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Abstract

The brain’s intrinsic organization into functional networks can be assessed using several imaging techniques, mainly
functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). While recent studies have suggested
a link between the dynamic functional connectivity captured by these two modalities, the exact relationship between the
fMRI and EEG functional networks spatiotemporal organization is still unclear. Furthermore, since these networks are
spatially embedded, a question arises whether the topological features captured can be explained exclusively by the
spatial constraints. We address these two questions by investigating the global and local structure of resting-state
fMRI and EEG data, using a community and motif analysis, respectively, including a spatially informed null model. We
show that even though fMRI and EEG functional connectomes are slightly linked, the two modalities essentially capture
different information, with most but not all topology being explained by the spatial constraints.
Keywords: fMRI-EEG; network science; community analysis; motif analysis; spatial embedding

1. Introduction

Brain activity is believed to be organized into functional
networks, reflecting the dynamic coupling between re-
mote brain regions and the continuous exchange of infor-
mation throughout the whole brain [1]. These networks
can then be studied to characterize the spatiotemporal
organization of the brain. Several studies have focused
on spontaneous fluctuations that reflect coordinated ac-
tivity in a context with no specific stimulus, also known
as the resting-state [1–3]. Understanding the dynamic
behaviour of these networks and their topology might be
the key to increase the understanding of brain’s complex
activity and, possibly, provide biomarkers for neurological
and psychiatric diseases [4,5].

These functional networks can be defined using dif-
ferent imaging techniques, such as functional Magnetic
Resonance Imaging (fMRI) and electroencephalography
(EEG), that allow the characterization of time-varying ac-
tivity in the whole brain. However, these techniques have
distinct temporal and spatial resolution and are sensitive
to different physiological changes associated with neu-
ronal activity [6]. Even though both reveal the brain’s
dynamic behaviour, it is still not entirely known how the
two measures are correlated with each other, i.e., what
is the relationship between the hemodynamic response
and electric activity, and whether they capture the same
information or not [7].

In recent years, several studies have analyzed func-
tional connectivity by combining simultaneously acquired
EEG-fMRI recordings with the objective of establishing a
correlation between the two and also to take advantage of
their complementarity [7–9]. Moreover, this type of anal-

ysis can provide richer characterization of the spatiotem-
poral organization of the brain activity. Nonetheless, no
study to date has performed a comparative analysis be-
tween these two modalities functional networks by inves-
tigating their topology over time.

The analysis of these functional networks can be done
considering a graph theory framework that allows the
brain functional systems to be modeled as complex net-
works [4]. In this context, the functional networks and
their dynamic topology can be studied by analyzing their
global properties, like the community structure [10–12]
or by exploring how these networks are organized on a
local perspective, using motif analysis [13, 14]. Further-
more, since these networks are spatially embedded, the
question arises whether the topological features captured
can be explained by the impositions determined by the
brain’s underlying structure [15] or if there is still some
functional synchronization deviating from these proxim-
ity constraints. Some studies have already explored this
space effect in structural networks [15, 16] and, more re-
cently, in the community structure of functional networks,
considering only long-distance connections [17].

Therefore, this thesis intends to fill the gap in the
present literature by performing a comparative network
analysis with fMRI and EEG functional connectivity data,
both on a macro- and meso-scale, by means of a com-
munity and a motif analysis, respectively. For that, sev-
eral established approaches were used, such as the Lou-
vain algorithm [18] for the extraction of modules of coor-
dinated activity, as well as its multiplex version [19], here
applied to find partitions combining fMRI and EEG for the
first time, and also the g-tries data structure [20] to ef-
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ficiently count occurrences of motifs in these functional
networks. Also, with hopes of exploring the influence
of space in the global and local topology, it was investi-
gated the functional networks topology beyond these spa-
tial constraints. Hence, new approaches were applied,
such as a modified version of the Louvain algorithm [21],
that includes a degree constrained spatial null model in
the modularity definition, and also a motif analysis where
the subgraphs are tested against this spatial null model.

2. Background and Related Work
2.1. fMRI-EEG
2.1.1 FMRI and Functional Connectivity
Functional Magnetic Resonance Imaging (fMRI) is one of
the most widely used imaging techniques, since it allows
a noninvasive whole-brain analysis. It measures brain ac-
tivity based on changes in the blood flow consisting in a
blood-oxygen-level-dependent (BOLD) signal, tightly cor-
related with neuronal activity [6]. These changes, how-
ever, come slow and with a significant delay, which im-
pacts temporal resolution [22]. FMRI is typically used for
the mapping of brain regions regarding their activity over
time due to its high spatial resolution, but it can also un-
ravel how these neural systems are functionally coupled
together. [23]

Functional connectivity measures the similarity be-
tween the activity of anatomically separated brain re-
gions, reflecting the level of functional interaction between
them [1]. It can be examined through the study of spon-
taneous changes in the BOLD signal over time, using
resting-state fMRI. This dynamic behaviour, denoted as
dynamic functional connectivity (dFC), is typically char-
acterized using a sliding window approach. This consists
in segmenting the BOLD time-series from the brain re-
gions (or voxels) into a set of temporal windows, within
each the pairwise correlation is examined [5]. However,
this compromises the temporal resolution by averaging
the correlation over the time frame [24].

To not lose temporal resolution, dFC can be measured
instantaneously using phase coherence (PC). The idea
behind this approach is to compare two brain regions’
signals, regarding the instantaneous phase information of
the time-series [24], and use their degree of synchroniza-
tion as a measure of connectivity. Assuming a narrow-
band signal, the instantaneous phase can be obtained
using the Hilbert transform (see [24] for more details) and
then, the phase coherence between two brain regions
corresponds to the cosine of the difference of their instan-
taneous phases. Computing for all brain regions will re-
sult in a phase coherence matrix for each time point [25].

2.1.2 EEG and Functional Connectivity
Electroencephalography (EEG) allows the direct mea-
surement of transient brain electrical dipoles generated
by neuronal activity [6]. With the use of scalp electrodes,
this constitutes a non-invasive method to record elec-
trical activity, with high temporal precision [26], which
makes it appealing for the study of resting-state dFC.
EEG recordings are conventionally decomposed into five
main frequency components: delta (1-4 Hz); theta (4-8
Hz); alpha (8-12 Hz); beta (12-30 Hz); gamma (> 30 Hz).

Each frequency band is associated with different func-
tions and origins, with low-frequency oscillations being
usually associated to coordinated activity of large-scale
neuronal networks, whereas high-frequency oscillations
mostly reflect synchronization between nearby cortical re-
gions [27].

Functional connectivity can be characterized using a
variety of connectivity metrics, mostly computed using the
EEG signals in the frequency domain, which character-
izes an estimate of amplitude and phase of the neural
oscillations captured across time [28]. To represent these
signals this domain, a Fourier decomposition can be ap-
plied [29].

However, most connectivity metrics are susceptible to
the volume conduction effect and can yield spurious con-
nectivity. This because there is an inevitable mixing of
overlapping signals arising from distinct brain sources
at the EEG electrodes, due to the conductivity of the
electrical signals spreading from the tissues to the scalp
[30, 31]. To retrieve true neuronal interaction, it is nec-
essary to use metrics robust to volume conduction, by
ignoring zero-lag synchronizations between signals aris-
ing from the same source [32]. This is the case for the
imaginary part of coherency. This metric isolates the part
of coherency that reflects the actual interaction between
two signals, removing the amplitude components (corre-
sponding to contributions along the real axis) susceptible
to volume conduction [32].

Another possibility to reduce the effects of volume
conduction is by establishing functional connectivity di-
rectly at the source level [33]. The transition from the
electrodes to the source space can be done through
source reconstruction, i.e., the localization of the under-
lying sources and reconstruction of the associated time
series [34]. This involves solving the inverse problem by
means of regularization strategies, which typically consist
in weighted minimization approaches.

2.1.3 Multimodal fMRI-EEG
Both fMRI and EEG allow the study of whole-brain dFC
by probing neuronal activity through distinct biophysical
processes and with different spatial and temporal resolu-
tions. As such, there is an increase interest in integrating
both modalities and take advantage of their complemen-
tarity [35], with the objective of unraveling the neuronal
coupling of EEG and fMRI. This can be done with si-
multaneous acquisitions, allowing temporal equivalence
and thus establishing a parallel between both modalities’
dFC [7].

Nonetheless, this gives rise to many artifacts that can
completely compromise the signal due to electromagnetic
perturbations originated from both systems and their in-
teraction [36]. Therefore, it is necessary to apply de-
noising techniques and removal of artifacts that appear
specifically in this multimodal acquisition.

To analyze simultaneous fMRI-EEG data and compare
their dFC, it is convenient to define a spatial mapping be-
tween the two signals, i.e., an equivalence between the
brain regions defined for fMRI and the sources of the
EEG signals detected by the electrodes, which can be
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achieved through source reconstruction.

2.2. Brain Complex Networks
The brain’s functional systems can be modeled as com-
plex networks through the measurement of pairwise inter-
actions between brain regions. Graph theory based anal-
ysis has emerged as a powerful new tool to analyze brain
imaging data and capture the dynamic of functional net-
works [4]. It provides a theoretical framework in which the
networks’ topology can be investigated, unraveling infor-
mation about local and global organization, possibly ex-
posing otherwise hidden phenomena [1].

A graph representation of a network is given by the tu-
ple G = (V,E), where V is the set of nodes or vertices,
corresponding in this context to the brain regions, and
E ⊆ V × V the set of links or edges that compose the
network, reflecting the functional synchronizations. This
is often represented by an adjacency matrix, whose el-
ements different than 0 indicate the presence of con-
nections between each pair of nodes. Therefore, func-
tional connectivity can be assessed constructing graph
representations from the connectivity matrices reflecting
the correlation between brain regions. In order to retain
significant interactions and exclude spurious connections
and noise, these matrices are usually thresholded, which
can be done with a cut-off threshold or using a propor-
tional one that keeps a certain percentage of the top con-
nections [33].

From this graphical model, it is possible to assess pa-
rameters of interest, such as node degree, clustering co-
efficient and average path length. The full definition and
how to compute these metrics is reviewed in [37]. But
making a general overview, the node degree corresponds
to the number of connections linking a node to the rest of
the network, being possible to establish a degree distri-
bution, which can reveal the topology of the network. The
clustering coefficient reflects the network’s tendency to
form topologically local circuits, this way measuring infor-
mation segregation, and it can be regarded as a measure
of local efficiency. In turn, the average path length rep-
resents the global efficiency of a network, as it measures
how close a node is, on average, to every other node of
the network.

2.2.1 Null Models
When analyzing functional networks and their topology,
independently of the metrics being investigated, it is im-
portant to guarantee that the results are representative.
This can be achieved by comparing them with the ones
extracted from a suitable null model. This corresponds to
a randomized version of the original network, still preserv-
ing some of its properties, except the ones being tested.
Consequently, for a meaningful conclusion to be drawn
about the network’s organization, there needs to exist a
significant difference between the null model and the orig-
inal network observations, i.e., they must deviate from
what would be expected by chance [37]. Typically, this
assessment is done by means of the computation of a z-
score or p-value, from statistical testing. The most com-
monly used null model when analyzing brain networks is
the rewiring null model, which can be generated by the

Maslov-Sneppen rewiring algorithm [38]. It preserves the
network size, density and degree distribution, which will
naturally affect the networks topology. However, other
features can be contemplated in a random network to
more accurately reproduce the topology observed in the
brain. For instance, it is often overlooked that these net-
works are physically constrained by the anatomical space
and also by the cost of maintaining connections between
different regions, which gives primacy to local connec-
tivity and results in few long-range connections [16]. To
overcome this limitation, these physical distances can be
included, creating spatial constraints that will guarantee a
more realistic null model [37]. That is the case of the spa-
tial null model proposed in [21], a gravity-based model
that contemplates the proximity effect and also preserves
the degree distribution of the original network. This model
assumes that the probability of a connection between two
regions is proportional to their intrinsic strength and de-
cays with distance:

Pij ∼ ninjf(dij), (1)

where ni is the intrinsic strength of node i, f(dij) cor-
responds to an estimated deterrence function that de-
scribes the effect of distance dij .

2.2.2 Community Analysis
Functional connectivity can be analyzed to identify mod-
ules or patterns reflecting coherent activity between dif-
ferent brain regions. Therefore, it is possible to further
analyze the topology of these brain networks to unravel
these structures, both on a macro- and meso-scale.

On a macro-scale, the presence of partitions in the net-
work can be investigated, reflecting its global structure
and organization into densely connected clusters with rel-
atively few connections between them. This analysis can
reveal groups of brain regions with coordinated activity by
means of community finding algorithms, typically based
on modularity maximization, where the Louvain algorithm
is the commonly used in brain networks [11,12,39,40].

However, since the brain networks are physically con-
strained, one might question if the modular organization
present is solely the result of the effects of space. Caz-
abet et al. [21] proposed a modification of the Louvain
algorithm, to include the degree constrained spatial null
model (described in section 2.2.1) in the modularity def-
inition. This way, it is possible to regress out the spatial
constraints and find if long-range functional connectivity
contributes to global structure of the functional networks.

Even though such method has not been applied yet to
functional networks, some studies have suggested that,
despite the neural systems tendency to show an opti-
mal spatial arrangement by minimizing the wiring and
distance, this is not the only factor for the configuration
observed [41]. Additionally, a recent study has shown
that, even when removing the short-distance connec-
tions, there is still a community structure present in the
functional networks [17].

Additionally, to characterize the dFC combining both
fMRI and EEG data, a multilayer framework can be used,
where each layer corresponds to each imaging technique.
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As such, an extension of the Louvain algorithm to a multi-
layer context [19] can then be applied to retrieve the com-
munity structure arising when combining both modalities.

2.2.3 Motif Analysis
To identify patterns of synchronized activity or topolog-
ical features on a meso-scale, the existence and count
of overabundant small building blocks in the network can
be explored. This reveals additional information about lo-
cal structure and can be used as networks fingerprints or
signatures [42]. These network motifs are small induced
subgraphs that appear in a larger network at a higher or
lower frequency than it would be expected, that is, are
statistically significant when compared to an adequate
null model. These motifs can then be used to find differ-
ences in brain functionality between groups, equivalence
between networks due to similar local structure or sim-
ply to analyze functional connectivity coupling between a
few brain regions with respect to some baseline [43, 44].
Therefore, they have the power to characterize and dis-
criminate different networks.

One efficient way to store and enumerate them is to
resort to g-tries data structure, proposed by Ribeiro and
Silva [45], suited for enumerating many small graphs up
until five nodes and with different shapes in large net-
works [20]. This is possible as this tree-like structure
stores all common subtopologies between subgraphs in
a compact way, avoiding redundancies and guaranteeing
that each occurrence is only counted once.

3. Data Representation
3.1. Data Acquisition and Preprocessing
The dataset used in this work consists in simultaneous
fMRI-EEG recordings acquired during rest in the scope
of a previous project [46], using a 7T MRI scanner along
with a 64-channel EEG system, involving 9 healthy sub-
jects. The data preprocessing and brain segmentation
were made according to [47]. As such, the BOLD time-
series were bandpass-filtered at 0.009-0.08Hz, while the
EEG signals were filtering at 0.3-70 Hz and segmented
as a multiple of the Repetition Time (TR) of the fMRI ac-
quisition (TR 1s).

3.2. Construction of Functional Networks
With the objective of the analysis of and comparison be-
tween the fMRI and EEG functional networks’ topology
on a meso- and macro-scale, a graph representation
was used. The nodes were set as the regions of inter-
est defined by the Desikan(-Killiany) atlas [48], equiva-
lent for both modalities. This spatial alignment is guar-
anteed by a source reconstruction procedure, using the
Tikhonov-regularized minimum norm [49], as described
in [47]. The edges, on the other hand, were defined
by the functional connectivity matrices obtained for each
time point using phase coherence and imaginary part
of coherency, respectively. This was estimated using
an adaptation of Cabral et al.’s implementation (https:
//github.com/juanitacabral/LEiDA) [25] and using the
Brainstorm function bst cohn.m (according to the Brain-
storm 2018 implementation http://neuroimage.usc.

edu/brainstorm, ’icohere’ measure) as described in [47],

respectively. Furthermore, the imaginary part of co-
herency estimation was averaged for the 5 canonical fre-
quency bands: delta δ (1-4 Hz), theta θ (4-8 Hz), alpha
(8-12 Hz), beta β (12-30 Hz), gamma γ (30-60 Hz).

To guarantee temporal equivalence between fMRI and
EEG functional networks, some connectivity matrices
fMRI were removed for the fMRI, corresponding to the
time points excluded from the EEG data due to exces-
sive motion. Furthermore, as the BOLD time-series have
an intrinsic delay with respect to the EEG data, due
to the different nature of the two signals, this temporal
shift was estimated using a resting-state hemodynamic
response function (HRF) deconvolution toolbox (https:
//github.com/compneuro-da/rsHRF), corresponding to
3-4 seconds, depending on the subject.

Finally, to remove any spurious connectivity arising
from noise or artifacts typical on this type of dataset,
these functional networks were thresholded while guaran-
teeing that the giant component was still present for most
time points. For that, a data-driven percolation approach
was used to select a proportional threshold for fMRI and
each EEG frequency band, that is, the percentage of
edges necessary to avoid the collapse of the giant com-
ponent. The resulting threshold values are 11%, 7.5%,
6.6%, 7.0%, 6.1%, 7.0% and 6.5% for fMRI and EEG
delta, theta, alpha, beta and gamma frequency bands,
respectively.

4. Methods
4.1. Community Analysis
A community analysis was performed to characterize
both fMRI and EEG functional networks on a macro-
scale, to explore their potential correlation over time and
also to investigate the possible influence of the proximity
constraints in the modular structure captured.

4.1.1 Null Model Comparison Analysis
First, the global topology of these functional networks was
analyzed over time in comparison to a rewiring null model,
using three metrics: clustering coefficient, average path
length and modularity, computed using the Louvain algo-
rithm (using NetworkX’s functions). Then, the time points
for which the functional networks deviate from the random
case were selected. This statistical testing was done for
all three metrics by generating 100 surrogates for each
corresponding network and computing the resulting p-
value, selecting the time instances with p < 0.05. The
time points selected for each of the three metrics were
then intersected, for each modality. Lastly, a unique set of
time points was obtained for both fMRI and EEG networks
by choosing only the common selected ones, for each fre-
quency band independently. Since the topology observed
may be due to spatial constraints, this same analysis was
performed with respect to a degree constrained spatial
null model [21]. As such, it was selected a second set of
time points deviating from what is expected by the influ-
ence of space.

4.1.2 Louvain algorithm
With the objective of identifying modules of synchronized
activity, potentially similar between modalities, the com-
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munity structure of these functional networks was an-
alyzed. This was done for each set of selected time
points obtained previously, with respect to the rewiring
null model, using the Louvain algorithm (with NetworkX’s
community package). Following this, the median modu-
larity was estimated, for both fMRI and EEG frequency
bands. To explore the potential correlation between the
two modalities regarding to the modular structure cap-
tured by both functional networks, the communities ex-
tracted were compared for all selected time points, using
the Normalized Mutual Information (NMI) and Jaccard In-
dex metrics.

4.1.3 Modified Louvain algorithm
Considering the influence of the spatial constraints in the
functional networks topology, it was desirable to check if
some modular configuration present in these functional
networks emerges from functional necessity and not just
as a consequence of space proximity. With this objective,
the community structure of these functional networks be-
yond these spatial constraints was investigated. This was
done for all selected time points obtained previously with
respect to the degree constrained spatial null model, us-
ing the modified Louvain algorithm (spaceCorrectedLou-
vainDC toolbox) [21]. Then, the median modularity was
estimated, for both fMRI and EEG frequency bands. Ad-
ditionally, the communities extracted with and without the
spatial influence were compared over time using the NMI
metric, to investigate their difference. Finally, the com-
munities extracted while regressing out the influence of
space were compared for all time points, again using
the NMI and Jaccard Index metrics. This was done to
distinguish and quantify the influence of the spatial con-
straints in correlating the two modalities and verify if there
is a correlation beyond that, reflecting the underlying syn-
chronous activity captured by the two.

4.1.4 Multiplex Louvain algorithm
To investigate if combining fMRI and EEG information can
lead to new and improved results, a multilayer version of
the Louvain algorithm [19] was used to extract commu-
nities common to both modalities for all time points se-
lected using the rewiring null model. This algorithm was
applied as a multiplex case, i.e., when all the layers share
the same node set since there is a spatial equivalence
betwen fMRI and EEG networks, using i-graph’s louvain
package find partition function. Following this, the me-
dian improved modularity was estimated, for both fMRI
and EEG frequency bands. In parallel, the median modu-
larity associated to these communities when isolating the
two layers was obtained to check if different partitions
were obtained for each modality in comparison to the
previous optimized ones (in section 4.1.2). Additionally,
these values were compared with the ones obtained for
the degree constrained spatial null model of both modali-
ties.

4.2. Motif Analysis
A motif counting analysis was performed to character-
ize both fMRI and EEG functional networks on a meso-
scale, to explore their potential correlation over time and

also to investigate the influence of the proximity con-
straints, imposed by the spatial embedding in the local
structure captured for the two modalities. This analysis
was done using the g-tries algorithm proposed by Ribeiro
et al. (available in https://www.dcc.fc.up.pt/gtries/

#manual) [20], considering undirected subgraphs with 3,
4 and 5 nodes, which correspond to 2, 6 and 21 different
motif classes, respectively. It was considered that these
subgraphs were enough to characterize and distinguish
the different functional networks, with 5 nodes subgraphs
leading to a finer analysis.

Figure 1: The 2 and 6 possible subgraphs of size 3 and 4, respectively

Figure 2: The 21 possible subgraphs of size 5

4.2.1 Motif Analysis with Rewiring Null model
To identify subgraphs that are over- or under-expressed
against a rewiring null model, the g-tries algorithm was
used directly, retrieving the number of occurrences and z-
score for each subgraph. Then, to discriminate the most
significant ones, the percentage of time points for which
each motif class appeared on the significance top was
computed, that is, considering all the time points where
that specific motif was one of the most over- or under-
represented (z-score > 2 and < 2, respectively), for fMRI
and EEG functional networks independently. Moreover,
to analyze the motif diversity across time, the variation of
the total number of motif classes was obtained, for each
modality separately. Finally, to study the correlation be-
tween them regarding the motifs extracted and thus be-
tween the local functional organization captured by each
imaging technique, the network fingerprints, defining a
motif profile for each functional network, were computed
and compared for all time points, using the cosine dis-
tance metric. These network fingerprints were defined by
the number of occurrences of each motif class, normal-
ized by the total of all motifs, for each time point.

4.2.2 Motif Analysis with Degree Constrained Spatial Null
model

To verify the impact of the spatial influence in the mo-
tifs present in both functional networks and to investigate
which still occur beyond these constraints, the subgraphs
obtained using the g-tries algorithm were tested against
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the ones retrieved from the degree constrained spatial
null model. The following analysis was similar to the one
described in section 4.2.1.

5. Results and Discussion
5.1. Community Analysis
5.1.1 Null Model Comparison Analysis
The overall results of the null model comparison for both
fMRI and EEG functional networks, using the rewiring and
spatial null model are reported hereafter. Figures 3 and 4
illustrate the temporal variation for the modularity values,
chosen between the three metrics for representation as
they showed similar behaviour, in comparison to each null
model respectively. Table 1 summarizes the percentage
of time points deviating from these null models, averaging
for all subjects.

Figure 3: Temporal variation of modularity (blue) for fMRI and EEG
beta, respectively, in comparison to the rewiring null model (green).

From these results, it is noticeable an oscillation over
time, for both modalities, which is not surprising consid-
ering that brain functional connectivity tends to oscillate
between segregated and integrated states [11,33,39,50].
Besides this, there is a big difference between the fMRI
and EEG functional networks, as the first one appears
to possess a much clustered structure than the second
one. As such, the resulting time points obtained from the
intersection between the two modalities’ selection were
almost entirely the same as for the EEG.

Figure 4: Temporal variation of modularity (blue) for fMRI and EEG
beta, respectively, in comparison to the degree constrained spatial spa-
tial null model (green).

Furthermore, the degree constrained spatial null model
presents a somewhat clustered topology, constituting an
important contribution for the structure observed. This is
not surprising since it has been reported a general ten-
dency for the clusters in functional networks to be com-
posed by regions that are near one another in the physical
space [51]. In particular, the spatial null model appears
to be almost identical to the EEG functional networks,

suggesting that the little topology detected for this modal-
ity might be a result of the spatial constraints imposed
in these functional networks. This means that the EEG
seems to be more susceptible to these proximity con-
straints than the fMRI, which might result from the lower
spatial resolution intrinsic to this imaging technique. Nev-
ertheless, it resulted in a low percentage of time points
selected for both modalities, where the delta band seems
to deviate the most from the spatial null model, possi-
bly due to its ability to capture synchronized oscillations
between brain regions at a longer distance than higher
frequencies [27,52].

Table 1: Percentage of time points for which both modalities functional
networks reflect a clustered structure in comparison to both rewiring and
degree constrained spatial null model - for each frequency band, aver-
aged for all subject (and with corresponding standard deviation (std).

fMRI-EEG pair delta theta alpha beta gamma

Rewiring
average (%) 60.6 56.8 59.1 59.5 65.3

std ± 6.5 ± 5.3 ± 5.3 ± 7.1 ± 11.4
Spatial

average (%) 12.9 7.0 9.1 7.2 9.9
std ± 3.5 ± 2.0 ± 1.2 ± 1.9 ± 4.0

5.2. Louvain algorithm
The overall results of the community analysis with the
Louvain algorithm, using the time points selected with
the rewiring null are reported hereafter, for both fMRI and
EEG functional networks. Table 2 summarizes the me-
dian modularity obtained for each modality, averaging for
all subjects. Figure 5 shows the correlation over time be-
tween the two modalities, for arbitrary frequency band
and subject. Table 3 represents the average NMI and
Jaccard Index value obtained from the comparison of the
community structure of both functional networks.

Table 2: Median modularity values associated to the communities ex-
tracted from fMRI and EEG frequency bands over time using the Lou-
vain algorithm, averaged for all subjects (with associated standard devi-
ation (std)). These modularity values were computed considering each
set of selected time points, using the rewiring null model, for every pair
fMRI-EEG frequency band.

fMRI-EEG pair delta theta alpha beta gamma

fMRI
average 0.700 0.700 0.697 0.699 0.699

std ± 0.004 ± 0.005 ± 0.005 ± 0.004 ± 0.015
EEG

average 0.455 0.466 0.447 0.465 0.428
std ± 0.004 ± 0.002 ± 0.003 ± 0.010 ± 0.015

In line with the previous observations, the fMRI func-
tional networks show a much more modular configuration
than the EEG, which is in accordance with previous dFC
studies suggesting a more moderate modularity for the
EEG networks in comparison to the high value found for
the fMRI case [53]. Moreover, the less modular topol-
ogy retrieved for the EEG might be due to a worse qual-
ity of the data collected, as it is more affected by arti-
facts [54–56] or to a lack of sensibility of the imaging tech-
nique to capture the topology of the underlying functional

January 2021 Page 6 of 12



Extended Abstract • MSc Thesis on Information Systems and Computer Engineering • F. Ayres Ribeiro

networks [30, 57], because of the difficulty in performing
an accurate source reconstruction, specially for resting-
state data [58].

Figure 5: NMI coloured array regarding the comparison of the commu-
nities obtained over time with the Louvain algorithm, between fMRI and
EEG alpha band, for subject 8.

Table 3: NMI and Jaccard Index values (and associated standard devi-
ation (std)) obtained from the comparison of fMRI and EEG frequency
bands community structure obtained using the Louvain algorithm, aver-
aged for all subjects.

fMRI-EEG delta theta alpha beta gamma

NMI
average 0.247 0.265 0.262 0.287 0.273

std ± 0.048 ± 0.048 ± 0.053 ± 0.049 ± 0.053
Jaccard
average 0.183 0.185 0.184 0.185 0.186

std ± 0.026 ± 0.027 ± 0.027 ± 0.027 ± 0.028

There is indeed a moderate correlation between the
topology captured by the two modalities, as it can be ob-
served from the NMI and Jaccard Index results, which
are in line with previous reports for the comparison of
fMRI and EEG static connectomes [47] using the same
dataset. Also, it is also in accordance to studies exam-
ining dFC with both modalities, reporting a link between
the two [9,52,59,60]. Nevertheless, this correlation is not
particularly high, which might be due to the lack of mod-
ular topology in the case of EEG, as discussed. But it
might also be that this modality captures different inter-
actions, resulting in a more integrated topology instead
of segregated one, as found for the fMRI networks. In
fact, it has been shown in [61] that EEG functional con-
nectivity clusters into groups of brain regions in a differ-
ent way than the fMRI functional connectivity, and that
these clusters appear to be extended in space, with lower
connectivity within modules than between them. More-
over, from the coloured arrays, it is noticeable an oscilla-
tion in similarity over time, which was found to be specific
to each frequency band. This not surprising consider-
ing past studies have reported a different contribution of
each EEG frequency band to the BOLD connectivity dy-
namics [8,52,62], varying across space [63], with a more
local topology captured for higher frequency bands such
as the gamma band and a more global connectivity for
lower ones, like the delta band [27,53,59,64].

5.3. Modified Louvain algorithm
The overall results of the community analysis with the
modified Louvain algorithm, using the time points se-
lected with the spatial null are reported hereafter, for
both fMRI and EEG functional networks, to further an-
alyze the spatiotemporal organization of these networks

beyond spatial constraints. Table 4 summarizes the me-
dian modularity obtained for each modality, averaging for
all subjects. Figure 6 shows the comparison between the
communities obtained over time with and without the spa-
tial constraints, while figure and 7 shows the correlation
over time between the two modalities still arising beyond
the influence of space, for arbitrary frequency band and
subject. Table 5 represents the average NMI value ob-
tained from the comparison of the community structure of
both functional networks.

Table 4: Median modularity values associated to the communities ex-
tracted from fMRI and EEG frequency bands over time using the modi-
fied Louvain algorithm, averaged for all subjects (with associated stan-
dard deviation (std)). These modularity values were computed consid-
ering each set of selected time points, using the degree constrained
spatial null model, for every pair fMRI-EEG frequency band.

fMRI-EEG pair delta theta alpha beta gamma

fMRI
average 0.072 0.071 0.073 0.072 0.071

std ± 0.002 ± 0.005 ± 0.003 ± 0.004 ± 0.003
EEG

average 0.036 0.034 0.034 0.032 0.033
std ± 0.003 ± 0.002 ± 0.001 ± 0.002 ± 0.002

Even though the spatial constraints seem to explain
the majority of the topology observed in fMRI and EEG
functional networks, as it was observed in the null model
comparison analysis, it was still possible to retrieve
some community structure beyond these expectations.
Also, despite the resulting modularity values being quite
low, they are associated to functional networks deviating
from a random configuration, therefore making the corre-
sponding communities statistically significant.

Figure 6: NMI coloured arrays regarding the comparison of the com-
munities obtained over time with and without the spatial constraints, be-
tween fMRI and EEG theta band, respectively, for subject 7.

Figure 7: NMI coloured array regarding the comparison of the commu-
nities obtained over time with the modified Louvain algorithm, between
fMRI and EEG delta band, for subject 2.

When comparing the communities obtained with the
regular and modified version of the Louvain algorithm, it
is possible to notice that there is an overall high similar-
ity but not a complete match. Suggesting the existence
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of relevant spatial patterns that arise out of functional ne-
cessity and not just as a consequence of space, even if
not at a major extent. Furthermore, it is important to note
that these similarity values are lower for the EEG implying
that, even though there is not as distinct modular struc-
ture as for the fMRI, the spatial effects seem to have a
higher impact in EEG networks topology.

Comparing fMRI and EEG community structure beyond
the spatial constraints, it was obtained lower similarity
overall than when using the regular Louvain algorithm.
These results point out the possibility of having a portion
of the correlation between the two guaranteed by the un-
derlying spatial embedding. Even so, it was still possi-
ble to retrieve some correlation beyond the spatial con-
straints, which further supports the link between the fMRI
and EEG dynamic functional connectivity. Nonetheless,
it is important to take into consideration that this analysis
is done only for the time points deviating from the spatial
null model (around 9%).

Table 5: NMI and Jaccard Index values (and associated standard devi-
ation (std)) obtained from the comparison of fMRI and EEG frequency
bands community structure obtained using the modified Louvain algo-
rithm, averaged for all subjects.

fMRI-EEG delta theta alpha beta gamma

NMI
average 0.182 0.199 0.193 0.211 0.207

std ± 0.052 ± 0.052 ± 0.057 ± 0.060 ± 0.061
Jaccard
average 0.187 0.187 0.182 0.186 0.186

std ± 0.040 ± 0.040 ± 0.035 ± 0.042 ± 0.040

5.4. Multiplex Louvain algorithm
Since it was not retrieved a total match between the topol-
ogy captured by two modalities on a global scale, despite
the moderate correlation found, one can speculate that
these complementary imaging techniques capture differ-
ent information regarding the underlying neuronal activ-
ity and its functional organization. The improved median
modularity resulting from the multiplex Louvain algorithm
analysis are reported in table 6, as well as the individual
values obtained for each of the two modalities.

Table 6: Median modularity values associated to the common com-
munities extracted from both fMRI and EEG frequency bands over time
using the multiplex Louvain algorithm, averaged for all subjects (with as-
sociated standard deviation (std)). These modularity values were com-
puted considering each set of selected time points, using the rewiring
null model, for every pair fMRI-EEG frequency band.

fMRI-EEG pair delta theta alpha beta gamma

multiplex fMRI-EEG
average 0.747 0.752 0.748 0.755 0.751

std ± 0.004 ± 0.004 ± 0.005 ± 0.005 ± 0.005
individual fMRI

average 0619 0.591 0.603 0.571 0.615
std ± 0.011 ± 0.010 ± 0.009 ± 0.009 ± 0.007

individual EEG
average 0.091 0.123 0.105 0.148 0.102

std ± 0.009 ± 0.009 ± 0.005 ± 0.011 ± 0.014

One can immediately notice that the individual values
obtained here are lower than the single-layer ones re-
ported before in section 5.2. Meaning that the multi-
layer approach finds clusters common to both modalities

that were not found previously, since these partitions pos-
sessed too low modularity to be selected by the commu-
nity detection procedure. As such, this suggests that us-
ing the two modalities together leads to interesting com-
munities that would not be found if looking at each func-
tional network individually. These findings are in line with
two previous studies that performed a joint-analysis of
these modalities, by means of a hybrid independent com-
ponent analysis [53] and by building a multimodal graph,
joining the fMRI and EEG nodes into a single network [8],
to identify new connectivity structure. Furthermore, the
modularity found was statistically significant in compari-
son to a multiplex spatial null model for most time points,
implying that it is not just the spatial embedding that leads
to the common partitions selected.

5.5. Motif Analysis
5.5.1 Motif Analysis with Rewiring Null Model

The overall results of the motifs analysis of both fMRI and
EEG functional networks, with respect to the rewiring null
model are reported hereafter. Table 7 summarizes the
most recurrently over- and under-represented motifs or-
der according to the percentage of time points they ap-
pear in. Figure 8 illustrates the temporal variation of
the number of motifs over- and under-expressed in these
functional networks. Figure 9 shows the correlation be-
tween fMRI and EEG network fingerprints over time. The
results represented here concern 5 node motifs, since it
led to a finer analysis than with 3 and 4 nodes.

This analysis reveals a densely connected structure for
the fMRI, in comparison to the rewiring null model, char-
acterized by the presence of many cliques (motif 20) and
other dense configurations (motif 15 and 11) that promote
highly efficient coordination between brain regions and
thus high local connectivity [65], combined with an ab-
sence of sparser motifs such as path (motif 1), star like
and cycle motifs, associated to extended pathways of in-
formation transfer [65]. These results were in accordance
with a previous study characterizing functional networks
using 4-node subgraphs [14]. In opposition, the EEG
functional networks are mainly described by less densely
connected motifs, suggesting that the topology captured
by this imaging technique is sparser and, therefore, less
clustered than for the fMRI, which in line with the com-
munity analysis results. Nonetheless, it was found that
for higher frequency bands the local structure was closer
to its BOLD counterpart, selecting cliques as the most
over-represented motifs. This might result from higher
frequency oscillations having a tendency to be more lo-
calized, in opposition to lower frequency ones [27]. Fur-
thermore, it is worth noting that both theta and, particu-
larly, delta bands capture cycle like motifs (motif 21) at a
much higher frequency than other bands and even more
than other more densely connected motifs, pointing out
for a specific and interesting local topology captured by
the two. From this, it is possible to conclude that the two
modalities capture a functional connectivity with different
levels of local clustering, equivalently to what was ob-
served on a global level. Additionally, some motifs seem
to be exclusive to each modality.
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Table 7: Most commonly selected over- and under-represented motifs
with 5 nodes, for each position in the top (highest and lowest signif-
icance with respect to the rewiring null model, respectively), ordered
by percentage of time points, for both fMRI and EEG frequency bands,
combining all subjects.

Top 1 2 3 4 5

Over-represented
fMRI 20 15 11 8 9,12

EEG delta 21,19,15 18,19 18,19,16 16 11,16,-
EEG theta 21,19 18 19,18,16 16,11 11,16,-
EEG alpha 19,21,15 18,19,15 16,19,18 16 11,15,-
EEG beta 15,19,20 15,18 11,19 16,11 9,-

EEG gamma 20,15 15 11 8,11,19 8,16,19,-
Under-represented

fMRI 1 4 3 - -
EEG delta 1 2 17 13,4 6,-
EEG theta 1 2 17 13,4 -
EEG alpha 1 2 17 13 -
EEG beta 1 2 17 13 -

EEG gamma 1 2 17 13 10,-

Figure 8: Temporal variation of number of motif classes over- (in green)
and under-represented (in blue) with respect to the rewiring null model,
for subgraphs with 5 nodes, for fMRI and EEG beta, respectively.

Regarding the temporal variation of the number of mo-
tifs retrieved, first, it is possible to observe that, for the
fMRI, all time points capture over- and under-represented
motifs, with respect to the rewiring null model. Suggest-
ing that these functional networks are locally optimized for
efficient communication at all times. That is not the case
for the EEG, with some time points where the networks
present a local organization closer to this null model, al-
ternating with others further away. This fluctuation across
time might arise from EEG’s higher temporal resolution,
in comparison to the fMRI, but might also be due to
this imaging technique’s increased susceptibility to noise.
Moreover, the number of motif classes over-represented
is overall higher than the under-represented ones, trans-
lating into a rich repertoire of motifs characterizing the
local structure of both modalities functional networks.

Figure 9: Cosine similarity array, resulting from the comparison of the
network fingerprints between fMRI and EEG gamma for all time points,
with respect to the rewiring null model, for subgraphs with 5 nodes, for
subject 6.

Despite these differences in local structure for fMRI and

EEG, some similar over- and under-represented motifs
were captured for the two modalities, independently of
the frequency band, as both capture patterns that favor
efficient information transfer locally and show a reduced
presence of sparser ones. As such, some moderate sim-
ilarity was found with rδ = 0.375, rθ = 0.352, rα = 0.370,
rβ = 0.380 and rγ = 0.415 corresponding to the aver-
age cosine similarity values (excluding time points with
no motif retrieved), for each frequency band.

5.5.2 Motif Analysis with Spatial Null Model
The overall results of the motif analysis of fMRI and EEG
functional networks, with respect to the spatial null model
are reported hereafter, to discriminate the influence of
space in the local structure captured, considering again
only 5 node subgraphs. Table 8 summarizes the most
recurrently over- and under-represented motifs order ac-
cording to the percentage of time points they appear in.
Figure 10 illustrates the temporal variation of the number
of motifs over- and under-expressed in these functional
networks. Figure 11 shows the correlation between fMRI
and EEG network fingerprints over time.

Table 8: Most commonly selected over- and under-represented motifs
with 5 nodes, for each position in the top (highest and lowest signif-
icance with respect to the degree constrained spatial null model, re-
spectively), ordered by percentage of time points, for both fMRI and
EEG frequency bands, combining all subjects. The symbol - is used
when no motif class is present, meaning that for most time points no
significant subgraph was selected.

Top 1 2 3 4 5

Over-represented
fMRI - - - - -

EEG delta 21,19,- 18,- - - -
EEG theta 21,- - - - -
EEG alpha - - - - -
EEG beta 20,- - - - -

EEG gamma 20,- 15,- 17,- - -
Under-represented

fMRI 3 8 4 1 5
EEG delta - - - - -
EEG theta - - - - -
EEG alpha 1,- 3,1,- 3,- 4,- 4,-
EEG beta 1,- - - - -

EEG gamma - - - - -

From these results, one can immediately notice a clear
distinction between the fMRI and EEG relatively to the
proximity effects in the local structure. For the fMRI, no
over-represented motif was obtained for the majority of
time points, implying that the densely connected local
structure observed previously is explained by the spatial
constraints. However, it was retrieved under-represented
motifs, meaning that the sparsity of these networks is
substantially lower than expected by the spatial embed-
ding. The lack of these sparser configurations translates
in a preference of the fMRI networks in having superposi-
tion between the densely connected clusters, composed
by cliques, instead of having loosely connected groups
of brain regions. In fact, several studies have suggested
that the brain networks can also be overlapping, that is,
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to some extent, brain regions may belong to several mod-
ules [66–68]. For the EEG, the local structure seems to
deviate positively from the spatial embedding, appearing
slightly more densely connected for some time points and
even presenting the same unexpected motifs for the lower
frequency bands, namely motif 21 as reported in section
5.5.1. This further points out for the relevance of this motif
in the topology captured by delta band. Moreover, the al-
pha band captured an interesting structure as it includes
both over- and under-represented motif, for a substantial
portion of time points, unlike any other frequency band.
Therefore, contrary to what was found with respect to the
rewiring null model, the densely connected structure does
not increase with frequency. Instead, it is observed a high
heterogeneity between frequency bands, each capturing
a different topology deviating from the spatial constraints.

Figure 10: Temporal variation of number of motif classes over- (in
green) and under-represented (in blue) with respect to the degree con-
strained spatial null model, for subgraphs with 5 nodes, for fMRI and
EEG beta, respectively.

The temporal variation of number of motifs classes
present in the networks further corroborates these find-
ings. Furthermore, it is possible to notice that fMRI func-
tional networks report under-represented motifs for all
time points, with very little oscillations over time, while
only a portion of the time points deviates from the spatial
null model for the EEG. These results are in accordance
to the ones obtained in the community analysis.

Figure 11: Cosine similarity array, resulting from the comparison of the
network fingerprints between fMRI and EEG delta for all time points,
with respect to the degree constrained spatial null model, for subgraphs
with 5 nodes, for subject 9.

With clear differences between the two modalities,
even further evidenced with this analysis, the correlation
between their local structure deviating from the spatial
null model was reduced, with only a few time points re-
vealing some level of similarity: rδ = 0.112, rθ = 0.049,
rα = 0.236, rβ = 0.135 and rγ = 0.131 corresponding to
the average cosine similarity values, for each frequency
band. However, the alpha band was the exception, still
showing a relevant correlation with the fMRI motif profile,

consistent over time, particularly for 5 node subgraphs.

6. Conclusions and future prospects
From this work it is possible to draw several conclusions.
First of all, the fMRI and EEG functional connectivity
seem to capture different information on both global and
local levels. On one hand, the fMRI networks showed
more modular configuration, consistent over time, also
being characterized by densely connected motifs, with
the presence of many cliques and absence of sparser
motifs. On the other hand, the EEG captures a less
clustered topology, both on a macro- and meso-scale,
with lower modularity and less densely connected sub-
graphs, with each frequency band capturing a slightly dif-
ferent structure oscillating across time. Moreover, when
combining the two modalities, interesting and relevant
communities were extracted, that would not be possi-
ble with each network individually. Secondly, both func-
tional networks’ organization is mostly explained by the
spatial influence, giving preference to close connections.
Nevertheless, interesting communities and densely con-
nected patterns were still obtained beyond the proximity
constraints, for both fMRI and EEG, in particular for the
delta, alpha and gamma bands. Finally, despite the dif-
ferences between the two modalities, there is a correla-
tion between them over time, which is mostly explained by
the spatial embedding. Nonetheless, when investigating
these networks structure beyond the influence of space,
a small correlation was still retrieved for a small portion of
time points. Interestingly, this correlation was not equiva-
lent between the two perspectives.

Therefore, it is possible to conclude that, even though
fMRI and EEG functional connectomes are slightly linked,
the two essentially capture different information, on a
topological level. As such, combining the two modalities
seems to be desirable to characterize the brain’s complex
activity and to distinguish different states and conditions.
Furthermore, this work reinforces the importance of an-
alyzing these functional networks choosing a null model
that better mimics the brain networks organization, to re-
trieve the truly meaningful features arising from functional
connectivity.
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