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Abstract

The high-performance computing (HPC) industry is determinedly building towards next-generation
exascale supercomputers. With this big leap in performance, the number of cores present in these
future systems will be immense. Current state-of-the-art bulk synchronous two-sided communication
models might not provide the massive performance and scalability required to exploit the power
of these future systems. A paradigm shift towards an asynchronous communication and execution
model to support the increasing number of nodes present in future supercomputers seems to be
unavoidable. GASPI (Global Address Space Programming Interface) offers a Partitioned Global
Address Space (PGAS) and allows for zero-copy data transfers that are completely asynchronous and
one-sided, enabling a true overlap of communication and computation. Although promising, the PGAS
model is still immature. Industrial-level HPC applications have yet to be developed with this model,
which generates uncertainty about the model’s effectiveness with real-world applications. The goal of
this thesis is to contribute to a better understanding of the actual strengths and limitations of the
GASPI programming model when applied to HPC applications that will benefit from future exascale
systems. To achieve that, we focused on the parallelization of a representative method from the
domain of plasma physics, the Particle-in-Cell (PIC) method. Departing from an existing sequential
implementation (ZPIC), we evaluated the performance and programming productivity of GASPI when
used to parallelize this implementation. After a thorough performance evaluation on the MareNostrum
4 supercomputer we concluded that, while GASPI might fall behind the industry standard in terms of
usability, its performance and scalability reliably outperformed an MPI implementation of the same
application.
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1. Introduction

As we approach the creation of the first exascale
supercomputers, those capable of operating at a
rate in the order of 1018 floating-point operations
per second, there is a great deal of uncertainty
in the high-performance computing community
regarding the programming models that will be
used in these future systems.

Current state-of-the-art two-sided communication
technologies offer no guarantee that they will be
able to power next-generation supercomputers.
Shared memory models are, in comparison to other
paradigms, not very scalable [5, 3]. Addition-
ally, shared memory cache-coherent hardware is
expensive and hard to design [16]. Distributed
shared memory systems, in theory, offer the ease
of programming of shared memory communication
models while offering the scalability of distributed
memory architectures, with the possibility of truly

heterogeneous systems [15, 17]. But in reality,
the paradigm requires more research and devel-
opment before their promise of state-of-the-art
message-passing performance can be delivered
[11]. Even then, there is reason to believe that
the synchronous two-sided communication model
used by MPI is not prepared to be implemented on
the magnitude of an exascale system. A paradigm
shift towards an asynchronous communication and
execution model to support the increasing number
of nodes present in future supercomputers seems
to be unavoidable.

This is where GASPI1 (Global Address Space
Programming Interface) becomes relevant. GASPI
implements a Partitioned Global Address Space
(PGAS) and offers the possibility of a true overlap
of communication and computation. This is

1http://www.gaspi.de
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possible by means of a one-sided remote direct
memory access (RDMA) communication model.
This model allows for zero-copy data transfers that
are completely asynchronous and one-sided. A
notification mechanism is employed to inform the
receiving side on the completion of a data transfer.
If used correctly, this model allows for communi-
cation routines with no inherent synchronization
between tasks.

The novelty of the technology introduces inevitable
challenges. Mainly the lack of proper documenta-
tion and debugging tools, which severely hinders
the development of GASPI applications. This
is further complicated by the novel paralleliza-
tion and communication mechanisms introduced.
Programmers are usually more comfortable and
experienced with synchronous communication, the
“extremely” asynchronous communication model
present in GASPI may require some preparation
by the programmers before they can use it effec-
tively. The inability to incrementally parallelize
existing serial code further complicates software
development.

While many of these issues are common in adopting
new and innovative programming models, we are
faced with a question. Do the performance benefits
that GASPI promises outweigh the described set-
backs? Answering this question will be the main
focus of this thesis.

1.1. Contributions

To assess the beneficial impact that GASPI might
offer, we developed a distributed version of an
existing plasma simulation tool, called ZPIC [1],
using GPI-22, the latest implementation of the
GASPI standard. Plasma simulations are a very
pertinent class of high-performance computing
applications and are employed on many major
research subjects ranging from laser wakefield
acceleration [13, 21] to thermonuclear fusion [1].
ZPIC implements a Particle-in-Cell algorithm.
This technique simulates the motion of each
particle individually in continuous space, but
current and charge densities are weighted onto a
stationary computational grid. Parallel Particle-
in-Cell simulation using traditional two-sided
communication models is a well-studied field with
various existing implementations like OSIRIS [4].
However, to the best of our knowledge, parallel
Particle-in-Cell implementations using a PGAS are
not well investigated.

The parallelization effort followed the common
architecture of parallel Particle-in-Cell implemen-

2http://www.gpi-site.com/

tations. The simulation space is divided in a
checkerboard-like fashion and distributed through-
out the participating nodes. The implementation
is heavily focused on maximizing asynchronous
communication and minimizing synchronization.
This focus allows for overlapping communication
and computation, crucial for an efficient parallel
implementation.

The obtained results were quite satisfactory. Our
GASPI implementation managed to stay compet-
itive, and even outperform, an optimized imple-
mentation powered by the current industry stan-
dard. Although GASPI’s usability is currently infe-
rior to the current state of the art, GASPI provides
a significant advancement for the high-performance
computing industry.

2. Parallel Programming

In this chapter, we will cover some parallel program-
ming paradigms in use today, along with some im-
plementations of each programming model. In con-
clusion, we give a brief overview of how to evaluate
the performance of parallel applications.

2.1. Shared Memory

In parallel computing, shared memory is an ar-
chitecture where memory is shared by multiple
processing units, as they share a single address
space. These processing units can be individual
cores inside a multi-core CPU or multiple Shared
Memory Processors (SMPs) all linked to the same
logical memory [16]. In shared memory systems,
communication between tasks (usually threads) is
implicit and as simple as writing to and reading
from memory.

Shared memory architectures suffer from some
drawbacks: Performance degradation is likely
to happen when several processors try to access
the shared memory due to bus contention. The
usual solution to this problem is to resort to
caches. However, having several copies of data
spread throughout multiple caches is probable to
result in a memory coherence problem [3]. The
use of caches might also introduce false sharing [22].

A good example of a modern implementation of
the shared memory programming model can be
found in OpenMP [18]. OpenMP3 is an applica-
tion programming interface (API) that supports
multi-platform shared-memory parallel program-
ming. OpenMP’s compiler directives and callable
runtime library routines extend well-established
programming languages like C, C++, and Fortran
[10].

3http://www.openmp.org
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2.2. Distributed Memory

Distributed memory is an architecture where each
task (usually processes) has its own private address
space. Since there is no global memory, commu-
nication between processing units is required for
accessing remote data [3, 16]. Communication
between workers is explicit and very frequently
handled by a message passing interface, a well-
established paradigm for parallel programming
[5, 16]. The number of processors on modern
massive parallel systems can reach the hundreds of
thousands [3].

Computer hardware aimed at distributed compu-
tation is much easier to design than cache-coherent
shared memory systems. Also, as all communica-
tion is explicitly handled by the programmer, there
are fewer unforeseen performance issues than with
implicit communication [16]. Thanks to simpler
hardware [16], higher efficiency [5] and scalabil-
ity [3] (owing to nearly no performance loss to
memory contention) distributed memory systems
coupled with message passing interfaces are a very
attractive choice for large-scale high-performance
parallel applications.

The most widely used implementation of this
paradigm is the MPI (Message Passing Interface)
standard [5]. MPI offers a rich collection of point-
to-point communication procedures and collective
operations for data movement, global computation,
and synchronization.

Currently, MPI is extensively used in clusters
and other distributed memory systems due to
its rich functionality [3] and is considered the
defacto standard for developing high-performance
computing applications on distributed memory
architectures [12]. It provides language bindings for
C, C++, and Fortran [10]. Some well-known MPI
implementations are MPICH [5] and OpenMPI4.

However, SMP clusters are becoming increas-
ingly more prominent in the high-performance
computing industry. While message passing
programs can be easily ported to these systems,
the paradigm is not well suited for intra-node
communication. To this end, a combination of
message passing and shared memory models into
a hybrid programming approach [20] could be
employed to better exploit the cost-to-performance
efficiency of these systems. For example, em-
ploying both MPI and OpenMP for inter and
intra-node communication, respectively. Although

4https://www.open-mpi.org

hybrid programming approaches might make use
of other programming languages, mixed MPI and
OpenMP implementations are likely to represent
the most prevalent use of hybrid programming on
SMP clusters due to their portability and status
as industry standards in their respective paradigms.

Combining both paradigms allows the programmer
to take advantage of the benefits of both models.
With MPI handling high-level parallelism and com-
munication, while OpenMP deals with the lower
level parallelization responsibilities. Situations
where the implementation is plagued by poorly
performing inter-node communication latency will
likely see improvement with this approach as it
reduces number of inter-node messages. This is
achieved by increasing the size of said messages
as a result of the increased number of threads per
communicating task. If load balancing poses a
problem to application performance, this approach
allows MPI to implement a more coarse-grained
view of the problem while OpenMP implicitly
handles much of the load balancing between tasks
on a node.

On the other hand, the technology we will be
using is called GASPI5. GASPI (Global Address
Space Programming Interface) is a specifica-
tion for a Partitioned Global Address Space
(PGAS) API that aims to provide a scalable and
efficient alternative for bulk synchronous two-
sided communication patterns, with a one-sided
asynchronous communication and execution model.

To achieve this GASPI makes use of RDMA
driven communication [6]. RDMA (Remote Direct
Memory Access) [9, 14] is a common component
of high-performance networks that allows for one-
sided data transfers. Unlike usual Send/Receive
routines of message passing interfaces, RDMA
operations allow machines to read from (and write
to) pre-defined memory regions of remote ma-
chines, with no participation from the CPU on the
remote side. Additionally, since the data is being
read from and written directly to pre-determined
memory regions, there is no need to copy the data
to and from temporary buffers. These zero-copy
transfers reduce CPU overhead (to zero) and
latency compared to traditional message passing.

2.3. Distributed Shared Memory

The final class of parallel systems we will outline is
called distributed shared memory (DSM) systems.
In these systems, the address space is, just like in
distributed memory architectures, composed of the

5http://www.gaspi.de
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local private memory of several inter-connected
processors. But their address space is, either
partially or entirely, shared with other workers
in the network, just like on a shared memory
architecture.

Lacking affordable dedicated hardware for a dis-
tributed shared address space on a large scale [11],
DSM systems are generally implemented as a soft-
ware abstraction over a standard message passing
interface. These systems offer the portability and,
thanks to the abstraction of remote data transfers,
the ease of programming of shared memory systems
[17].

2.4. Performance Evaluation of Parallel Code
The most straightforward metric for evaluating the
performance of parallel code is speedup. Speedup
measures the performance of the parallel version
(with p tasks) relative to its serial counterpart [7].
Speedup can be experimentally obtained by the ra-
tio between the execution time of the serial and par-
allel versions.

Speedup(p) =
Sequential Execution T ime

Parallel Execution T ime
(1)

Although speedup is a very direct way to tell how
much faster (or slower) the parallel version of an
application is, it does not immediately reveal how
efficiently the extra computing power is being used.
To this end, we can compute the efficiency of the
parallel implementation (running on p tasks):

Efficiency(p) =
Speedup(p)

p
(2)

3. Particle Simulation of Plasmas
Computer simulations have often been employed
as a substitute for real-life scientific experiments.
Either because these are too difficult/expensive, or
outright impossible to be performed with current
technology. Particle simulation of plasmas is a
good example of these difficult experiments. With
an estimated 99% of matter in the universe in a
plasma-like state and several significant research
subjects including controlled thermonuclear fusion
and laser wakefield acceleration [1, 21], plasma
simulation is a valuable and challenging research
subject [24].

The roots of particle simulation go back as early as
the late 1950s. Early simulations modeled about
102 to 103 particles, and their interactions, on
the rudimentary computers of the time. Thanks
to hardware advancements and algorithm im-
provements, modern massively parallel computers

allow for particle counts in the order of 1010 [23, 24].

The Particle-in-Cell (PIC) concept was formalized
during the 1970s [24] and is well suited to study
complex systems with a great degree of freedom
and accuracy [4]. This technique simulates the
motion of each particle individually in continuous
space, but current and charge densities are com-
puted by weighting the discrete particles onto a
stationary computational grid. The state of a PIC
simulation can be roughly defined by the state of
three key components: particles, electric current,
and electromagnetic field (composed of electric
and magnetic fields) [1]. In each iteration, these
elements interact with each other to advance the
simulation state. The way these elements interact
can be summarized by Figure 1. Each iteration,
every time a particle is moved it deposits electric
current on the simulation space. This electric
current is then used to update the electromagnetic
field, that are then used to modify each particle’s
velocity.

Particles Electric Current

Electromagnetic
field

Electric current is used to update
the electromagnetic field

The electromagnetic field
influences particle velocity

Particles deposit electric
current when moved 

Figure 1: Sequence of computations in the PIC
method.

3.1. ZPIC
ZPIC [1] is a fully relativistic PIC implementation
focused on educational plasma physics simulations.
ZPIC is not implemented to benefit from parallel
execution and is meant to be run on common
laptops and personal computers. This was a
deliberate design decision with the intention of
reducing code complexity.

Like other Particle-in-cell implementations, the
simulation space in ZPIC is divided into cells. Each
cell has its own electric current and electromagnetic
field values while particles roam freely through the
simulation space. Each of the three cell quantities
(electric current, electric and magnetic fields)
are internally represented as an one-dimensional
array, but are accessed in a way that mimics a
2-dimensional matrix. It is important to note that,
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even on a 2-dimensional simulation space, ZPIC’s
particle velocity vectors are 3-dimensional. This is
also true for electric current and the electromag-
netic field; their values are also tracked on three
dimensions.

A ZPIC simulation, like on many other PIC
implementations, implements periodic boundaries.
This means that the two-dimensional simulation
space warps in a way that the cells on an edge
of the simulation space border the cells on the
opposite edge. Static window simulations use
periodic boundaries on both the x and the y-axis,
meaning the simulation space can be thought of as
the surface of a torus. In contrast, moving window
simulations only enforce periodic boundaries on
the y-axis, so their simulation space is reminiscent
of the surface of a horizontal cylinder. This means
that, for example, if a particle leaves the simulation
space of a static window simulation through the
left border it will be reallocated to the rightmost
cell on that row, while if the same was to happen
on a moving window simulation the particle would
be deleted because moving window simulations do
not employ periodic boundaries on that axis.

This is also true for electric current and the
electromagnetic field. For instance, if a particle
that is on the bottom border is moved and deposits
electrical current in a way that the current might
leave the simulation space, it is deposited on a
ghost cell that represents the correct cell on the
top border.

Ghost cells are used on the edges of the simulation
space to mimic real cells. They simplify interac-
tions with cells by streamlining them. Going back
to the previous example of the moving particle,
if there were no ghost cells, every time a particle
was moved the simulation would have to check if
the cell where it is trying to deposit current exists.
If not, the simulation would then have to identify
the correct cell to deposit the electric current.
This extra step would add additional branching
and complexity to the particle mover, an already
complex and expensive operation.

Figure 2 shows an example of a simple ZPIC
simulation space (real simulations have many more
cells). The gray cells on the figure are ghost cells.
Note that they are marked with the number of
the cell they represent. Ghost cells are, on each
iteration, synchronized with the cell they represent,
so that both have the same electric current and
electromagnetic field values. Also, the figure shows
an additional column/row of ghost cells on the
right/bottom borders, they are required by the

underlying logic of the ZPIC simulation.

80 72 73 74 75 76 77 78 79 80 72 73

8 0 1

17 9 10

26 18 19

35 27 28

44 36 37

53 45 46
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71 63 64
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72 73 74 75 76 77 78 79 80

Figure 2: ZPIC simulation space example.

3.2. Plasma Experiments

The Particle-in-cell method is very versatile and
allows for many different scientific experiments to
be simulated. Following is the description of two
simulation categories which come bundled with
the ZPIC code that we used in our experimental
evaluation.

Weibel instability [8, 19] simulations model the in-
stability observed on homogeneous plasmas when
energized with a certain amount of thermal energy.
ZPIC models this simulation by using two differ-
ent species, electrons and positrons, with opposite
charge values. These two plasmas are energized
with opposing momentums, forcing them to clash
and generate instability patterns in the electromag-
netic field.

Laser wakefield acceleration [21, 13] uses powerful
lasers to accelerate particles to near light-speed ve-
locities over short distances. ZPIC portrays these
experiments by modeling a laser pulse as an elec-
tromagnetic wave colliding with a low energy elec-
tron plasma. In order to capture the instant the
laser pulse collides with the electron plasma, the
simulation starts with no particles. They are later
injected into the simulation space and are periodi-
cally shifted to the left, giving the illusion that the
laser pulse is moving through space.

4. Implementation

Now that we know the components that define
the state of a ZPIC simulation and how they
interact with each other we need to distribute the
simulation between the available processes. The
most common, and natural, decomposition for par-
allel Particle-in-Cell implementations is a spacial
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decomposition, where the cells that make up the
simulation space are distributed and assigned to
the available processes. Of the possible ways to
divide a two-dimensional space, the usual approach
to these kinds of simulations is to adopt a checker-
board decomposition, where the simulation space
is partitioned into smaller rectangular sections. To
achieve this spatial decomposition we implemented
a procedure to divide the simulation space and
assign the resulting regions to the participating
processes.

4.1. Particle Generation

Particles on ZPIC are grouped into species, they
are used to represent diverse types of particles like,
for example, electrons or positrons. Each can be
configured with their own electrical charge value,
initial velocity, density profile, and many other
attributes.

ZPIC implements a custom pseudo-random number
generator to assign each particle a random speed
value in each axis. As with any pseudo-random
number generator, it still generates numbers in a
deterministic fashion. This means that if starting
state of the number generator is known, the
sequence of generated numbers can be reproduced.
Taking this into account, we implemented a method
reliant on redundant computation. The implemen-
tation is quite straightforward, before saving the
velocity of a particle, generate the same amount of
random numbers the serial version would need to
generate before reaching that particle. That way,
when we start saving the generated numbers, the
pseudo-random generator is on the correct state
for that particle. Since the serial implementation
starts on the top row and generates particles from
left to right, we can follow the same pattern, but
only save the particles we need.

4.2. Particle Communication

A ZPIC iteration starts with particle processing.
Each particle is moved and, if a particle leaves the
simulation space, it is reallocated to the correct
cell, respecting the imposed periodic boundaries.
On a distributed implementation of the sequential
particle mover, the only thing that would change
is the procedure to take when a particle leaves the
simulation space of the task that currently holds
it. In a distributed implementation the particle
would need to be reallocated to the correct process,
implying communication between processes.

In our distributed implementation, each process has
a dedicated segment for each of its eight neighbors.
This segment is used to both send and receive data

and is shared by all species. Figure 3 shows an
example of this segment organization in action. To
relay the number of particles sent on each message
we added an additional particle to the beginning of
each data transmission, this particle will be known
as the fake particle. In Figure 3 we demonstrate how
the particle segments would be used to transmit two
different species between neighbors.

Proc 0 Proc 1

Fake particle

Part spec 1
Part spec 2

1- Copy particles
to send zone of

segment
2- Send each species to
the receive zone of the

remote segment as they
become ready to send

3- Copy particles
from receive zone
to the respective

species particle array

Figure 3: Particle communication example.

4.3. Electric Current Communication
After advancing each species in the simulation,
ZPIC synchronizes the electric current values of
each ghost cell with its respective real cell. To do
that, ZPIC sets both cells with the sum of the
electric current value of both cells. Keep in mind
that each cell has three electric current values, one
for each dimension. However, during this update
procedure, those three values are all treated in
the same way. For that reason, each cell will be
regarded as only holding a single value.

To update the cells of each process on a distributed
simulation we have to follow the same pattern, set
the value of each real cell, and all ghost cells that
represent that real cell, to the sum of all values.
In the end, all cells that represent the same cell
must have the same electric charge value. Figure
4 shows an example of what we need to achieve
dynamically for each neighboring process pair.
Note that cells are marked with the number of the
cell they represent and that all the cells present on
both processes are exchanged and updated.

The sending procedure is as follows: First, identify
the cells to send. Then, copy cell data from the
electric current array to the GASPI segment row-
wise. And finally, write that data to the remote
memory segment with a single data transmission.
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Figure 4: Electric current communication between
two processes.

The procedure on the receiving side is just as
simple. Wait for the GASPI notification from the
neighbor we are waiting for. Then, keeping in
mind that the cells were packed on to the data
transmission row-wise, the receiving process can
iterate the received data, adding each received
value to the correct cell by also iterating through
its own cells row-wise.

4.4. Electromagnetic Field Communication

The last processing step of a ZPIC iteration is the
update of the simulation’s electromagnetic field.
The electromagnetic field that take part in a ZPIC
simulation are composed of electric and magnetic
fields. Since both fields are always updated and
used at the same time each iteration, they will
be treated as a single entity for the rest of the
document, as the procedure to update these fields
in our distributed implementation is also the same
for both.

To update the electromagnetic field, ZPIC over-
writes each ghost cell with the value present
on their respective real cell. The distributed
implementation must do the same, each neighbor
process pair must send the cells that its neighbor
will need. Then, each process must wait for the
remote cell data to then overwrite their ghost cells
with. This procedure is exemplified in Figure 5.
As before, cells are marked with the number of
the cell they represent. Also, note that ghost cells
are overwritten with the value present on their
respective real cell.

To implement this, we resorted to the same segment
structure as explained in Section 4.3. Each process
has a dedicated segment for each of its eight neigh-
bors. Each segment has a dedicated sending and
receiving zone, where it can prepare data before
sending it, and also receive and hold remote data
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62 54 55 56 57 58

71 63 64 65 66 67

27 28 29
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20 21 22 23 24 25
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65 66 67 68 69 70

30 31 32

39 40 41

48 49 50

Figure 5: Electromagnetic field ghost cell update.

until the process is ready to overwrite its ghost cells
with the newly received values.

4.5. GASPI/OpenMP hybrid

In addition to our GASPI implementation, we
also developed a hybrid GASPI OpenMP ver-
sion. This version is meant to show how GASPI
would perform on a more realistic use case of the
standard, in combination with a shared memory
API. This hybrid implementation still uses all the
communication procedures outlined in Section ??.
The additional threads are employed in the most
demanding section of a ZPIC iteration, the particle
mover.

To parallelize the particle mover, we implemented
an approach that relies on the reduction of the
electric current values that are generated by
every moving particle. The default OpenMP
reduction operation allocates and deallocates
memory every time a thread enters and leaves a
reduction construct. So, to minimize the number
of dynamic memory operations, each thread will
allocate its own private current buffer at the
start of the simulation. Then, using OpenMP’s
user reduction feature, we defined a custom re-
duction operation so that each thread uses one
of these private current buffers. This thread
private memory region is used throughout the
simulation and zeroed after each reduction. Each
iteration, every thread will advance the particles
assigned to it, using their private current buffer to
save the resulting electrical current values. After a
thread finishes its work, the resulting current values
are added to the shared current buffer concurrently.

5. Experimental Evaluation

All executions of our performance evaluation where
performed on the MareNostrum 4 (MN4) super-
computer. MN4 is equipped with 3456 computing
nodes, each fitted with two Intel Xeon Platinum

7



8160 CPUs, and 12 × 8GB 2667Mhz DIMMs for a
total of 96 GB of RAM per node. Each of these
CPUs has 24 cores running at 2.10GHz, totalling
48 cores per node, for a grand total of 165,888
CPU cores in the whole system.

To compile our code we used the Intel icc compiler
version 17.0.0. We enabled the most powerful
compiler optimizations available to the Intel Xeon
Platinum 8160 CPU, including SIMD instructions.
We used GPI-2 version 1.4.0 as the implementation
of the GASPI standard.

The execution times used for the graphs are
the average of three runs and were made with
the reporting functionality disabled, as it would
interfere with the execution times. We use the
original ZPIC implementation for the sequential
execution times and the MPI implementation in [2]
as the basis for our performance comparisons. In
all cases, the measured execution times ignore the
setup phase of the simulation and only measure
the time from the start of the first iteration up to
the end of the simulation.

In our tests, out of the possible 48 processes per
node, we could only manage to run 14 processes
per node. This is due a compatibility issue with
the current GPI-2 implementation in the MN4
hardware that limits the number of GASPI pro-
cesses when using several MN4 nodes.

The performance tests we realized used simulation
inputs based on the plasma experiments outlined in
Section 3.2.

5.1. Performance evaluation
Figure 6 shows the speedups obtained by both
our GASPI implementation and the reference MPI
implementation in a 500 iteration Weibel instability
simulation with grid size of 512 by 512 cells where
each of the two species have 1024 particles per cell.

As we can see by the graphs, our GASPI imple-
mentation behaves rather well. With 224 processes
the GASPI implementation achieves a speedup of
169.2 compared to the 163.2 of the MPI version.
These speedups translate to an efficiency of 75.5%
for our GASPI implementation and 72.9% for
the reference MPI version. In short, with 224
processes, the our implementation was 3.66% faster
than the MPI code.

For the laser wakefield acceleration tests, we used a
simulation with a grid size of 2000 by 512 cells. The
simulation starts with zero particles, these are later
injected to the right side of the simulation space
with a density of 64 particles per cell. The sim-
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Figure 6: GASPI/MPI speedups obtained on a
Weibel instability simulation.

ulations run for a total of 4000 iterations. Figure
7 shoes the speedups obtained by the GASPI and
MPI implementations.
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Figure 7: GASPI/MPI speedups obtained on a laser
wakefield acceleration simulation.

This time the results are somewhat disappointing,
neither of the implementations scale very well.
With 224 processes our GASPI implementation
only managed to achieve a speedup of 80.9, while
the MPI version managed a speedup of 77.7. These
result in the mediocre efficiencies of 36.1% and
34.7% respectively.

Upon investigating, we theorized that the possible
cause for the mediocre scaling may be an unbal-
ance of the workload between the participating
processes. Since most columns will not hold any
particles for many iterations, many processes,
especially the ones in the left side of the simulation
space, will have to wait for many iterations until
particles reach them. This leads to a very signif-
icant amount of wasted CPU time for the better
part of the simulation, until the simulation space is

8



completely filled with particles.

Armed with this knowledge, we modified our par-
titioning algorithm to allow the user to select a
row-wise decomposition. Figure 8 illustrates the
speedups measured in our GASPI implementation
using the checkerboard and the row-wise decompo-
sitions in the same laser wakefield acceleration sim-
ulation. This time the results were much better.
When running our implementation with a total of
224 processes the row-wise decomposition achieves
a speedup of 150, in contrast to the speedup of
80.9 measured with the checkerboard decomposi-
tion. These speedups translate to efficiencies of 70%
and 36% respectively. In other words, this change in
the simulation space partitioning scheme yielded a
performance increase of 85.38% with 224 processes,
a noticeable improvement.
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Figure 8: GASPI/MPI speedups obtained on a laser
wakefield acceleration simulation using a row-wise
decomposition.

6. Conclusions
The current rate of innovation of computer hard-
ware suggests that near future supercomputers
will have the processing power and communica-
tion infrastructure scalability necessary to reach
exascale levels of performance (speeds in the order
of 1018 floating-point operations per second).
However, the industry-standard bulk-synchronous
two-sided communication models in use today offer
no guarantee that they will be able to power the
next generation of supercomputers.

Looking for an alternative, we developed a dis-
tributed implementation of a well-known plasma
simulation tool using GASPI, a novel communica-
tion API standard that focuses on asynchronous
communication and execution. Then, we con-
ducted a thorough performance evaluation of our
GASPI implementation on the MareNostrum 4
supercomputer, comparing it to an optimized

implementation of the same tool powered by MPI.

As we discussed in Section 5, GASPI performs
rather well. Our GASPI based distributed imple-
mentation managed to remain competitive with
the MPI implementation, often outperforming the
current state of the art in our tests. However,
usability falls short when comparing to the industry
standard. Compared to MPI, installing GPI-2 and
running GASPI applications requires some effort,
even on a personal computer. Compared to syn-
chronous two-sided communication models, GASPI
requires more preparation from the programmer.
For example, computing offsets of local and remote
memory locations, and the asynchronous nature
of the communication routines can easily lead to
erroneous situations. The lack of debugging tools
for GASPI code is a major drawback, requiring
awkward workarounds.

Despite these drawbacks, GASPI is a significant
advancement for the high-performance computing
industry. GASPI and GPI-2 are still in active
development, and will only improve with time. We
are confident that GASPI offers the performance
and scalability required to power next-generation
exascale supercomputers.

For future work, we propose exploring the poten-
tial performance improvements offered by the zero-
copy mechanism present in GASPI. Our implemen-
tation did not leverage such a feature, and since this
is one of the primary mechanisms implemented by
GASPI, we think a study should be performed to
assess the potential performance gain possible by
properly leveraging this feature.
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