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Abstract — Several methods for quanti-
tative severity assessment of coronary artery
stenosis exist as well as different measures,
leading to distinct management of treatment
procedures. It is of upmost importance to
properly identify and classify all possible
stenosis on an individual. A deep-learning
three-step framework implementation was
designed to automate the detection and
assessment of stenosis severity. This study
showcases a new clinically obtained dataset
of properly de-identified X-ray invasive
coronary angiography (ICA) sequences of
438 patients from Hospital de Santa Maria.
Transfer learning dynamics of deep neu-
ral networks are exploited for supervised
learning at each step, employing CNN’s
for angle view selection of the Left/Right
Coronary Artery (LCA/RCA) achieving
0.97 Accuracy, single-shot detectors for
stenosis detection achieving 0.83/0.81 mAR
for LCA/RCA respectively and a new region
of interest boost approach with CNN’s for
stenosis severity regression of the RCA was
explored. Our method showcases the impor-
tance of transfer learning in stenosis severity
assessment with limited data, achieving
considerable performances.
Keywords: Coronary Artery Disease (CAD),
Convolutional Neural Network (CNN), Inva-
sive Coronary Angiography (ICA), Stenosis
Detection, Image Classification

1. Introduction

Coronary artery disease (CAD), characterized by
plaque buildup inside the coronary arteries, is the
leading non-communicable disease in global mor-
tality. This buildup leads to stenosis, partially or
totally blocking blood flow in the coronary arteries
leading to improper delivery of oxygen-rich blood to
the heart, weakening the heart muscle, and possibly

leading to heart failure. Current standard diagnosis
methods rely on an expert physician to assess the
issue, off or on-site, using non-invasive or invasive
procedures. [1, 2] Although several resources have
been invested in prevention, proper available CAD
assessment, and treatment procedures still aren’t
reachable to the most general public.

A contribution is made to the research field by
providing a new curated medical dataset of X-ray
invasive coronary angiography labeled with optimal
interval frames and annotated with stenosis bound-
ing boxes and its respective quantitative iFR sever-
ity assessment measure, providing a path for novel
implementations of automatic stenosis assessment.
Additionally, a three-step framework based on deep
neural networks is presented for coronary angle view
selection, stenosis detection, and stenosis quantita-
tive severity assessment.

2. State-of-the-Art

Antczak and Liberadzki [3] generated and trained
upon thousands of artificial 32 by 32 pixel patches
mimicking the presence of stenosis, followed by con-
volutions through a sliding window on the original
frame lead to an improved detection performance,
but real test images were very few and were also
scaled down.

To deal with the lack of public ICA datasets,
Antczak and Liberadzki [3] generated and trained
a custom CNN on thousands of artificial 32 by 32
pixel patches mimicking the presence of stenosis.
Using a sliding window with the patches dimensions
on the original frame with the trained CNN, de-
tection performance increased, but real test images
were very few and were also scaled down.

To automate the process from start to finish
in stenosis assessment Au et al. [4] showcased
a pipeline composed by three uniquely designed
CNN’s with the intention of detecting, segmenting
and classifying stenosis severity through QCA anno-
tations in ICA reference images of the left coronary
artery (LCA). Their study included 1024 study par-
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Frames
Sequence Detail Patients Sequences No Contrast Introducing Optimal Vanishing Stenosis Annotations iFR below iFR above
Total Sequences 438 1593 0 0 0 0 4234 554 1005

Discard 72 115 0 0 0 0 338 40 73
With Implants 82 184 0 0 0 0 472 81 96

Optimal 392 1294 11582 1294 20819 39266 3424 433 836
Optimal RCA 91 235 2249 235 3983 6323 309 25 210
Optimal LCA 126 155 1323 155 2474 5077 225 70 85

Optimal LCx/LAD 111 118 1155 118 1912 3869 159 53 65
Optimal LAD/LCx 90 92 865 92 1590 2616 105 43 49

No Lesion RCA 48 54 465 54 748 1450 0 0 0
No Lesion LCA 17 18 153 16 190 538 0 0 0

Table 1: Processed dataset, with all optimal sequences, frame intervals, stenosis annotations, and iFR
values count.

ticipants using only RCA viewing angles and refer-
ence frames. A detector variant of the single-shot
detector YOLO [5] was developed with the objec-
tive of determining fixed dimensional regions of 192
by 192 pixels on which a stenosis was present. With
the proposed region another custom segmentation
deep learning architecture was built, based on U-
Net [6], to automatically segment every pixel where
the stenosis was present. Afterwards another but
yet small custom CNN with only five convolutional
layers was built to classify the segmented frame.
Cong et al. [7] also developed a three-stage end-
to-end workflow for stenosis characterization. The
process of viewing angle selection is initialized with
transfer learning and fine-tuning of the InceptionV3
[8]. Features extracted from the last convolution
layer of the InceptionV3, are used to train a bi-
directional LSTM, taking advantage of the tempo-
ral dimension to extract the exact frame of the se-
quence corresponding to the reference frame. With
the extracted frame another InceptionV3 is fine-
tuned in a classification manner for the stenosis
assessment under QCA labels. The detection of
the stenosis is then performed as a weakly super-
vised method by employing class activation maps
using Grad-CAM [9] to identify the most impor-
tant regions based on the weights contribution for
the respective frame classification result. These de-
tections are then evaluated against expert physi-
cian manual annotations of 35 by 35 pixel bound-
ing boxes. Focusing only in the detection task of the
stenosis Wu et al. [10] developed a novel single-shot
architecture using the VGG16, a feature extractor
from which feature maps from low and high level
convolutional layers are extracted. Those are then
passed into a classification and regression sub net-
work, to estimate bounding box coordinates and the
respective confidence scores.

3. Medical Data
3.1. Overview

An expert cardiologist firstly curated the available
data for this work from Unidade de Cardiologia de
Intervenção Joaquim Oliveira, Serviço de Cardiolo-
gia from Hospital de Santa Maria, Centro Hospita-

lar Lisboa Norte. It is composed of 9378 clinically
obtained invasive coronary angiography single and
multiple ICA image sequences of 438 patients, rang-
ing from 2015 until 2019. The data was properly de-
identified to preserve participant privacy, and each
subject was over the age of eighteen.

(a) Artery (b) Wire (c) Stenosis

Figure 1: Annotations in RCA viewing angle by
frame procedure indicating the full coronary artery,
wire placement from which the iFR was obtained
and the most visually contributing stenosis.

For each subject, iFR Value and Coronary Artery
Stenosis Location was included at the patient level.
The Coronary Artery Stenosis Location information
indicates which artery had the most contributing
stenosis for which the iFR and FFR values were
obtained. For each patient with a valid iFR as-
sessment value and stenosis location, annotations
for the optimal sequences, i.e., stenosis is best seen
under the radio-opaque contrast, were included in
a non-destructive way using Osirix [11], an image
processing software (see Figure 1).

For the optimal sequences, annotations were done
such that for each coronary artery containing a
stenosis: (1) a unique frame was annotated show-
casing the artery; (2) a unique frame was annotated
showcasing how the wire of the iFR procedure was
placed; (3) a unique frame was annotated show-
casing all the stenosis of the corresponding artery,
corresponding to the best contrast viewing frame
and it is considered the reference frame of the se-
quence. A total of 1593 sequences accounting for
438 patients were annotated using this procedure.
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3.2. Data Treatment & Annotation Procedure

The provided ICA image sequences were in the well
known and documented DICOM format protocol.
Only sequences with frame dimensions of 512 by
512 pixel were allowed with pixel values ranging in
the [0, 255] monochromatic scale (1 channel). To
alleviate the labour of having to annotate all the
bounding boxes in every single frame manually, the
object tracking algorithm Discriminative Correla-
tion Filter Tracker with Channel and Spatial Re-
liability [12] was implemented using the OpenCV
image processing library. The propagation is made
through a three-step process: (1) the initial bound-
ing box is obtained by transforming the initial an-
notation of the reference frame to a bounding box;
(2) using the tracking algorithm the initial bound-
ing box is propagated to the forward part of the
sequence; (3) The same reference bounding box is
propagated to the backwards part of the sequence.
Misplaced bonding boxes due to rapid shifts from
frame to frame and/or occlusions were a posteri-
ori manually addressed to have a perfect fit to the
stenosis.

For each sequence four different frame intervals
were also labelled as: (a) No radio-opaque con-
trast; (b) The radio-opaque contrast is being in-
troduced; (c) The radio-opaque contrast has been
fully introduced (Optimal frame); (d) The radio-
opaque contrast is vanishing. Sequences were also
grouped by their respective angles (obtained by the
DICOM metadata) and then manually filtered to
the most common viewing angle names. Sequences
with metal implants, pacemakers and with the iFR
medical suited wires were discarded. The 1593 an-
notated sequences from 498 patients were processed
with the described steps, resulting in 1294 optimal
sequences with 20819 optimal frames, where the
bounding box was placed (see Table 1).
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Figure 2: ResNet-50 simplified architecture, bot-
tom of each block denotes the repeated set of layers
(Kernel size, operation, number of channels) in each
convolution block (C), after each block (C1 to C5)
spatial dimension is reduced. Ending in a fully con-
nected layer with K units. Shortcut connections
occur every two layers but are omitted for readabil-
ity.

4. Implementation
4.1. Angle View Selection

The initial phases of detecting and assessing a
stenosis require that a coronary viewing angle must

first be filtered and selected. Since every sequence
was previously labeled with the respective viewing
angle, this task is address as a classification prob-
lem, as one frame can only belong to a specific
viewing angle. The ResNet-50 was chosen as the
architecture for this task. The ResNet is charac-
terized by shortcut connections that skip one or
more layers, a technique that improves the flow
of relevant feature information into deeper layers
[13]. The shortcut connections allow the summa-
tion of the previous layer outputs to the outputs
of the stacked layers, contributing to a better fea-
ture propagation across the deep network. For each
layer of the ResNet network, except the fully con-
nected layer, the ReLU activation function [14] is
used with batch normalization layers [15]. In our
application, the ResNet-50 was initially pre-trained
on ImageNet with 224 by 224 images. A fully con-
nected layer replaced the last layer with two output
units, ending with a softmax activation function.
It was then trained under categorical cross-entropy
with loss defined as

Langlecls = CCE = −
K∑
i=1

yi log(ŷi). (1)

The ResNet-50 was trained and evaluated using
5-fold stratified cross-validation at sequence-level,
for 30 epochs and with a batch size of 32. To
improve convergence speed, stochastic gradient de-
scent with the Adam [16] optimizer was performed.
The initial learning rate was set at η = 10−5, be-
ing reduced by a factor of 0.2 on loss plateau. To
reduce early stages of overfitting and large gradient
updates to the network, due to the weight initial-
ization of the last fully connected layer, a two-stage
training workflow was assembled where: (1) for the
first 15 epochs, the gradient updates on all layers
of the network are frozen except for the C5 block
and fully connected layer, so the gradient updates
do not become too large preventing overfitting in
early steps; (2) for the next 15 epochs, the gradient
updates of the entire model are restored allowing
the model to converge in its entirety.

4.2. Stenosis Detection
The objective of this step is to detect and esti-
mate the position of every visible stenosis in a given
frame. Given the annotated bounding boxes for the
stenosis in the optimal interval, it’s possible to ap-
proximate this to an object detection/recognition
problem where the stenosis is the object of interest
to be detected.

We decided to adopt a state-of-the-art architec-
ture for object detection, the RetinaNet [17], which
was first pre-trained on the COCO dataset. The
RetinaNet’s architecture is based on the unified
single-shot detector architecture, composed of a
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RCA 1 RCA 2 LCA 1 LCA 2

Figure 3: Stenosis detection examples in validation set for RCA and LCA viewing angles with cyan
bounding boxes denoting ground truth annotations and oraange representing the estimated ones.
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Figure 4: RetinaNet architecture with (a) ResNet-
50 and (b) Feature Pyramid Network as feature ex-
tractor to (c) classify the lesion existence probabil-
ity and (d) regress the bounding box coordinates.

backbone and two additional sub-networks (see Fig-
ure 4). The backbone is responsible for computing
and extracting relevant features of the image input.
The two sub-networks are responsible for correctly
classifying a bounding box and regressing the esti-
mated coordinates.

In the backbone, the ResNet-50 is first applied
for deep image feature extraction. On top of the
ResNet-50, Feature Pyramid Networks (FPN) [18]
is also adopted as a top-down pathway to com-
plete the RetinaNet architecture’s backbone. The
bottom-up pathway is the feed-forward computa-
tion of the ResNet-50, extracting feature maps at
distinct steps {C1, C2, C3, C4, C5} of the network.
The top-down pathway then produces higher reso-
lution features by up-sampling spatially crude but
semantically stronger feature maps, which are then
enhanced with features from the bottom-up path-
way by means of lateral connections. Each lateral
connection merges feature maps with the same spa-
tial size from the bottom-up pathway. From the
crude-resolution feature maps, they are up-sampled
by a factor of two. This up-sampled feature map
is merged with the corresponding bottom-up map,
but since the up-sampled map differs in the number
of channels, a one by one convolution is performed
to match the correct channel depth.

The process is started with the one by one convo-

(a) Feature Pyramid Network
(Top-Down Path way)

(b) Anchor boxes in Feature Map (c) Anchor aspect ratios and scales

1:1

2:1

1:2

4:1
21

Ratios Scales

20
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Figure 5: The process of generating anchor boxes
from (a) Feature Pyramid Network. For each pixel
in the (b) feature map with dimensions H ×W (c)
distinct aspect ratios and scales are created and as-
signed to their respective targets

lution on the C5 block, producing the crude feature
maps with C = 256 channels. A 3 by 3 convolu-
tion is applied to reduce the up-sampling process’s
effects for each merged feature map. The final set
of feature maps is called {P3, P4, P5, P6, P7}, and is
computed from the last feature maps correspond-
ing to the ResNet-50 blocks {C3, C4, C5} using the
lateral connections. P6 is obtained by applying a
3 by 3 convolution with stride 2 on the resulting
feature maps of C5 block, and P7 is obtained by
applying ReLU followed by 3 by 3 convolution with
stride 2 on P6. These additional feature maps im-
prove larger stenosis detection. P1 and P2 are not
included in the feature set due to the large spatial
dimension, which would affect memory and increase
computation requirements.

For bounding box classification and regression,
translation-invariant anchor boxes (pre-defined
bounding boxes) are generated in each pixel of the
feature map for every pyramid level, P3 through P7,
having areas of 322 to 5122 respectively. To improve
bounding box coverage, several aspect ratios {1:1,
1:2, 2:1, 4:1} and scales {20, 21/2, 21} are created for
each anchor box (see Figure 5), resulting in A = 12
anchors per feature map pixel in each pyramid level.

Each anchor is assigned 4 length vectors of box

4



regression values and a one-hot vector with length
K = 1 of classification targets, with only one tar-
get to detect, i.e., the stenosis. The assignment
of ground-truth bounding boxes to each generated
anchor is made by setting a matching Intersection-
over-Union (IoU) thresholdmIoU

th = 0.2 between the
anchor and the ground truth. If the IoU is below the
threshold, it is considered background. Otherwise,
it matches the stenosis target. This assignment will
then be compared with the respective classification
results and further regressed.

To identify the presence of stenosis and regress
the bounding box coordinates, two sub-networks
are created and attached to each pyramid level
(P3 through P7), sharing weight parameters across
all levels. For the classification sub-network, the
resulting pyramid feature map with dimensions
W ×H and depth C is convolved with 3 by 3 ker-
nels four times each, followed by ReLU activations.
Each pixel of the feature map is assigned A = 12
anchors and K = 1 targets. The last layer ends
in W × H × K × A units with sigmoid activation
function for classification. For consistency across
all pyramid levels where feature map dimensions
and channel depth differ, 256 channels are defined
as the depth input for the following convolutions,
performed by reshaping the feature maps to the de-
sired depth. For each 512 by 512 pixel, ≈45 thou-
sand anchor boxes are generated. To deal with the
amount of generated bounding boxes and occurring
class imbalance between background and stenosis
assignment, the α-balanced Focal Loss function [17]
is used. It is normalized by the number of previ-
ously assigned anchors to ground truth stenosis Ng.

Ldetcls = − (yi log(pi)
γα+ (1− yi) log(1− pi)pγi (1− α)) (2)

with

pt =

{
p , if y = 1

1− p , otherwise,
(3)

where α = 0.25 and γ = 2 were defined by ex-
perimentation for this stenosis detection task. For
the bounding box coordinates regression, a second
architecture is attached to each pyramid level to
estimate the offset between the predicted and the
ground-truth coordinates. The architecture is the
same as the classification sub-network except for the
last layer, which ends in W ×H × 4×A units with
linear activations. The regression sub-networks ob-
jective is to estimate the relative offset between the
predicted anchor Â and the matched ground-truth
bounding box G. First, a parameterized regression
target T is calculated [19] for each matched pair
(Â, G) as

tx =
(
Gx − Âx

)
/Âw (4)

ty =
(
Gy − Ây

)
/Ây (5)

tw = log
(
Gw/Âw

)
(6)

th = log
(
Gh/Âh

)
(7)

(tx, ty) denotes a center scaling invariant transla-
tion, and (tw, th) represent logarithmic space trans-
lations of the estimated width and height anchor Â.
The network is then trained to estimate these pa-
rameterized coordinates offset T under the smooth
L1 loss function [20]

smoothL1
=

{
0.5x2 , if |x| < 1
|x| − 0.5 , otherwise,

(8)

which combines L1 loss, having a constant gradient
when x is large, with L2 loss, adding linear-gradient
updates. This makes the model more robust to out-
lier detections giving a total regression loss

Lregdet =
∑

j∈{x,y,w,h}

smoothL1

(
Tj − T̂j

)
(9)

between the estimated T̂ and ground-truth param-
eterized offset coordinates T .

Confidence

0.60

0.88

0.56
0.71

(a) Before NMS

Confidence

0.88

0.71

(b) After NMS

Figure 6: With a set of (a) candidate bounding
boxes with difference confidence scores, the non-
maximum suppression algorithm is applied result-
ing in the (b) final set of bounding boxes.

To deal with the amount of generated candi-
date bounding boxes in at inference, where over-
lapping occurrences exist, the non-maximum sup-
pression algorithm is applied with a score thresh-
old NMSclsth = 0 and an IoU threshold defined as
NMSIoUth = 0.5.

The model was trained and evaluated under 5-
fold stratified cross-validation at patient-level, for
3500 steps (≈ 20 epochs) with a batch size of 32,
under stochastic gradient descent with an initial
learning rate of η = 8.10−4 and a momentum term
γ = 0.9. Since high weight values increase chances
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of overfitting, L2 regularization was implemented,
applying a penalty for the networks weight values

L2
det = λ

W∑
i=1

w2
i . (10)

with a weight factor λ = 4.10−4. The total cost
function for the RetinaNet is then a combination of
the classification, regression, and regularization loss
resulting in

Ldet = Lclsdet + Lregdet + L2
det. (11)

The learning rate was then lowered with a factor of
0.2 on intervals of 1250 steps.

Data augmentation techniques were also imple-
mented during training, enhancing our dataset’s
quality and size by generating additional modified
versions in brightness and contrast from the origi-
nal frames to reduce overfitting and aid the model
at generalization.

4.3. Stenosis Severity Regression
The final desired outcome is to determine the quan-
titative value of iFR. This is not a straightforward
classification/regression problem. At a given frame,
more than one coronary artery can be seen. Ad-
ditionally, for any given coronary artery, multiple
stenosis occurrences may exist. Thus it is not pos-
sible to evaluate the bounding boxes independently
as iFR represents the stenosis’s contribution as a
whole.

(a) Original set of bound-
ing boxes

(b) Outer region regulation
with β = 0.5

Figure 7: Proposed approach of contrast regulation
from the (a) the original image with the bounding
boxes follows (b) the modification of outer regions
RGB values.

With inspiration from the Hard and Soft Atten-
tion principles [21–23], An intuitive approach de-
fined β-method was used. The main contributing
regions, i.e., the regions of interest, remain invari-
ant, and a variation is made to the outer region
pixels corresponding to regulation in contrast lev-
els. Outside the bounding boxes, each pixel is mul-
tiplied by β

g(x∗, y∗) = βf(x∗, y∗) (12)

with f(.) representing the three-channel RGB origi-
nal image, where x∗ and y∗ are the pixel coordinates
outside the bounding boxes. To quantify the iFR
assessment value, the InceptionV3 [8] was chosen.

Avg Pooling Max Pooling Concatenation Fully Connected

Inception Module A Inception Module B

Inception Module C

Grid Reduction A Grid Reduction B

x3 x4

x2

Convolution: 3x3 1x1 3x1 1x3 1x7 7x1 - Stride 2

Figure 8: InceptionV3 simplified architecture illus-
trating the main Inception A through C blocks and
Grid Reduction A,B blocks.

It is trained under the mean square error loss
function

LiFRreg = MSE =
1

n

n∑
i=1

(yi − ŷi)2 (13)

A 5-fold stratified cross-validation at the patient-
level was adopted, and all architectures were trained
for a total of 50 epochs with a batch size of 32 using
the Adam optimizer. The learning rate started at
η = 10−4 and was lowered by a factor of 0.6 on loss
plateau or if the loss did not decrease after 5 epochs.

5. Results
5.1. Angle selection performance
For the angle view selection task, the objective is
to correctly classify to which coronary angle the re-
spective reference frame belongs.

From the original 512 by 512-pixel dimensions, a
version of the input was generated by down-scaling
it to 224x224. The objective was to understand if
the model would still correctly classify the images
with lower resolution.

To better understand which regions the model is
focusing on the frame to decide the correct view-
ing angle, gradient-weighted class activation maps
(Grad-CAM) [9] were employed to visualize the de-
gree of contribution of specific image regions. It’s
possible to observe (see Figure 10) that the larger
512 by 512-pixel resolution model, by having more
parameters and larger feature map dimensions, in-
stead of learning to focus on the coronary artery
themselves to differentiate the designated viewing
angle, it focuses on more fine-grained patterns of
the human morphology, as a result from the varia-
tions of the C-arm X-ray unit. On the other hand,
the 224 by 224 resolution model, due to the scaled-
down resolution (resulting in lower-dimensional fea-
ture maps), captures the more broad patterns of the
LCA whilst still detecting human morphology pat-
terns in the RCA.
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(a) β = 0 (b) β = 0.1 (c) β = 0.2 (d) β = 0.3 (e) β = 0.4 (f) β = 0.5

(g) β = 0.6 (h) β = 0.7 (i) β = 0.8 (j) β = 0.9 (k) β = 1

Figure 9: Grad-CAM visualizations through all β variations where it’s possible to see the highlighted
stenosis and the model’s main focus of interest to estimate the iFR.

(a) 512 RCA (b) 224 RCA (c) 512 LCA (d) 224 LCA

Figure 10: Grad-CAM visualizations in the RCA
and LCA viewing angles showcasing the regions of
the frame that most contribute to their correct clas-
sification.
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Figure 11: 5-Fold Cross validation performance and
loss evolution over time showing their respective
mean and standard deviation for the viewing an-
gle classification task for both 512 by 512 and 224
by 224 pixel image input dimensions variations in
training for the models.

Image Dimensions Accuracy F1 Score Cross Entropy
512 0.96±0.01 0.96±0.01 0.14±0.27
224 0.97±0.0 0.97±0.01 0.08±0.31

Table 2: Coronary viewing angles classification
metrics performance.

From the observed performance shown in Table 2,
it is clear that even with a scaled-down version of
the image, the model can correctly relate the im-
ages to their respective viewing angles. This is im-
portant since decreased dimensions significantly im-
prove training and inference time. The scaled-down
image input model shows marginal increases in ac-
curacy and F1 score but a considerably lower value
in the cross-entropy loss, which corresponds to more
confidence in the viewing angles predictions.

5.2. Stenosis detection performance

For the stenosis detection task, the objective is to
generate bounding box proposals with a high IoU
and confidence score with reference to ground truth
annotations. Our detection model is configured to
output a maximum of 100 bounding boxes at infer-
ence. But for evaluation, mAP and mAR are set
only to evaluate a maximum of five detections un-
der and IoU of 0.2. This is a more strict measure of
performance. Following Cong et al. [7], sensitivity
is also defined as the recall rate of detection for a
maximum of one detection, our highest confidence
score detection, at an IoU threshold of 0.2 and confi-
dence score over 0.5. Additionally, the performance
of at least one candidate bounding box per sequence
with a confidence score over 0.5, corresponding to
a ground truth, is also shown.

Our baseline (B) is defined as having all
frames from the full radio-opaque contrast inter-
val included in training. Performance is evalu-
ated only in reference frames. In attempts to
improve the model’s capacity at differentiating
positive examples (stenosis) from negative ones
(background/healthy coronaries), experiments were
made including background (BG, frames without
any contrast) and healthy coronary frames (NL) to
the RCA and LCA model.
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Method Stenosis Detection Performance @ 0.2 IoU [mean ± std)]
Sensitivity At least One mAP max 5 det mAR max 5 det

B 0.72±0.03 0.81±0.01 0.61±0.03 0.82±0.02
B w/ BG 0.64±0.03 0.74±0.03 0.57±0.02 0.82±0.02
B w/ NL 0.68±0.04 0.74±0.04 0.59±0.02 0.83±0.01

B w/ BG w/ NL 0.65±0.03 0.71±0.02 0.59±0.02 0.83±0.01
Cong et al. [7] 0.71 - - -

B * 0.68±0.04 0.77±0.03 0.56±0.04 0.81±0.03
B w/ BG * 0.70±0.04 0.74±0.04 0.58±0.04 0.81±0.02
B w/ NL * 0.65±0.02 0.71±0.02 0.54±0.03 0.78±0.02

B w/ BG w/ NL * 0.58±0.03 0.65±0.03 0.49±0.01 0.78±0.01
Cong et al. [7] * 0.60 - - -

Table 3: Stenosis detection metrics comparison on
reference frames against different authors, (*) De-
notes LCA viewing angle model, RCA otherwise

We compare the performance of all our models
against themselves and with different authors (see
Table 3). From visual validation of the model’s
performance (see Figure 3), it is possible to ob-
serve that it performs better in frames with only
one ground truth stenosis. However, in cases where
more than one is present, the model struggles at the
detection in its entirety. The results show that our
variations on the base model do not improve perfor-
mance. Nevertheless, the models can detect several
stenoses per frame even with hard examples (iFR
above threshold), achieving good performances.

5.3. iFR regression performance
For the stenosis assessment task, the objective is
to estimate its corresponding iFR value. We evalu-
ate the performance under binarized accuracy and
analyze the error compared to their corresponding
target. Distinct models were trained under 5-Fold
cross-validation for different values of the hyperpa-
rameter β, which varied from 0 to 1 with a step
of 0.1, with the objective of studying the model’s
ability to estimate the iFR quantitative value.
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Figure 12: The binarized accuracy and root mean
square error evolution against the β variation of the
outer regions regions of interest in the LCA frames.
RMSE is shown for better error interpretability.

For additional validation, Grad-CAM was again
applied. From the performance metrics evolution
(see Figure 12), it is possible to observe that as β
increases, there is a very slight downtrend in the
binarized accuracy. Still, in the error, it only up-
trends for the last values (see Figure 12), indicating
that the models failed to learn the task. With the
Grad-CAM visualizations (see Figure 9) the β = 0.1

and β = 0.6 models started to take more informa-
tion from the highlighted stenosis region, but all
others failed. From β = 0.8 to β = 1 the model
loses its focus and takes random guesses at every
region, since outer regions were given more weight.
All other models focus on all regions, but the high-
lighted one, again indicating randomness.

0 5 10 15 20 25
epoch

0.4

0.5

0.6

0.7

0.8

0.9

bi
na

riz
e 

ac
cu

ra
cy

val
train

(a) Binarized accuracy

0 5 10 15 20 25
epoch

10 4

10 3

10 2

10 1

lo
ss

val
train

(b) RMSE

Figure 13: The binarized accuracy and mean square
error evolution of train and validation set with re-
spective means and standard deviation for β = 0.1
from 5-Fold cross-validation

From the loss evolution during training (see Fig-
ure 13), it is clear that the model completely over-
fitted as the validation loss is orders of magnitude
higher than the training loss. As in this task, it is
required for the model to interpret very fine-grained
features.

6. Conclusions

From the very start of this study the aim was to
conduct relevant research in coronary artery disease
and stenosis automated assessment contributing to
both medical and machine learning fields.

A three stage framework based on convolutional
neural networks was assembled to automate steno-
sis assessment. Starting with viewing angle selec-
tion where the objective was to precisely classify
reference frames as belonging to the right coronary
artery (RCA) or to the left coronary artery (LCA)
with previously viewing angles labels. High perfor-
mance metrics of 0.97 accuracy and 0.97 F1 score
were obtained with transfer learning and fine-tuning
of the ResNet-50 additionally demonstrating the
feasibility of frame down-scaling to increase infer-
ence time memory optimization.

With the the RCA and LCA viewing angles, two
distinct models, based on the single shot detector
RetinaNet architecture were assembled as the sec-
ond stage of the framework to automatically de-
tect stenosis by bounding box placement. Com-
parisons with different authors confirm the rele-
vance of our work with obtained scores of 0.72/0.70
sensitivity, 0.83/0.81 mAR and 0.61/0.58 mAP for
the RCA/LCA. Our models performed consider-
ably well at stenosis single and multiple detection
but leaves room for precision improvement as many
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background regions were detected as being stenosis.
The last stage of our framework ends with iFR

quantitative assessment. Experiments were made
with transfer leaning and fine-tuning of InceptionV3
as a regression task. A β method approach was im-
plemented that varies the outer regions contrast of
the the stenosis bounding box, to boost the mod-
els focus on the region that most contributes for
the iFR real value. From gradient-weighted class
activation mapping visualizations and metrics evo-
lution it was observed that almost all models failed
to gain notion showing overfitting and randomness
in regression values, leaving room for improvement
in this task.

7. Future Work
The most difficult task to overcome showed to be
the iFR regression task as our method did not quite
perform to expectations. With possible incoming
segmentation annotations of stenosis and coronary
arteries, new novel experiments can be made, e.g
automatically segment and classify the regions of
interest obtained from the bounding boxes. Atten-
tion mechanisms are being increasingly developed
and published in literature demonstrating its ap-
plications in all fields of research. These can be
explored for iFR estimates since the stenosis only
represents a small portion of the frame and these
mechanisms could aid the model to learn that these
are the specific regions that contribute the most to
the iFR assessment.
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