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Resumo

O problema da redistribuição de áreas eleitorais é um problema antigo em ciência computacional e

polı́tica. Desde os anos 60 vários autores propuseram diferentes abordagens que pretendiam prevenir

a redistribuição de áreas eleitorais de forma a que estas fossem benéficas para um determinado partido

ou facção polı́tica (gerrymandering). Com o intuito de evitar casos de gerrymandering, a maioria das

abordagens procura maximizar a compactidade dos distritos eleitorais. Contudo, o problema é com-

putacionalmente complexo e vários requisitos têm de ser satisfeitos aquando do desenho de mapas

eleitorais.

Neste trabalho, uma nova e compacta formulação Booleana é proposta para resolver o problema

da redistribuição de áreas eleitorais. Esta formulação satisfaz todos as caracterı́sticas tı́picas de ma-

pas eleitorais, particularmente no quadro da contiguidade e igual representação popular. Além disso, é

também proposta uma nova medida de compactidade que não depende dos centros geográficos. Adi-

cionalmente, é apresentada uma formulação incompleta para ser utilizada em instâncias do problema

nas quais é difı́cil encontrar valores óptimos.

Os resultados experimentais são obtidos desenhando mapas eleitorais para Portugal continental,

considerando as propostas de mudança do actual sistema eleitoral Português. Os resultados obtidos

revelam que a formulação proposta é mais eficiente que as anteriores a desenhar os mapas eleitorais

Portugueses. Finalmente, utilizando os mais recentes resultados eleitorais, vários cenários de gerry-

mandering são estudados, mostrando como o resultado eleitoral pode ser deturpado alterando apenas

o desenho dos mapas eleitorais.

Palavras-chave: Redistribuição de Áreas Eleitorais; Gerrymandering; Optimização Combi-

natória Multi-Objectivo; Desenho Territorial; Investigação Operacional
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Abstract

The political districting problem is a long lasting problem in computer and political science. Since the

1960s several approaches have been proposed with the goal of preventing the redrawing of electoral

districts in such way that they are beneficial to a certain party or political faction (gerrymandering). In

order to avoid gerrymandering, most approaches focus solely on redrawing electoral maps that try to

maximize the compactness of the electoral districts. However, this problem is computationally hard and

several criteria must be satisfied when drawing electoral maps.

In this work, a new compact Boolean formulation is proposed for solving the electoral districting

problem. This formulation satisfies all common criteria for building electoral maps, in particular the

contiguity and representation criteria. Moreover, a new compactness measure is also proposed that

does not depend on geographic centers. Additionally, an incomplete formulation is also devised for

problem instances where the optimum values are hard to find.

Experimental results are obtained by drawing electoral maps for continental Portugal assuming a

change in the Portuguese electoral system. Results show that the proposed formulations are more

effective than previous ones in drawing the electoral districts in Portugal. Moreover, based on results

from previous elections, several gerrymandering scenarios are devised, showing that electoral outcomes

can be twisted depending on the drawing of the electoral maps.

Keywords: Political Districting; Gerrymandering; Multi-Objective Combinatorial Optimization;

Territorial Design; Operations Research
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Chapter 1

Introduction

The power of gerrymandering is undeniable and it is a menace to democracy. Recently, in the 2018

United States House of Representatives elections in North Carolina the redistricting process was con-

trolled by the Republican party. The Republicans received 50.39% of the popular vote (the Democrats

received 48.35%) but ended up with 10 out of 13 congressional seats (76.92%) [37]. This power is

the reason why the man behind the electoral maps of North Carolina, the Republican political strategist

Thomas Hofeller said: ”Redistricting is like an election in reverse (...) usually the voters get to pick the

politicians, in redistricting, the politicians get to pick the voters”.

Portugal does not suffer from gerrymandering due to its voting system. However, for most parties,

there is still a large difference between the percentage of popular votes received and the percentage

of seats won. The principle of representative democracy established in the Portuguese constitution is

threatened by the electoral system in place which cannot deliver proportional representation for legisla-

tive elections. As an example, in the most recent legislative elections (2019) the Socialist party (the most

voted) received 35.08% of the popular vote but elected 46.90% (106 out of 226 seats) of the national

assembly.1

This is due to two reasons. Firstly, the electoral districts match the administrative subdivisions of

the country and the population differences are huge between districts. Secondly, the D’Hondt method

[21, 28] is used to distribute seats between parties. Because several districts only elect 4 or less officials

and the D’Hondt method cannot guarantee proportionality when distributing a small number of seats (it

is beneficial to the parties with the most votes) [28] the seat distribution ends up not being proportional

to the popular vote.

Therefore, a discussion sprouted in Portugal around the electoral system to use for the legislative

elections and the topic is not new. Since the 1990s, it has been on the political agenda of the two

main Portuguese political parties. In 1997, in an attempt to bring populations closer to politics, increase

the plummeting turnout rates and guarantee proportional representation, the national assembly agreed

that it was necessary to change the electoral system and the constitution was changed to allow the

1Available at (in Portuguese): https://www.eleicoes.mai.gov.pt/legislativas2019/territorio-nacional.html, ac-
cessed 22/12/2020.
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use of single-member districts.2 The following year three different propositions were made using single-

member districts. However, a consensus was not reached. The result was that all three propositions

were rejected in parliament and, ultimately, nothing changed. Hence, the problem persists.

1.1 Why Complete Methods and Multi-Objective Optimization?

Building electoral maps is a computationally hard problem (NP-Complete), and complete (exact) meth-

ods are, traditionally, more time consuming than incomplete (heuristic) methods [2, 53]. Although, we

find that the use of complete methods is appropriate for two main reasons. Complete methods are the

only option that guarantees global optimal solutions and that is of the utmost importance in a democracy

given the relevance of the redistricting process in the electoral results and its influence in turnout rates

[32, 35]. Additionally, the electoral maps need only to be redrawn after every census which is, typically,

every 10 years and during this period they are used for (at least) 2 elections justifying the computational

time necessary to find such solutions.

Several measures have been proposed to evaluate the quality of the new electoral maps. The most

important are: equal popular representation, district contiguity and district compactness [52, 53]. Multi-

objective combinatorial optimization allows the optimization of several key features concurrently, e.g.,

maximizing the compactness while, at the same time, minimizing the popular representation differences

between electoral districts. Moreover, one of the main focus of this work is to study the impacts of

gerrymandering electoral areas. Therefore, it requires at least the maximization of the electoral results

of a party along with the maximization of electoral district compactness (two objective functions).

1.2 Goals and Contributions

This document provides an overview of previous approaches to the political districting problem and the

territorial districting applications of this problem to different fields. There is a focus on complete methods,

although, the advantages and disadvantages of incomplete methods are also presented.

The main goal of this work is to build upon the state of the art and develop a new and efficient

multi-objective combinatorial optimization model. It must fulfill the three main characteristics of electoral

maps (compactness, contiguity and equal representation) and also possess the ability to optimize the

electoral results of a party. We study the adaptation of the optimizations added to our model to previous

approaches to the problem and conclude that some can be successfully adapted and help significantly

reduce execution times. Two methods to create contiguous districts are proposed and compared, a

complete method and an incomplete one, where some solutions are not contemplated.

The developed model is versatile and is used to create unbiased electoral maps for Portugal using

only official real-world geographical data. Additionally, using real electoral results from previous elec-

tions, biased (gerrymandered) maps can also be generated. The unbiased electoral maps follow the

2Article No. 93 of the constitutional revision of 1997. Available at (in Portuguese): https://dre.pt/pesquisa/-/search/

653562/details/maximized, accessed 22/12/2020.

2
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main propositions of the Portuguese parties with the goal of shedding some light on what the electoral

maps for Portugal using single-member districts would look like. To our knowledge, this is the first time

intentionally gerrymandered electoral maps are created automatically. Using real-world data, the goal is

to study the effects of gerrymandering, not only in the electoral results but also in the design (shape) of

the electoral districts, contributing to the detection of such cases.

Extensive experimental tests carried out using data from Portugal compare our proposed model with

a classical approach to the problem. Overall, we improve upon the state of the art by being able to build

compact and contiguous electoral district maps more effectively than previous approaches.

To summarize, this thesis makes the following contributions:

• We create a new and more compact multi-objective combinatorial optimization model to be used

in the political districting problem;

• We propose a new measure of compactness based on the size of the frontiers between electoral

districts;

• We propose and compare two new formulations to create contiguous districts, one using complete

methods an one using incomplete methods;

• We propose optimizations that help improve previous approaches to the problem, as well as our

own models;

• Using official data, we present the first complete electoral maps of Portugal using single-member

districts;

• We create gerrymandered electoral maps and study its effects on electoral results and electoral

map design.

1.3 Document Structure

This document is organized as follows:

Chapter 2 defines important concepts for this work, including electoral and voting systems, the con-

cept of gerrymandering, the formulation of problems using multi-objective combinatorial optimization

(MOCO) and a method of comparing MOCO solutions.

Afterwards, Chapter 3 classifies approaches to the territorial districting problem and presents relevant

works in the particular problem of political districting using incomplete and complete methods.

Chapter 4 explains our proposed multi-objective combinatorial optimization model and the techniques

used to guarantee equal popular representation (Section 4.1) and compact electoral districts (Sec-

tion 4.2). Complete and incomplete methods to generate contiguous electoral districts are presented

in Sections 4.3.1 and 4.3.2 while the necessary objective functions to create biased electoral maps are

presented in Section 4.4. This is followed by Section 4.5 detailing the optimizations that are added to our

3



model and adapting them to a classical approach to the political districting problem. Finally, the chapter

ends by exploring the complexity of the created formulations in Section 4.6.

The experimental procedure along with its results are presented and discussed in Chapter 5. Multiple

scenarios are tested focusing on the territory of Portugal creating electoral maps that only maximize

the compactness of electoral districts (Sections 5.1 and 5.2) and also gerrymandered electoral maps

(Sections 5.3, 5.4 and 5.5). A full comparison of approaches, methods and solvers is performed in

Section 5.6.

Finally, the thesis concludes in Chapter 6 with the main conclusions drawn from this work and a brief

discussion of possible future work.

4



Chapter 2

Preliminaries

In this section we present further explanation of all the terms necessary to follow this work. In particular,

we introduce the notion of electoral district and briefly refer to the different voting systems used in Eu-

rope, gerrymandering, single and multi-objective combinatorial optimization and, finally, the hypervolume

indicator.

2.1 Electoral Districts and Voting Systems

An electoral district is a territorial subdivision of a country (does not necessarily have to match existing

administrative subdivisions) which elects members to the legislative body of that country.1 The number

of elected members in each district can vary depending on the electoral system in place.

The electoral system is the set of rules that determines when the elections take place, who can vote

and the voting system (how candidates are elected). There are many voting systems, but the most

used are party-list proportional representation (e.g. the Portuguese system for legislative elections),

first-past-the-post voting (also known as winner takes all, used in United States of America elections),

the two-round system (common in head of state elections such as the French or Portuguese presidential

elections) and ranked voting where voters rank several candidates by preference (used to elect members

to the legislature of Australia or the president of India, for example) [16, 25].

A single-member district is an electoral district where only one candidate is elected to a body with

multiple members (e.g. a legislature). The voting system usually used in these districts is the first-

past-the-post (FPTP) where the person with the most votes wins the district even if a majority (50% of

the votes) was not achieved. Although less common, instant-runoff voting (IRV) (e.g. Australia) and

the two-round system (e.g. France) are also a possibility and these systems guarantee a majority to

the winner. One argument against single-member districts is that they tend to favor two-party systems

(Duverger’s law) [16, 54] resulting in fewer minority parties in parliament. In order to avoid such scenario,

many countries, aiming at proportional representation, combine single-member districts with party-list

1There can also be (possibly different) electoral districts within administrative subdivisions of a country to elect local legisla-
tures (e.g. state elections in the United States of America or local elections in Portugal).
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Party-list proportional representation
Parallel voting
First-past-the-post
Two-round system
Majority-Bonus system
Mixed-member proportional representation

Figure 2.1: Voting systems for legislative elections in Europe.

proportional representation (this is called parallel voting and it is represented by the countries in blue in

Figure 2.1).

In order to create new electoral maps, new electoral districts must be created by joining territorial

units (indivisible) to form clusters. There are multiple criteria to evaluate the quality of the new map but

the core ones are:

1. Each elected member should represent approximately the same number of people. Ideally each

elected member would represent the theoretical best value B of people where B equals the total

number of people to be considered divided by the number of officials to be elected.

2. All the new electoral districts should be contiguous. An electoral district ED is contiguous if, and

only if, to go from any point A1 inside ED to any other point A2 inside ED as well, it is not

necessary to leave ED.
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3. All districts should be compact meaning that odd shapes (like the ones in Figures 2.2 and 2.3)

should not exist. To measure compactness multiple ideas have been proposed such as the

Schwartzberg score [55], the Reock score [51] or simply summing the Euclidean distances be-

tween the geographical centers (centroids) of each territorial unit inside a district [47, 61].

Although less crucial, there are other criteria (sometimes used in political districting) such as the

conformity to administrative boundaries, that is, the respect of existing administrative subdivisions (used,

as much as possible, in the United Kingdom) and the respect of natural boundaries in cases where

mountains or rivers may be a problem for the contiguity of the districts [52].

Figure 2.1 shows the different voting systems for legislatures in Europe where green represents

proportional representation obtained either through a party-list proportional representation system2 or,

in Ireland, through single transferable vote (ranked voting).

However, in this work we focus on single member districts used in non-green colored countries. Color

orange is used to represent FPTP systems. France (red) uses the two-round system which is essen-

tially the same as FPTP but in order to win a district a candidate must receive over 50% of the votes.

Therefore, two rounds might be needed (in the second round only the two most voted candidates of the

first round remain). Finally, blue and purple represent parallel voting and mixed-member proportional

representation which are essentially a mix between the party-list proportional representation and the

FPTP voting systems.

2.2 Gerrymandering

Gerrymandering is the practice of redrawing the boundaries of an electoral district in order to make it

more beneficial to a certain party or political faction. Although less usual, gerrymandering can also be

used to increase/decrease the voting power of a racial minority (racial gerrymandering) [1, 42]. As a

result, the electoral districts often end up with odd shapes (see Figure 2.3 for a real world example). The

term gerrymandering first appeared in 1812 in a political cartoon that caricatured a new district in the

Boston area. It had been approved by the then governor of Massachusetts, Elbridge Gerry, and looked

like a salamander thus being called a gerrymander (Figure 2.2).

There are two main gerrymandering tactics: cracking and packing. Cracking, dilutes the voting power

of the opposition in as many electoral districts as possible, weakening them (Figure 2.4 case C). On the

other hand, packing takes place when people that are likely to vote for the opposition are packed into a

small number of districts, guaranteeing their victory in this small number of districts but rendering their

vote useless in the remaining ones (see Figure 2.4 case D).

These techniques are precisely what explains the results in the 2018 United States House of Repre-

sentatives elections in North Carolina, when the Democrats received 48.35% of the votes but only 3 out

of 13 seats (23%) [37]. In reality, the Democrat voters were packed in those 3 districts (district 1, 4 and

2in Greece, i.e., dark green, this is applied to elect 250 officials and the remaining 50 seats are given as a bonus to the winning
party – majority bonus system.
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Figure 2.2: The original cartoon that coined the term gerrymandering as it appeared in the Boston
Gazette of March 26, 1812.

Figure 2.3: Real case of (racial) gerrymandering in North Carolina that created extremely odd shaped
districts [38]. These two congressional districts were eventually ruled unconstitutional by the United
States Supreme Court in 2017 [1].

12) where they received over 70% of the votes in each of them. They were also cracked between the

remaining 10 districts which they ultimately lost by a small margin.

If we take a closer look at Figure 2.4 we can clearly see the potential of gerrymandering to completely

alter the outcome of elections. Our objective is to group the 25 voters (red and green define their

expected voting preference) into 5 single-member electoral districts, using a first-past-the-post system,

where each district is won by the party with the most voters inside that circle. In order to guarantee that

each elected member represents the same number of people – equal voting power – each district must

have five voters.
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Figure 2.4: A possible example of three redistricting plans given the hypothetical election results in A.

In case B we are upon a fair distribution because the red party, which got 40% of the votes, gets

40% of the districts and the green party with 60% of the votes, 60% of the districts. However, this is

not the case in the other 2 examples where gerrymandering techniques have been used. In redistricting

example C, by cleverly cracking the red voters into the 5 districts the green party ends up winning all of

them. Contrarily, in D most of the green voters have been packed in two districts (their only victories)

and the rest cracked in the remaining 3 districts ultimately making the red party win 60% of the districts

even though they only received 40% of the overall votes.

2.3 Single and Multi-Objective Combinatorial Optimization

The political districting problem can be formulated as a constraint optimization problem. Hence, in this

section we formally define single and multi-objective optimization.

Given a set of Boolean variables X = {x1, x2, x3, ..., xn} and their respective coefficients W =

w1, w2, w3, ..., wn ∈ Z, a Pseudo-Boolean (PB) expression is a weighted sum of Boolean variables,

represented as follows:
n∑

i=1

wi.xi (2.1)

Given an integer K ∈ Z a linear PB constraint has the form:

n∑
i=1

wi.xi ≥ K (2.2)

Given a set of PB constraints P = {t1, t2, t3, ..., tm}, a set of Boolean variables X and the costs

C = c1, c2, c3, ..., cn associated with each variable in X, the goal in a single objective Pseudo-Boolean

Optimization (PBO) problem is to find an assignment α (solution) that satisfies all constraints in P , and

minimizes the objective function (cost function) f where f is a linear PB expression over the Boolean

variables. The objective value of α for objective function f is denoted f(α). In general, a PBO problem

can be formulated as follows:
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minimize
n∑

i=1

ci.xi

subject to
n∑

i=1

wit.xi ≥ Kt t ∈ {1 . . .m}

xi ∈ {0, 1}

(2.3)

Example 2.3.1. Consider two Boolean variables X = {x1, x2}, two constraints P = {P1, P2} and the

objective function f where f(x) = 3x1 + x2. Let P1 = {x1 + x2 ≥ 1} and P2 = {x1 + x2 ≤ 1} . This

instance has only one optimal solution (assignment): α = {(x1, 0), (x2, 1)} where f(α) = 1. All other

solutions either do not satisfy P or do not minimize f as much as α does.

However, in many real-world problems, more than one objective function must be considered [3, 7,

62, 4]. Therefore, unlike the formulation in (2.3), a Multi-Objective Combinatorial Optimization (MOCO)

problem considers a set O = {f1, f2, f3, ..., fq} of objective functions to minimize instead of a single one.

Although, in most cases we are upon conflicting objective functions meaning that there is not a

solution that simultaneously optimizes all of them (non trivial problems) and multiple Pareto optimal

solutions exist. Generally the complexity of MOCO problems is exponential on the number of variables.

minimize
n∑

i=1

c1i .xi

minimize
n∑

i=1

c2i .xi

...

minimize
n∑

i=1

cqi .xi

subject to
n∑

i=1

wit.xi ≥ Kt t ∈ {1 . . .m}

xi ∈ {0, 1}

(2.4)

Given two assignments α1 and α2 such that α1 6= α2, we say that α1 dominates α2 if, and only if,

∀f∈Of(α1) ≤ f(α2) and ∃f ′∈Of
′(α1) < f ′(α2).

A Pareto optimal (or Pareto efficient) solution is an optimal trade-off between objectives, a state

from which any further objective optimization is impossible without impairing at least one other objective

even more. The set of all Pareto optimal solutions is called the Pareto frontier (or Pareto front) and

can be represented graphically (Figure 2.5). All the solutions that are not part of the Pareto frontier are

dominated by at least one Pareto optimal solution.

Figure 2.5 presents the set of all solutions for a problem where we want to minimize objective func-

tions f1 and f2. The set of Pareto optimal solutions (all non-dominated solutions) is colored in red and

makes up the Pareto frontier while all other solutions, colored in gray, are dominated solutions since they
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A

Figure 2.5: Representation of solutions for a multi-objective minimization problem.

are worse than (dominated by) at least one Pareto optimal solution. For example, solution A dominates

solution B (and all solutions inside the dashed area) because it minimizes both objective functions more

than B does, i.e., f1(A) < f1(B) and f2(A) < f2(B).

Example 2.3.2. Consider three Boolean variablesX = {x1, x2, x3}, the constraint P = {x1+x2+x3 ≥ 1}

and two objective functions O = {f1, f2} to minimize. Let f1(X) = 3x1 + x3 and f2(X) = 2x1 + x2. This

instance has 2 Pareto optimal solutions (assignments):

• α1 = {(x1, 0), (x2, 1), (x3, 0)} where f1(α1) = 0 and f2(α1) = 1.

• α2 = {(x1, 0), (x2, 0), (x3, 1)} where f1(α2) = 1 and f2(α2) = 0.

All other solutions either do not satisfy P or are dominated by (at least) one of the Pareto efficient

solutions. For example, consider the assignment β = {(x1, 1), (x2, 1), (x3, 1)} where f1(β) = 4 and

f2(β) = 3. Because f1(α1) < f1(β) and f2(α1) < f2(β), α1 strictly dominates β, i.e., α1 is strictly better

than β.

2.4 Hypervolume Indicator

In order to assess and compare the performance of algorithms for MOCO problems, we need to evaluate

the quality of the solutions returned. The hypervolume indicator [63] does precisely that by measuring

the size of the dominated space of a given approximation of the Pareto frontier with respect to a certain

reference point.

Let S = {s1, s2, s3, ..., sn} be the set of solutions that make up the approximate Pareto frontier for a

MOCO problem and Z a strictly dominated solution by all solutions si ∈ S. The hypervolume indicator

for the set S is given by the volume enclosed by the union of the set of polytopes H = {h1, h2, h3, ..., hn}.

Each polytope hi is formed by the intersection of the following hyperplanes arising out of si, along with
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Figure 2.6: Hypervolume indicator of an approximation of the Pareto frontier using reference point Z.

the axes: for each axis in the objective space, there exists a hyperplane perpendicular to the axis and

passing through Z. For a two-dimensional case each hi represents a rectangle (a two-dimensional

polytope) with vertices at si and Z.

Figure 2.6 presents a set of solutions S = {s1, s2, s3, ..., s6} (an approximation of the Pareto frontier)

for a problem where we want to minimize two objective functions (f1 and f2) and a reference point Z.

The hypervolume indicator is given by the area represented in red which corresponds to the union of all

the rectangles with vertices at si ∈ S and Z.
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Chapter 3

Related Work

In this section we review relevant previous work on territorial districting. We start with a brief introduction

and classification of approaches to the territorial districting problem and then focus on the particular

problem of automatic electoral map creation.

3.1 Territorial Districting

The electoral districting problem (also known as the political districting problem) is essentially a particular

type of the territorial districting problem (also known as the zone design problem) which has many

applications in a broad variety of fields, such as sales districting [64], students distribution between

schools [26], harvest scheduling [14, 43, 46], natural reserve creation [9], electrical power distribution

[7].

The territorial districting problem consists of grouping the elementary units of the territory to form

zones (or districts). Therefore, a territory is composed of zones, each one resulting from a grouping

of elementary units. To model this problem, graph theory is usually used along with mathematical

optimization techniques. A graph is created composed of nodes that represent the elementary units of

the territory while a pair of contiguous elementary units defines an edge of the graph. Depending on the

application, different values are associated to the nodes and edges, but population and geographical

distance between nodes, respectively, are the most common for political districting.

There have been many approaches to the territorial districting problem (especially to the electoral

districting problem) and we can classify them by looking at 3 key aspects:

1. There are two main techniques to solve this problem and create the final map: division and agglom-

eration. If division is applied, the whole area is considered and the districting algorithm iteratively

divides it into smaller areas [5, 27]. Although, the most usual are agglomeration algorithms where

the elementary units of the territory are successively pieced together to form contiguous districts

[10, 29, 59].

2. Another way of classifying districting problems is to differentiate between single-objective and

multi-objective. Single-objective models only consider one criteria for the districting, e.g., minimal
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amount of changes to the current map [11], least aggregations to form a district [9] or popula-

tion equality [29, 59]. However, sometimes it is useful to consider multiple objective functions at

the same time and try to find a solution that is the optimal compromise (trade-off) between the

objective functions considered [5, 7, 39, 56].

3. The final difference between all these approaches to the territorial districting problem is the use

of complete (exact) methods or incomplete (heuristic) ones. Exact techniques are, usually, much

more computationally complex since they need to check all possible solutions for a problem. How-

ever, they yield global optimal solutions, which, depending on the problem to be solved, may be

vital [29, 39, 40, 45]. On the other hand, non-exact approaches make use of heuristics to find a

solution faster which makes them interesting for solving large scale problems. Although, there is

no guarantee that the solution found is the global optimal one (most of the times it is just a local

optimum) [4, 5, 7, 31, 56].

3.2 Automatic Electoral Map Creation

The idea of creating new electoral maps through the use of computers was first proposed in the 1960s.

Vickrey (1961) argued that the ”Elimination of gerrymandering would seem to require the establishment

of an automatic and impersonal procedure for carrying out a redistricting. It appears to be not all difficult

to devise rules for doing this which will produce results not markedly inferior” [59]. However, even with

greatly increased computational power, 60 years later the problem is still to be solved. The biggest rea-

son lies in the complexity of the problem. Guest et al. [31] argued that this task may be too complex for

humans and most cases of gerrymandering may not be intentional at all, particularly in larger districts.

Altman proved the redistricting problem to be NP-Complete, i.e., it belongs to the class of computation-

ally intractable problems (no known polynomial time solution) [2]. Nevertheless, it does not mean it is

impossible to reach an optimal solution for smaller areas and the author admits that it may be possible to

find global optimal solutions given the right conditions. For this reason, most of the proposed solutions

we describe next only create maps for smaller districts.

Different approaches to the electoral redistricting problem have been made, using either heuristic

methods (most common) or exact methods [53]. However, all of them need to follow at least one restric-

tion: proposed districts must comprise (roughly) the same population.

3.2.1 Incomplete Methods

Heuristic methods usually make iterative improvements. Hill climbing (local search) algorithms are a

common option, these work by starting with an existing electoral map of a district and repeatedly trading

census blocks (or voting precincts) between electoral districts and calculating if it resulted in an improve-

ment, according to the objective function. A variant of this method is to start a district with a single

census block and adding to it the neighbors that most improve it (usually the algorithms try to maximize
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compactness therefore prioritizing proximity) until the district meets the population requirement. This

was the approach proposed by Vickrey [59].

Simulated annealing methods have been proposed since 1990 [11, 18] and they work similarly to

the hill climbing methods (also with heuristics) and try to approximate a global optimum for a given

objective function. Small changes are made in each iteration, always keeping changes that improve the

redistricting plan according to the objective function (e.g. increased compactness) and, occasionally,

keeping changes that harm the system (e.g. making districts less equal in population) until an optimal

or nearly optimal solution is reached, a solution that minimizes the temperature (energy) of the system.

This randomness produces a solution that is independent of the initial conditions and aims at solving the

shortcomings of hill climbing. Contrarily to the latest, simulated annealing does not go directly (greedily)

to the nearby solution, which most of the times is just a local optimum.

Clustering algorithms have also been widely used and in order to apply them many authors adopt

a graph-theoretical model for territorial representation. They usually make use of a contiguity graph

(or population graph) which is an n-node connected weighted graph G = (N,E) where the N nodes

correspond to the smallest geographic unit considered (e.g. census blocks in the United States of

America) and an edge between nodes exists if and only if those geographic units have a common frontier

(are neighbors). In this graph, for each edge (u, v) ∈ E, there is an associated weight that usually

represents the (geographical) distance between the center of each geographic unit (either calculated

through Euclidean geometry or road distance). The weight associated to the nodes represents the

population living inside this geographical area. This model was first introduced by Bodin [10] in 1973

and the author used it to redistrict the State of Arkansas based on the 1960 census data. The proposed

algorithm consisted of 2 stages. In the first one, starting from a set of k centers (manually picked) the

algorithm constructs k districts (trees), each rooted at one of the centers. In order to do this, it starts

from the k centers and successively selects an unassigned node to include in the most advantageous

district with respect to population balance. In the second stage, a local search algorithm is applied in

order to improve population equality. Given two districts d1 and d2 the algorithm tries to make one of

the following changes: move a node u from district d1 to district d2; or move a node u from district d1 to

district d2 and a node v in the opposite direction. It is important to notice that the described algorithm

takes into account the contiguity and population equilibrium but not the compactness of the new districts

since the algorithm does not control the shape of the clusters.

A solution to the aforementioned problem was proposed by Guest et al. [31] who applied the weighted

k-means clustering algorithm (taking into account population balance) to generate compact districts

(clusters) with roughly the same population. The k starting points are initialised using the procedure

from k-means++ (to spread the k clusters apart). Next, in each iteration of the algorithm, census blocks

are assigned to the nearest cluster and the centroid (geographical centre of the cluster) is updated to

reflect the added census block. This process is repeated until it converges to a local optimum where the

mean distance between people within the same district is minimized and the population in each district

is roughly the same [31].

Bação et al. applied a genetic algorithm to redistrict Portugal’s electoral map [4]. Portugal has a
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proportional representation system but the authors considered a parallel voting system with 93 single

member districts (k = 93). They represented each territorial unit by its centroid for which the geograph-

ical coordinates are already known, as well as the Euclidean distances between each pair of units. To

generate a solution k territorial units are chosen as centers, and then districts are built around those

centers by successively assigning other units to the closest center. The algorithm proceeds by generat-

ing a new set of solutions through the application of genetic operators (mutation, crossover and selec-

tion). For each solution, the contiguity is checked and it is evaluated by the following fitness function:∑k
j=1(|Pj − µ| +

∑
i∈Zj

dji), where µ is the average population in all districts and dji is the Euclidean

distance between the ith territorial unit and the centroid j of district Z. The algorithm stops after a

predefined number of generations without improvements is observed.

However, heuristic methods have 2 main problems. Primarily, they cannot guarantee global optimal

solutions which is not desirable when creating new electoral maps given their importance in election

results. For this reason, the results must be defensible. Otherwise, one can always argue that the com-

puter is no better than humans at this task. Ideally this would be done through optimality but since that

is not possible with heuristic methods, all kinds of measures like compactness [47, 61], contiguity, least

changes to current maps [11], partisan symmetry [30], and efficiency gap1 [56] have also been made.

The second problem is that they do not guarantee that the drawn map is completely unbiased. The

achieved solution may, unintentionally, still be beneficial to a certain political party or diminish the voting

power of a minority (racial gerrymandering), something called unintentional gerrymandering. Chen and

Rodden defended that sometimes unintentional gerrymandering is a necessity and given the demogra-

phy of certain areas, may be unavoidable [13].

3.2.2 Complete Methods

Traditionally, complete methods must consider all possibilities of redistricting (making use of brute force

or explicit enumeration) in a given area and choose the best one according to the objective function to be

optimized. More sophisticated solutions include the branch and bound and branch and cut algorithms

or the implicit enumeration which are able to exclude some classes of solutions that are worse than

the best solution found so far without the need to examine them. However, given the complexity of the

redistricting problem (NP-Complete [2]), even the more sophisticated methods have only been used to

solve small redistricting problems.

Hess was the first to study the political districting problem through a mathematical formulation [34]. In

1965 he proposed an Integer Linear Programming (ILP) model and, even though it was not implemented

due to the complexity of the problem and the lack of computation power at the time, we believe it is still

worth mentioning in this work given its relevance in the area. In this model n and k are, respectively, the

number of TUs and the number of clusters in a territory. The idea is to identify k TUs as the centers of

the k clusters and each TU must be assigned to exactly one district center. The model has n2 binary

variables xi,j where i, j ∈ {1, . . . , n} and xi,j = 1 if TU i is assigned to district with center at j, and 0

1The Efficiency Gap measures the difference in the wasted votes – the difference of votes between the winner and the second
place – between the two major parties.
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min

n∑
i=1

n∑
j=1

d2i,jpixi,j (3.1)

∀i ∈ {1 ... n} :

n∑
j=1

xi,j = 1 (3.2)

n∑
j=1

xj,j = k (3.3)

∀j ∈ {1 ... n} : Lxj,j ≤
n∑

i=1

pixi,j ≤ Uxj,j (3.4)

∀i, j ∈ {1 ... n} : xi,j ∈ {0, 1} (3.5)

Figure 3.1: Objective function and constraints in Hess et al. (1965) [34].

otherwise. A variable xj,j equals 1 if, and only if, TU j is chosen as the center of a cluster. It also takes

into account di,j , the distance between TUs i and j, pi, the population in i and, the lower and upper

bounds on the number of people in each cluster (L and U, respectively). The objective function and the

constraints are presented in Figure 3.1:

The objective function of the this model (3.1) takes into account the euclidean distance between the

centers of the TUs and the population in each unit and penalizes adding TUs with large populations to

a cluster where they are far away from the remaining ones. The constraints are pretty straight forward,

a TU must be assigned to only one district center (3.2), there must be exactly k district centers (3.3),

the population limits inside each cluster are between the lower and upper bounds (3.4) and, finally, (3.5)

states that all variables are Boolean. Although it is not in the original model, some recent implementa-

tions of this model [48, 53, 58], add the following constraint (Equation 3.6) for strength, meaning that if a

TU i is assigned to a district centered at j, then j must be the center of a cluster.

∀i, j ∈ {1 ... n} : xi,j ≤ xj,j (3.6)

Garfinkel and Nemhauser were the first (1970) to use an exact approach for the political districting

problem [29]. They use implicit enumeration techniques and the algorithm is divided in two stages. In

the first one, they construct all sets of feasible districts (districts which are contiguous and meet the

population requirements). In the second, they solve a set cover problem to choose the solutions that

minimize the population deviation with respect to the ideal value. The authors were considering counties

as the smaller geographic subdivision and could not solve the problem for states in the United States of

America with more than 55 counties2, which is the first indication of the complexity of the problem. This

scalability problem may be due to the fact that in the worst case scenario the number or feasible districts

grows exponentially with the number of counties.

2The average number of counties per state is 62.
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Mehrotra et al. [45] follow a similar algorithm but suggest a different objective function that takes

into account the overall compactness of the districts (and only restrict the population of each district to

approximate the ideal value). The authors consider the distance between nodes to be constant and

compute the diameter of each cluster3 (essentially, the number of hops between nodes) and choose the

solutions that minimize it. The algorithm is used to redistrict the state of South Carolina (51 territorial

units) in 6 districts, a very small problem but the achieved results were considered to be satisfactory [45].

This approach, just like the model proposed by Hess et al. [34] (Figure 3.1) rely on objective functions

that favour contiguity but do not add constraints to guarantee it. What this means is, albeit unlikely, it is

entirely possible that the most compact solution according to these cost functions turns out with some

of the clusters not being contiguous.

Recently, Kotthoff et al. [39] used clustering algorithms to solve this problem. They applied it to

redistrict a small city in Ireland. Ireland does not use single member districts therefore the objective is

to find k clusters of elected officials (represented by the matrix X), k clusters of constituencies (matrix

Y ) and the optimal match between them. They define the problem as a pseudo-Boolean optimization

problem where the objective is to minimize the difference between the number of people that each

elected official represents. A series of constraints are then added to guarantee that all districts are

non-empty, that their populations meet the legal requirements (an elected official cannot represent more

than 30000 people), and that they are contiguous. The full set of constraints and the objective function

used to model the problem are presented in Figure 3.2 where n1 and n2 are, respectively, the number of

districts and the number of elected officials (EO), Z is a set with the number of individuals each official

represents and aj the number of officials in constituency j. After formalizing the problem a large-scale

solver (Gurobi) is used to find all solutions to the problem. Although, the authors face serious scalability

problems [39].

In 2020, Validi et al. [58], in the context of the Hess model (Figure 3.1), present and test 4 different

approaches to add contiguity to this model and refer to the original paper for the remaining formulations.

We will focus on one interesting flow-based formulation using Boolean variables, they call it the MCF

model. Remember that the Hess model uses the following n2 binary variables:

xi,j = 1, if vertex i is assigned to (the district centered at) vertex j

xi,j = 0, otherwise

The authors start by creating a bi-directional version of the contiguity graph denoted D = (V,A)

obtained from G = (V,E) and replacing each undirected edge {i, j} ∈ E by its directed counterparts

(i, j) and (j, i). The set of edges pointing away from vertex i is denoted by δ+(i) while, inversely, the set

of edges pointing towards vertex i is denoted δ−(i). They propose adding the following variables fa,bi,j

where:

fa,bi,j = 1, if edge (i, j) ∈ A is on the path to vertex a from its district center b

fa,bi,j = 0, otherwise

3The diameter of a network is the largest shortest distance between all pairs of nodes.
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Objective:
min(max(Z)−min(Z))

X = [xi,j ]n1×k and Y = [yi,j ]n2×k are matrices with Boolean entries.

Subject To:

1. Bounds on the number of clusters in which an object may appear

∀i ∈ {1 ... n1} : mink1
≤

k∑
j=1

xi,j ≤ maxk1

∀i ∈ {1 ... n2} : mink2
≤

k∑
j=1

yi,j ≤ maxk2

2. Ensuring that each cluster is non-empty

∀j ∈ {1 ... k} :

n1∑
i=1

xi,j ≥ 1

∀j ∈ {1 ... k} :

n2∑
j=1

yi,j ≥ 1

3. The number of elected officials per cluster is between EOmin and EOmax

∀j ∈ {1 ... k} : Let aj =

n2∑
i=1

yi,j

∀j ∈ {1 ... k} : EOmin ≤ aj ≤ EOmax

4. Bound on the population represented by each elected official POPmax

∀j ∈ {1 ... k} : zj ≤ POPmax

5. Ensuring that each cluster is connected

∀i ∈ {1 ... n1}, j is adjacent to i, i 6= j :
(adji = j) =⇒ ((ranki > rankj) ∧ (adjj 6= i) ∧ (cidxi = cidxj))

Definitions of channel variables used above:
(a) Individuals allocated to each elected official:

∀j ∈ {1 ... k} : Let zj =

∑n1

i=1 xi,j .pi
aj

(b) Tree to ensure cluster connectivity

∀i ∈ {1 ... n1} : xi,cidxi
= 1

∀i ∈ {1 ... n1} : adji = i⇐⇒ ranki = 0

∀i, j ∈ {1 ... n}, i 6= j : ((ranki = 0) ∧ (rankj = 0)) =⇒ (cidxi 6= cidxj)

card(rank, 0) = k

Figure 3.2: Objective function and constraints used by Kutthoff et al. [39] to model the problem.
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∀a ∈ V \ {b},∀b ∈ V : fa,b(δ+(b))− fa,b(δ−(b)) = xa,b (3.7)

∀i ∈ V \ {a, b},∀a ∈ V \ {b},∀b ∈ V : fa,b(δ+(i))− fa,b(δ−(i)) = 0 (3.8)

∀a ∈ V \ {b},∀b ∈ V : fa,b(δ−(b)) = 0 (3.9)

∀a, j ∈ V \ {b},∀b ∈ V : fa,b(δ−(j)) ≤ xj,b (3.10)

∀(i, j) ∈ A,∀a ∈ V \ {b},∀b ∈ V : fa,bi,j ∈ {0, 1} (3.11)

Figure 3.3: Constraints defined by Validi et al. [58] to add contiguity to Hess model [34].

In practice, one can interpret the direct graph as a flow network and fa,bi,j denotes the flow passing

at edge (i, j) considering b as the source and a as the sink. Moreover, let fa,b(S) be a shorthand for∑
(i,j)∈S f

a,b
i,j for a given S ⊆ E.

Constraint (3.7) states that if a TU a ∈ V has another TU b ∈ V as its district center, then the flow

coming out of b to a must equal 1 and the flow coming into b is 0 (3.9). If the flow to TU a from its center b

passes through any other node then two things must happen: the flow coming into that node and going

out from that node must be the same (3.8) and, that node must also have b as its district center (3.10).

Finally, constraint (3.11) guarantees that all fa,bi,j variables are Boolean.

Complete methods also have some drawbacks. First of all, they are usually even more time consum-

ing than heuristic approaches due to the huge number of possible redistricting plans to be considered.

The most recent approach by Kotthoff et al., classified the problem of redistricting Ireland (5 million

people) impossible to solve in useful time without further optimization [39]. Secondly, it is important

to consider that even though we achieve an optimal solution, this solution is tailored only to the exact

conditions and objective functions considered, thus it is important that they are chosen fairly. Otherwise,

problems of voter representation by the elected officials persist.

3.3 Additional Related Work

There is extensive work in election methods and how to condition the electoral results in different voting

procedures [6, 33], as well as theoretical results on its computational complexity [8, 22, 23, 24, 41].

Single and multi-objective optimization has been used in many different domains where one wants to

define districts or partition a given territory. For instance, multi-objective optimization has been used to

define districts for public transportation in the Paris area [57], healthcare administrative authorities over

geographic areas in England [20], or census units in Canada [19].

The management of the forests and ecological areas also has an extensive work on partitioning with

constraints similar to those to the electoral districting problem. For instance, several harvest scheduling

in agriculture areas [14, 43, 46] or forest planning [12] also deal with contiguity constraints. The same

also occurs in defining reserved areas for species [49, 50]. However, the models proposed suffer from

the same drawbacks as the ones proposed in the previous section.
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Chapter 4

Multi-Objective Combinatorial

Optimization Model

In this chapter we present our new formulation for the PD problem as a MOCO problem and explain

how we can guarantee that our solutions (electoral maps) possess the three main characteristics that

are essential to good electoral maps: similar popular representation (Section 4.1), district contiguity

(Sections 4.3) and district compactness (Section 4.2). Afterwards, it is made clear how to gerrymander

electoral maps by maximizing or minimizing the electoral results of a party (Section 4.4). In this work,

given the importance of elections for a democracy, we are mostly interested in complete methods which

are capable of finding global optimum solutions, although a faster but incomplete model is presented in

Section 4.3.2. Finally, optimizations to our model which can also be adapted to previous approaches

are proposed in Section 4.5 and, in Section 4.6, we discuss the asymptotic growth of the size of the

proposed formulations.

Like many authors before [4, 10, 31, 39, 45, 58] we rely on a contiguity graph of the Portuguese

territory. A contiguity graph (or population graph) is an n-node connected weighted graph G = (N,E)

where the territorial units being considered correspond to the N nodes and an edge (u, v) ∈ E between

two nodes exists if, an only if, nodes u and v are neighbors (share a border).

Each edge (u, v) ∈ E has an associated weight. In our case, the length of the border (in meters)

shared between nodes u and v. On the other hand, each node n ∈ N has associated multiple values:

the number of individuals registered to vote inside the territorial unit and the number of votes received in

the last election by each of the main Portuguese parties.

Let K denote the set of clusters, i.e., electoral districts (ED) to be created, numbered from 1 to k.

That is equivalent to the number of officials we want to elect, since we are considering a system with

single-member districts where each ED elects exactly one official. In this work the terms cluster and

electoral district are used interchangeably.

Let the set of nodes N denote the set of territorial units (TU) numbered from 1 to n inside the area

we wish to redistrict.

Let X be the k x n binary matrix that determines which territorial units are assigned to each cluster.

21



This is achieved by each line Xk being a binary vector (bit array) where a 1 means that that TU is part

of cluster k and a 0 that it is not.

Formally:

xi,j = 1, if cluster i contains territorial unit j

xi,j = 0, otherwise

The most trivial constraints are guaranteeing that each cluster k ∈ K is composed of at least one TU

(no empty clusters – Equation 4.1) and each TU is used once, and only once, throughout all clusters

(Equation 4.2). Therefore, the following PB constraints need to be defined:

∀i ∈ K :
∑
j∈N

xi,j ≥ 1 (4.1)

∀j ∈ N :
∑
i∈K

xi,j = 1 (4.2)

This base formulation is similar to the one proposed by Kotthoff et al. [39] and we believe it is

superior to the classical formulation of the PD problem by Hess et al. [34] because to match TUs with

EDs it requires n× k variables instead of n× n variables and k is usually far smaller than n.

4.1 Equal Popular Representation

Ideally each individual would have exactly the same voting power, consequently each elected official

should represent exactly the same number of voters. Let us call that perfect value B. The value of B is

defined by the total number of individuals divided by the number of officials to be elected (which is equal

to the number of electoral districts, in a FPTP system).

It is impossible to guarantee that each ED contains exactlyB voters. Although, if we take into account

Rj – the number of people registered to vote in each TU j ∈ N – and a constant ε between 0 and 1, we

can define the following constraint (4.3) that limits the number of people each elected official represents

to a percentage around B.

∀i ∈ K : B(1− ε) ≤
∑
j∈N

Rjxi,j ≤ B(1 + ε) (4.3)

Note that 4.3 is not a normalized Pseudo-Boolean (PB) constraint so we have to separate it into a

lower bound and an upper bound (4.4 and 4.5, respectively).

∀i ∈ K :
∑
j∈N

Rjxi,j ≥ B(1− ε) (4.4)

∀i ∈ K :
∑
j∈N

Rjxi,j ≤ B(1 + ε) (4.5)
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4.2 District Compactness

Another crucial characteristic of good electoral maps is district compactness. This means that the elec-

toral districts should avoid odd shapes like the one in Figure 2.3. In order to tackle this problem, we

propose the maximization of the border length between territorial units in the same cluster as an ob-

jective function. Observe that this is equivalent to minimizing the size of the frontier between TUs in

different clusters. This is an innovative approach to create compact electoral districts that we believe

can yield good results efficiently and that is confirmed by the experimental results. Additionally, using

real-word maps, the length of the borders is a measure easy to interpret and visualize.

Let Nj denote the set of TUs that are neighbors of TU j. If two TUs j and j′ are neighbors, then

j ∈ Nj′ and j′ ∈ Nj . Let Lj,j′ be the border length between neighboring TUs (j, j′) ∈ N . This value can

be obtained through the analysis of the area to be redistricted using a geographic information system

(GIS) software, such as ArcGIS1 or QGIS2.

Let bi,j,j′ be a Boolean variable which indicates if TU j and TU j′ ∈ Nj are both in the same cluster i.

Note that we only need to create such variable b between neighboring territorial units since there is

no border between territorial units that are not adjacent and we do not need to create bi,j′,j because

bi,j,j′ = bi,j′,j .

Since our objective is to increase the compactness of our electoral districts we can add the following

objective function maximizing the sum of the border length between TUs in the same cluster:

Maximize
∑
i∈K

∑
j∈N

∑
j′∈Nj

Lj,j′bi,j,j′ (4.6)

We must ensure that the variable bi,j,j′ = 1 if, and only if, TU j and TU j′ ∈ Nj are both in cluster i,

and bi,j,j′ = 0 otherwise. Hence, we must add the following constraint:

∀i ∈ K, j ∈ N, j′ ∈ Nj : ¬ (xi,j ∧ xi,j′) =⇒ ¬ bi,j,j′ (4.7)

This constraint guarantees that variable bi,j,j′ = 0 if TU j or TU j′ ∈ Nj (or both) are not in cluster i

and that would be enough to guarantee the correct objective value since we are upon a maximizing ob-

jective function and bi,j,j′ would be equal to one whenever that is possible (all cases where Equation 4.7

does not set it to 0). However, when using constraint solvers, such as Sat4jmoco, we can significantly

decrease the execution time, i.e., increase the efficiency if we also define the constraint 4.8 forcing bi,j,j′

to equal 1 whenever neighboring TUs j and j′ are both in cluster i. Running a small test in a territory

with k = 5, n = 16 and ε = 0.2 this optimization proved successful, managing to decrease the execution

time from 8.11 seconds to 1.15 seconds.

∀i ∈ K, j ∈ N, j′ ∈ Nj : (xi,j ∧ xi,j′) =⇒ bi,j,j′ (4.8)

1https://www.esri.com/en-us/arcgis/about-arcgis/overview, accessed 22/12/2020.
2https://qgis.org/en/site/, accessed 22/12/2020.

23

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://qgis.org/en/site/


Again, both Equation 4.7 and Equation 4.8 are not PB constraints meaning we have to normalize

them as follows:

∀i ∈ K, j ∈ N, j′ ∈ Nj : xi,j − bi,j,j′ ≥ 0

xi,j′ − bi,j,j′ ≥ 0
(4.9)

∀i ∈ K, j ∈ N, j′ ∈ Nj : −xi,j − xi,j′ + bi,j,j′ ≥ −1 (4.10)

We note that if we consider the Boolean variables bj,j′ , with the same meaning as the variables

bi,j,j′ described before. It is also possible to create an equivalent objective function to (4.6) with these

variables that will always yield the same results:

Maximize
∑
j∈N

∑
j′∈Nj

Lj,j′bj,j′ (4.11)

We only need to adapt Equations 4.7 and 4.8 to accommodate this new variables which can be done

as follows:

∀i ∈ K,∀i′ ∈ K \ {i}, j ∈ N, j′ ∈ Nj : (xi,j ∧ xi′,j′) =⇒ ¬ bj,j′ (4.12)

∀i ∈ K, j ∈ N, j′ ∈ Nj : (xi,j ∧ xi,j′) =⇒ bj,j′ (4.13)

It is worth noting that this implementation only creates O(n × 〈k〉) variables to be optimized instead

of O(k × n × 〈k〉) where 〈k〉 is the average degree of a node in our graph, i.e., average number of

neighbors. Although, it requires more constraints since Equation 4.12 creates k times more constraints

than Equation 4.7. For this reason and because the solver can infer Equation 4.14 the performances of

both implementations are similar.

∀j ∈ N, j′ ∈ Nj :
∑
i∈K

bi,j,j′ <= 1 (4.14)

Similarly to Figure 3.1 (for the Hess model), Figure 4.1 contains the base formulation and succinctly

explains the necessary constraints in our proposed model.

4.3 District Contiguity

The last fundamental quality in electoral maps is contiguity. An electoral district is contiguous if, and

only if, any pair of territorial units (j, j′) ∈ N that belong to the same cluster i ∈ K are either adjacent

(neighbors) or can be connected using other TUs that are also part of cluster i. What this means is

either j and j′ are neighbors or there must exist a path between them passing only through other TUs

inside cluster i.

In Section 4.3.1 and Section 4.3.2 we present two formulation to assure map contiguity, a tree-based
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Objective:

• Maximizing compactness:

Maximize
∑
i∈K

∑
j∈N

∑
j′∈Nj

Lj,j′bi,j,j′

Subject To:

1. Constraint to ensure each cluster has at least one TU:

∀i ∈ K :

n∑
j=1

xi,j ≥ 1

2. Each TU is assigned to 1, and only 1, cluster:

∀j ∈ N :

k∑
i=1

xi,j = 1

3. Each elected official represents approximately the same number of people:

∀i ∈ K :

n∑
j=1

Rjxi,j ≥ B(1− ε)

∀i ∈ K :

n∑
j=1

Rjxi,j ≤ B(1 + ε)

4. Constraint to make bi,j,j′ = 0 if TU j or its neighbouring TU j′ are not in cluster i:

∀i ∈ K, j ∈ N, j′ ∈ Nj : ¬ (xi,j ∧ xi,j′) =⇒ ¬ bi,j,j′

• Optimization for constraint solvers that sets bi,j,j′ = 1 in the remaining cases:

∀i ∈ K, j ∈ N, j′ ∈ Nj : (xi,j ∧ xi,j′) =⇒ bi,j,j′

Figure 4.1: Base model with summary of constraints. Contiguity constraints in Figure 4.3.

formulation (complete) and a shortest-path formulation (incomplete). Finally, Figure 4.3 summarizes

both formulations.

4.3.1 Tree-based Contiguity Formulation

Beyond the aforementioned Boolean variables, in order to guarantee contiguity, we extend the base

formulation (Figure 4.1) with the following new sets of variables:

• rj denotes if territorial unit j ∈ N is the root of a cluster.

• pj,j′ denotes if territorial unit j′ ∈ Nj is predecessor of TU j ∈ N

• dj,l denotes if territorial unit j ∈ N is at depth l in the tree
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Variables xi,j represent the distribution of TUs to the clusters, while variables pj,j′ represent the

connectivity of each cluster. Observe that only neighbors can be considered as predecessors of a given

territorial unit j in variables pj,j′ . Since each cluster must be a set of contiguous TUs, then one can build

a tree to represent the connectivity of that set. In order to represent the tree, one only needs to define

the predecessor of each node and its depth (dj,l) in the tree (equivalent to the distance of a TU to the

root of its cluster). The root of a cluster, rj , has no predecessor and a depth equal to 0.

Let M = {0, . . . ,m} denote the set of possible depths in a cluster tree where m is the maximum

number of TUs to be assigned to a cluster minus 1. Considering there are limits on the number of voters

in each cluster, one can a priori calculate the value of m (more details on how to calculate this value in

Section 4.5.3).

With these variables in place we are now in conditions of creating the following set of constraints:

• The number of roots must be exactly the same number as the number of clusters (EDs).

∑
j∈N

rj = k (4.15)

• In each cluster, there can only be one root node. Hence, if the cluster already has a root, then no

other node in the cluster can be root.

∀i ∈ K, j, j′ ∈ N, j 6= j′ : (xi,j ∧ xi,j′ ∧ rj) =⇒ ¬rj′ (4.16)

This constraint can be normalized as follows:

∀i ∈ K, j, j′ ∈ N, j 6= j′ : −xi,j − xi,j′ − rj − rj′ ≥ −3 (4.17)

Meaning that if both TU j ∈ N and its neighboring TU j′ belong to cluster i then at most one of

them can be the root of said cluster.

• Each TU must have a neighbor (and only one) as predecessor in the tree that represents a given

cluster or be the root of the cluster itself.

∀j ∈ N :

 ∑
j′∈Nj

pj,j′

+ rj = 1 (4.18)

• If two neighbors belong to different clusters, then they cannot have the predecessor relation.

∀i ∈ K, j ∈ N, j′ ∈ Nj : (xi,j ∧ ¬xi,j′) =⇒ ¬pj′,j (4.19)

Which can be normalized as:

∀i ∈ K, j ∈ N, j′ ∈ Nj : −xi,j + xi,j′ − pj′,j ≥ −1 (4.20)
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• For each pair of neighbors, the predecessor relation can only work in one direction. This means

that either TU j ∈ N is predecessor of TU j′ ∈ Nj , TU j′ is predecessor of TU j or they do not

have the predecessor relation at all.

∀j ∈ N, j′ ∈ Nj : pj,j′ + pj′,j ≤ 1 (4.21)

• Each TU can only be assigned a depth.

∀j ∈ N :

m∑
i=1

dj,i = 1 (4.22)

• The root node is at depth 0.

∀j ∈ N : rj =⇒ dj,0 (4.23)

Converting to PB constraints we get:

∀j ∈ N : −rj + dj,0 ≥ 0 (4.24)

• The depth of a given node is one more than its predecessor.

∀j ∈ N, j′ ∈ Nj , l ∈M \ {m} : (pj,j′ ∧ dj′,l) =⇒ dj,l+1 (4.25)

This constraint can be normalized as follows:

∀j ∈ N, j′ ∈ Nj , l ∈M \ {m} : −pj,j′ − dj′,l + dj,l+1 ≥ −1 (4.26)

• Finally, the nodes at depth m must be leafs of the tree, i.e. these nodes cannot be predecessors

of any other nodes.

∀j ∈ N, j′ ∈ Nj : dj,m =⇒ ¬pj′,j (4.27)

Which can be normalized as:

∀j ∈ N, j′ ∈ Nj : −dj,m − pj′,j ≥ −1 (4.28)

4.3.2 Shortest-Path Contiguity Formulation

This section presents the first formulation we developed in an attempt to guarantee contiguous dis-

tricts. It turns out that although contiguity is guaranteed, this formulation is incomplete meaning that,

occasionally, some feasible solutions are not considered. However, we still feel that it is relevant and

worth exploring in this work because it is innovative, extremely fast due to the lower number of variables

required and it is seldom that the ignored solutions belong to the Pareto front.
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This formulation shares every aspect of the base formulation previously described (Figure 4.1) and

creates contiguous districts by exploiting the fact that in any contiguous district i, using only territorial

units belonging to i, there must exist a path between any pair of territorial units.

Consider the contiguity graph of the territorial units where a weight of 1 is defined for every edge

between two adjacent territorial units. Given this weighted graph, one can easily compute the matrix D

of shortest distances between all pairs of nodes (TUs) in polynomial time. An option would be using the

Floyd-Warshall algorithm [15] (complexity of O(n3) where n is the number of TUs).

With that information we can create Equation 4.29 where, for all clusters, if two non-neighboring

TUs j and j′ belong to the same cluster i then, there must exist at least another TU j′′ in that same

cluster i so that j′′ is at the same time neighbor of j′ and the distance between TU j and TU j′′ is lower

than the distance between TU j and TU j′ (Dj,j′′ < Dj,j′ ). Formally, a shortest path between any two

non-neighboring TUs belonging to the same cluster i must be exist inside i.

∀i ∈ K, j, j′ ∈ N, j 6= j′, j′ 6∈ Nj : (xi,j ∧ xi,j′) =⇒

 ∨
j′′∈Nj′ ,Dj,j′′<Dj,j′

(xi,j′′)

 (4.29)

Equation 4.29 can be converted into a PB constraint as follows:

∀i ∈ K, j, j′ ∈ N, j 6= j′, j′ 6∈ Nj : −xi,j − xi,j′ +
∑

j′′∈Nj′ ,Dj,j′′<Dj,j′

(xi,j′′) ≥ −1 (4.30)

Note that the constraint is trivially satisfied if only TU j ∈ N or its neighbor TU j′ (or none) are present

in cluster i. Otherwise, at least one (but possibly multiple) other TUs xi,j′′ meeting the requirements (j′′ ∈

Nj′ ∧Dj,j′′ < Dj,j′ ) must also be in cluster i.

This formulation is incomplete because by computing the shortest distances between all TUs, only

paths between TUs with that length are allowed (any shortest path). Formally, if two non adjacent

TUs j and j′ are in the same cluster i then all TUs that make up one shortest path between j and

j′ must also be in cluster i. Usually, it is extremely beneficial to maximize the compactness of the

solutions to only include shortest paths between territorial units and, for that reason, it is rare that the

most compact solution (according to the objective function defined) does not satisfy the shortest-path

constraint. However, in Figure 4.2 we present one of those scenarios. Obviously, these situations are

more frequent if we are considering an area with more territorial units or maximizing compactness is not

the only objective function.

Note how, using the shortest-path formulation (left map on Figure 4.2), TUs A and B could not

be in the same cluster because the distance between those TUs is 2 (passing through C). Therefore,

Equation 4.29 would require at least another TU at distance 1 from A and B to also be included in that

cluster and C is the only TU meeting those requirements, since it is the only one that is both neighbor of

A and B. However, in this context, since C is a high population density unit, this is not feasible and the

optimal solution (right map in Figure 4.2) is not considered.

The border length between territorial units in the same cluster (our compactness measure) is in-

creased from 584402 meters using the shortest-path formulation to 614891 meters using the tree-based
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Figure 4.2: Redistricting the same area with the shortest-path constraints (left map) and the tree-based
constraints (right).

formulation (right map) which represents a 5.22% increase (approximately). This a modest increase and

that explains why visually it is hard to tell which solution is the most compact one.

The fact that the shortest-path formulation is simple, really efficient, usually does not preclude the

global optimal solution and even in those cases manages to find pretty compact solutions, makes it a

great option to use in scenarios where a complete model requires a much larger computational time.

Since this incomplete contiguity formulation does not require any additional variables to guarantee con-

tiguity (all the variables defined in Section 4.3.1) the formulas to be generated are much smaller. In

Section 4.6 we compare the number of variables created by this contiguity formulation with the ones

created by the tree-based formulation which helps explain its speed.

4.4 Maximizing/Minimizing Party Results

The objective function proposed in Section 4.2 is solely concerned with optimizing compactness. How-

ever, it is often the case that gerrymandering can be used to produce electoral maps beneficial towards

some political party (or being less advantageous to some other party). In this section, we extend the

model by considering which party is likely to win each electoral district in a first-past-the-post (FPTP)

electoral system based on results from previous elections.

Let P denote the set of political parties running for the election. Let vp,j be the likely number of votes

party p ∈ P receives in TU j ∈ N . This value can be defined for all parties and TUs through an analysis

of historical data in previous elections. Let li,p,p′ be a Boolean variable that denotes if political party p is

likely to lose the election at ED (cluster) i to party p′.

For each political party p, the following set of constraints must be added in order to determine if a

given party p has fewer votes than another party p′:
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Contiguity Constraints:

• Tree-based Formulation (Complete):

1. The number of roots must be exactly the same number as the number of clusters (k):∑
j∈N

rj = k

2. If a cluster already has a TU has root, no other TU in the same cluster can be a root:

∀i ∈ K, j, j′ ∈ N, j 6= j′ : (xi,j ∧ xi,j′ ∧ rj) =⇒ ¬rj′

3. Each TU j is either the root of a cluster or has a neighbouring TU j′ as predecessor:

∀j ∈ N :

 ∑
j′∈Nj

pj,j′

+ rj = 1

4. If neighbouring TUs belong to different clusters, they cannot have the predecessor
relation:

∀i ∈ K, j ∈ N, j′ ∈ Nj : (xi,j ∧ ¬xi,j′) =⇒ ¬pj′,j

5. The predecessor relation is unidirectional, for each pair of neighbours:

∀j ∈ N, j′ ∈ Nj : pj,j′ + pj′,j ≤ 1

6. Constraint to assign exactly one depth to each TU:

∀j ∈ N :

m∑
i=1

dj,i = 1

7. The root node is at depth 0:

∀j ∈ N : rj =⇒ dj,0

8. The depth of a given node is one more than its predecessor:

∀j ∈ N, j′ ∈ Nj , l ∈M \ {m} : (pj,j′ ∧ dj′,l) =⇒ dj,l+1

9. Nodes at final depth (m) cannot be predecessors of any other nodes:

∀j ∈ N, j′ ∈ Nj : dj,m =⇒ ¬pj′,j

• Shortest-Path Formulation (Incomplete):

1. If two non-neighbouring TUs xi,j and xi,j′ belong to the same cluster then, there must
exist at least another TU xi,j′′ (in the same cluster i) so that xi,j′′ is at the same time
neighbour of xi,j′ and the distance (number of edges) between xi,j and xi,j′′ is lower
than the distance between xi,j and xi,j′ (Dj,j′′ < Dj,j′ ):

∀i ∈ K, j, j′ ∈ N, j 6= j′, j′ 6∈ Nj : (xi,j ∧ xi,j′) =⇒

 ∨
j′′∈Nj′ ,Dj,j′′<Dj,j′

(xi,j′′)



Figure 4.3: Summary of contiguity constraints for the tree-based formulation (Section 4.3.1) and
the shortest-path formulation (Section 4.3.2). These extend the base model in Figure 4.1.
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∀i ∈ K, ∀p, p′ ∈ P, p 6= p′ :

∑
j∈N

vp′,jxi,j −
∑
j∈N

vp,jxi,j ≥ 1

 ⇐⇒ li,p,p′ (4.31)

Note that the vote difference between party p and p′ at TU j can be computed while building the

formula. Hence, a more compact formulation for these constraints would be:

∀i ∈ K, ∀p, p′ ∈ P, p 6= p′ :

∑
j∈N

(vp′,j − vp,j)xi,j ≥ 1

 ⇐⇒ li,p,p′ (4.32)

Finally, note that constraints (4.31 and 4.32) are not PB constraints. However, these can be easily

converted into PB constraints as follows:

∀i ∈ K,∀p, p′ ∈ P, p 6= p′ : Ki,p,p′ li,p,p′ +
∑
j∈N

(vp,j − vp′,j)xi,j ≥ 1 (4.33)

∀i ∈ K,∀p, p′ ∈ P, p 6= p′ : −Ki,p,p′ li,p,p′ +
∑
j∈N

(vp′,j − vp,j)xi,j ≥ 1−Ki,p,p′ (4.34)

where for each constraint we have Ki,p,p′ >
∑

j∈N |vp′,j − vp,j |. In this case, since the number of

registered voters plus 1 is always greater than |vp′,j − vp,j | we can safely use Ki,p,p′ =
∑

j∈N Rj + 1 .

Observe that if li,p,p′ = 1, then the first constraint is trivially satisfied since Ki,p,p′ is always larger

than the sum of the remaining literals. On the other hand, if li,p,p′ is assigned value 0, then we must

have
∑

j∈N vp,jxi,j >
∑

j∈N vp′,jxi,j , i.e., party p wins more votes than party p′ in cluster i. The second

constraint works similarly, ensuring the equivalence in Equation 4.32.

Up to this point we are considering a party p the winner against another party p′ if party p gets at

least one more vote than p′. Although we may also require that p receives a certain margin, M (between

0 and 1), of votes over p′ to consider p the winner and update variable li,p′,p to 1. This is particularly

useful if we want to make a distinction between electoral districts that are certain wins for a given party

and toss-up districts, i.e., competitive districts where either party can be the most voted.

In order to add this functionality, we simply need to slightly modify Equation 4.32 and subtract to the

vote difference between parties p and p′ the margin M of all votes cast to parties p ∈ P . This can also

be done while building the formula:

∀i ∈ K, ∀p, p′ ∈ P, p 6= p′ :

∑
j∈N

(vp′,j − vp,j)−
∑
p∈P

vp,jM

xi,j ≥ 1

 ⇐⇒ li,p,p′ (4.35)

Notice that if we have M = 0 then Equations 4.32 and 4.35 are equal.

Let li,p be a Boolean variable that denotes if political party p is likely to lose the election at ED i

against at least one of the other parties. Hence, li,p can be determined as:
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∀i ∈ K, ∀p ∈ P : li,p ⇐⇒
∨

p′∈P,p6=p′

li,p,p′ (4.36)

Again, note that Equation 4.36 is not a PB constraint. We must convert it into the following ones:

∀i ∈ K, ∀p ∈ P, p′ 6= p : −li,p +
∑
p∈P

li,p,p′ ≥ 0 (4.37)

∀i ∈ K,∀p ∈ P, p′ 6= p : li,p − li,p,p′ ≥ 0 (4.38)

If we have li,p = 1 it means (from Equation 4.37) that at least one other party must win against party

p in cluster i. And from Equation 4.38 we have that if party p loses against any party in cluster i then it

does not win the elections in cluster i (li,p = 1).

Therefore, in order to maximize the number of elected members for party p, one can define the

following goal, that minimizes the number of ED losses:

Minimize
∑
i∈K

li,p (4.39)

Observe that one such objectives can be added for any different party p ∈ P .

Analogously, if we want to minimize the number of officials elected by a certain party p, we can define

the opposite objective function that maximizes the number of EDs party p loses:

Maximize
∑
i∈K

li,p (4.40)

4.5 Optimizations

In this section we focus on optimizations that can be added to the proposed model in order to increase its

performance. Whenever possible, we also adapt these optimizations to the Hess model [34], a classical

approach to the political districting problem (described in Section 3.2.2 and Figure 3.1).

4.5.1 Adding Symmetry Constraints Between Clusters

Symmetry constraints are simply additional constraints that allow to remove equivalent solutions [60].

This is known to be very effective in some domains, but it depends on the pruning capacity and the extra
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effort necessary to maintain these constraints, hence, in some cases, it might not be helpful [36, 44].

Consider four TUs A,B,C,D and two clusters. Suppose that a solution is reached where A,B form

cluster 1 and C,D form cluster 2. Notice that if we were to assign A,B to cluster 2 and C,D to cluster

1, then we would have essentially the same solution. In this case, we say that these two solutions are

symmetric to the cluster assignment.

In order to avoid these situations, one can add constraints that cut these symmetric assignments,

just allowing one of them to be a solution to our model. Observe that the model remains valid, since we

are only cutting symmetric solutions. In our domain, we can add constraints such that the number of

voters in each cluster is non-decreasing according to the cluster identifier. Hence, let Rj be the number

of registered voters in TU j. Then, we can add the following constraints.

∀i ∈ K \ {k} :
∑
j∈N

Rj · xi,j ≤
∑
j∈N

Rj · xi+1,j (4.41)

4.5.2 Adding Symmetry Constraints Inside Clusters

In the previous section we added constraints to cut symmetries between clusters. However, when using

the tree-based contiguity formulation there are also symmetries inside clusters. Consider the same four

TUs A,B,C,D to be divided between the same two clusters. It is equivalent assigning A and B to

cluster 1 and C and D to cluster 2 with A and C as roots or the same assignment with B and D as roots

and A and C as leaves.

A possible solution to avoid these scenarios is to add a constraint that would only allow the TU with

the lowest ID in the cluster to be the root. It can be defined as follows:

∀i ∈ K,∀j ∈ N, j′ ∈ Nj , j < j′ : pj,j′ =⇒ ¬rj′ (4.42)

Under constraint 4.42 if TU j is preceded by a neighbor j′ with higher ID then it implies that TU j′ is

not the root of any cluster, essentially forcing j to be the root of the cluster containing both TUs.

Equation 4.42 can be easily adapted to the Hess model [34] (described in Section 3.2.1 and Fig-

ure 3.1) in order to cut the same type of symmetries and significantly increase the performance.

∀j, j′ ∈ V, j < j′ : xj,j′ =⇒ ¬xj′,j′ (4.43)

It is important to point out that this specific optimization is only possible because the objective function

used for compactness (Section 4.2) does not depend on the center (root) of the cluster, allowing any

territorial unit to be the root. This is not the case in many previous approaches to the political districting

problem [53], including in the original Hess model [34] (Figure 3.1), meaning that Equation 4.43 is only

valid using another objective function.
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4.5.3 Reducing Maximum Depth

The tree-based contiguity formulation (Section 4.3.1) defines each cluster as a tree with depth m. A

trivial upper bound on the maximum depth of each tree that represents a cluster is to define m = n− k.

In this worst case, there is a cluster with m TUs, while the remaining k − 1 clusters only have one TU.

However, this is only expected to occur if there are TUs with enough voters to be a cluster on its own.

Otherwise, tighter bounds can be defined.

Another trivial approach is to consider that the cluster with most TUs is composed of the TUs with

fewer voters. Let U denote the maximum number of voters to be assigned to a cluster and let Rj denote

the number of people registered to vote in TU j. Furthermore, let O define the ordered list of the n TUs

indexes in a non-decreasing order of voters. Therefore, one can define m as follows:

m = max{u :

u∑
j=1

RO[j] ≤ U} (4.44)

Clearly, there can not exist a cluster with u+ 1 TUs, since it would not satisfy constraint (4.5). However,

a limitation of this method is that the TUs with fewer voters might not be contiguous.

In the worst case, the units form a graph that corresponds to a linked list. Notwithstanding, in this

case, if we consider the root of a cluster to be a node in the middle of the list, there is still always a

solution since our constraints defined in Section 4.3.1 do not preclude it. Hence, we can safely divide m

by 2 without removing any feasible clusters.

4.5.4 Removing Impossible Pairs

Drawing from Validi et al. [58], it is also possible to determine that some pairs of TUs cannot be in the

same cluster. Consider the following weighted directed graph Gw = (N,E) defined as follows:

• For each TU j ∈ N there is a corresponding node j ∈ N

• For each pair of adjacent TUs j and j′, we define two edges (j, j′) and (j′, j) in E such that

w(j, j′) = Rj′ and w(j′, j) = Rj

Let U denote the upper population limit in an ED and δ(j, l) denote the shortest path from j to l in Gw. If

Rj + δ(j, l) > U , then TUs j and l cannot be in the same cluster. Note that it would require more voters

than the upper limit U in order for these two TUs to be in the same contiguous cluster. Hence, any of

the following constraints could be safely added to our model:

∀i ∈ K : xi,j =⇒ ¬xi,l (4.45)

∀i ∈ K : xi,l =⇒ ¬xi,j (4.46)

Which translate to the PB constraint:
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∀i ∈ K : −xi,j − xi,l ≥ −1 (4.47)

The same principle can also be applied in the Hess model, resulting in Equation 4.48 requiring TUs

j and l to always be in different clusters.

∀i ∈ N : xj,i =⇒ ¬xl,i (4.48)

4.6 Complexity

In this section we dive deeper into the complexity of both the complete and incomplete models based on

the number of variables they require which is related with the search space that needs to be explored.

We start with the base model and then explain the variables that need to be added in the tree-based

contiguity version, estimating an approximate value and providing an upper bound on the total number

of variables for each case.

The number of xi,j variables is O(k × n) with 2 ≤ k < n, but we expect k to be much smaller than

n. The number of bi,j,j′ variables is O(k × n × 〈k〉) where 〈k〉 is the average degree of a node in our

graph, i.e., average number of neighbors. In the worst case scenario 〈k〉 = n − 1 because all nodes

connect to every other node, although we only need to consider the connection in one direction since

bi,j,j′ = bi,j′,j . However, we found that in real-world scenarios we have small values of 〈k〉, 5.31 in

graphs of Portuguese parishes and 3.74 in graphs of Portuguese municipalities. Hence, we can expect

the number of variables in the incomplete model to be around k×n+ k×n×〈k〉÷ 2 (the number of xi,j

variables plus the number of bi,j,j′ variables, respectively). In the absolute worst case scenario, we can

guarantee that the number of variables is bounded by O(n3).

Using the tree-based contiguity formulation (complete), beyond those variables we also have to con-

sider the number of pj,j′ , rj and dj,l variables. The number of pj,j′ variables is O(n × 〈k〉), the number

of nodes times the average degree of a node. The number of rj variables is simply n, one per TU.

Finally, the number of dj,l variables is O(n × m). In the worst case, we have m = (n − k)/2 resulting

in (n2 − nk)/2 variables, but one can expect m to be much smaller, since the number of voters is not

usually so concentrated. As a result, in the worst case scenario, the number of variables in the complete

model is also always bounded by O(n3).

However, in both contiguity formulations we strongly expect the number of variables to be much lower

than O(n3) since k and 〈k〉 will be much lower values than n. Our data shows that even the tree-based

formulation usually grows as n2.

Finally, if we are also maximizing or minimizing the results of a political party we also need to add

the variables li,p and li,p,p′ to the model. Note that these variables depend on the number of parties P

being considered. The number of li,p is n × P and the number of li,p,p′ is n × P 2. In the end, since the

value P is typically really small (≤ 4, in our particular case) the total number of variables is not strongly

impacted.
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On the number of constraints, for both cases, it is also bounded by O(n3) because Equation 4.7

requiresO(k×n×〈k〉) constraints. Additionally, for contiguity, in the shortest-path method, Equation 4.29

creates O(k × n2) new constraints. Meanwhile, in the tree-based method, Equation 4.16 introduces

O(k×n2) constraints, Equation 4.19 creates O(k×n×〈k〉) and Equation 4.25 introduces O(n×〈k〉×m)

more constraints where m is the maximum depth. These are all bounded by O(n3). However, once

again, because k and 〈k〉 will be much lower values than n we expect the number of constraints to be

well smaller than n3.
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Chapter 5

Experimental Procedure and Results

In this chapter we put our model to the test. We are interested in studying the Portuguese case follow-

ing the propositions to change the electoral system in place. Therefore, multiple scenarios are tested

focusing on the territory of continental Portugal. Unbiased electoral maps and biased electoral maps

towards each of the main Portuguese parties are created and compared. Note that we refer to a map

as biased or unbiased if previous electoral results are taken, or not, into account, respectively. However,

unintentional gerrymandering is still a possibility [13].

The set of rules followed to generate the instances is the typical for redistricting:

1. The number of people registered to vote in each electoral district (ED) must not diverge more than

25% from the theoretical best value B. This means that ε in Equation 4.3 is set to 0.25.

2. The new electoral districts should be as compact as possible.

3. All electoral districts must be contiguous.

4. There must be conformity to administrative boundaries, i.e., new electoral maps must respect

the current administrative divisions. The largest possible administrative divisions should be kept

whenever possible without disregarding the first rule.

The population margin ε is difficult to set. The bigger the maximum margin to a theoretical ideal value,

the less equal is the voting power between electoral districts. Some countries such as the United States

of America prefer a margin as low as possible, although that is only possible because administrative

boundaries are ignored in favor of census tracts. Other countries set the limit at values such as 10%

(Italy, Australia or Ukraine).1 In this work, the maximum margin value is set at 25%, as used in countries

such as Canada or Germany (it was also briefly in the United Kingdom). Moreover, it was the maximum

margin value presented in one of the propositions for Portugal back in 1998 [4, 17].

1http://aceproject.org/main/english/bd/bdb05a.htm, accessed on 19/12/2020.
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Figure 5.1: Map of Portuguese regions and
respective identifier (ID).

ID Name Elected

01 Aveiro 16

02 Beja 3

03 Braga 19

04 Bragança 3

05 Castelo Branco 4

06 Coimbra 9

07 Évora 3

08 Faro 9

09 Guarda 3

10 Leiria 10

11 Lisboa 48

12 Portalegre 2

13 Porto 40

14 Santarém 9

15 Setúbal 18

16 Viana do Castelo 6

17 Vila Real 5

18 Viseu 8

Total 215

Table 5.1: Identifiers, names and current number of
elected officials for each Portuguese region.

The formulations proposed in Sections 4.2 and 4.3 guarantee district compactness and contiguity,

respectively. Although, the rule of conformity to administrative boundaries is the hardest to satisfy.

Portugal will not be considered as a whole, instead we look at each first level administrative subdivision

individually.2 This is equivalent to the problem in the United States of America where each state is

redistricted separately. The number of mandates, that is, the number of officials each Portuguese region

elects for the National Assembly, is defined by the Comissão Nacional de Eleições3 (an independent

body whose mission is to make sure that elections are fair) and calculated using the D’Hondt method

[21] with the populations of each region. The usage of this method guarantees that, independently of the

region an individual lives on, its voting power is approximately the same across the country. The current

number of parliament members for each region (calculated using the most recent population data) is

presented in Figure 5.1 and Table 5.1.

Whenever possible, second level administrative divisions are preserved (the smaller subdivisions

in each Portuguese region in Figure 5.1, called municipalities4). However, that is impossible in some

cases, either because the number of elected officials is larger than the number of municipalities, or

2In Portuguese, the first level administrative subdivision (each of the map regions in Figure 5.1) is named a ”distrito”. In order
to avoid confusion with electoral districts, in this work we use the term region to designate these areas.

3Available at (In Portuguese): http://www.cne.pt/, accessed on 19/12/2020.
4In Portuguese, the municipalities are named ”municı́pios” or ”concelhos”. A complete list of Portuguese municipalities can

be found at: https://en.wikipedia.org/wiki/List_of_municipalities_of_Portugal, accessed on 19/12/2020.
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because the population differences between municipalities does not allow joining them while respecting

the population equality rule. In the aforementioned cases, the first step is to split the region in as many

different areas as possible at the municipality level. Next, each of these areas is redistricted at the

civil parish level5 (the third and lowest level of Portuguese administrative divisions) to find the final new

electoral map of a region.

This approach has two major advantages. Firstly, it avoids splitting municipalities between EDs as

much as possible. Secondly, it does not make the redistricting at the parish level overcomplicated since

the areas to be redistricted at this level will contain less territorial units each and also elect fewer officials

(lower values of n and k, respectively, the biggest factors in complexity). Most regions have over 100

parishes (values of n over 100) which creates a huge search space. Hence, we find that this is a

great approach to obtain global optimal solutions in acceptable amounts of time while at the same time

preserving second-level administrative divisions as much as possible.

Figure 5.2 exemplifies the approach when there is the need to redistrict at the parish level. Consider

the region of Aveiro (region number 01) and its 19 municipalities (map A in Figure 5.2). Furthermore,

consider also that we want to elect 8 officials to represent this region. When we try to redistrict at the

municipality level, the constraints are unsatisfiable because there is a municipality with 125534 regis-

tered voters and the upper population boundary is 100883 (with a 25% population margin). Therefore,

we first take these 19 municipalities as our territorial units and split them into 4 areas. Through the

maximization of the compactness of each area map B is obtained. We proceed to consider the civil

parishes inside these areas our new territorial units (map C). Finally, districting each of these 4 areas

into 2 single-member districts (again maximizing for compactness) yields our final electoral map for the

region of Aveiro (map D in Figure 5.2).

Considering that the smallest territorial units possibly used in this work are the current Portuguese

parishes (census tracts or census blocks are never used) we are meeting the criterion of conformity to

administrative boundaries set before.

We focus on continental Portugal, meaning that we do not redistrict the archipelagos of Açores

and Madeira since it is impossible to meet the contiguity and population constraints, particularly in the

islands of Açores. This is compatible with one of the 1998 propositions [17] where the Portuguese

archipelagos would each have their regional circle and elect member to the national assembly using

party-list proportional representation. However, one way of doing it would be to create a virtual border

between the closest islands where the territorial units of one island would connect to the territorial units

of the other. The constraints would then be satisfiable and the procedure previously described could be

used to also redistrict those regions.

The political districting problem is one such problem where finding global optimal solutions is of the

utmost importance. Hence, in the following scenarios we always use a complete model, the base model

previously detailed (Figure 4.1) with the tree-based contiguity constraints (4.3.1). The time limit is set

to three hours and the maximum population margin to the theoretical best value (B) is set to 25%.

Whenever the time limit is exceeded before finding the global optimal solution, the instance is also run
5In Portuguese, the civil parishes are named ”freguesias”. A complete list of Portuguese civil parishes can be found at (in

Portuguese): https://pt.wikipedia.org/wiki/Lista_de_freguesias_de_Portugal, accessed on 19/12/2020.
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Figure 5.2: Steps to redistrict at the parish level.

using the shortest-path contiguity formulation. The presented solution is the best one found with either

formulation but is always presented striped in the following figures with our results to differentiate from

certain global optimal solutions.

Regarding the computational infrastructure, all results are obtained on four Intel Xeon Silver 4110

processor (total of 32 cores) running Debian Linux with 64GB of RAM. In single-objective optimization

instances the solver used is the CPLEX Optimizer6 (version 12.6.0), a commercial solver, allowing us

to exploit the full potentiality of our system. Multi-objective optimization problems are solved using

Sat4jMoco7, an open-source library in Java.

6https://www.ibm.com/analytics/cplex-optimizer, accessed on 20/12/2020.
7https://gitlab.ow2.org/sat4j/moco, accessed on 20/12/2020.
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5.1 Scenario 1: Unbiased Redistricting

The first question we are interested in answering is: what does a fair redistribution of the Portuguese

electoral map using a FPTP voting system look like? Therefore, we must split the territory of Por-

tugal into 215 single-member districts. Each region is partitioned separately according to the values

in Table 5.1. The redistricting of each Portuguese region is done without using any gerrymandering

techniques, meaning that the only objective function is to maximize the compactness of our new single-

member districts (described in Section 4.2). This will prove the capabilities of the model and create

completely unbiased electoral maps.

In our results, each color represents an electoral district and notice that they are always contiguous,

i.e., a change in color means a change in ED. The regions of Porto and Lisboa are impossible to redistrict

in this particular scenario because both contain parishes with populations over the upper population

boundary and for that reason are crossed out from the following map with our results (Figure 5.3).

Whenever the presented EDs in our maps are striped it means that the solution shown may not be the

global optimal solution because. There are two possibilities, it was either obtained using the shortest-

path contiguity formulation or the time limit was exceeded using the tree-based formulation.

The achieved results are good, we can find global optimal solutions for most of the territory of con-

tinental Portugal following all the previously established rules. Concerning the compactness, there are

not major issues across regions and odd shapes are scarce. Probably the most unusual shape is the

pink ED in the region of Vila Real (labelled as A on the left map in Figure 5.4) and that was due to that

region being one of the 6 redistrictings at the municipality level which means that there are less possible

solutions to the problem. Combined with the fact that the blue district (labelled as B) over district A has

a population close to the upper population limit making it impossible to join with other territorial units,

forces district A to end with an odd shape. In order to prove the capabilities of our objective function

to generate compact solutions, we decided to redistrict the region of Vila Real at the parish level (the

TUs are now the parishes instead of the municipalities and the number of clusters remains equal to 5).

The results are presented on the right map in Figure 5.4 and prove that the potential of the objective

function proposed in Section 4.2 because the solution is clearly more compact. A more compact solution

comes at the cost of municipality boundaries no longer being maintained and the solution found proba-

bly not being the global optimal solution (note that all EDs are striped) because the number of parishes

considered is 197 (n = 197) to be divided into 5 EDs (k = 5), creating a large search space.

5.2 Scenario 2: Using another voting system

The first-past-the-post system (FPTP) is not the only voting system using single-member districts. Some

countries in Europe such as Italy or Hungary (Figure 2.1), but also around the world (Japan or Mexico,

for example) use the parallel voting system. This was precisely the system proposed by the two major

Portuguese parties in 1998 [17] making it a strong candidate for a future electoral system revision in

Portugal and definitely worth exploring in this work.
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Figure 5.3: Complete electoral map of continental Portugal using the first-past-the-post system.
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Figure 5.4: Results for the region of Vila Real (17) at the municipality level and at the parish level.

In this electoral system, a percentage of the votes is distributed using single-member districts and

the rest using a party-list proportional representation method (most commonly, the D’Hondt method) at

the national level. In the election day, a voter casts two different votes, one for an individual in its single-

member district and the other one for a party at the national level. The idea behind it is bringing the

voters closer to politics (through single-member districts) by voting directly to elect a parliament member

in the national assembly who is typically more concerned and connected with their local electoral area,

while maintaining proportionality through the national circle at the party level (avoiding the tendency to

create a two-party system of a simple FPTP voting system).

Under a parallel voting system, we consider that the number of single-member districts to be created

in each Portuguese region is half the current number of elected officials (see Table 5.1), rounded up.

Hence bringing the number of officials per region to a level where the constraints are satisfiable, even in

the most populous regions while maintaining, approximately, the same voting power between regions.

The total number of single-member districts to be created becomes 112 in continental Portugal (Ta-

ble 5.2). These 112 seats would be awarded through a FPTP system while the remaining seats would

be awarded through party-list proportional representation at the national level. Note that the percent-

age of seats awarded through single-member districts and party-list proportional representation varies

greatly between countries that use a parallel voting system.

Once again, the focus is only on continental Portugal and considering only one objective function:

maximize the compactness. Hence, totally fair electoral maps for Portugal are created. Since the in-

stances to solve are single-objective optimization instances, the solver used is the CPLEX Optimizer.

Since we believe this is a strong possibility in a future Portuguese electoral revision, this is also the

electoral system that we will use in future scenarios. Hence, the results in this scenario will work as a

baseline to compare with the following ones where instead of creating unbiased distributions of Portugal

we deliberately try to make the redistricting advantageous to a certain party.

For comparison with following scenarios where we are applying gerrymandering techniques, we will

track how many electoral districts each of the two main Portuguese parties (PS and PSD) wins. The
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ID Name Electoral Districts
01 Aveiro 8
02 Beja 2
03 Braga 10
04 Bragança 2
05 Castelo Branco 2
06 Coimbra 5
07 Évora 2
08 Faro 5
09 Guarda 2
10 Leiria 5
11 Lisboa 24
12 Portalegre 1
13 Porto 20
14 Santarém 5
15 Setúbal 9
16 Viana do Castelo 3
17 Vila Real 3
18 Viseu 4

Total 112

Table 5.2: Identifiers, names and number of electoral districts for each region under a parallel voting
system.

party that gets the most votes inside an electoral district is the winner (independently of the margin) just

like in a FPTP system. These results are presented in the unbiased column of Table A.1 of the Appendix.

Dividing the Portuguese territory in 112 electoral districts according to Table 5.2 (using the algorithm

described in Figure 5.2) results in the 35 instances characterized in Table 5.3.

Figure 5.5 shows the complete map of continental Portugal after redistricting each of its regions

individually following the algorithhm described in Figure 5.2. Figure 5.6 and Figure 5.7 show close-ups

of the more densely populated regions of Portugal (the metropolitan areas of Lisbon and Porto) where

the redistricting had to be done in two steps (the first at the municipality level and the second one at

the parish level). In this scenario, given that the number of officials to elect in each region (Table 5.2) is

lower than in the previous one, we were able to redistrict 11 out of the 18 regions while respecting the

municipality boundaries. There are only 5 instances (out of 35) comprising 17 EDs (out of 112) that could

not be solved within the time limit established. These 5 instances are also solved using the shortest-path

contiguity formulation and the best (most compact) solutions are the ones presented in our results. As

an example, in the region of Porto, one instance with k = 4 and n = 149 is striped in Figure 5.5 because

the presented solution is the one found with the shortest-path model as the tree-based model could not

even find a solution after 3 hours.

In the previous scenario (Section 5.1), we already showed the capabilities of our model to generate

compact solutions and once again it delivers excellent results without any major compactness issues,

even in instances where the time limit was exceeded which may not be global optimal ones (striped

EDs).

The number of seats each of the main Portuguese parties (PS and PSD) would get under this sce-

nario, in each region, is presented in Table A.1 of the Appendix (the unbiased columns). You may notice

that PS wins in 84 out of 112 electoral districts (75%) while PSD wins the remaining districts which
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Instance
Number

Portuguese
Region (ID)

Territorial
Units (n)

Electoral
Districts (k)

1 01 22 2
2 01 25 2
3 01 33 2
4 01 67 2
5 02 14 2
6 03 34 2
7 03 37 2
8 03 53 2
9 03 70 2

10 03 153 2
11 04 12 2
12 05 11 2
13 06 64 2
14 06 91 3
15 07 14 2
16 08 16 5
17 09 14 2
18 10 57 2
19 10 53 3
20 11 15 6
21 11 15 6
22 11 24 6
23 11 80 6
24 12 15 1
25 13 11 4
26 13 15 4
27 13 25 4
28 13 43 4
29 13 149 4
30 14 21 5
31 15 12 4
32 15 43 5
33 16 10 3
34 17 14 3
35 18 24 4

Table 5.3: Correspondence between instance number, Portuguese region, the number of territorial units
and districts to be created.

might seem too big of a difference. The justification behind these results lays on two main factors. First,

the data used to calculate the electoral results is from the 2019 legislative elections where PS received

36.65% of the national vote while PSD only received 27.90%.8 Second, the fact that the FPTP voting

system used in single-member districts tends to over-represent the most voted parties [25, 54], par-

ticularly if the votes are geographically relatively well distributed. However, it is important to mention

that these results would be balanced with the other half of the seats in parliament being awarded under

a party-list proportional representation method at the national level evening the electoral results and

attributing seats to least voted parties.

8Available at (in Portuguese): https://www.eleicoes.mai.gov.pt/legislativas2019/territorio-nacional.html, ac-
cessed on 22/12/2020.
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Figure 5.5: Complete electoral map of continental Portugal using a parallel voting system.
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Figure 5.6: Close-up of Lisbon and Setúbal
areas.

Figure 5.7: Close-up of Braga, Porto and Aveiro
areas.

5.3 Scenario 3: Gerrymandering to Maximize Party Results

In this section, we deliberately generate maps that maximize the district wins of a party while still max-

imizing the compactness, meaning that we are now upon a multi-objective combinatorial optimization

problem instead of a single-objective one. This can be done by adding Equation 4.39 in Section 4.4

to our compactness objective function. The generated maps are favorable towards the main parties

(PS and PSD) and a comparison of the electoral results with the ones from a fair redistricting (previous

scenario) is done.

The only variable changed is adding one more objective function (minimizing party losses, i.e., maxi-

mizing party wins) so that a comparison of the results with the ones obtained in the previous scenario is

possible. Hence, we are also considering a maximum margin of 25% to B, the first level administrative

divisions will be considered separately and municipalities (second level divisions) will be kept whenever

possible. The solver used is Sat4jMoco, an open-source solver that solves multi-objective optimization

problems.

The districting was done, for all Portuguese regions, and despite a complete map not being pre-

sented, the complete electoral results (number of seats won by each party) for each objective is pre-

sented in Table A.1 of the Appendix. In instances where the Pareto front contains multiple solutions,

the results presented in Table A.1 are of the solution that is the most advantageous towards the party

currently being maximized.

Considering that the associated colours of parties PS and PSD are, respectively, pink and orange,

in Figures presenting our results (also valid in the following Sections) EDs colored in shades of pink

are wins for party PS and colored in shades of orange are wins for party PSD. Just like in the previous

scenario, striped districts in our results mean that the time limit of three hours was exceeded before we
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Figure 5.8: Pareto front for the region of Viseu (18) maximizing compactness along with PS wins. In
shades of pink, EDs won by PS, in orange EDs won by PSD.

could find a global optimal solution with the complete model. The presented EDs are the best solution

found with either the tree-based or the shortest-path contiguity models which might not be the global

optimal solutions (notice that the colours still represent the winning party in that ED).

Figure 5.8 presents the three possible redistricting options for the region of Viseu (region number

18) at the municipality level. These three points of the Pareto front represent the trade-off between

electoral district wins for party PS and compactness (border length). The top left map (Figure 5.8a)

is the unbiased distribution and also the most favorable towards PSD. On this map, the total border

length between TUs in the same cluster is 614891 meters and it goes down to 611282 meters as the

number of electoral district wins for party PS increases (Figure 5.8b). In the most advantageous map

towards PS, (Figure 5.8c), the total border length is further reduced to 594286 meters. These values

represent a 0.59% and a 3.35% decrease in compactness to the unbiased map. It is interesting to note

that between the map in Figure 5.8a and the map in Figure 5.8c the electoral results were essentially

inverted – PSD wins 3 EDs in Figure 5.8a while PS wins 3 EDs in Figure 5.8c – exposing the potential

of gerrymandering to change the course of an election. However, in Figure 5.8c the pink districts start

presenting some odd shapes with the centre one twirling around the orange district which is the first
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Figure 5.9: Results for the region of Vila Real (17). In pink EDs won by party PS and in orange EDs won
by party PSD.

indicator of gerrymandering in action.

For the region of Vila Real the results are presented in Figure 5.9. The unbiased distribution (5.9a)

has the orange party winning 2 districts and a total compactness measure of 440210 meters. If we are

also trying to maximize the wins of the pink party (Figure 5.9b), it is possible to make PS win 2 out of

the 3 EDs but the length of the border between TUs in the same cluster goes down to 426060 meters

(a 3.21% decrease). Finally, the map in 5.9c, shows a redistricting option where PSD would win all

the seats but we can immediately notice that one of the districts has an extremely odd shape and that

is confirmed by our compactness measure now being only 371788 meters (a 15.54% decrease to the

unbiased version).

Figure 5.10 shows the results for the region of Aveiro (region number 01) which is one of the cases

where a redistricting only at the municipality level is not possible. Therefore, following the algorithm

presented in Figure 5.2 results in 4 instances (each containing 2 electoral districts). In the unbiased

distribution (Figure 5.10a), the pink party wins 5 EDs while the orange party wins the remaining 3.

In Figure 5.10b, we are maximizing the ED wins of PS while also maximizing compactness and it is
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Figure 5.10: Different results for the region of Aveiro (01) at the parish level with a first division at the
municipality level.

possible to make PS win one more district through packing the opposition voters in the odd shaped

orange district (the striped one). Finally, in Figure 5.10c, we are maximizing the wins of PSD along

with compactness and the results show that it is possible to make PSD win 5 EDs while PS only wins

3 out of the 8 single-member districts. Comparing it with the unbiased map in 5.10a, we conclude

that gerrymandering is, once more, inverting the results of the elections. Although it is impossible to

guarantee that the presented solutions are the global optimal ones, these results (only a lower bound)

are enough to prove that it is definitely possible to gerrymander a territory with consequential effects.

Focusing on the most advantageous maps towards each party (Figures 5.10b and 5.10c) we note that

it possible to have party PS clearly win the elections in a certain region with 6 out of 8 seats (75%) or

clearly lose winning only 3 seats out of 8 (37.5%), a 3 seat change.
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Figure 5.11: Extreme possible results for the region of Aveiro at the parish level ignoring the boundaries
of municipalities (no prior division) when maximizing party PS (left) or party PSD (right).

Observe that in Figure 5.10 a first division at the municipality level is performed in order to pre-

serve second-level administrative subdivisions as much as possible before moving to the parish level.

However, it is interesting to study how far could the results be skewed if we were to ignore these admin-

istrative subdivisions and consider all parishes at the same time. This test creates more liberty for the

electoral districts to be gerrymandered because the number of territorial units considered at the same

time is larger. Consequentially, the number of possible solutions is also much larger and, although global

optimal solutions could not be found (even after increasing the time limit to 10 hours) in Figure 5.11 we

present possible solutions that are a lower bound on the number of possible wins for each party. Each

one of the solutions is extremely favorable to one of the parties (hence unfavorable to the other) and

shows extremely well how gerrymandering can be used to give a huge advantage to a certain party

when both receive a similar number of votes (in the region of Aveiro PS received 34.31% of the votes

and PSD 33.54%, in the 2019 elections).

On the electoral map on the left of Figure 5.11, maximizing the wins of party PS (along with com-

pactness) it ends up winning 7 of the 8 electoral districts (87.5%). It is clear that some districts seem

to extend themselves into the neighboring ones, creating some odd shapes (particularly in the center)

which cracks the opposition voters. On the map presented on the right we are trying to maximize the

ED wins of PSD (along with compactness) and it is possible to make it win 6 out of 8 districts (75%).

Remember that under an unbiased districting PSD would only win 3 (Figure 5.10a). In Figure 5.11b it

is extremely clear that some of the districts are immensely elongated, again cracking and packing the

opposition. Notice that some EDs are stretched out to a point where they span the whole region of

Aveiro from side to side and the TUs within seem to only be connected to other parishes by few meters.
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Obviously, applying gerrymandering techniques translates into a decrease in compactness. The com-

pactness measure (border length shared between TUs on the same ED) goes down from 1448842

meters in the unbiased distribution (Figure 5.10a) to 1358548 meters and 1273997 meters, respectively,

on the maps of Figure 5.11. This represents a 6.23% decrease in compactness in the case where we

are maximizing the pink party and a 12.07% decrease when we are maximizing the orange party.

You may notice that one of the orange EDs in Figure 5.11b seems to be violating the contiguity

constraint but that only happens because it is actually an exclave9 of another territorial unit that is

connected to the remaining ones in that electoral district. This is an extremely rare situation because it

is highly prejudicial to the maximization of the border length between TUs in the same ED (the objective

function maximized) to include exclaves since they do not share any border with the remaining TUs in

that ED. However, one possible (and simple) solution to prevent this situations would be to force both

TUs – the one with the exclave (let us call it a) and the one in-between (let us call it b) – to be in the

same cluster, by adding the following constraint:

∀i ∈ K, a, b ∈ N : xi,a ⇐⇒ xi,b (5.1)

In the 2019 elections (data used for the biased distributions) PS received 36.65% of the national vote

while PSD received 27.90% meaning that, at the national level, PS is expected to be the party with the

most parliament members under a FPTP system. This prediction is confirmed by the complete electoral

results at the national level which are presented in Table A.1 of the Appendix. They show that under an

unbiased distribution PS would win 84 out of 112 seats (75%) and PSD the remaining 28 seats (25%).

Using gerrymandering, in the most favorable distribution towards PS, it is possible to make it win 13

more seats, bringing its total to 97 (86.61%). Contrarily, under an unfavorable distribution it can also

lose 8 seats to the opposing party leaving it with 76 members in parliament out of the 112 distributed

using the FPTP voting system (67.86%).

5.4 Scenario 4: Securing Electoral District Wins

This scenario is similar to the previous one, where we are interested in maximizing the results of a certain

party. However, just like in real-world applications of gerrymandering, we want to be sure that the party

we are trying to favor definitely wins in some electoral districts. Therefore, instead of considering a party

the winner of an ED if it receives at least one more vote than all the other parties, we will be requiring at

least 15% more votes than all the other parties. If no party achieves a victory by this margin we can label

that district as a toss-up district, i.e., a competitive district where either party has a chance of winning.

Toss-up districts are colored in shades of green in the following figures with our results while the colours

used for each of the main parties are maintained.

From the point of view of a party it makes sense not only to maximize its results but also to minimize

the district wins of its direct rival, with the objective of bringing some EDs to a toss-up level instead of

9https://www.merriam-webster.com/dictionary/exclave, accessed on 22/10/2020.
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Figure 5.12: Different results for the region of Santarém (14) at the municipality level. Green are toss-up
districts, in pink, EDs won by PS and, in orange, EDs won by PSD.

being safe wins to an opposing party. This is exactly what we simulate in this scenario, we try maximize

the ED wins of a party and minimize the ED wins of the opposing party (a toss-up district is neither a

win nor a loss to any party). Obviously, compactness is still maximized along these two cost functions,

hence we are now optimizing three objective functions at the same time.

Figure 5.12 shows how easily it is to change the outcome of the elections by making small changes

to the electoral maps. Hence, it is possible that an objective function that simply tries to minimize the

number of changes to current electoral maps to conform to new census data (such as the one proposed

by Browdy [11]) might not be the best option. The unbiased distribution (Figure 5.12a) and the most

favorable distribution to party PSD (Figure 5.12c) only have two TUs swapped, although that is enough

to make PSD safely win one ED in a district that would otherwise be a toss-up. The length of the borders

is reduced from 513793 meters to 458230 meters, a 10.81% decrease. Similarly, if we imagine that PS

controls the redistricting process and tries to maximize its electoral results, with a couple of changes to

the electoral maps they can secure one more district and win 4 out of 5 confidently.

The solutions that make up the Pareto front (all non dominated solutions) for the region of Faro when

maximizing PS and minimizing PSD are presented in Figure 5.13. Once again, it demonstrates how
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Figure 5.13: Pareto front for the region of Faro (08) at the municipality level when maximizing PS and
minimizing PSD along with compactness. Green are toss-up districts, in pink, districts won by PS.

easily one party can favor itself if it gets the power to control the redistricting process. Gerrymandering

would allow PS to win all EDs by cracking the opposition voters between EDs where PS already has a

strong preference. The result is the creation of an extremely odd ED that is only marginally contiguous

(Figure 5.13c, the most biased towards PS) and a total border length of 316975 meters. Note that this

value represents a resounding 23.56% decrease in compactness to the unbiased map.

Once again, the redistricting was performed in all Portuguese regions and the complete results for

all regions of continental Portugal are presented in Table A.2 of the Appendix. Under an unbiased

distribution, PS would win 41 EDs and PSD 3 EDs leaving the remaining 68 as toss-ups. It is interesting

to notice how the biased redistrictings can totally skew the electoral results at a national level, towards

any of the parties. If PS controlled the redistricting process, then it could possibly get 53 certain electoral

district wins (12 more) while its rival (PSD) gets 0 safe seats because the remaining 59 EDs are all

toss-ups. On the opposite spectrum, a redistricting controlled by PSD, maximizing its performance and

minimizing PS, still gives PSD good chances in the elections since it is possible to increase the number

of safe seats from 4 to 7 while also increasing the number of toss-up districts by 2 (to a total of 70).

5.5 Scenario 5: Two-Party System with Gerrymandering

From the Duverger’s Law [16, 54] we know that a first-past-the-post system favors the creation of a two-

party system. In this section we propose a scenario where we are precisely interested in studying the

formation of a two-party system in Portugal.

It is easy to divide the Portuguese political spectrum into left and right because the last two govern-

ments were a right wing coalition and a left wing coalition, respectively. Moreover, in parliament, these

two blocks often vote in a similar fashion in many policies. We start by grouping the votes of the left

wing parties (under a party we name as Left) and the votes of the right wing parties (under party named

Right) and then create electoral maps that maximize one of the sides and minimize the other. In this
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Figure 5.14: Pareto front when for the region of Viseu (18) at the municipality level. In shades of green
are toss-up districts and in blue the district won by the Right party.

scenario, unlike the previous ones, we are not only taking into account the results of the last elections

(2019), but also from the 2015 elections. Unfortunately, it was impossible to also include the results of

the 2015 election in Sections 5.3 and 5.4 because in the 2015 elections PSD ran on a coalition with

another right wing party and it is not clear how many votes they would get without the coalition. For each

territorial unit, we considered the arithmetic mean of the votes for each party in the last elections.10 It is

harder to consider electoral results prior to the 2015 elections because there was as an administrative

reorganization of all civil parishes in 201311, which created new civil parishes by joining and eliminating

others.

We are simulating a scenario similar to the United States of America, where we only have two parties

and each one is trying to maximize its results while minimizing the results of the opposition. The only

difference is that we allow a 25% population deviation to the best value (B) while in the United States

of America it is expected to be as close to B as possible which comes at the cost of losing conformity

to administrative boundaries. Our proposed model could be adapted to such scenario by decreasing

the maximum population margin to B and, eventually, adding another objective function minimizing the

population differences between electoral districts.

Once again, a district will be considered a toss-up district if the difference between the number of

votes received by each party is less than 15% of the total of votes cast in that cluster. Toss-up districts

are presented in shades of green in the following maps with our results. Electoral districts that are

certain wins for the Left party (left wing coalition) are presented in shades of red while shades of blue

denote districts that are Right party (right wing coalition) wins. Striped EDs still represent clusters where

the presented solution might not be the global optimal one since the time limit set for our optimization (3

hours) was exceeded.

10Other methods such as a weighted arithmetic mean could be used. For instance, if we consider that the results will be similar
to the ones of the last election we can increase its weight.

11Available at (in Portuguese): https://dre.pt/web/guest/legislacao-consolidada/-/lc/107679275/202008121053/

diploma, accessed on 22/12/2020.
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Figure 5.15: Possible results for the region of Aveiro (01) at the parish level. Green are toss-up districts,
in red districts won by the Left party and in blue districts won by the Right party. Striped districts may
not be global optimal solutions.

Figure 5.14 presents results for the region of Viseu when, along with compactness, the results of

the Right party are maximized and the Left party minimized. Under an unbiased distribution (also the

most beneficial towards the Left party) all EDs in the region of Viseu would be toss-up districts since

the margin between the votes of the left wing parties and the right wing parties is smaller than 15%

in all districts (Figure 5.14a). However, when we gerrymander the electoral maps (Figure 5.14b) it is

possible to create an ED that is a certain win for the Right party. Visually it is immediately noticeable that

the shape of the blue district is extremely unusual, and seems to encircle an already elongated district.

The compactness measure is, obviously, affected and the total length of the border between TUs in the

same ED is reduced from 614891 meters to 468806 meters, a staggering 23.76% reduction between

the unbiased and the biased electoral maps.

Figure 5.15 is yet another example of gerrymandering in action. The electoral map in Figure 5.15a
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(unbiased) sees the Left party and the Right party win in 1 ED each while the remaining 6 are toss-up

districts. However, when trying to minimize the results of the opposition and increase its own results

at the same time, it is possible for any party to certainly win in 2 EDs and leave the opposition with no

certain victories. Some side effects of gerrymandering are clear, particularly on the map favoring the

Right party (Figure 5.15c), where many electoral districts are elongated to a point where some territorial

units are only loosely connected to the remaining ones, a clear example of cracking.

Just like in the previous scenarios, electoral maps were created for all regions in continental Portugal.

The complete electoral results are presented in Table A.3 of the Appendix and they show that, under

an unbiased distribution (only compactness is maximized without looking at previous electoral results)

a left wing coalition would win a majority of the seats – 65 out of 112 (approximately 58%) – awarded

through a FPTP system. Note that the left wing parties were the most voted in both the 201512 and

the 2019 legislative elections, with approximately 52% and 56% of the votes, respectively. Given that

the data used was precisely from these two elections, it is not odd that under a FPTP system the Left

would win more seats. Gerrymandered maps to favor the Left party could boost its results even more

and make it win 78 EDs (69.64%) while leaving the opposition with no certain victories because the

remaining 34 EDs are all toss-ups. On the other hand, drawing the maps in such way that it favors the

Right party manages to increase its certain wins to 9 EDs and decrease certain Left party wins by 11

(when compared to the unbiased distribution).

5.6 Comparing Approaches

In this final section we are interested in studying the complexity of the problem and the quality of the

proposed models in Chapter 4. In the following tests, the same benchmark instances (described in

Table 5.3) created by three different models – the Hess model, our complete and incomplete models –

are solved with two different solvers, the open-source Sat4jMoco and the commercial CPLEX Optimizer.

For simplicity reasons, in this section, we refer to the original Hess model [34] (presented in Fig-

ure 3.1) with the added contiguity constraints by Validi et al. [58] (presented in Figure 3.3) simply as the

Hess model. Similarly, our proposed base formulation (Figure 4.1) with the added tree-based contiguity

constraints (complete version) is referred to as the tree-based model while the base formulation with the

shortest-path contiguity constraints (incomplete version) is referred to as the shortest-path model.

The experimental tests run in this section hopefully allow answering the following research questions:

1. Can we improve previous models with the additional techniques presented in Section 4.5?

2. How does an open-source solver (Sat4jMoco) measure against a commercial solver (the CPLEX

Optimizer) in political districting problems?

3. Is our proposed tree-based model better than the Hess model?

4. The shortest-path based formulation can just provide an approximation. However, how far are

these results from the optimal? What about the performance?
12Available at (in Portuguese): https://www.eleicoes.mai.gov.pt/legislativas2015/, accessed on 22/12/2020.
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The instances used are the same as in the previous scenarios where the parallel voting system

is used. Therefore, experimental results are obtained from real-world maps. Dividing the Portuguese

regions in 112 electoral districts (see Table 5.2) using the algorithm described in Figure 5.2 results in

the 35 benchmark instances characterized in Table 5.3. Using different models and solvers on the same

instances allows us to answer our research questions.

In order to assess whether the proposed optimizations in Section 4.5.2 and Section 4.5.4 can improve

the performance of the Hess model, we run the same single-objective optimization (SOO) instances with

and without the optimizations. To allow the use of the optimizations in Section 4.5.2 and for comparison

with our model, the original objective function in the Hess model (see Figure 3.1) was changed to the

one proposed in Section 4.2, the maximization of the border length between territorial units in the same

cluster. These instances were run using version 12.6.0 of the the CPLEX Optimizer solver. The time

limit was set to three hours (10800 seconds) and whenever that limit was exceeded the respective cell in

Table 5.4 is highlighted in orange. The maximum population margin to the theoretical best value was set

to 25% (just like in previous scenarios). Note that depending on the population margin to the best value

being considered the number of impossible pairs in the same district – and consequentially the efficacy

of the optimization cutting those pairs – varies. Nevertheless, cutting symmetries inside the clusters

proved to be more effective than removing impossible pairs.

The results are presented in Table 5.4 and comparing the performances with and without the op-

timizations the differences are obvious. Not only can we reduce the number of times the time limit of

three hours is exceeded (instances highlighted in orange) from 18 to 11 but also greatly improve the

performance in the remaining instances. Observe that the performance never worsens with the added

optimizations and high speedup values are obtained for most instances. Particularly, in instances 2,

22, 27, 30 and 35 the performance is improved by two orders of magnitude when the optimizations are

added. In instances where both versions exceed the time limit the performance is sometimes also im-

proved (a better solution is found after 3 hours) with the added optimizations. Taking instance number

8 as an example, without optimizations the best solution found after 3 hours has an objective value of

251324 meters (length of the border between territorial units in the same district). However, with the

optimizations, this value is increased by 16.54% to 292899 meters. Given the high number of variables

generated by the Hess model it is also common that no solution is reached within the time limit.

Table 5.5 compares the number of variables created and the execution time of two different complete

models, the Hess model (with the added optimizations that we already established as useful) and the

tree-based model, using two different solvers, the CPLEX Optimizer and Sat4jMoco. These results aid

us in answering which is the best solver in this type of problems and which is the best complete model

between the ones studied.

Evaluating the results in Table 5.5, specifically the columns with the time spent by each solver to

find an optimal solution, we can clearly see that CPLEX (a commercial solver) performs better than

Sat4jMoco (an open-source solver) independently of the model used. The number of instances where

the time limit of three hours is exceeded (highlighted cells) is significantly reduced (especially in the tree-

based model) allowing finding more global optimal solutions. Analyzing instances where both solvers
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Instance
Number

Time without
Optimizations

Time with
Optimizations

1 768.84 9.47
2 10800 30.49
3 10800 148.31
4 10800 10800
5 8.73 0.56
6 10800 501.70
7 10800 525.94
8 10800 10800
9 10800 10800

10 10800 10800
11 3.68 0.66
12 0.94 0.05
13 10800 10800
14 10800 10800
15 8.74 0.51
16 6.87 0.51
17 9.20 0.85
18 10800 2241.33
19 10800 10800
20 6.59 0.66
21 4.41 0.15
22 10800 46.14
23 10800 10800
24 0.20 0.04
25 1.25 0.12
26 252.93 4.33
27 5486.67 7.33
28 10800 10800
29 10800 10800
30 8106.49 7.52
31 3.72 0.85
32 10800 10800
33 1.78 0.76
34 14.27 0.91
35 10800 4.60

Table 5.4: Comparison between the execution times (in seconds) of the Hess model [34] with the conti-
guity constraints by Validi et al. [58] with and without the optimizations proposed in Section 4.5.

can find the optimum solution within the time limit, except for some small instances without much sig-

nificance (such as number 11) the execution time is also decreased dramatically and instances number

2 and 35 are perfect examples. At first one can think that this is only due to the fact that a constraint

solver, such as Sat4jMoco, cannot be parallelized meaning that it is only using 1 thread even though

we are running on a machine with 32 cores (the same used in previous scenarios). However, when

we set CPLEX to only run on 1 thread (sequentially) the performance obviously decreases but is never

worse than with Sat4jMoco. An example of such would be instance number 30 under the tree-based

model which running sequentially on CPLEX takes 61.56 seconds. This is a huge increase from the 4.89

seconds of the parallel version but still 2.69 times faster than using Sat4jMoco. These results repeat in

other instances and in the Hess model leading us to believe that CPLEX is more efficient in this type of

problems than Sat4jMoco. However, the later can be used in multi-objective combinatorial optimization

(MOCO) problems, one of the focuses of this work (Sections 5.3, 5.4 and 5.5)
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Hess Model Optimized Tree-Based Model
Instance
Number Variables Time

CPLEX
Time

Sat4jMoco Variables Time
CPLEX

Time
Sat4jMoco

1 46996 9.47 171.61 478 0.47 13.54
2 70681 30.49 3657.52 549 0.82 1688.98
3 160156 148.31 10800 820 8.62 10800
4 1396234 10800 10800 2630 10800 10800
5 10021 0.56 2.60 226 0.38 0.63
6 183883 501.7 10800 962 5.47 10800
7 236930 525.94 10800 1047 1.34 10800
8 733279 10800 10800 1792 26.32 10800
9 1788682 10800 10800 3178 1882.42 10800

10 18797828 10800 10800 11396 10800 10800
11 7080 0.66 1.89 192 0.56 0.54
12 4252 0.05 0.77 145 0.04 0.39
13 1249432 10800 10800 2528 575.96 10800
14 3751519 10800 10800 5134 10800 10800
15 10021 0.51 3.10 226 0.38 0.61
16 14620 0.51 3.14 356 1.01 0.89
17 10807 0.85 3.05 234 0.42 0.65
18 870865 2241.33 10800 2015 20.07 10800
19 688327 10800 10800 1988 35.2 10800
20 13755 0.66 3.45 375 5.63 1.96
21 11500 0.15 1.53 350 0.69 0.46
22 62838 46.14 10800 696 53.26 10800
23 2630605 10800 10800 4120 10800 10800
24 13304 0.04 1.61 222 0.01 0.35
25 4981 0.12 0.70 197 0.40 0.36
26 14206 4.33 4.71 321 1.32 6.71
27 53167 7.33 16.54 602 3.97 5.20
28 371749 10800 10800 1546 711.26 10800
29 17961013 10800 10800 9278 10800 10800
30 39293 7.52 228.08 539 4.89 165.57
31 7080 0.85 1.47 240 0.48 0.99
32 371749 10800 10800 1560 225.03 10800
33 3718 0.76 0.85 160 0.49 0.44
34 10021 0.91 3.07 251 0.41 0.90
35 58226 4.60 695.33 588 2.20 286.41

Table 5.5: Comparison between the number of variables created and the execution times (in seconds)
of the optimized Hess model and the proposed Tree-Based model using the CPLEX Optimizer and the
Sat4jMoco solvers. Highlighted in orange are time limits exceeded using CPLEX and, in yellow, using
Sat4jMoco. Results in bold highlight the faster model for each instance and solver.

Moving on to the third research question, is our proposed tree-based model better than the Hess model

(even with the added optimizations)? To answer this question we need only to analyze Table 5.5, and

compare, for each instance and solver, the execution time of both complete models. In order to aid the

visualization, highlighted in bold is the fastest time between the models, for each solver and instance.

Using the CPLEX Optimizer, we can see that there are only 5 out of 35 instances – numbers 16,

20, 21, 22 and 25 – where the execution time is worse (speedup values below 1) using the tree-based

model. Although 4 of these 5 instances (numbers 16, 20, 21 and 25) are relatively easy to solve (the

optimal solution can be found in a few seconds) and the performance between both models is similar in

instance 22. On the other hand, the tree-based model performs decisively better (over 100 times faster)
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on instances number 7, 8, 18 and 19. The fact that the tree-based model performs better on instances

which are harder to solve (high values of territorial units) makes its results even more significant because

in small instances where the optimal solution can be found in mere seconds it is relatively insignificant

if it takes 1 second or 5 seconds to reach the optimal solution. Last but not least, the tree-based model

only exceeds the time limit in 5 instances instead of 11.

Using the Sat4jMoco solver, the tree-based formulation is faster in all instances except in instance

number 26. The speedup values are lower than when using CPLEX but significant increases in perfor-

mance can be noticed in numbers 1, 2 and 35. Given the time limit of three hours both models finish

solving the same number of instances (19 instances).

The large discrepancy in execution times in instances where the number of territorial units is higher

can be attributed to the number of binary variables necessary for each model. Comparing the columns

with the number of variables created by each model we can see that the Hess model creates two to three

orders of magnitude more variables than the tree-based model. Remember that the number of variables

created for contiguity in the Hess model equal n2 × A (the flow variables in Figure 3.3), where n is the

number of territorial units and A is double the number of edges E. Furthermore, notice that E ≥ n − 1

in contiguous maps. Meanwhile, the number of variables in the tree-based model was estimated in

Section 4.6 to be closer to n2 and we are now in position to confirm that the estimate was correct. A

higher number of variables also requires a higher number of constraints (in the same order of magnitude)

hence creating large branch and cut trees which may also cause memory problems. Therefore, from

the obtained results we can conclude that tree-based model performs better than the Hess model, even

with the added optimizations.

The last topic we must evaluate is the performance of the shortest-path model against the tree-based

model. Since the shortest-path model is an incomplete model (as explained in Section 4.3.2) we already

know that occasionally it does not produce the global optimal solution. However, we are interesting in

studying how often that is the case and how far is it from the optimum is such cases. On the other

hand, concerning execution times, it performs better than complete models because the search space

is smaller.

We start by running the same instances using the CPLEX Optimizer for both models, tracking the

number of binary variables created, the execution time and the objective value achieved. The results

are presented in Table 5.6 with the objective value increase when using a complete model, for each

experimental instance. We are also interested in studying the different performances in multi-objective

combinatorial optimization (MOCO) problems since it is possible that in more complex problems the re-

sults differ. Therefore, the same instances are generated with one more objective function: maximizing

the results of a party (along with compactness). These MOCO instances are solved using Sat4jMoco

(albeit faster, CPLEX can only be used in SOO problems) and the execution times as well as the hyper-

volume increase/decrease to a static strictly dominated reference point using the tree-based model is

registered in Table 5.7, for each instance.

Analyzing the results in Table 5.6 one difference is immediately obvious: the shortest-path model

does not exceed the three hour time limit in any instance, using the CPLEX Optimizer. Meanwhile, the
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Tree-Based Model Shortest-Path ModelInstance
Number Variables Time

CPLEX Variables Time
CPLEX

Compactness
Increase

1 478 0.47 140 0.48 0.00%
2 549 0.82 162 0.30 0.00%
3 820 8.62 212 0.52 1.33%
4 2630 10800 444 1.96 TLE
5 226 0.38 78 0.26 0.00%
6 962 5.47 226 0.64 0.00%
7 1047 1.34 246 0.75 0.00%
8 1792 26.32 366 1.61 0.00%
9 3178 1882.42 504 3.28 1.80%
10 11396 10800 1108 4.80 TLE
11 192 0.56 72 0.34 0.00%
12 145 0.04 56 0.03 5.15%
13 2528 575.96 432 1.77 1.29%
14 5134 10800 951 18.44 TLE
15 226 0.38 78 0.01 6.13%
16 356 1.01 220 0.81 0.00%
17 234 0.42 82 0.02 0.00%
18 2015 20.07 380 0.74 0.00%
19 1988 35.20 525 5.20 0.67%
20 375 5.63 270 0.71 0.00%
21 350 0.69 240 0.70 0.00%
22 696 53.26 468 11.42 0.00%
23 4120 10800 1710 8939.96 TLE
24 222 0.01 44 0.01 0.00%
25 197 0.40 124 0.66 0.00%
26 321 1.32 184 0.37 0.00%
27 602 3.97 268 0.98 0.00%
28 1546 711.26 572 6.08 0.72%
29 9278 10800 2212 1839.54 TLE
30 539 4.89 325 1.28 0.00%
31 240 0.48 144 0.24 0.00%
32 1560 225.03 715 19.21 0.56%
33 160 0.49 84 0.32 0.00%
34 251 0.41 117 0.42 0.00%
35 588 2.20 296 0.53 5.22%

Table 5.6: Comparison between the execution times (in seconds) and the quality of the results pro-
duced by the tree-based model (complete) and the shortest-path model (incomplete) for SOO problems
using the CPLEX Optimizer. Highlighted in orange are instances where the time limit was exceeded.
Highlighted in bold is the compactness increase, whenever existing.

tree-based model, finds the global optimal solution for 30 out of 35 instances. As far as the execution

times are concerned, these are usually sharply reduced using the shortest-path model. The most no-

ticeable cases are in instances 9, 13 and 28 (over 100 times faster using the shortest-path formulation)

along with instances 4, 10 and 14 where the tree-based model exceeds the time lime but the shortest-

path method manages to find its optimum solutions swiftly. Unfortunately, the low execution times come

with a loss in objective value (compactness) in 30% of the instances, i.e., in 9 instances out of the 30

that could be solved, the solution is more compact using complete methods. Without disregarding this

percentage, the maximum increase in compactness using the tree-based model is only 6.13% (instance

15) meaning that the shortest-path model is still producing reasonable solutions. As an example, the

second largest gap (instance 35) is the one presented in Figure 4.2 and, visually, it is extremely hard to

62



Instance
Number

Tree-based
Time

Shortest-Path
Time

Hypervolume
Increase

1 10.57 0.61 0.00%
2 4910.57 0.71 0.00%
3 10800 0.76 1.33%
4 10800 2.53 0.10%
5 0.55 0.30 0.00%
6 10800 0.40 13.42%
7 10800 0.75 0.20%
8 10800 3.48 -1.50%
9 10800 2.03 0.76%
10 10800 7.05 -0.28%
11 0.51 0.31 0.00%
12 0.31 0.31 5.15%
13 10800 2.75 0.71%
14 10800 10800 -3.54%
15 0.58 0.31 6.13%
16 0.91 0.49 0.00%
17 0.53 0.31 0.00%
18 10800 0.95 0.00%
19 10800 413.98 -2.00%
20 2.74 1.08 0.00%
21 0.56 0.55 0.00%
22 10800 10800 -0.26%
23 10800 10800 -15.58%
24 0.29 0.29 0.00%
25 0.33 0.43 0.00%
26 7.99 0.54 0.00%
27 9.44 0.45 0.00%
28 10800 778.92 -4.03%
29 10800 10800 -100.00%
30 221.93 10.41 0.00%
31 1.05 0.48 0.00%
32 10800 10800 -1.82%
33 0.37 0.31 0.00%
34 0.90 0.36 0.51%
35 288.05 0.45 22.24%

Table 5.7: Comparison between the execution times (in seconds) and the quality of the results produced
by the tree-based model (complete) and the shortest-path model (incomplete) for MOO problems using
Sat4jMoco. Highlighted in yellow are instances where the time limit was exceeded. Highlighted in green
or red are upgrades or downgrades, respectively, to the hypervolume using the tree-based model.

tell which one is the most compact. In the five instances where the time limit is exceeded it is impossible

to compare the quality of the solutions found because CPLEX could not even find a solution to the prob-

lem within the time limit. Contrarily to the previous test with the Hess model, the time differences can

no longer be attributed to the number of variables since the difference is not so pronounced and signif-

icantly lower than between the tree-based model and the Hess model (see Table 5.5). The most likely

explanation is that the shortest-path model by only allowing the shortest-paths between territorial units

in the same cluster ends up cutting (too) many pairings that must still be considered in the tree-based

model.

The results for MOCO instances, solved using Sat4jMoco, are presented in Table 5.7. For each

instance, the execution time of each model is registered. The dominated area (hypervolume) to the

same strictly dominated point (the point at (0, 8)) is also calculated and the hypervolume increase using
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the tree-based model presented in the last column of Table 5.7. The number of time limits exceeded

(cells highlighted in yellow) is significantly reduced from 16 to 5 using the shortest-path model and,

once again, the execution times are drastically lower. Just as in SOO scenarios there are instances

where the time limit is exceeded using the complete model but an optimum solution is found using the

incomplete model in mere seconds (such as in instances 3, 6 or 7). Curiously, comparing the dominated

area (hypervolume) of each contiguity method to the same strictly dominated point we see that many

of the instances where the tree-based model fails to finish within 3 hours and the execution time is

seriously reduced using the shortest-path model (instances 3, 4, 6, 9) are precisely the ones where

the quality of the solutions is improved using the tree-based model (cells highlighted in green). These

results suggest that the shortest-path model is only so much faster because it is cutting many solutions

that end up constituting the Pareto front. On the other hand, when both approaches exceed the time

limit (instances 14, 22, 23, 29 and 32) the shortest-path model always manages to find the best solution

(cells highlighted in red) implying that, although it may be cutting the global optimal solutions, it is still

considering good solutions and finding them faster than the tree-based model, proving to be the best

option in the hardest to solve instances. Instance 29 is the only where, even using a constraint solver,

a possible solution cannot be found within the time limit established using the tree-based model, hence

the 100% decrease in hypervolume.

In conclusion, the tree-based model proves to be the best option in most instances and given enough

time would always yield better results. However, and particularly in the most difficult to solve instances

(such as 23 and 29) containing large numbers of territorial units to be divided between many clusters

(large values of n and k) incomplete methods prove to be the best option achieving significantly better

results both in SOO and MOCO problems.
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Chapter 6

Conclusions and Future Work

The political districting problem is a computationally hard one that has been studied since the 1960s.

Solving this problem has the potential of eradicating gerrymandering in single-member districts, fulfilling

the purpose of elections in democracies: let the voters choose the politicians and not the politicians

choose the voters. The electoral districting problem is NP-Complete meaning that the larger the number

of territorial units considered and the number of districts to create, the harder it is to find the global

optimal solution to the problem. However, we believe that the importance of fair elections in democracies

justifies the computational power necessary to find such solutions.

Recent developments in hardware and algorithms to solve optimization problems increased the num-

ber of instances that can be solved using complete methods. Yet, just like many authors before, we still

face largely densely populated areas that are extremely hard to redistrict. An option in such scenarios

is to use incomplete methods that although incapable of finding global optimums, manage to produce

solutions that still create compact, contiguous and similarly populated electoral districts.

As Governor of California, Ronald Reagan said: ”There is only one way to do reapportionment – feed

into the computer all the factors except political registration”.

In this work that is exactly the objective, through the development of a novel and efficient multi-

objective combinatorial optimization model with the ability of creating electoral districts that are: com-

pact, contiguous and give voters similar popular representation. Two formulations to create contiguous

districts are presented, a complete one (capable of finding global optimal solutions) and an incomplete,

but dramatically faster version. The incomplete version justifies its use in the most difficult to solve

instances since our experimental results show that it is able to find good solutions in cases where com-

plete methods sometimes fail to even produce a feasible solution. Optimizations to the model that can

also be adapted to classical approaches to the redistricting problem are also presented and managed

to drastically improve its computational performance. The developed model is versatile and can also

be used to create gerrymandered maps using data from previous elections, allowing the study of the

effects of gerrymandering in electoral maps. Experimental results comparing the proposed model with

a classical approach to the political districting problem, show that our model significantly improves the

performance, even when the proposed optimizations are added.

65



Following the propositions from the main parties to change the Portuguese electoral system to one

using single-member districts, we test our model in different scenarios using only official geographical

data. The first complete electoral maps for Portugal using single-member districts under two different

voting systems (the first-past-the-post and the parallel voting) are created and the results show that the

model can deliver compact and contiguous solutions within the population boundaries while conforming

with current administrative divisions. Furthermore, an algorithm to redistrict large densely populated

areas by making a first partition using existing administrative divisions is proposed and helps to find

solutions in the hardest to solve problems.

Additionally, using the gerrymandering capacities of the model and official electoral results from

previous legislative elections, the impact of gerrymandering is studied. Testing different scenarios,

contemplating toss-up districts and bipartisan systems, the results always show that gerrymandering

significantly affects the compactness of the districts, creating the famous odd shapes that coined the

term. Moreover, it demonstrates how the electoral results can be greatly affected once a party tries to

maximize its electoral results, altering the course of elections and damaging the pillars of democracy.

6.1 Future Work

Since most countries define tighter population boundaries to the theoretical best number of individuals

in each electoral district, it would be interesting to study how would the results change if this value was

set to 10% or even 5%, instead of the 25% considered in our experimental tests. Additionally, it would

also allow studying the effects of such change on the compactness of the electoral districts.

Our formulation of the problem introduces a new method to generate compact districts by maximizing

the length of the borders between territorial units in the same district and the tests carried showed

exceptional results. Using a compactness measure, such as the Reock score[47], one can compare

the compactness of the electoral districts created using our proposed method and more classical ones,

such as minimizing the sum of the Euclidean distances between the centroid of each territorial unit and

the root of the electoral district it belongs to.

The problem of redistricting electoral areas in the United States of America (USA) is by far where

research most work has been conducted in the area. This occurs in part because the USA is the country

where most cases of gerrymandering have surfaced and electoral results have been changed because of

it. Remember that conformity to administrative subdivisions is not a requirement and census tracts (the

smallest territorial divisions) are used in order to create the most equal districts in terms of population

as possible. This characteristics compel researchers to deal with more territorial units, a major factor in

the complexity of the problem. Contrarily, as tighter population boundaries can be defined, the search

space is reduced. Applying our model to this particular problem would allow for a better comparison with

previous approaches.

Furthermore, in the United Stated of America where electoral maps were proven to have been ger-

rymandered (Figure 2.3) it would be extremely interesting to use the gerrymandering capacities of the
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model and compare the results with those electoral maps. For instance, could one replicate or even

further skew the results of the 2018 House of Representatives elections in North Carolina?

Most proposed models in the area are single-objective ones and a weight has to be assigned in

order to maximize compactness while minimizing population differences between electoral districts. This

is a typical objective function in electoral districting problems, especially when studying the problem of

the United States of America. A multi-objective combinatorial model such as the one proposed, allows

defining an additional objective function minimizing the population differences between electoral districts

at the same time as compactness is maximized. Using the proposed model one could obtain the Pareto

front for scenarios in the United States of America and compare the results with single-objective ones.

Finally, more optimizations are still to be explored with the goal of increasing the performance, con-

sequentially, reducing the number of instances that cannot be solved in useful time.
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Electoral Results - Section 5.3 (Scenario 3)
Unbiased Max PS Max PSDInstance

Number PS PSD PS PSD PS PSD
1 1 1 1 1 0 2
2 2 0 2 0 2 0
3 2 0 2 0 1 1
4 0 2 1 1 0 2

(01) 5 3 6 2 3 5
5 (02) 2 0 2 0 2 0

6 1 1 2 0 1 1
7 1 1 2 0 1 1
8 2 0 2 0 2 0
9 0 2 0 2 0 2

10 1 1 1 1 1 1
(03) 5 5 7 3 5 5

11 (04) 0 2 0 2 0 2
12 (05) 2 0 2 0 2 0

13 2 0 2 0 1 1
14 3 0 3 0 3 0

(06) 5 0 5 0 4 1
15 (07) 2 0 2 0 2 0
16 (08) 5 0 5 0 5 0
17 (09) 2 0 2 0 1 1

18 1 1 2 0 1 1
19 1 2 2 1 0 3

(10) 2 3 4 1 1 4
20 6 0 6 0 6 0
21 5 1 5 1 5 1
22 5 1 6 0 3 3
23 6 0 6 0 6 0

(11) 22 2 23 1 20 4
24 (12) 1 0 1 0 1 0

25 2 2 3 1 2 2
26 4 0 4 0 4 0
27 3 1 3 1 3 1
28 3 1 4 0 3 1
29 3 1 4 0 3 1

(13) 15 5 18 2 16 4
30 (14) 4 1 4 1 4 1

31 4 0 4 0 4 0
32 5 0 5 0 5 0

(15) 9 0 9 0 9 0
33 (16) 1 2 2 1 1 2
34 (17) 1 2 2 1 0 3
35 (18) 1 3 3 1 1 3
TOTAL 84 28 97 15 76 36

Table A.1: Complete electoral results for the districting in scenario 3 (Section 5.3). Highlighted in gray
are the sums of all electoral districts won in each Portuguese region (ID between parentheses), per
party. The cells highlighted in yellow represent instances where the time limit was exceeded, hence the
presented results are for the best solution found after 3 hours (which might not be the global optimum).
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Electoral Results - Section 5.4 (Scenario 4)
Unbiased Max PS Max PSDInstance

Number PS PSD Toss-Up PS PSD Toss-Up PS PSD Toss-Up
1 0 1 1 0 0 2 0 1 1
2 0 0 2 0 0 2 0 0 2
3 0 0 2 0 0 2 0 0 2
4 0 0 2 0 0 2 0 1 1

(01) 0 1 7 0 0 8 0 2 6
5 (02) 2 0 0 2 0 0 2 0 0

6 0 0 2 0 0 2 0 0 2
7 0 0 2 0 0 2 0 0 2
8 1 0 1 2 0 0 1 0 1
9 0 1 1 0 0 2 0 1 1

10 0 0 2 0 0 2 0 0 2
(03) 1 1 8 2 0 8 1 1 8

11 (04) 0 0 2 0 0 2 0 0 2
12 (05) 1 0 1 2 0 0 1 0 1

13 1 0 1 1 0 1 0 0 2
14 2 0 1 2 0 1 1 0 2

(06) 3 0 2 3 0 2 1 0 4
15 (07) 2 0 0 2 0 0 2 0 0
16 (08) 3 0 2 5 0 0 3 0 2
17 (09) 0 0 2 0 0 2 0 0 2

18 0 0 2 1 0 1 0 0 2
19 0 1 2 1 0 2 0 2 1

(10) 0 1 4 2 0 3 0 2 3
20 4 0 2 5 0 1 3 0 3
21 4 0 2 4 0 2 4 0 2
22 2 0 4 2 0 4 0 0 6
23 4 0 2 6 0 0 4 0 2

(11) 14 0 10 17 0 7 11 0 13
24 (12) 1 0 0 1 0 0 1 0 0

25 0 0 4 0 0 4 0 0 4
26 1 0 3 2 0 2 0 0 4
27 1 0 3 1 0 3 1 0 3
28 0 0 4 0 0 4 0 1 3
29 0 0 4 1 0 3 0 0 4

(13) 2 0 18 4 0 16 1 1 18
30 (14) 3 0 2 4 0 1 3 1 1

31 4 0 0 4 0 0 4 0 0
32 5 0 0 5 0 0 5 0 0

(15) 9 0 0 9 0 0 9 0 0
33 (16) 0 0 3 0 0 3 0 0 3
34 (17) 0 0 3 0 0 3 0 0 3
35 (18) 0 0 4 0 0 4 0 0 4
TOTAL 41 3 68 53 0 59 35 7 70

Table A.2: Complete electoral results for the districting in scenario 4 (Section 5.4). Highlighted in gray are
the sums of all electoral districts won in each Portuguese region (ID between parentheses), per party
(or toss-up). The cells highlighted in yellow represent instances where the time limit was exceeded,
hence the presented results are for the best solution found after 3 hours (which might not be the global
optimum).
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Electoral Results - Section 5.5 (Scenario 5)
Unbiased Max Left Max RightInstance

Number Left Right Toss-Up Left Right Toss-Up Left Right Toss-Up
1 0 1 1 0 0 2 0 0 2
2 1 0 1 1 0 1 0 0 2
3 0 0 2 1 0 1 0 2 0
4 0 0 2 0 0 2 0 0 2

(01) 1 1 6 2 0 6 0 2 6
5 (02) 2 0 0 2 0 0 2 0 0

6 0 0 2 1 0 1 0 0 2
7 1 0 1 2 0 0 1 0 1
8 2 0 0 2 0 0 1 0 1
9 0 1 1 0 0 2 0 1 1
10 0 0 2 0 0 2 0 0 2

(03) 3 1 6 5 0 5 2 1 7
11 (04) 0 0 2 0 0 2 0 0 2
12 (05) 1 0 1 2 0 0 1 0 1

13 1 0 1 2 0 0 1 0 1
14 2 0 1 3 0 0 2 0 1

(06) 3 0 2 5 0 0 3 0 2
15 (07) 2 0 0 2 0 0 2 0 0
16 (08) 5 0 0 5 0 0 5 0 0
17 (09) 0 0 2 0 0 2 0 0 2

18 0 0 2 1 0 1 0 0 2
19 0 1 2 1 0 2 0 2 1

(10) 0 1 4 2 0 3 0 2 3
20 6 0 0 6 0 0 6 0 0
21 5 0 1 5 0 1 4 0 2
22 4 0 2 6 0 0 2 0 4
23 5 0 1 6 0 0 4 0 2

(11) 20 0 4 23 0 1 16 0 8
24 (12) 1 0 0 1 0 0 1 0 0

25 3 0 1 3 0 1 2 0 2
26 4 0 0 4 0 0 3 0 1
27 3 0 1 3 0 1 1 0 3
28 3 0 1 4 0 0 2 0 2
29 0 0 4 1 0 3 0 0 4

(13) 13 0 7 15 0 5 8 0 12
30 (14) 4 0 1 4 0 1 4 1 0

31 4 0 0 4 0 0 4 0 0
32 5 0 0 5 0 0 5 0 0

(15) 9 0 0 9 0 0 9 0 0
33 (16) 1 0 2 1 0 2 1 1 1
34 (17) 0 0 3 0 0 3 0 1 2
35 (18) 0 0 4 0 0 4 0 1 3
TOTAL 65 3 44 78 0 34 54 9 49

Table A.3: Complete electoral results for the districting in scenario 5 (Section 5.5). Highlighted in gray are
the sums of all electoral districts won in each Portuguese region (ID between parentheses), per coalition
(or toss-up). The cells highlighted in yellow represent instances where the time limit was exceeded,
hence the presented results are for the best solution found after 3 hours (which might not be the global
optimum).
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