
Deep Convolutional Neural Networks for Archaeological Pottery Diagram
Classification

TOMÁS OLIVEIRA
Archaeological fieldwork projects result in the collection of historical artifacts (e.g.,
pottery sherds) that need to be classified according to established categories, which
in the area are referred to as typologies. These categories group objects with similar
characteristics (i.e., similarity in the overall shape, in the character of component
parts such as rims and handles, and in the technique and style of decoration), allowing
archaeologists to ascertain the origin of pieces found in a specific location (if they
are autochthonous), their age, or the age of the site. The categorization of pottery
sherds is presently done by archaeologists through an entirely manual procedure,
involving the analysis of standardized line illustrations. Since manual analysis raises
problems for the timely categorization of a large number of artifacts, there is interest
in automated approaches for suggesting typologies to archaeological artifacts. With
this motivation, we present a set of state-of-the-art techniques, based on the use
of convolutional neural networks, to automatically classify standardized black-and-
white line diagrams of pottery sherds. We report on a comprehensive evaluation for
the proposed approaches, discussing limitations associated with class imbalance or
lack of large training datasets.

1 INTRODUCTION
In archaeological fieldwork, one of the most common recorded artifacts
is pottery vessels, often in the form of incomplete broken sherds [27].
These fragments enable to approach daily life of the societies that produced
them, their customs, traditions, and constructions of their realities. Since
its inception during the Neolithic, ceramic vessels are one of the most
widespread materialities, particularly in pre-industrial contexts. In terms
of conservation, pottery is also quite stable, if we compare it with metals
or other organic materials. Potsherds in archaeological stratigraphies may
answer many interrogations. Two of the most frequently asked questions
are related to the dating of the piece (and also the context in which it was
recorded) and its use. During the twentieth century, numerous ceramic type
series were created providing relative dates for different types of pottery,
sometimes they may have been able to specify even in which generation
they were made, such as terra sigillata. Moreover, ceramic shape, fabric, and
decorations often reflect practices of past societies that inform of everyday
life elements such as daily food, commensality, storage, trade, etc.

After any excavation or survey, post-excavation analyses are performed
depending on the type of artifact and the research questions. Simplifying
the process, wet or dry cleaning, and a provisional inventory are the first
stages of ceramic analysis in the laboratory of Archaeology. Subsequently,
potsherds fabric and shapes are studied and manually drawn; finally, ty-
pologies are assigned. Pottery drawings are made for two main reasons.
On the one hand, it is an effective way to record the overall formal and
decorative characteristics of archaeological materials. On the other hand,
by schematizing and interpreting the potsherd in a diagram, archaeological
drawings offer a comparative frame of reference that allows both: to share
a visualization of the materials recorded in archaeological works and to
compare them with other instances from typological series or other archae-
ological contexts. This can be a lengthy process that may take months, even
years, depending on the size of the fieldwork and how prolific this has been.
For a successful comparison, these diagrams must be standardized, fol-

lowing the widely accepted standard divided in two-parts as shown in
Figure 1. On the left, a cross-section of the object presents the vessel profile
and interior; on the right, the exterior view of the artifact is represented.
Additionally, if the pottery has decoration on the rim, this is portrayed
above the upper axis, while if the vessel bottom is decorated, the motives
are depicted below the lower axis. In order to facilitate the measurement of
similarity amongst artifacts, often a manual visual assessment is carried

Author’s address: Tomás Oliveira, tomas.olliv@gmail.com.

Fig. 1. Side-by-side example of an artifact’s photograph and its corresponding black-
and-white line diagram. Image obtained from an article by Stibbe about Laconian
pottery [40].

out. Therefore, using computational techniques to relate and classify auto-
matically potsherds to their typologies can contribute to making inventory
and catalog processes faster.

With the growing power of computers, new techniques that were thought
to be too computationally demanding suddenly became feasible, and thus
able to be utilized in a practical way. An example of these are machine
learning methods leveraging deep neural networks. With the ability to
use deep learning, automatic image classification techniques progressed
significantly [23]. State-of-the-art methods for the classification of images
are, in the context of archaeological pottery classification, especially perti-
nent: they have the potential to support the automatic, very accurate, and
interpretable classification of the previously mentioned black-and-white
line diagrams of artifacts into typologies.

The exploration of state-of-the-art deep learning techniques in the con-
text of image classification tasks, more precisely black-and-white diagrams
of pottery artifacts, is the aim of this paper. Specifically, two different
convolutional neural network architectures, namely DenseNet [20] and
EfficientNet [42], were the base architectures employed for the creation of
the automatic learning models. In order to potentially further enhance the
models’ performance, various state-of-art techniques were tested, leverag-
ing the aforementioned convolutional neural network architectures, such
as AugMix [17] or self-training with a noisy student [48].
To train these models, the main dataset has been a corpus of Roman

terra sigillata drawings/diagrams from the excavations of the 23rd block
of Numantia (Spain), which includes typological information in the form
of labels. Few additional labeled diagrams were extracted from various
publications of the area with the goal of expanding the categories with the
fewest number of instances in the original dataset. Furthermore, leverag-
ing computer vision techniques, unlabeled instances were automatically
extracted from a number of articles featuring diagrams of potsherds dating
to the Roman period.

This paper is organized as follows. Section 2 presents a survey of related
work concerning the processing and categorization of archaeological artifact
diagrams, and neural network architectures specific to the classification
of images. In Section 3 we present the various components of our deep
convolutional architecture; and in Section 4, the main dataset is described
in detail. Section 5 expounds both the training strategies and experimental
results of this work. Finally, in Section 6, we conclude with some final
remarks and possible paths for future research.

1

2 RELATED WORK
The intuition that the classification of pottery diagrams into typologies
can be automatized has already been explored in previous works. Even
though the majority of such techniques do not leverage neural networks to
construct automatic classification models, in this section, we describe four
existing methods that perform automatic typology classification.

2.1 Classifying and Visualising Roman Pottery using
Computer-scanned Typologies

Christmas and Pitts developed an automatic classification method [7] based
on the k-means clustering algorithm [26]. This approach uses unlabeled
data to look for agglomerations of points, i.e., sets of instances with similar
characteristics. For points to be considered part of a certain cluster (ag-
glomeration), they must have a small distance to the rest of the points of
their cluster (i.e., intra-cluster distance), and a considerable distance to the
points in other clusters (i.e., inter-cluster distance). Equation 1, which in
the k-means algorithm is to be minimized, formalizes this notion:

𝐾∑
𝑘=0

∑
𝑥 ∈𝐶𝑘

∥𝑥 − `𝑘 ∥2 (1)

In the previous equation, `𝑘 is the centroid (i.e., average point) of cluster
𝑘 and 𝐶𝑘 the set of points (i.e., data instances) of cluster 𝑘 . The number
of intended clusters (i.e., the number of different types of artifacts, in this
particular application) must be first chosen when the k-means algorithm is
to be applied. After this initial choice, the points are assigned to the cluster
with the nearest centroid. These newly attributed points are then used to
calculate the new cluster centroid, and the process is repeated until all the
centroids are stabilized, i.e., do not change significantly.

The points in this particular application are vectors of measures that are
relevant to discern between different types of pottery, with the measures
being calculated by using the previously extracted and segmented stan-
dardized drawings of the Camulodunum series [15]. Various measures of
the artifacts were employed, such as the vertical centroid, the height of the
artifact, the artifact’s width and height, or its circularity, i.e., the closeness
from 0 to 1 to a perfect circle.
In the testing of the k-means approach, performed by Christmas and

Pitts, the accuracy reached 69.7%, when comparing the number of correctly
identified data instances in the cluster of the corresponding typology with
the total number of objects assigned to the cluster, and weighting the
accuracy of each cluster with the cluster’s size (i.e., number of instances in
the cluster).

2.2 Arch-I-Scan
Following a different approach, Tyukin et al. developed a software for
smartphone devices, named Arch-I-Scan [44], which takes advantage of
built-in cameras to scan complete pottery vessels or sherds and performed
real-time classification of these objects, assigning each scanned artifact
to a vessel typology. In order to do this, video input is first captured in a
2-dimensional frame structure by the smartphone’s camera.
Originally presented by Dalal and Triggs, Histogram of Oriented Gra-

dients (HOG) [11] is a technique which produces features from images by
computing histograms of gradient directions for each of the image cells
(i.e., small fractions of the original image). This technique was employed
over the captured video to generate feature vectors of every video frame,
which resulted in approximately 100000 feature vectors, with each vector
having a number of attributes in the thousands, per frame.

Tyukin et al. modeled the classification task as low-level recognition,
i.e., a classifier is built for each one of the existing typologies, being only
able to classify its type versus all the others. Using 10 complete pottery
vessels, each corresponding to a different typology, a mapping was done
between these pottery vessels and the features vectors that resulted from
the application of the HOG technique to the captured images (average of
100 images per typology), with each image producing a feature vector of

size 2400. As to create more robust classifiers, images of the negative class
(i.e., images that are not of the classifier’s typology) were also mapped to a
category, with each of the image’s feature vector being completed using
the same aforementioned procedure (i.e., images converted into a feature
vector using the HOG method). A detector, one for each of the 10 classes,
was then conceptualized. For each one of the feature vectors, a positive
or negative value corresponding to the instance’s class was returned. By
weighting the contribution of each of the features 𝑥𝑖 with a certain weight
𝑤𝑖 , and adding a certain bias factor 𝑏, the predicted class for a certain data
instance is computed, as shown in Equation 2.

D(𝑥) =
2400∑
𝑖=1

(𝑥𝑖 ·𝑤𝑖) + 𝑏 (2)

To learn the discriminant’s parameters, Support-Vector Machines [8], a
technique for learning a linear classifier which maximizes the distance of
a hyperplane separating two classes of data points, were applied. After
this parameter learning is completed for each of the classes’ detectors,
object detection can be performed by employing the 10 different detectors
simultaneously to an image. The classifier of the artifact’s true type should
label the object as the positive class, and the remaining classifiers should
label the artifact as pertaining to the negative class.

No considerable number of false positives (i.e., objects erroneously classi-
fied as part of the positive class by the detectors of irrelevant classes) were
reported in the performed experiments, confirming the robustness of this
pottery vessel detection method.

2.3 Content-based image retrieval for historical glass
van der Maaten et al., in a problem setting analogous to this work, devel-
oped a content-based image retrieval system [45] to provide assistance to
archaeologists in the classification of historical artifacts by automatizing
parts of the categorization process which, in its manual mode, corresponds
to a classification by matching the artifact to a typology from a reference
collection. The content-based image retrieval system fetches similar images
to a certain query image (i.e., the image of the artifact to be classified),
leveraging measures that are based on particular features of the images.

Utilizing the image retrieval system for the classification of glass artifacts,
with the possible categories of these objects being determined through the
typologies defined by Kottman [25], presents certain difficulties, namely
the absence of particular aspects from the reference typologies (e.g., the
real texture of the artifact to be classified, in contrast with the abstract
texture of the reference typology) and thus compels the use of the artifacts’
outer shape features for similarity measure. van der Maaten et al., in this
case, employed the similarity measure based on shape contexts introduced
by Belongie et al. [1].

Three basic steps are performed to compute the shape context similarity,
namely preprocessing the images, computing the shape context descriptors,
and calculating the similarity. Moreover, the preprocessing stage, which
has the aim of extracting the outer shape of the query image, entails five
substeps: (i) application of a Canny edge detector [4], (ii) linking of edges
which are not connected leveraging a morphological dilation operation [34],
(iii) a negation operation in conjunction with a bucket fill is applied, in
this way binarizing the colors of the foreground and background (i.e., the
background becomes black, whilst the artifact is filled in white), (iv) a
morphological erosion operator [34] is used to remove erroneous edges,
and, finally, (v) a Sobel edge detector [37] is employed, thus obtaining
the outer shape of the original image. Leveraging the newly generated
outer shape of the artifact, shape contexts are then computed. These shape
contexts describe the shape’s global information by a set of points that are
a result of sampling from the outer shape’s border, with the shape context
descriptors encoding both the distance and angle of a point to the remaining
sampled points. Lastly, the similarity between images is ascertained with
the k-nearest neighbors algorithm.

2

Whilst the aforementioned retrieval system, taking into account the
experiments performed by van der Maaten et al., achieved unsatisfactory
results for damaged artifacts, it nevertheless provides an improvement over
manual classification, lowering both the duration of the classification and
possible human errors.

2.4 Ranking Systems for Computer-Aided Single-View Pottery
Classification

More recently, Itkin, in the context of the ArchAIDE project1, explored
the use of deep learning in the classification of the artifact’s photographs
into typologies [21]. Two different approaches were explored, namely an
appearance-based classification (i.e., based on the decorative aspects of the
artifact) and a shape-based classification.

Appearance-based classification consists in the categorization of artifacts
into typologies by taking into account as the main differentiating factor
the decorative drawings and the employed colorization. As is the case in
our work, Itkin reported a diminutive number of training instances, with a
multitude of classes presenting only some dozen instances. Consequently,
a method based on transfer-learning was enforced, i.e., a pre-trained model,
trained on a considerably more numerous and general dataset is then fine-
tuned to a specific domain. Based on the aforementioned intuition, the au-
thors chose to fine-tune a model leveraging the ResNet-50 architecture [16],
which was previously trained on the ImageNet dataset [32]. Instead of
pursuing a standard neural network classification, maintaining the original
structure of the ResNet-50 architecture, in this case, an alternative path was
pursued: (i) the intermediate representations lodged at the end of each of the
architecture’s first five blocks are extracted, thus resulting on five feature
tensors, (ii) global average pooling is applied to each of the feature tensors,
(iii) the five feature vectors are concatenated, (iv) dropout, with a drop rate
of 80%, is employed to combat possible overfitting and aid generalization,
(v) fine-tuning is performed by a set of fully-connected layers with a ReLU
activation, (vi) dropout is applied once more, and (vii) the final classification
is performed. It should be noted that in the previous learning process, the
ResNet architecture from which the five feature tensors are extracted is
“frozen” (i.e., the ImageNet weights are maintained, no parameter adjusting
is performed), with only the fully-connected layers being trained.
Since the data instances used for the appearance-based classification

consist of photographs, frequently taken in different circumstances, certain
techniques were employed as to promote a more robust classifier, namely to
mitigate issues related to changes in lighting and background environments
of the input images. For the first aspect, in order to simulate, in training,
different lighting conditions, the luminosity (i.e., brightness) of the input
image’s pixels were scaled by a factor sampled from a distribution, with
each of the image’s three channels being scaled by three different sampled
values. As it pertains to environment variance, the employed solution
consists in background removal, leveraging GrabCut [30]. Considering that
the GrabCut technique is not fully automatic, an algorithm that automatizes
the foreground extraction was developed and posteriorly applied over the
available training images. The algorithm can be summarized in three basic
steps: (i) identify the background by sampling colors of the image’s border,
(ii) generate a distance image composed of the distances between each pixel
and the nearest sampled background pixel and binarize the image according
to a distance threshold (i.e., the background in black and the foreground in
white), and (iii) apply GrabCut, with the newly segmented areas labeled as
background or foreground.

In opposition, shape-based classification is based on the geometry of the
found artifacts: the shape of the pottery fragment is compared to a reference
collection of standardized artifact diagrams with a known typology. Since
color information was not to be taken into consideration in this approach,
transfer learning was not used. In consequence, a synthetic data generation
procedure, with the goal of mitigating the diminutive dataset, was developed
that, from the outlines of the available potsherd images, produces a virtual
model of the pottery artifact, which is then fractured in a randomized

x
0

B
at
ch

n
or
m
a
li
za
ti
o
n

C
o
n
vo
lu
ti
o
n

la
ye
r
1
×

1

ReLU B
a
tc
h

n
or
m
al
iz
a
ti
o
n

C
on

vo
lu
ti
on

la
ye
r
3
×

3

ReLU

C

x0

B
at
ch

n
or
m
a
li
za
ti
o
n

C
o
n
vo
lu
ti
o
n

la
ye
r
1
×

1

ReLU B
a
tc
h

n
o
rm

a
li
za
ti
o
n

C
o
n
vo
lu
ti
o
n

la
ye
r
3
×

3

ReLU

C

x1

B
a
tc
h

n
o
rm

a
li
za
ti
o
n

C
o
n
vo
lu
ti
o
n

la
ye
r
1
×

1

ReLU B
a
tc
h

n
or
m
a
li
za
ti
o
n

C
o
n
vo
lu
ti
on

la
ye
r
3
×

3

ReLU

C

x2

B
a
tc
h

n
o
rm

a
li
za
ti
o
n

C
o
n
vo
lu
ti
o
n

la
ye
r
1
×

1

P
o
o
li
n
g

la
ye
r
2
×

2

x1 x2

Transition layerBottleneck layer Bottleneck layer Bottleneck layer

x0

x0

x1

Fig. 2. Diagram of a dense block from the DenseNet architecture, with three layers
followed by the transition layer. The C operation, depicted in yellow, represents the
concatenation of matrices.

manner, thus emerging a synthetic sherd that is added to the training data
in the form of its outline. To generate the model of the artifact, a three-
dimensional object, from its sherd in an efficient fashion, the sherd’s profile
is projected onto the 𝑥𝑧 plane and it is then rotated around the 𝑧 axis. Since
each of the profile’s points (𝑝𝑥 , 𝑝𝑦), when rotated around the 𝑧 axis, forms
a circle perpendicular to 𝑧, the three-dimensional artifact’s points can be
modeled according to:

𝑥2 + 𝑦2 = 𝑝2𝑥 ∧ 𝑧 = 𝑝𝑦 (3)

Using the previously defined circles, the fractures are attained with the
intersection of a certain randomly defined three-dimensional plane with
the circles corresponding to the profile’s points. Point sampling is then
applied in order to obtain the discrete points used for the training.

The learning process, leveraging the synthetic profiles, is achieved with
the OutlineNet architecture, based on the PointNet architecture [29] intro-
duced by Qi et al.. A two-input approach was utilized in the architecture:
one input encodes the position (i.e., coordinates) of the points while the
other the angle at the location of the points (in relation to the outline). Each
of these two inputs is propagated in separate paths, both are given as input
to separate multilayer perceptrons with four layers, with the two results
being concatenated and passed, now in conjunction, to another multilayer
perceptron (two layers). Next, max-pooling is applied over the product of
the previous multilayer perceptron and is then passed to the final multilayer
perceptron, performing the final classification.

As it pertains to appearance-based classification, Itkin reports accuracies
of 55.2% in an experiment using more than 700 images from 49 different
classes while, on the other hand, shape-based classification over approxi-
mately 400 images from 42 classes only achieved 18.9% accuracy.

3 DEEP LEARNING ARCHITECTURE
The automatic classification models developed in the course of this work
can be divided into four distinct parts: (i) the convolutional neural network
architecture, (ii) a meta-learning technique, leveraging the representations
learned by the convolutional neural network model to mitigate the per-
formance issues related to the smallness of the dataset, (iii) self-training
leveraging the noisy student approach, and (iv) AugMix, a state-of-the-art
data augmentation technique used to regularize the learning process.

3.1 DenseNet Architecture
One of the best-performing convolutional neural network architectures
in image classification tasks is the DenseNet architecture. With the goal
of improving the flow of information, especially pertinent for convolu-
tional neural networks with considerable depth, i.e., deep networks, Huang
et al. developed the DenseNet architecture. The central concept of the ar-
chitecture consists on propagating all the previously learned information
throughout the network, instead of only using shortcut connections to
propagate forward the block’s input [16]. Each layer, in order to accomplish

1http://www.archaide.eu

3

22
4x
22
4

7x
7

64
11
2x
11
2

Convolution

3x
3

64
56
x5
6

Pooling

256
56
x5
6

Dense block I

128
28
x2
8

Transition layer I

512 28
x2
8

Dense block II

256 28
x2
8

Transition layer II

1024 14
x1
4

Dense block III

512 14
x1
4

Transition layer III

1024

Dense block IV

7x
7

1x
1

1000

Classification

Fig. 3. Overview of a DenseNet architecture, specifically the DenseNet-121. The
convolutional and pooling operations are depicted, in this diagram, respectively in
bright green and dark red. Regarding the building blocks of this architecture, the
dense block is depicted in light green, whereas the transition is represented in light
purple. The final layer, composed of a fully-connected component and a softmax
activation function, is depicted in purple.

this, propagates its feature matrices to all subsequent layers, as depicted in
Figure 2.

Considering 𝑙 to be an index over the architecture’s layers, 𝑙 − 1 feature
matrices will be transmitted to layer 𝑙 . In order to accumulate additional
information during training, these propagated layers are then concatenated
to each layer’s own feature tensor, i.e., x𝑙 = 𝑓𝑙 ([x0, x1, . . . , x𝑙−1]). Such
concatenated and propagated layers serve as collective knowledge for the
whole convolutional neural network since they represent all the previous
knowledge (i.e., learned parameters), and will not be modified (i.e., trained)
after being transmitted to a posterior layer. In a standard convolutional
neural network architecture, there are 𝐿 connections between layers, with
𝐿 representing the number of total layers. Because the different layers must
be propagated to subsequent layers, 𝐿×(𝐿+1)2 connections must be used in
the DenseNet architecture.

Curbing the rise in the number of each layer’s feature tensor, essential to
maintain efficiency, is attained by the employment of the growth rate hyper-
parameter k (i.e., how the number of feature matrices evolves throughout
the network) which, in the DenseNet architecture, is attainable to be of
a small to moderate size. Compared with ResNet architecture, DenseNet
utilizes only half the parameters to obtain equal results. This diminutive
number of parameters, when compared with other architectures, can be
attributed to the general knowledge (i.e., the feature matrices propagated
to subsequential layers) implicitly captured by the architecture, which pro-
motes parameter efficiency. The effective use of parameters in the DenseNet
architecture can additionally hinder potential overfitting due to the less
complex nature of an architecture with fewer parameters.
In more detail, the DenseNet architecture is composed of convolution

layers, pooling layers, dense blocks, and a transition layer. The dense blocks,
as shown in Figure 2, are the main learning units of this architecture,
being comprised of multiple 1 × 1 and 3 × 3 convolution layers with the
aforementioned shortcut connections between them. The 1×1 convolutional
layers, called bottleneck layers, are used by the authors to diminish the
rising number of the layer’s feature matrices, while the 3 × 3 filters are
responsible for extracting the relevant features from the received input.
Consequently, the 1 × 1 filter inside the dense block is placed before the
main 3 × 3 convolution layer in order to facilitate the computation of this
convolution operation. In order for the down-sampling to occur throughout
the architecture, dense blocks are separated by transition layers, which
contain a batch normalization unit, a 1 × 1 convolutional filter, and a 2 × 2
average pooling layer.

One of the possible implementations of this architecture is the DenseNet-
121 (i.e., with 121 as the architecture’s depth), shown in Figure 3. The
diagram shows the convolutional neural network with four dense blocks
separated by the aforementioned transition layers. Each dense block is

x

C
on

vo
lu
ti
on

la
ye
r
1
×

1

B
at
ch

n
o
rm

a
li
za
ti
o
n

D
ep

th
w
is
e

co
n
vo
lu
ti
on

la
ye
r
3
×

3

ReLU B
at
ch

n
o
rm

al
iz
at
io
n

6
·α

G
lo
b
al

av
er
ag

e
p
o
o
li
n
g

ReLU

F
u
ll
y
co
n
-

n
ec
te
d
la
ye
r

F
u
ll
y
co
n
-

n
ec
te
d
la
ye
r

ReLU

S
ca
le

Sigmoid

ReLU

Squeeze-and-excitation

C
on

vo
lu
ti
on

la
ye
r
1
×

1

B
at
ch

n
o
rm

a
li
za
ti
on

+

identity x

Fig. 4. Diagram of a MBConv6 3 × 3 block. In a yellow box, next to the first 1 × 1
convolution layer, we can observe how 𝛼 , i.e., the tensor’s channels, are scaled with
an expansion ratio of 6. The + operation represents matrix addition.

comprised of 6, 12, 24, and 16 layers, respectively. For the relevant feature
matrices to be extracted from the input image, a convolution filter of size
7 × 7, with a stride size of two, must first be applied to the input. The
result of this application can be seen in the convolution block of Figure 3.
Subsequently, a 3 × 3 max-pooling filter is also applied, with a stride of size
two. Then, the resulting featurematrices are supplied to the sequence of four
dense blocks, parted by transition layers, which, as previously said, perform
the main portion of the learning process. Afterwards, the resulting 7 × 7
feature matrices are subjected to a 7 × 7 average global pooling (i.e., in this
case, the size of the filter is equal to the size of the feature matrices). Finally,
the classification is obtained by using a 1000-dimensional (i.e., number of
categories in the ImageNet dataset, but of size 19 in the context of this work)
fully-connected layer, followed by the application of the softmax activation
function. In this architecture, the k hyperparameter (i.e., the growth factor
in the dense blocks) is set to 32 and, as we can observe in Figure 3, the
first dense block receives 64 feature matrices from the previous layer, and
adds them to the features matrices produced by the 6 layers inside the
dense blocks (i.e., 6× 32), totaling the 256 features matrices indicated in the
diagram.

Concerning the application of the DenseNet-201 architecture in the con-
text of this work, the aforementioned architecture, was, according to multi-
ple experiments, assessed as the better-performing architecture and, conse-
quently, is the base architecture on which additional techniques are applied
upon, being responsible for the generation of the automatic classification
models of this work.

3.2 EfficientNet Architecture
More recently, Tan and Le introduced the EfficientNet architecture [42],
based on the idea that instead of adjusting only the depth of a convolutional
neural network, scaling should be made over three different dimensions:
depth, width, and resolution. In general, deeper architectures produce more
accurate models, although considerably deeper networks do not present
significantly better results thanmoderately deep architectures. Furthermore,
a network’s width can also be adjusted to improve performance, but only
until a certain point, after which the performance gains begin to rapidly
diminish. Yet another dimension that can be scaled in order to achieve
better performances is the resolution of the images provided as input, again
up to a given limit. Due to the fact that the improvements obtained by
individually scaling each of the dimensions are considerably limited, Tan
and Le introduced the concept of compound scaling.
The underlying idea is that when the architecture’s depth is increased,

because larger receptive fields are accessible, higher resolution input images
can be better leveraged. If the network’s width is likewise scaled, this can
provide the architecture with the ability to grasp features that have a
finer grain. The compound scaling concept, which adjusts all 3 network

4

22
4x
22
4

3x
3

32
11
2x
11
2

Convolution I

16
11
2x
11
2

MBConv1 3x3

24
56
x5
6

2 x MBConv6 3x3

40
28
x2
8

2 x MBConv6 5x5

80 14
x1
4

3 x MBConv6 3x3

112 14
x1
4

3 x MBConv6 5x5

192 7x
7

4 x MBConv6 5x5

320 7x
7

MBConv6 3x3

1x
1

1280

Convolution II

7x
7

1x
1

1280

FC

Fig. 5. Diagram of the EfficientNet-B0 architecture, composed of various MBConv
blocks in conjunction with convolution, pooling, and fully-connected layers. As
before, the convolutional filters are depicted in green, whilst the pooling are repre-
sented in red. On the other hand, the fully-connected layers are depicted in purple.
Some layers with the same characteristics are placed consecutively, with the number
of these layers being depicted in the diagram by the multiplying constant placed
before the layer’s name.

dimensions (i.e., 𝑑 ,𝑤 and 𝑟) in parallel, considering their interplay, is thus
formally defined as:

𝑑 = 𝛼𝜙 ,𝑤 = 𝛽𝜙 , 𝑟 = 𝛾𝜙 (4)

subject to 𝛼 · 𝛽2 · 𝛾2 ≈ 2
𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1

In the previous equation, 𝑑 represents the depth, 𝑤 the width, and 𝑟 the
image resolution. A parameter called compound coefficient, denoted by 𝜙 ,
is the scaling parameter of the network’s three dimensions, and 𝛼 , 𝛽 , and 𝛾
are constants that represent the resource distribution for each one of these
dimensions. The constants are subject to the previous condition in order to
guarantee that the computation cost of a different 𝜙 grows with 2𝜙 .

Compound scaling was posteriorly tested by the use of a baseline network
called EfficientNet-B0. The authors designed this network with basis on
the method used by Tan et al., where a search with multiple objectives (e.g.,
latency and accuracy) was done in order to maximize an accuracy metric
for a certain generated model. In this case, the authors wanted to maximize
the model’s accuracy whilst using relatively low FLOPS (i.e., computational
cost). The optimization problem is thus formalized as follows:

max
𝑥

Accuracy(𝑥) ·
[
Flops(𝑥)

T

]𝑤
(5)

In the previous expression, 𝑥 represents a model, Accuracy(𝑥) is a func-
tion mapping a model to an accuracy score, Flops(𝑥) is a function of the
computational cost of a certain model, T is the intended target FLOPS,
and𝑤 is a hyperparameter that adjusts the compromise between the two
metrics. Using Equation 5 and the search method introduced by Tan et al.,
the authors reached the baseline architecture named EfficientNet-B0 from
which subsequent versions and improvements build upon. The main block
of this architecture is the mobile inverted bottleneck (MBConv) leveraging
the squeeze-and-excitation technique [19].

As can be seen in Figure 4, the aforementioned block is composed of two
convolution layers, a depthwise convolution layer, and the squeeze-and-
excitation optimization. In a depthwise convolution layer, a sole filter is
applied to each of the input channels of the feature matrix, followed by
feature creation using a pointwise convolution (i.e., a 1×1 convolution). The
two-step procedure differs from a standard convolutional layer, in which
both filtering and feature creation are achieved concomitantly.
The first layer of the MBConv block, as seen in Figure 4, is responsible

for scaling up the number of channels in the block’s input. Such scaling of
the number of channels was devised by Sandler et al. as an improvement
over the MobileNetV1 [18] architecture, with the objective of mitigating
potential knowledge dissipation during training.

In contrast, the squeeze-and-excitation optimization has the objective
of enhancing the learning process in convolutional neural networks by
adding to the learned model dependencies between the multiple existing
input channels. This is achieved in two phases; first the squeeze phase uses
a global average pooling filter in each of the channels, this way producing
statistical descriptors for the aforementioned channels. Then, these descrip-
tors are used in the consequent excitation phase to learn interdependencies
between channels. Such dependencies are exposed by the following two
fully-connected layers. The learned non-linearity is then followed by a
sigmoid activation function, and finally a scaling block, that is defined as
the channel-wise product between the learned scalars and the feature maps,
is applied.

The EfficientNet-B0 architecture, as depicted in Figure 5, is mainly com-
posed of a series of these MBConv blocks placed in sequence. From this
baseline architecture, 7 better performing architectures (e.g., EfficientNet-
B1, EfficientNet-B2, etc.) were generated by scaling the baseline architecture
leveraging the compound scaling method in two phases: firstly, with the
compound coefficient 𝜙 parameter set at one, a grid search was made to find
the value for the depth, resolution, and width constants; secondly, using
these newfound values for the three dimensions, different values for the 𝜙
parameter were tested. With the state-of-the-art concerning the ImageNet
dataset being reached by the EfficientNet-B7.
In the context of our work, due to limited computational resources,

the EfficientNet-B3 was the largest EfficientNet variant for which all the
explored techniques (e.g., AugMix) could be tested and, consequently, was
the EfficientNet architecture used as a basis for our experiments.

3.3 Two Input Convolutional Neural Network Architecture
As previously mentioned in Section 1, the diagrams in question are com-
posed of two views. Consequently, to potentially take advantage of the
knowledge of the data instances’ structured format, we developed a two-
input based architecture. In order to accomplish this, two separate con-
volutional neural networks are placed in parallel: one receiving the left
part of the image and another the right part of the input image. The input
images are propagated through both models, with the last layers’ output
of both individual models being concatenated. Such a vector is linked to
a fully-connected layer (i.e., the final classification layer with the classes’
dimensionality) performing the model’s prediction. We again considered
the DenseNet-201 and EfficientNet-B3 architectures, but now, taking into
account the two-input format, in a pairwise disposition, i.e., two DenseNet-
201 or EfficientNet-B3 models.

3.4 Few-shot Learning and Meta-Learning
Automatic classification scenarios where only a diminutive number of
instances for each of the existing categories are available are denominated
few-shot learning. Our dataset, as can be assessed in Section 4, is composed
of only a small number of examples for each of the 19 analyzed typologies
and, therefore, fits in this type of scenario.
One of the possible approaches to solve few-shot learning tasks is the

application of automatic learning algorithms (e.g., k-nearest neighbors)
over the representations of images that the convolutional neural network
model has produced, called meta-learning, leveraging the idea of learning
over previously acquired knowledge. SimpleShot [47] or the classification
methodology introduced in [43] are examples of this, with both techniques
achieving state-of-the-art results in few-shot learning benchmark tasks.

Althoughmore intricate techniques, such as the Prototypical Networks [36],
were explored in preparatory tests, the best results were achieved with the
simple application of other learning algorithms atop the convolutional
neural network’s learned embeddings. Three different classification algo-
rithms were thus considered to classify the learned representations, namely
k-nearest neighbors, random forest, and logistic regression. The employed
meta-learning process consists in (i) training the convolutional neural net-
work model (e.g., the EfficientNet-B3), (ii) removing the last layer of the

5

Ritt
erl

ing
8

Drag
en

do
rff

29
/3

7
Hisp

án
ica

4
Drag

en
do

rff
44

Drag
en

do
rff

36
Drag

en
do

rff
35

Drag
en

do
rff

15
/1

7

Drag
en

do
rff

27
Drag

en
do

rff
33

Hisp
án

ica
37

Hisp
án

ica
10

Hisp
án

ica
59

Drag
en

do
rff

29
Drag

en
do

rff
29

b
Drag

en
do

rff
37

Drag
en

do
rff

46
Hisp

án
ica

6
Hisp

án
ica

7
Gou

din
ea

u 27

65 64

24
19 19 18 17 16 14 14

9 9 8 8 8 8 8 8 7

Q
ua

nt
ity

Fig. 6. Histogram of the 19 available categories from the project’s main dataset
after filtering for classes with more than four instances, preceding the addition of
supplementary data instances.

model (i.e., the classification layer with the classes’ dimensionality), (iii) ob-
taining the learned representations of the data instances by predicting both
the training and validation set, leveraging the learned model, (iv) applying
standardization to the images’ features (i.e., remove the mean and divide by
the samples’ standard deviation) for logistic regression and 𝑙2 normalization
for k-NN, and (v) training and classifying the representation vectors, lever-
aging one of the aforementioned classification algorithms. Moreover, con-
cerning the k-NN classification, the approach employed by Wang et al. [47],
i.e., both the training and test data instances are mean-centered by sub-
tracting the mean of the training instances before the 𝑙2 normalization, is
applied in the aforementioned meta-learning procedure for the dataset’s
experiments.

3.5 Self-training
One of the principal pitfalls of the application of deep convolutional neu-
ral networks to a certain domain is the scarcity in available labeled data
instances. A commonly taken approach to mitigate this issue is the use
of unlabeled data instances through specialized techniques, since such
type of instances are significantly more accessible. Self-training is one of
these techniques that can be leveraged to take advantage of unlabeled data
instances. The technique itself can be summarized in three steps: (i) an
initial model, called the teacher model, is trained over the available labeled
data instances, (ii) the teacher model is then used to classify the unlabeled
data instances creating class predictions called pseudo-labels, and (iii) a
new model, denominated student model, is trained over the totality of the
available data, i.e., over both the labeled data instances and the unlabeled
data instances leveraging the pseudo-labels created by the student model.
Following the intuition that a student model with an additional amount
of noise can further improve its classification performance (i.e., the noisy
student approach [48]), a dropout layer [39], with a drop probability of
40%, was added to the student model employed in our experiments, more
precisely, in the model’s penultimate layer (i.e., the global average pooling
layer).

After obtaining a considerable quantity of unlabeled data instances, 2963
to be more precise, the above-mentioned procedure was applied to our
dataset, slightly modified to include a prediction confidence threshold. This
threshold was used to filter the instances labeled by the student model with
a prediction probability smaller than 95% (corresponding to the average
of each fold’s probabilities) which, for one of the developed DenseNet-
201 models, corresponded to 94 data instances. This filtering step allows
mitigating the potential problems related to images from exogenous classes,
since the typologies present in the unlabeled data may not intersect with
our class set.

3.6 AugMix Data Augmentation
Data augmentation techniques are usually used in convolutional neural
networks with the objective of regularization of the learned model. In recent

years, regularization techniques such as MixUp [49], have achieved state-of-
the-art results in image classification tasks. Consequently, we applied data
augmentation techniques in this study, specifically the method introduced
by Hendrycks et al. denominated AugMix [17].
The goal of Hendrycks et al. [17] was related to the regularization of

convolutional neural network models by the way of closing the gap be-
tween the distribution of the training data used to train the aforementioned
classification model and the data that it is intended to correctly categorize.
In short, this technique generates synthetic data instances from the original
training data by combining augmentation operations (e.g., rotate, posterize,
among others), thus effectively creating chains of operations, subsequently
weighting the resulting operation chains. Firstly, the weights that will be
weighting the 𝑘 operations chains are sampled from a Dirichlet distribution
with concentration parameters 𝜶 = (𝛼1, . . . , 𝛼𝑘). Then, the 𝑘 operations
are generated by sampling three different augmentation operations and
composing them into sequences, i.e., chains, with a length of one to three
operations (e.g., a chain of operations of length two comprised of a rotation
followed by a horizontal translation). Such newly created chains are then
weighted, producing a new intermediate data instance combining the oper-
ations chains. Furthermore, leveraging the MixUp regularization technique,
a new data instance is generated using pairwise interpolation, as expressed
in Equation 6, between the original image and the image that results from
the application of the data augmentation operations chains.

𝑥 = _ · 𝑥𝑖 + (1 − _) · 𝑥 𝑗 (6)
𝑦 = _ · 𝑦𝑖 + (1 − _) · 𝑦 𝑗

As to promote both the original data instance and its augmented version
to be classified in the same category by the trained model, the Jensen-
Shannon divergence consistency of the probability of the original data
instance, as well as its chained augmented variants, being classified by the
model as a certain class. Thus, the loss function is defined as:

𝐿 (p̂(𝑦 |𝑥0), 𝑦) + 𝛾 · Jensen-Shannon (p̂(𝑦 |𝑥0), p̂(𝑦 |𝑥1), p̂(𝑦 |𝑥2)) (7)

In the previous equation, 𝐿 represents the model’s loss, 𝛾 (set to 12 in this
case) the weight attributed to the Jensen-Shannon divergence consistency in
the loss function, p̂(𝑦 |𝑥0) the posterior distribution of the original image 𝑥0,
p̂(𝑦 |𝑥1) the posterior distribution of an augmented variation 𝑥1, and p̂(𝑦 |𝑥2)
the posterior distribution of a second augmented variation 𝑥2. The Jensen-
Shannon term of the loss function, expressed in Equation 7, is defined as
follows:

JSD =
1
3
· (DKL (p̂(𝑦 |𝑥0)∥M) + DKL (p̂(𝑦 |𝑥1)∥M) + DKL (p̂(𝑦 |𝑥2)∥M)) ,

(8)

M =
1
3
· (p̂(𝑦 |𝑥0) + p̂(𝑦 |𝑥1) + p̂(𝑦 |𝑥2))

In the previous equation, 𝐷𝐾𝐿 represents the Kullback-Leibler divergence
measure.

4 DATASET DESCRIPTION
The sample data for both training and testing the convolutional neural
networks comes mostly from the excavation of the 23rd Roman block of
Numantia (Garray, Spain) between 2004 and 2009. Numantia is a well-
known oppida of Iberia during the Iron Age due to the role it played in the
wars against Rome, especially in the Second Celtiberian War (153-98 B.C.),
also known as the Numantine War. After the conquest of Numantia in 133
B.C., Rome established several Roman cities in this location, the remains of
the city built in the time of Augustus are the best preserved. Dated between
the 1st and 2nd centuries A.D., this dataset comprises all the terra sigillata
pottery diagrams that the Numantia Archaeological Team manually drew
and digitized to document the materials from this excavations under a
project that aimed to review the Iron Age and Roman urban planning of
this site [22]. Terra sigillata is a kind of pottery highly standardized in its
forms, characteristic of the Roman Empire. It is defined as pottery tableware

6

Fig. 7. Example of four artifact diagrams from the project’s dataset.

with a distinct glossy reddish surface, sometimes with geometrical, floral
or figural decorations [9].
In the excavations of the 23rd block of Numantia, around 12,000 arti-

facts were recorded. Among them, 4,083 corresponded to terra sigillata
sherds. During the post-excavation process, 559 terra sigillata fragments
were manually drawn creating black-and-white pottery diagrams, showing
two different perspectives on the depicted pottery, namely a profile view
of the artifact and its cross-section, as can be seen in Figure 7. Due to the
conservation conditions and the high fragmentation of the materials, only
392 pottery diagrams could be assigned a typology, representing around
65% of the dataset. These pottery diagrams span 48 different typologies (i.e.,
artifact categories), showing an unbalanced distribution per pottery type,
as can be seen in Figure 6. To expand this dataset, we considered using
other sources of pottery diagrams, such as specialized publications on His-
panic, Gallic and Italic forms and collections of terra sigillata from contexts
similar to Numantia. Taking into account that a substantial quantity of
classes exhibited less than four instances (an exceptionally small number
of instances), we filtered classes manifesting such characteristics, which
resulted in a total of 320 data instances from 19 different classes.
As previously mentioned, in order to expand those classes with a num-

ber of instances smaller than 7, additional data instances were included
from published sources. In this case, 23 additional diagrams were extracted
from: [5], [3], [2], [28], [12], and [31], reaching a total of 343 terra sigillata
fragments with assigned typology, henceforth this will referred as labeled
instances.

The amount of labeled instances in the application of convolutional neu-
ral networks to specific domains can prove to be scarce, as in this research.
Consequently, unlabeled data instances can be used as a secondary data
source to increase the size of the dataset. In our case, by searching through
various publications depicting artifact pottery diagrams (e.g., the above-
mentioned articles) and, leveraging automatic object detection techniques,
we obtained 2963 new unlabeled pottery diagrams. These unlabeled dia-
grams were used only in experiments leveraging self-training approaches.
Since convolutional neural networks require a constant square image

size in most settings, the images of the dataset were transformed into a
square image and then resized to the chosen resolution of 448 × 448, only
limited by our computational resources. On the other hand, for the two-
input architectures, the same process was applied but, since the images are
separated in half, the input’s selected resolution was 224 × 224.

5 EXPERIMENTS
Various experiments leveraging different types of architectures and dis-
similar types of data augmentation were explored. Furthermore, additional
crucial implementation details are introduced. Here we present such exper-
iments and the strategies used to perform them.

5.1 Training Strategies
As mentioned before, the performed experiments leveraged a DenseNet-201
model pre-trained on the more general ImageNet dataset. In parallel, exper-
iments leveraging the more recent EfficientNet architecture, in particular

Table 1. Exploration of different data augmentation strategies for training. High-
lighted in bold are the best results for each of the explored architectures.

Model Strategy Pre Rec F1 Acc

DenseNet-201
Basic 52.23 52.52 50.32 63.59
MixUp 52.39 54.94 51.33 62.69
AugMix 55.13 56.10 53.86 67.65

EfficientNet-B3
Basic 49.52 51.56 47.21 56.86
MixUp 54.84 52.94 51.01 59.21
AugMix 55.14 55.51 53.37 65.60

the EfficientNet-B3, were also performed. As to adapt both pre-trained
models to the two pottery classifications tasks, one additional layer was
added, namely a fully-connected layer with the classes’ dimensionality. The
pre-trained models were trained in their entirety (i.e., none of the original
weights were made constant) while employing two different optimizers,
namely AdaMod [13] and Adam [24], with the first being employed in
DenseNet training and the second for EfficientNet training. It should be
noted that for both optimizers the default hyperparameters were main-
tained.

Training leveraged the policy introduced by Smith [35], namely Cyclical
Learning Rate (CLR). More concretely the considered triangular policy
decreases the learning rate amplitude by half at the end of each cycle, with,
in this case, the learning rate varying between a constant base value of 10−5
and a maximum of 10−3. Moreover, taking into account the experiments
performed by Smith, training is stopped at the end of the last cycle, as per
the recommendation in the aforementioned paper, and network training is
limited to five training cycles. Concerning the step size (i.e., half the size of
a cycle), the recommendation of varying this hyperparameter between two
and ten epochs is followed, with different regularization techniques using
different values.

As to better evaluate the generalization capacity of the learned models, a
stratified cross-validation split was employed, in this case, with five splits,
i.e., in each of the mutually exclusive folds, 80% of the data is used for
training and 20% for validation purposes, with each fold’s composition
maintaining relative class representation.

5.2 Experimental Results
Various metrics were considered in the evaluation of the performed exper-
iments, namely the macro-average versions of precision, recall, and the
f1-score. Intuitively, the precision of a class can be defined as the ratio of
correctly classified data instances, of all the instances labeled as the class
in question. On the other hand, recall expresses the portion of correctly
labeled instances by the system, of all the data instances composing the
class in evaluation. Finally, the f1-score, which combines both previously
mentioned metrics, is defined as the harmonic mean between precision
and recall. Calculating these metrics using the macro-average method (i.e.,
taking the simple average of each of these metrics for each of the dataset’s
classes) is of considerable importance since the available labeled data is
notably unbalanced. Considering that a cross-validation split is being used,
these metrics are first calculated in each fold, with the final metric value
resulting from the mean of the five folds’ performance.
Firstly, with the objective of measuring the regularization capacity of

data augmentation in the context of the classification of standardized pot-
tery diagrams, two types of data augmentation techniques were compared
with the state-of-the-art AugMix regularization technique, namely MixUp
(i.e., the method used in one of the steps of the AugMix algorithm) and a
basic fixed set of transformations, namely brightness shifting by a factor
between 0.8 and 1.2, position shifting by a maximum of 12.5%, and randomly
rotating in a range of 2.5 degrees. Depicted in Table 1 are the results of
these experiments. Such results show a clear performance increase against
basic augmentations in all of the three assessed metrics when techniques

7

Table 2. Results of the application of the different algorithms, leveraging meta-
learning, against the standard convolutional neural network prediction (categorized
as None). Only the best-performing versions of the models are here presented
(corresponding, in this case, to models leveraging AugMix). In bold are portrayed
the best results of each model.

Model Algorithm Pre Rec F1 Acc

DenseNet-201

None 55.13 56.10 53.86 67.65
1-NN 58.74 60.77 57.88 67.07
3-NN 57.61 58.62 56.00 67.65
5-NN 56.83 59.23 55.81 67.65
7-NN 54.64 56.59 53.57 66.49
RF 52.50 52.41 50.34 66.78
LR 53.16 51.92 50.42 66.19

EfficientNet-B3

None 55.14 55.51 53.37 65.60
1-NN 53.61 55.14 52.14 63.28
3-NN 56.26 56.64 54.34 64.15
5-NN 51.31 54.64 51.10 62.11
7-NN 52.65 54.05 51.68 63.27
RF 53.82 51.13 49.37 65.32
LR 54.56 54.97 52.50 65.89

2-DenseNet-201

None 57.65 55.12 53.35 67.29
1-NN 59.11 58.15 56.11 65.82
3-NN 60.04 57.35 55.96 67.29
5-NN 56.85 55.21 53.43 65.53
7-NN 57.40 53.85 53.21 64.92
RF 52.29 49.43 48.46 65.79
LR 56.09 51.98 50.98 66.98

2-EfficientNet-B3

None 49.99 51.96 48.78 60.55
1-NN 50.11 52.86 48.94 60.53
3-NN 51.51 52.83 49.71 61.11
5-NN 51.64 52.65 49.52 61.11
7-NN 51.09 51.43 48.65 60.81
RF 44.43 42.52 41.28 59.38
LR 48.16 48.53 45.97 61.13

that perform mixing between images are applied, in this case, MixUp and
AugMix. On the other hand, the 1-3% performance increase from MixUp to
AugMix reflects the added complexity of the latter, namely the use of multi-
ple chains of operations and the Jensen-Shannon divergence consistency
added to the loss function.
Secondly, we assessed the performance of various classification algo-

rithms leveraged in themeta-learning approach. Having the results obtained
in the previous experiments as a basis, we fixed the image augmentation
procedure to the AugMix algorithm for these experiments. In addition to
the architectures used in the remaining experiments (i.e., DenseNet-201 and
EfficientNet-B3), we tested the architecture and training technique intro-
duced in Section 3.3 and 3.5, respectively. Table 2 depicts the results of such
experiments, with 2-DenseNet-201 and 2-EfficientNet-B3 corresponding to
the two-input version of these architectures.
Concerning the single input architectures trained exclusively over the

labeled data instances, a clear performance superiority of the DenseNet-201
model over the EfficientNet-B3 across the three tested metrics can be dis-
cerned with, for instance, DenseNet outperforming the Efficient model by
1.66% in what concerns one of the better f1-score results of both models (i.e.,
the 3-NN algorithm). One of the possible causes for this discrepancy in meta-
learning performance is the difference in feature vector dimensionality: the
DenseNet’s feature vector is 1920-dimensional while the EfficientNet’s is
1536-dimensional. The same comparison performed between the two-input
architectures attains similar results, with the 2-DenseNet-201 model outper-
forming the 2-EfficientNet-B3, albeit with a larger performance disparity

Table 3. Comparison of the performance of the tested meta-learning algorithms
between the best-performingmodel (i.e., DenseNet-201) in the context of the previous
experiments leveraging a self-training approach and the original model with dropout
noise.

Model Algorithm Pre Rec F1 Acc

DenseNet-201 w/ dropout

1-NN 57.66 57.99 55.47 65.90
3-NN 56.67 56.92 54.42 66.19
5-NN 58.12 57.95 55.63 67.65
7-NN 56.24 56.29 53.89 66.77
RF 54.07 52.07 51.02 66.49
LR 55.74 54.04 52.93 67.37

DenseNet-201 Self-trained

1-NN 62.88 61.61 60.28 69.11
3-NN 62.47 61.18 59.73 69.41
5-NN 62.61 62.30 60.51 71.45
7-NN 59.87 60.14 58.20 70.58
RF 55.45 54.85 53.58 68.53
LR 59.52 58.05 56.74 69.69

between them. Both models, however, achieved worse results than their
single-input counter-parts concerning meta-learning. Such performance
decrease can be attributed to the halving of the image’s resolution (i.e.,
the two view diagram were split into two different images) since the data
instances correspond to diagrams where diminutive features can have a
notable impact on classification performance and thus higher resolutions
are critical for successful results.

By evaluating the algorithms applied over the four previously mentioned
models’ learned representations, it can be ascertained that the k-NN based al-
gorithms, particularly 1-NN and 3-NN, perform the best across the precision,
recall, and f1 metrics for all models. In terms of accuracy, the EfficientNet-B3
and 2-EfficientNet-B3 architectures achieve the highest performance lever-
aging a logistic regression, with the remaining architectures performing the
best on k-nearest-neighbor classifiers or the standard network prediction.
An analysis of the quality of the representations learned by the convo-

lutional neural network architectures can be observed in Figure 8, where
the dataset’s instances are represented as points, with their color depict-
ing its true typology. Particularly, the way in which the 94 unlabeled data
instances, used in the self-training setting, clustered in accordance with
the pseudo-labeling attained by the DenseNet-201 model, which, in this
case, was trained using the entirety of the labeled dataset (in order to avoid
different representations by each of the five models, one per fold). In order
to produce the above-mentioned graphic, first, the Principal Component
Analysis (PCA) dimensionality reduction technique was applied, in this
case, to the output of the DenseNet-201 model developed in the previous
experiment. The output vectors were thus reduced from a 1920-dimension
vector to a 94-dimension vector, with this transformation resulting in no
added noise to the final vector. Secondly, the t-distributed Stochastic Neigh-
bor Embedding (TSNE) [46] is employed to depict this 94-dimension vec-
tor in a two-dimensional plot. Observing the aforementioned scatter plot,
small groups of data instances with the same pseudo-labeled typology
(e.g., Dragendorff 27) are made evident. Of the eleven classes present in
the pseudo-labeled set, distinct agglomerations for each one of the classes
(i.e., a small intra-cluster distance and a large inter-cluster distance) can be
observed, with no noticeable mixture between the clusters. Such agglomera-
tions of instances of the same type justify the performance of meta-learning
leveraging a k-NN classifier reported in previous experiments.
According to the terra sigillata typologies, Figure 8 shows three main

groups. First, the upper center and right parts of the scatter plot display
those vessels that are larger, corresponding to types such as Dragendorff
29/37, Dragendorff 37, and Hispánica 10. Despite the lack of decoration
of the latter, they are quite similar typologically; the three are bowls with
straight walls and a slightly thick rim. Second, the bottom and left portion

8

Fig. 8. Scatter plot of the DenseNet’s learned representations for the available data
instances with randomly selected example diagrams from each of the displayed
clusters highlighted. The embedding to a two-dimensional space was obtained
leveraging the t-SNE technique with the perplexity hyperparameter, regulating
focus on more local or global data features, set to 45.

of the graph groups forms that are usually smaller vessels or bowls, which
generally present moldings or carenations (i.e., an abrupt change of direc-
tion) on the rim and the neck. Finally, the upper-left encompasses mainly
those artifacts that are lids.
The best results, however, were achieved leveraging the self-training

technique. By using the newly best performing model (i.e., the DenseNet-
201 model) to label the unlabeled data instances, the dataset is extended
and the training is repeated with the aforementioned noise leveraging a
dropout layer with a drop probability of 40%. Taking a meta-learning ap-
proach, more precisely, by applying the k-NN algorithm over the model’s
learned representations is the best-performing of the tested procedures,
achieving the second-best precision (62.61%), best recall (62.30%), and best
f1-score (60.51%) metrics with 5-NN, as can be observed in Table 3. Compar-
ing the model leveraging self-training with the best DenseNet model (i.e.,
DenseNet-201 w/ AugMix), particularly with respect to the meta-learning
approach leveraging the 1-NN classifier, a 4.14%, 0.84%, and 2.40% increase
in the precision, recall, and f1 metrics, respectively, can be discerned over
the best result harnessing meta-learning. As to assess the contribution
to model performance of the aforesaid dropout layer, a DenseNet-201 ar-
chitecture leveraging a dropout layer with a drop probability of 40% was
tested. The results of these tests, as can be observed in Table 3, show an
identical performance concerning the precision, recall, and f1 metrics to the
DenseNet-201 model without dropout and, consequently, exclude the in-
corporation of the dropout technique as the sole cause for the performance
increase in the self-training model.
Figure 9 depicts four different classification scenarios across two dis-

tinct axes, namely class volume and prediction correctness. Concerning
the minority classes, examples from the Dragendorff 29 and Goudineau
27 typologies were analyzed, while for the more numerous classes, data
instances from Ritterling 8 and Dragendorff 29/37 were considered. Observ-
ing the prediction of the data instances from the Dragendorff 29 minority
class (located at the bottom-right of the figure), predicted as part of the
Dragendorff 29/37 typology, and taking into account the data instances
of this class, it is possible to ascertain a considerable similarity between
the mislabeled data instance and the images of the erroneously attributed
category which, given the diminutive quantity of the Dragendorff 29 class,
critically contributes to that misclassification. On the other hand, analyzing

M
in
or
it
y

M
a
jo
ri
ty

Correct Incorrect

Fig. 9. Example of four artifact predictions leveraging the DenseNet-201 model
with the 5-NN classifier. Two dimensions are depicted in the figure above: whether
the instance’s class is one of the most numerous classes and the correctness of
the system in the image classification task. From top to bottom, left to right, the
considered instances’ categories: Ritterling 8, Dragendorff 29/37, Goudineau 27, and
Dragendorff 29.

an example from a majority class, namely the Dragendorff 29/37 (located
at the top-right of the figure), which was classified as a Dragendorff 27
instance, such misclassification of a majority class for a minority class can
be attributed as a side-effect of the high number of pseudo-labeled images
as the Dragendorff 27 typology, which, since this model leverages the noisy
student approach, can cause a substantial bias towards this class.

6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, we investigated, in a systematic way, the application of deep
convolutional neural networks to the task of classification of standardized
black-and-white pottery diagrams into preexisting typologies defined by
pottery experts. The developed automatic classifying systems were trained
over a small labeled dataset, which was later further extended by a set of
unlabeled images extracted from various publications. Different convolu-
tional architectures were explored, namely the EfficientNet and DenseNet
architectures, structured in two different manners (i.e., single and double
input), while leveraging diverse data augmentation techniques. The best
classification performance was achieved with the DenseNet-201 architec-
ture leveraging the AugMix technique and additional pseudo-labeled data.
However, due to both the smallness and unbalancedness of our labeled
dataset, the achieved final f1-score performance was of 60.51%, a value that
can potentially be improved with additional labeled examples extracted in
close contact with in-domain experts.
From the performed experiments and their results, additional paths for

the application of convolutional neural networks in the classification of
pottery into typologies were made evident. One such path is the classifica-
tion of pottery photographs, in opposition to the black-and-white diagram
format studied in this paper. The photograph format, due to some addi-
tional elements such as color, has the potential to improve the classification
performance: since our automatic classification systems were developed
leveraging models pre-trained on the ImageNet dataset, a collection of
photographs in color, data instances with a format similar to such a dataset
would be more amenable for convolutional neural network training. Exper-
iments exploring the application of the techniques introduced in this paper
leveraging one such dataset, obtained from an available online catalog, are
being performed concomitantly.
Taking into account the comparatively weak results attained by the

double-input versions of the studied convolutional neural network archi-
tectures, a decrease in performance that can be attributed to the smallness
of the data instance resolution employed by us, and the potential of the
approach for success in this image classification task, experiments with
higher resolutions (e.g., 300 × 300) for both images are an additional venue
for improvement. With respect to the EfficientNet-B3 architecture, perform-
ing substantially worse than the DenseNet-201, an increase in the scaling
factor of the architecture (i.e., testing an EfficientNet-B4) could lead to better
results, however, such architecture cannot be tested presently due to its

9

computational cost when paired with the AugMix data augmentation tech-
nique with possible experiments leveraging such architecture potentially
being computationally feasible in the near future.
Finally, additional data augmentation techniques such as GridMask [6]

and FMix [14], class-weighted loss functions [10], or current state-of-the-
art techniques in the context of semi-supervised learning [38] also have
the potential to improve the performances reported in this paper without
requiring new labeled instances.

7 ACKNOWLEDGEMENTS
We would like to thank Prof. Alfredo Jimeno, Director of Numantia Archae-
ological Site, who has kindly allowed us to use unpublished data for this
experiment, and also to Diana Vega-Almazán for her bibliographical recom-
mendations on terra sigillata. This research was supported by Fundação para
a Ciência e Tecnologia (FCT), through research grant DigCH-HJ-253525.

REFERENCES
[1] Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4).

[2] Berrocal-Rangel, L., Seco, P., and Triviño, C. (2002). El Castiellu de Llagú (Latores, Oviedo).
Un castro astur en los orígenes de Oviedo. Real Academia de la Historia.

[3] Bertran, F. T. (1991). La terra Sigillata de Clunia. Una propuesta metodológica para el estudio
de las producciones altoimperiales. PhD thesis, Universitat de Barcelona.

[4] Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6).

[5] Casanova, M. L. B. and Ruiz, J. R. (2011). Memòria de la intervenció arqueològica a l’Ateneu
Santboià.

[6] Chen, P., Liu, S., Zhao, H., and Jia, J. (2020). Gridmask data augmentation. arXiv e-prints,
arXiv:2001.04086.

[7] Christmas, J. and Pitts, M. (2018). Classifying and visualising roman pottery using computer-
scanned typologies. Internet Archaeology, 50.

[8] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3).
[9] Crawford, A. (2014). Ceramics, roman imperial. In Smith, C., editor, Encyclopedia of Global
Archaeology. Springer New York.

[10] Cui, Y., Jia, M., Lin, T., Song, Y., and Belongie, S. J. (2019). Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

[11] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12] de Catalan, M. A. M. (1961). Terra sigillata hispánica. Valencia: The William L. Bryant
Foundation.

[13] Ding, J., Ren, X., Luo, R., and Sun, X. (2019). An Adaptive and Momental Bound Method for
Stochastic Learning. arXiv e-prints, arXiv:1910.12249.

[14] Harris, E., Marcu, A., Painter, M., Niranjan, M., Prügel-Bennett, A., and Hare, J. (2020). Fmix:
Enhancing mixed sample data augmentation. arXiv e-prints, arXiv:2002.12047.

[15] Hawkes, C. and Hull, M. (1947). Camulodunum: First Reports on the Excavations at Colchester
1930-1939. Oxford University Press.

[16] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[17] Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan, B. (2019).
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty. arXiv
e-prints, arXiv:1912.02781.

[18] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
and Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv e-prints, arXiv:1704.04861.

[19] Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

[20] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2016). Densely Connected
Convolutional Networks. arXiv e-prints, arXiv:1608.06993.

[21] Itkin, B. (2019). Ranking Systems for Computer-Aided Single-View Pottery Classification.
Master’s thesis, Tel Aviv University.

[22] Jimeno, A., Liceras-Garrido, R., Quintero, S., and Chain, A. (2018). Unraveling Numantia:
Celtiberian and Roman Settlement (Soria, North-Central Spain), pages 199–220. Cambridge
Scholars Publishing.

[23] Khan, S., Rahmani, H., Shah, S. A. A., and Bennamoun, M. (2018). A Guide to Convolutional
Neural Networks for Computer Vision. Morgan & Claypool Publishers.

[24] Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations.

[25] Kottman, J. (1999). Cities in Sherds 2 Catalogue, pages 939–1028. Stichting Promotie
Archeologie.

[26] Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2).

[27] Orton, C. and Hughes, M. (2013). Pottery in Archaeology. Cambridge University Press.
[28] Preciado, J. C. S. (1997). La terra sigillata hispánica del municipium augusta Bilbiliss. PhD
thesis, Universidad de Zaragoza.

[29] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

[30] Rother, C., Kolmogorov, V., and Blake, A. (2004). GrabCut: interactive foreground extraction
using iterated graph cuts. ACM Transactions on Graphics, 23(3).

[31] Roumens, M. R. (1982). Breve Introducción al Estudio de la Sigiliata. Cuadernos de Prehistoria
y Arqueología de la Universidad de Granada, 7.

[32] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115(3).

[33] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018). MobileNetV2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

[34] Serra, J. (1983). Image Analysis and Mathematical Morphology. Academic Press, Inc.
[35] Smith, L. N. (2017). Cyclical learning rates for training neural networks. In Proceedings of
the IEEE Winter Conference on Applications of Computer Vision.

[36] Snell, J., Swersky, K., and Zemel, R. S. (2017). Prototypical networks for few-shot learning.
In Proceedings of the Annual Conference on Neural Information Processing Systems.

[37] Sobel, I. and Feldman, G. (1973). Pattern Classification and Scene Analysis, pages 271–272.
Wiley.

[38] Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C., Cubuk, E. D., Kurakin,
A., and Li, C. (2020). Fixmatch: Simplifying semi-supervised learning with consistency and
confidence. In Proceedings of the Neural Information Processing Systems Conference.

[39] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(1).

[40] Stibbe, C. M. (1998). Exceptional shapes and decorations in Laconian pottery. British School
at Athens Studies, 4:64–74.

[41] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2018). Mnas-
Net: Platform-Aware Neural Architecture Search for Mobile. arXiv e-prints, arXiv:1904.09925.

[42] Tan, M. and Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural
networks. arXiv e-prints, arXiv:1905.11946.

[43] Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and Isola, P. (2020). Rethinking Few-Shot
Image Classification: a Good Embedding Is All You Need? arXiv e-prints, arXiv:2003.11539.

[44] Tyukin, I., Sofeikov, K., Levesley, J., Gorban, A. N., Allison, P., and Cooper, N. J. (2018).
Exploring automated pottery identification [Arch-I-Scan]. Internet Archaeology, 50.

[45] van der Maaten, L., Boon, P., Lange, G., Paijmans, H., and Postma, E. (2006). Computer
vision and machine learning for archaeology. In Proceedings of Computer Applications and
Quantitative Methods in Archaeology.

[46] van der Maaten, L. and Hinton, G. (2008). Visualizing High-Dimensional Data using t-SNE.
Journal of Machine Learning Research, 9.

[47] Wang, Y., Chao, W.-L., Weinberger, K. Q., and van der Maaten, L. (2019). SimpleShot: Revis-
iting Nearest-Neighbor Classification for Few-Shot Learning. arXiv e-prints, arXiv:1911.04623.

[48] Xie, Q., Hovy, E., Luong, M.-T., and Le, Q. V. (2019). Self-training with Noisy Student
improves ImageNet classification. arXiv e-prints, arXiv:1911.04252.

[49] Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). Mixup: Beyond Empirical
Risk Minimization. arXiv e-prints, arXiv:1710.09412.

10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Classifying and Visualising Roman Pottery using Computer-scanned Typologies
	2.2 Arch-I-Scan
	2.3 Content-based image retrieval for historical glass
	2.4 Ranking Systems for Computer-Aided Single-View Pottery Classification

	3 Deep Learning Architecture
	3.1 DenseNet Architecture
	3.2 EfficientNet Architecture
	3.3 Two Input Convolutional Neural Network Architecture
	3.4 Few-shot Learning and Meta-Learning
	3.5 Self-training
	3.6 AugMix Data Augmentation

	4 Dataset Description
	5 Experiments
	5.1 Training Strategies
	5.2 Experimental Results

	6 Conclusion and future research directions
	7 Acknowledgements
	References

