M. Simi, R. Simionescu, K. Simkó, M. Šimková, K. Simov, A. Smith, A. Suhr, U. Su-

lubacak, Z. Szántó, D. Taji, T. Tanaka, R. Tsarfaty, F. Tyers, S. Uematsu, L. Uria, G. van Noord,

V. Varga, V. Vincze, J. N. Washington, Z. Žabokrtský, A. Zeldes, D. Zeman, and H. Zhu. Univer-

sal dependencies 2.0, 2017. URL http://hdl.handle.net/11234/1-1983. LINDAT/CLARIAH-CZ

digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and

Physics, Charles University.

[64] J. Sylak-Glassman. The composition and use of the universal morphological feature schema

(unimorph schema). Johns Hopkins University, 2016. URL https://unimorph.github.io/doc/

unimorph-schema.pdf.

[65] B. Peters and A. F. T. Martins. IT–IST at the SIGMORPHON 2019 shared task: Sparse two-headed

models for inflection. In Proceedings of the 16th Workshop on Computational Research in Pho-

netics, Phonology, and Morphology, pages 50–56, Florence, Italy, Aug. 2019. Association for Com-

putational Linguistics. doi: 10.18653/v1/W19-4207. URL https://www.aclweb.org/anthology/

W19-4207.

56

http://hdl.handle.net/11234/1-1983
https://unimorph.github.io/doc/unimorph-schema.pdf
https://unimorph.github.io/doc/unimorph-schema.pdf
https://www.aclweb.org/anthology/W19-4207
https://www.aclweb.org/anthology/W19-4207

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Neural Machine Translation
	2.1.1 Recurrent Neural Network
	2.1.2 Encoder-Decoder Approach
	2.1.3 Transformer
	2.1.4 Vocabulary
	2.1.5 Word Embeddings

	2.2 Evaluation Metrics
	2.2.1 BLEU
	2.2.2 COMET

	2.3 Marian
	2.4 Summary

	3 Factored Neural Machine Translation
	3.1 Factors
	3.1.1 Source Factors
	3.1.2 Target Factors

	3.2 Factors in Marian
	3.2.1 Source Factors
	3.2.2 Target Factors

	3.3 Factors Applications
	3.3.1 Factors To Apply Terminology Constraints
	3.3.2 Factors To Replace Subword Joining Markers
	3.3.3 Factors to Encode Morphological Information

	3.4 Summary

	4 Experimental Analysis
	4.1 Datasets
	4.2 Baselines
	4.2.1 Preprocessing Steps
	4.2.2 Hyperparameters

	4.3 Factors To Apply Terminology Constraints
	4.3.1 Experimental Setup
	4.3.2 Results
	4.3.3 Results Analysis

	4.4 Factors To Replace Subword Joining Markers
	4.4.1 Experimental Setup
	4.4.2 Results
	4.4.3 Results Analysis

	4.5 Factors to Encode Morphological Information
	4.5.1 Experimental Setup
	4.5.2 Results
	4.5.3 Results Analysis

	4.6 Summary

	5 Conclusions
	5.1 Achievements
	5.2 Future Work

	Bibliography

