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Resumo

Os sistemas de blockchain permitem armazenar bens digitais de uma forma descentralizada num

registo infalsificável, imutável e com um mecanismo de consenso onde nenhum participante tem

controlo total. Uma blockchain é um registo imutável que permite anexar novas transações.

Infelizmente, em alguns casos existe a necessidade de reverter transações que são consequência

de intrusões, por exemplo, quando as chaves privadas de uma carteira são roubadas, quando um

dos participantes não cumpre com o que foi acordado, ou quando vulnerabilidades em smart

contracts são exploradas por atacantes. Para além disso, existem cenários acidentais como p.

ex., perda das chaves privadas que deixam os bens digitais que lhe estão associados – permanen-

temente inacesśıveis. Embora existam algumas propostas que permitem modificar a blockchain,

elas quebram garantias básicas que são esperadas por sistemas suportados por ela. Neste tra-

balho, propomos uma nova abordagem para permitir a utilizadores recuperar de ataques ou

perda acidental dos seus bens digitais e que ao mesmo tempo assegura que as propriedades fun-

damentais da blockchain não são comprometidas. Este mecanismo foi implementado e avaliado

na plataforma Ethereum / EVM, tendo sido conclúıdo que é posśıvel fazer a recuperação dos

bens digitais por um preço relativamente baixo, quando se considera que até agora, não era

posśıvel fazer este tipo de operações de uma forma rápida e incontroversa.

Palavras-chave: recuperação de intrusões, blockchain, smart contracts, criptomoedas,

tokens, Ethereum
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Abstract

Blockchain systems allow storing digital assets in a tamper-proof, consensus-based, append-

only ledger in a decentralized fashion, where no single party has full control. A blockchain is an

immutable, append-only, log of transactions. Unfortunately, in some cases it is necessary to undo

transactions that result from intrusions, e.g., when the private keys of a wallet are stolen, when

one of the transaction participants does not comply with what was agreed upon, or when smart

contract vulnerabilities are exploited by attackers. There are also accidental scenarios, e.g., when

private keys are lost leaving the associated digital assets inaccessible. Although there have been

a few proposals which allow modifications to the blockchain, they break the basic guarantees they

are supposed to provide. We propose an approach to allow wallet owners to recover from attacks

against their digital assets and accidental loss, while still assuring fundamental properties of the

blockchain technology. We implemented and evaluated the mechanism for Ethereum / EVM,

showing that it is possible to perform these types of operations in a fast and noncontroversial

manner.

Keywords: intrusion recovery, blockchain, smart contracts, cryptocurrency, tokens,

Ethereum
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Chapter 1

Introduction

Blockchain technology has been gaining popularity in the last decade with the rise of interest

in cryptocurrencies such as Bitcoin [1] and Ether [2]. The initial goal was to have fast and

cheap monetary transactions without involving a trusted third party, a role that is currently

performed by banks and other financial institutions. As the technology matured, more use cases

were discovered in several fields such as healthcare [3], business processes [4], and educational

certificates [5].

The Ethereum Virtual Machine (EVM) allows running low-level machine code in the form

of EVM bytecode. Developers can program smart contracts using high-level languages such as

Solidity1 or Vyper2, compile them into bytecode and deploy them on the Ethereum blockchain.

These smart contracts are analogous to objects in object-oriented programming, as they have

attributes that define their state and methods that allow changing that state. Essentially they

are immutable programs that run deterministically in an EVM context and its execution is

triggered through transactions (akin to method calls).

In the Ethereum blockchain, wallets store keys that provide access to accounts. These

accounts are associated with Ether, Ethereum’s intrinsic cryptocurrency, handled at the protocol

level, and optionally to tokens [6, 7, 8] that are handled at the smart contract level.

Tokens are frequently used to represent private currencies or value (e.g., capital stock), al-

though they may also serve other purposes, e.g., representing voting rights, collectibles, identity,

ownership of resources or other types of digital assets. As of December 2020, the top 10 to-

kens implemented over the Ethereum blockchain hold a market capitalization of over $38 billion

(USD)3. There are a set of standard interfaces for tokens that can be used in many contexts, e.g.,

ERC-20 and ERC-721 [6, 7]. ERC-20 defines a standard interface for fungible tokens while ERC-

1Solidity documentation – https://solidity.readthedocs.io/en/latest/
2Vyper documentation – https://vyper.readthedocs.io/en/latest
3CoinMarketCap Top 100 Tokens by Market Capitalization – https://coinmarketcap.com/tokens/

1
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721 targets non-fungible tokens. With such large amounts of value being exchanged, security

and recovery mechanisms are indispensable for token management.

1.1 Blockchain wallet challenges

The learning curve for using the blockchain technology is still relatively high for non tech-

savvy users. A minimum requirement is to have a set of asymmetric key pairs – each key pair

has a public and a private key – which are used to sign and verify transactions that are then

submitted into the blockchain. The private key is an especially sensitive piece of data that

requires strong protection since it gives the holder of the key full access to the corresponding

blockchain account. Digital wallets are used to store and manage these key pairs. That is to

say, having access to a wallet will result in having access to all the digital assets associated with

its accounts. Handling such keys may be complicated but wallet software is improving daily,

so is accessibility and usability. This allows more and more users to make use of blockchain to

perform money transfers and store both information and value.

In regards to Ethereum, when creating an account using a wallet software, an Ethereum

address is derived from the generated public key. This Ethereum address is what uniquely

identifies the wallet owner in the Ethereum blockchain. In order to interact with the Ethereum

network, the private key is used to digitally sign transactions and the public key is used to

verify the integrity and authenticity of those transactions. Unfortunately, if the private key is

lost then it is no longer possible to interact with the network using that specific account and all

the resources linked to it such as Ether or tokens become permanently inaccessible. This may

happen for several reasons, from laptop/smartphone loss or theft, to ransomware that denies

access to the user’s files.

Most wallet software generates deterministic wallets [9] meaning that the key pairs are derived

from seed phrases: lists of 12 to 24 words that allow users to recreate both the public and private

keys. However, the user may never store their seed phrases in paper or digitally, so they may

be unavailable when they are needed for recovery purposes.

Recovery mechanisms are still scarce in the blockchain domain and if there are no fallbacks,

users can be led to avert joining and using the blockchain along with all the features it can

provide.
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1.2 Recoverable tokens

The work presented in this dissertation addresses the issue of the current lack of recovery mech-

anisms present in the blockchain domain. More specifically, recovering digital assets in the form

of Ethereum tokens.

With this in mind, we present the first full solution for recovering tokens implemented in

Ethereum. Ethereum smart contracts allow implementing arbitrary applications that may have

different forms of operating and interacting with the external world e.g., using clients that are

not wallets [5]). Therefore, we do not aim to recover arbitrary applications, but tokens. Notice

that although we often refer to Ethereum, our solution applies to other blockchains that run

EVM, e.g., Ethereum Classic, TRON, Cardano, Ropsten; and private blockchains based on

clients that run EVM, e.g., Quorum, Hyperledger Besu and Pantheon. Our intrusion recovery

approach is even more generic and applies to many other blockchains.

The approach taken involves a blockchain-based dispute resolution mechanism used to de-

termine if a recovery request should be executed. To perform a recovery action, a claimant first

has to submit a claim that becomes a dispute. If the claim is supported, the recovery action is

executed. Our solution does not require any changes to the underlying blockchain protocol and

it does not involve changes to the chain of blocks, so it does not break immutability. Instead,

the recovery happens in a smart contract that manages the balance of tokens for each account.

1.3 Objectives

The major objective of this work is to improve the usability of the blockchain technology by

providing a way of creating an opportunity for its users to be able to recover their tokens. When

considering the ever increasing number of token transactions 4 being performed on top of the

Ethereum blockchain, we believe this to be a necessary step for increasing the adoption of the

blockchain technology.

The Recoverable Token we propose allows users to recover their Ethereum tokens in the

following scenarios:

• S1: account loss – user lost the access to the private key of an account and/or corresponding

seed phrases and can no longer recover them;

• S2: account theft – there is reasonable proof to believe that an account has been compro-

mised;

4ERC-20 Daily Token Transfer Chart – https://etherscan.io/chart/tokenerc-20txns

3
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• S3: chargebacks – payment is made for any good or service and the payer believes that it

did not receive what was agreed upon.

While it may seem a trivial problem to solve, the fact that this feature is implemented in a

decentralized domain brings several issues which need to be addressed:

• Who should be able to request token recoveries?

• How can we ensure that all participating entities agree to any recovery action being per-

formed?

• How can we recover the tokens belonging to an account if it was lost or stolen?

• How can we validate the authenticity of a recovery request?

Our contribution is the design and implementation of a system that allows smart contract

developers to add such features while also giving a solution to the above-mentioned issues.

1.4 Thesis Outline

The remainder of the document is structured as follows. Chapter 2 introduces key concepts and

previous research in topics related to intrusion recovery and blockchains. The next chapter de-

scribes the type of problems addressed and the proposed solution along with the core concepts of

its architecture and implementation. The methodology used to evaluate the solution is outlined

in Chapter 4, along with a presentation of the obtained results. Finally, Chapter 5 provides a

summary and concludes suggesting future improvements that could be applied to our work.
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Chapter 2

Related Work

In this chapter we present work from different domains that is relevant for our proposal while

also giving a brief introduction to each of them. We start by providing an overview of Intrusion

Recovery in Section 2.1. In Section 2.2 we briefly introduce Blockchain technology and explain

its major features and limitations. Then, in Section 2.3, we give insight on how the previous

concepts can be connected for Blockchain Recovery. Finally, in Section 2.4, we outline the

features that differentiate Ethereum from other blockchains and why it is the platform of choice

for our solution.

2.1 Intrusion Recovery

Every system has vulnerabilities which are a part of a system’s attack surface. The attack surface

is the sum of the attack vectors, i.e., the points in a system where it can be compromised. The

fact that systems can be compromised creates the need for techniques to recover from intentional

attacks or in other words, intrusions. Intrusion Recovery mechanisms are a set of procedures

that are applied to a system after an intrusion was detected to remove its malicious effects.

There are three main fault tolerance techniques regarding error handling, which can be

adapted to intrusion recovery scenarios, according to Avizienis et al. [10]:

• Rollback: Bring the system back to a previous recorded state, preferably to a time

before the intrusion ever ocurred. This is usually achieved using snapshot or checkpoint

mechanisms.

• Rollforward: From a state in which the intrusion was detected, fix the error and allow

the system to make forward progress and bring it to a state in where the intrusion never

occurred.

5



• Compensation: Mask the intrusion by executing a set of compensating actions that undo

its effects.

These techniques are not mutually exclusive, in fact it is desirable to be able to combine

them in order to recover from an incorrect system state.

One of the first works related to this topic that combines the previously mentioned techniques

is Undo for Operators [11]. Its main goal was to build a system that allows system administrators

to recover from accidental mistakes or data corruption without suffering legitimate data loss and

without modifying the target application’s source code. An email store was used as an example

of software that is able to benefit from the use of the tool. The approach used is based on the

three R’s model: Rewind, Repair, Replay. Essentially, a log of user interactions is recorded and

when a system recovery is necessary, the system’s state is physically rewound to a previous state

through the use of a snapshot mechanism. The administrator then performs the necessary repairs

followed by a replay phase in which only the legitimate interactions are re-executed, therefore

allowing the system to recover from the error while also minimizing data loss. The drawbacks

of this approach are that, since it relies on a proxy to intercept and log user interactions, a set

of operations have to be previously defined causing it to be moderately application dependent.

Furthermore, it can only recover from well-known predictable intrusions as the proxy needs to

be configured in order to intercept them. However, one of the most relevant contributions is the

approach taken to deal with the issue of external inconsistencies through the use of application-

specific compensating actions. In the email store implementation, most of the compensating

actions consist of messages to the user explaining why the inconsistencies were observed and

what actions were taken.

Taser [12] also has similar goals, but the solution is more generic and uses a technique known

as taint analysis to record dependencies between file-system operations. Additionally, it imple-

mented automatic conflict resolution through the use of resolution policies. A standard recovery

process using Taser begins by having a system administrator or an Intrusion Detection System

point out a set of objects that were potential sources of the intrusion or were affected by it. These

objects are fed into a tracing algorithm that outputs a set of objects from which the adminis-

trator then selects the ones he deems to be the source of the intrusion. As a consequence, the

selected objects become tainted. Next comes the propagation phase where a causal dependency

graph for the tainted objects is computed. A set of previously defined dependency rules are used

to propagate the tainted status to other objects. These rules are operations performed between

objects. For instance, if a tainted object performs a write operation on another object, that

object is marked as tainted. Objects added to the dependency graph are repeatedly analyzed

6



until the tainted status does not propagate any further. Afterwards, by taking into account the

dependency graph, a filesystem snapshot and an audit log, a selective redo algorithm is executed

to revert the malicious operations. The algorithm then only replays the legitimate operations

included in the log that occurred on the tainted objects.

Although Taser allows for a greater range of recovery scenarios and, when compared to Undo

for Operators it reduces manual effort from system administrators, one of its drawbacks is that

it can incur in both false positives (removing legitimate data) and false negatives (not removing

malicious data). To minimize the issue, policies that gradually relax the dependency rules

between objects were created. This allows testing the same scenarios using different policies. In

some cases there are policies that able to reduce the amount of false positives and false negatives

to none.

Kim et al. proposed a tool called RETRO [13] that “repairs a desktop or server after

an adversary compromises it, by undoing the adversary’s changes while preserving legitimate

user actions, with minimal user involvement”. It uses what they call an action history graph

which is a detailed dependency graph used to describe the system’s execution history. It also

uses a technique named refinement that allows describing objects in the dependency graph

in various levels of abstraction, thus allowing to reach the required levels of precision when

necessary. Furthermore, RETRO leverages predicates to selectively re-execute only the actions

whose dependencies are different after repair. This minimizes the problem of cascading re-

execution, i.e. executing operations that only accessed legitimate data despite having interacted

with tampered objects. A standard recovery cycle using RETRO begins with the administrator

or an IDS (Intrusion Detection System) identifying the intrusion point. Then, the system is

rebooted so that non-persistent state is discarded. Next, RETRO’s repair controller undoes the

unwanted action and the objects modified by it by rolling them back to a previous checkpoint

and replacing the unwanted action in the action graph with a no-op. Then, using the action

history graph, the actions that were potentially influenced by the unwanted one are identified

and the objects they depended on are rolled back and re-executed with corrected arguments.

This process is repeated for all actions that are influenced by the previously re-executed actions.

To deal with externalized state RETRO uses compensating actions when applicable, and if none

are available, the administrator has to manually decide on what action to take.

DARE [14] is a tool based on RETRO but with the additional feature of being able to

perform recovery with selective re-execution on distributed systems. The authors had to solve

several challenges such as tracking dependencies across machines, repairing network connections,

minimizing distributed repair and dealing with long-running daemon processes. The solution

7



for the cross-machine dependency identification is to assign a random token to every connection

so as to uniquely identify it. To repair network connections, an API is exposed allowing the

controllers of different machines to request rollbacks on socket data objects to each other. To

reduce distributed repairs, predicate checking is used just like in RETRO, with the addition

of having a proxy predicate checker that compares the bytes sent by a process during repair

with the ones sent during original execution and, if they matched, no repair was initiated in

the affected machines. Finally, to deal with long-running daemon processes such as sshd (secure

shell daemon), the fact that these kind of processes often enter a quiescient state (which is

equivalent to them being restarted) is used so that these processes are considered short-lived,

thus enabling DARE to only re-execute the operations from the last recorded quiescient state.

More recent work such as Rectify [15] takes a more specific approach and targets intrusion

recovery for PaaS (Platform as a Service) hosted applications. PaaS is a cloud computing model

that allows customers to develop and deploy applications without having to manage the hard-

ware and middleware that support them. Rectify aims to have a generic approach by treating

the target applications as black-boxes. In practice, this means that it does not require any mod-

ification to the application’s source code nor any application-specific implementation of the tool.

It only requires the configuration of proxies for web and database requests. One of the novel

ideas of Rectify is to map application requests to database statements by using supervised ma-

chine learning algorithms that produce classifiers capable of performing the mapping in runtime.

Eventually the malicious database statements are collected and then undone by calculating and

executing compensation operations that remove the effects of the unwanted statements in the

database.

Table 2.1 shows a comparison between the works mentioned in this section. For each work, it

names the type of mechanism used to rollback and rollforward state, the practical applications

used to evaluate them, relevant techniques used to perform recovery and finally if they have

some form of automatic resolution for external consistency issues. The most common type of

rollback and rollforward mechanisms are snapshot and log replays, respectively. Dependency

graphs are also a common technique used to compute the set of objects that have been affected

by intrusions. In regards to external consistency, four out of the five works have a way to deal

with those issues. This implies that it is a common feature in Intrusion Recovery systems.

Taking into account the works we have mentioned, it is possible to notice similarities between

their goals and how they would preferably be achieved. The point of Intrusion Recovery tools

is to enable systems to revert undesirable actions. This should be accomplished without having

to modify the target system’s source code and with minimal administrator manual effort. Most
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Table 2.1: Comparative evaluation of Intrusion Recovery systems.

Automated
System Rollback Rollforward Practical Relevant External

Type Type Applications Techniques Consistency

Undo for Snapshot Log Services with Service Proxying
Operators Replay well defined and Compensating 7

[11] interfaces Actions

Taser Snapshot Log Server Taint Analysis &
[12] Replay Applications Dependency 3

Graphs

RETRO Snapshot Log Dependency Graphs &
[13] (Selective) Replay Filesystems Selective 3

Re-execution

DARE Snapshot Log Distributed Dependency Graphs
[14] (Selective) Replay Systems Selective 3

Re-execution

Rectify None Compensating PaaS Supervised
[15] Transactions Applications Machine 3

Learning

of the tools’ recovery cycle can be abstracted into the three R’s model [11]. For the Rewind

portion the most common techniques are based on snapshot rollback mechanisms and for the

Repair and Replay portions log analysis and replay, respectively.

Two of the most desired features of Intrusion Recovery systems are external consistency and

valid data preservation, thus their effectiveness has major impact when it comes to comparing

these systems and deciding which performs better. Undo for Operators [11] is one of the first

works able to implement both features. Taser [12] improved on it by making a system that can

be applied to a broader range of applications while also reducing manual effort in providing

external consistency. RETRO [13] was directly compared to Taser as it able to recover from the

scenarios that were presented by Taser without any false positives, thus improving on the valid

data preservation feature. DARE [14] extended RETRO and solved the problem of identifying

dependencies between different machines thus allowing recovery to be executed in distributed

systems. Finally, Rectify [15] focused on application development platforms and deviated from

the standard approaches by leveraging machine learning techniques in order to perform intrusion

recovery without modifying the original source code.

2.2 Blockchain

The Blockchain as we know it today was first made popular by Bitcoin [1] and it is one of

its fundamental underlying technologies. However, the concept of a blockchain is much older,
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dating back to 1991 when Haber and Stornetta published a paper [16] where they proposed a

system for timestamping documents using an append-only data structure where hashes of the

documents are stored in blocks, which are then cryptographically linked together. In practice

this means that the blocks are timestamped and digitally signed. The sudden rise in popularity of

Blockchain results from the fact that Nakamoto added proof-of-work consensus and an incentive

layer to the blockchain data-structure which makes it fully decentralized and also solves the

double-spending1 problem which makes cryptocurrencies like Bitcoin [1] and Ether [2] possible.

2.2.1 Blockchain

In a few words, a blockchain can be described as a consensus-based replicated append-only digital

ledger that is decentralized, persistent, immutable and provides both anonymity and auditability.

A blockchain consists of a sequence of blocks that are cryptographically chained together. Each

block contains, in its header, the hash of the previous block – also called the parent block. The

first block of a blockchain is called the genesis block.

Block Header

Block Body

Transaction Counter

Tx 1 Tx 2 ... Tx n

Version

Previous block hash

Transactions' Merkle root

Timestamp

Diff iculty target

Nonce

Figure 2.1: Components of a Bitcoin block header.

A block in a blockchain is composed of a block header and a body. As shown in Figure 2.1,

the fields inside of the header of a Bitcoin block are the following: version of the Bitcoin block;

hash of the previous block header; Merkle root of the transactions in the block; date of creation;

difficulty target for the block; the nonce that was the solution for the block.

The body of the block contains a transaction counter and a list of all transactions inside the

block. To provide both persistency and a high degree of anonymity the use of digital signatures

is essential. Every participant in the network owns a pair of keys, a private key and a public key.

The private key is used to sign transactions so that others can verify (using the corresponding

1A double-spend happens when one user is able to spend the same digital asset more than once. In blockchain
systems, this happens when one transaction uses the same input as another transaction that was already validated
in the network.
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public key) that the funds included in the transactions are owned by it.

2.2.2 Decentralization and consensus

Decentralization is achieved through the use of consensus algorithms which allows to preserve

data consistency in a distributed environment without having to rely on a trusted third party.

One of the most fundamental characteristics that differentiates blockchains is what consensus

algorithm it uses. There are many possible strategies such as PoW (proof-of-work), PoS (proof-

of-stake), PBFT [17] (Practical Byzantine Fault Tolerance), BFT-SMaRt (used to develop a

ordering service for Hyperledger Fabric) [18], among others.

Another important characteristic of blockchains is in regards to what entities are allowed

to participate in the consensus process. Blockchains can be divided into two categories: per-

missionless and permissioned. Permissionless blockchains allow any entity to participate in the

consensus process as long as they strictly follow the consensus rules. Public blockchains like Bit-

coin [1] and Ethereum [2] are examples of permissionless blockchains. Permissioned blockchains

only allow authenticated entities to participate in the consensus process. This breaks the de-

centralization characteristic of the blockchain as now consensus is determined and controlled by

a known group. Consortium blockchains and private blockchains belong to the permissioned

blockchain category and they are mostly used in corporate environments.

2.2.3 Cryptocurrencies

There are a multitude of different cryptocurrencies but the ones that hold the bigger market

share and are the most relevant are Bitcoin [1] and Ether [2].

The Bitcoin blockchain is public and fully decentralized. It uses what is called Nakamoto

Consensus as its consensus algorithm which is considered to be the reason behind the success of

Bitcoin. Nakamoto Consensus is a proof-of-work consensus algorithm that requires miners, i.e.

nodes that want to extend the blockchain by appending a block to it, to have performed enough

computational work so that the block is considered valid and accepted into the chain. The way

this work is performed is by solving a cryptographic puzzle in which a counter in the block header

is incremented until the hash of the block is lower than a pre-defined value (requires a certain

number of most significant zero bits defined by the difficulty target). This process is known

as hashing or mining. All miners compete to solve this puzzle and once a solution is found

it is propagated through the network so that the other miners know that they can stop and

start working on finding the solution for the next block. Also, by finding a solution the mining

node obtains a reward which is an agreed-upon value by every participant in the network along
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with the sum of the fees included in all the transactions contained in the block. This creates

an incentive for miners to participate whether they are able to solve the crypto-puzzle or not.

More often than not, miner nodes do not have enough hashing power by themselves to compete

with others and at the same time make the process profitable. The probability for a miner to

solve a block by themselves is too low nowadays. To illustrate this point, let us calculate the

average time it would take to find a solution for a block considering the current difficulty target

of the network – approximately 18 trillion – and one of the current top ASICs for mining – an

AntMiner S19 Pro 2 – which has an average hash rate of 110 trillion hashes per second. The

formula to calculate the average time it would take to solve a block based on the difficulty target

and hash rate is:

averagetime = difficulty × 232/hashrate

By replacing the values in the formula, the result is that the average time to solve a block is over

22 years. To solve the issue, miners join clusters of other miner nodes, i.e. mining pools. These

mining pools combine the computational resources of the participating nodes so that, whenever

a block is added to the chain and is attributed to a pool, the rewards are split between the nodes

in that pool with the given value being proportional to their contribution.

Implicitly, the longest chain is considered to be the valid chain by all participants as it is the

one with the most amount of computational power expended into it, therefore aiding in solving

the double-spending problem which was something that made previous attempts of creating

digital currencies difficult.

Double-spending is not an issue when dealing with physical currencies as you cannot use the

same bill twice in different transactions unless you physically steal it. When performing digital

transactions, they first have to be broadcasted to all the nodes in the network which in turn

have to validate and confirm them. The problem is that there was no method that prevented

someone from performing a digital transaction and, before it is confirmed in the network, perform

another with the digital currency that was previously used. In theory this allowed a single entity

to use the same digital currency in two separate transactions. The Bitcoin blockchain solves

this problem due to the fact that blocks are timestamped and since the blocks are chained

together, an immutable order of transactions is created. Since all the nodes in the network

have to agree in a global view of the blockchain, which is accomplished due to the use of the

Nakamoto consensus PoW algorithm, that combined with the ordered validated transactions

makes it practically impossible for someone to successfully execute a double-spending attack.

Ethereum [2] is another public blockchain that was announced in 2014. Even though it also

2https://www.asicminervalue.com/miners/bitmain/antminer-s19-pro-110th
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has a cryptocurrency – Ether – associated with it, the main goal of Ethereum is to provide an

open-ended decentralized platform that enables the development and use of smart contracts and

decentralized applications with built-in economic functions. In contrast to Bitcoin which has a

limited scripting language, Ethereum is designed to be a programmable blockchain that runs a

virtual machine and has a programming language that is Turing complete meaning that it can

function as a general-purpose computer. Ethereum is further described in Section 2.4

2.2.4 Transaction Lifecycle

A transactions’ lifecycle corresponds to the stages it goes through starting from its creation and

ending with its confirmation in the blockchain. It is important to note that different blockchains

have different protocols and as such the lifecycle of a transaction may not be exactly the same,

although they should not deviate much from the one depicted in Figure 2.2.

Alice

Alice's wallet: Node

1: cr eateTr ansact i on
(am ount , addr ess)

2: signTr ansact i on
(newTr ansact i on)

Other  Nodes: Node

3: br oadcastTr ansact i on
(newTr ansact i on)

8: br oadcastBlock
(newBlock )

4: val i dateTr ansact i on
(newTr ansact i on)

Miners: Node

5: br oadcastTr ansact i on
(newTr ansact i on)

Bob's wallet: Node

7: br oadcastBlock
(newBlock )

Bob

9: checkBalance
(addr ess)

6: m ineBlock
(t r ansact i ons)

Figure 2.2: UML collaboration diagram for the lifecycle of a blockchain transaction correspond-
ing to a coin transfer from Alice to Bob.

The following is an overview of the steps required for a transaction that transfers coins from

Alice to Bob to be confirmed in the blockchain:

1. Alice creates a new transaction containing Bob’s address as its destination and the amount

to send;

2. Alice signs the new transaction using her private key;

3. The new transaction is broadcast to neighboring nodes;

4. Every client that receives the new transaction has to validate it by:

4.1. Verifying the signature;
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4.2. Checking for errors in the transaction;

4.3. Verifying its not a double-spend attempt;

If successful then the transaction is stored by the verifying client, otherwise it is ignored.

5. All the clients that know about the new transaction and, upon successful validation, will

also broadcast it to their peers;

6. Eventually the transaction will reach some mining pools as well as its recipient. The latter

will see it and store a copy of it indefinitely, although with zero confirmations at that time.

The mining pools will notice it is a new transaction and so will include it (if the fee is

adequate) to the block they are trying to create and pass it on to the workers so that they

start to try and solve it.

7. After a while the transaction will be included in a block that gets solved, which will in

turn be broadcast through the network and everyone keeps a note of it. At this point in

time the transaction will have one confirmation;

8. When the other nodes receive the new block and validate it, they will also broadcast it to

their peers;

9. Eventually the new block will be received by Bob’s node and he will be able to verify that

the new transaction is included in it, meaning that the balance associated with his address

is updated.

The block creation process will continue, and as more blocks are built atop the block which

includes the new transaction, it will gain more confirmations. As the number of confirmations

grows, so does the guarantee that the block which contains the new transaction will remain in

the blockchain.

2.2.5 Summary

In this section we discussed how the concept of blockchain was born and the fundamental

characteristics that define one. Then we introduced Bitcoin as the original blockchain and

briefly explained how it solved the double-spend problem. This allowed the development of

cryptocurrencies and the ability to perform transactions between two entities without requiring

a trusted third party. Next came Ethereum, another public blockchain that aimed to provide

a platform for the development of decentralized applications, going beyond Bitcoin which was

designed to be a substitute for regular currency.
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2.3 Blockchain Recovery

Applying intrusion recovery techniques to blockchains might be seen as counterintuitive because

of the immutability guarantee. Nevertheless there are cases where the ability to alter the state

of the blockchain is desirable.

Imagine a scenario where an attacker gains access to a user’s private key and proceeds to

perform a transaction to transfer all the funds to an account he owns. Once this transaction is

confirmed in the blockchain there is (currently) no way to reverse it. There are also cases where

data that is either personal, leaked or even illegal, is stored in the blockchain where it cannot be

deleted and if we also take into account the 2016/769 GDPR regulations [20], these situations

become even more complicated as the concept of blockchain is not fully compatible with them.

These issues may be split into two different categories: data redaction and transaction re-

version. Data redaction refers to the issue of removing data stored on the blockchain while

transaction reversion has a similar purpose to what can be considered a blockchain rollback,

where the goal is to either undo specific actions or moving the state of the blockchain to a previ-

ous point in time. Therefore, having the ability to, in exceptional cases, perform alterations on

the blockchain is one method to make blockchains GDPR compliant and address complications

that are the result of human errors.

2.3.1 Forking

One way of dealing with these issues would be by resorting to intentional forking. Before

explaining why forking is not the most optimal approach it is necessary to clarify the meaning

of a fork in the context of a blockchain.

Forks, albeit rare, are a natural occurrence in a blockchain and exist due to the fact that,

in order for the blockchain to grow, there is a need for the participating nodes to agree on its

state, in other words, reach consensus.

Accidental

Forks

Intentional

Hard fork

Soft fork

Planned

Controversial

Figure 2.3: Fork taxonomy in the blockchain domain.
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As depicted in Figure 2.3, there are two main types of forks: accidental and intentional.

Accidental forks occur when independent nodes receive different blocks to include on the

chain. In order to fix these disagreements, in blockchains that use proof-of-work consensus,

the longest chain rule decides the chain that nodes should adopt. When these types of forks

arise, the chain is split into two parallel chains. Nodes can decide which chain they adopt,

but the longest chain rule ensures that nodes always choose to adopt the chain with the most

computational work expended into it which typically is the chain containing the most blocks.

The blocks on the discarded chains are called orphaned blocks and their transactions are put

back into the pool of transactions that miner nodes use to choose the ones to add to their next

block.

Intentional forks have a more human component linked to it since they do not exist natu-

rally as a result of the blockchain protocol unlike accidental forks. They can be split into two

categories: soft forks and hard forks.

A soft fork is a backward-compatible upgrade to a blockchain that allows nodes that do not

upgrade to participate as long as they do not break the new protocol rules. An example of a

soft fork would be the implementation of a rule that reduced the maximum network block size

from 4MB to 2MB. Nodes that do not update will still be able to process incoming transactions

but they will not be able to contribute to the growth of the blockchain as the blocks created by

them do not abide by the new rules.

A hard fork is a change in the protocol that is incompatible with previous versions. Therefore,

nodes that do not upgrade to the new version will not be able to contribute to the updated chain.

Hard forks can either be planned or controversial. Planned hard forks usually converge to a state

in which the majority will upgrade to the new version and the nodes that do not upgrade will

be on the old chain that eventually becomes stale since not many nodes are contributing to it.

Controversial hard forks are usually the result of a disagreement within the community which

results in two incompatible blockchains. The split of the Ethereum blockchain into Ethereum

and Ethereum Classic is one example of a situation that is the result of a controversial hard

fork.

As a matter of fact, the fork that led to the split of Ethereum is a great example of its use

to recover from intrusions as it happened because of the infamous The DAO hack [21]. DAO

stands for decentralized autonomous organization and it was a form of venture capital funding

implemented on top of the Ethereum blockchain. In essence, a vulnerability in the smart contract

that implemented The DAO was exploited by an attacker that ended up collecting around 3.6

million ETH – worth around $50 million (USD) at the time and 10 times more nowadays with
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the current exchange rate. The hard fork proposal to recover the funds essentially placed the

funds that were in The DAO and all its children in a new refund contract account which the

stakeholders could call to withdraw their funds. No transactions in the block where the hard

fork ocurred (block #1,920,000) reflect these changes as they were implemented directly into

the Ethereum node client software.

2.3.2 Data Redaction

One of the first works that focuses on data redaction is Redactable Blockchain [22]. It proposes a

blockchain which replaces the usual cryptographic hash functions with a chameleon hash function

containing a known trapdoor that allowed the computing of hash collisions. Cryptographic hash

functions allow the mapping of arbitrary strings into a fixed-size number. These functions are

one-way in the sense that, given the output, it is unfeasible to find the corresponding input.

Another useful property of these functions is their collision resistance. In essence, given an input

and its corresponding output, it is unfeasible to find a different input that maps to the same

output. In regards to chameleon hash functions, knowledge of the trapdoor key allows collisions

to be generated. This is a gross simplification of the way chameleon hash functions behave and

we refer the reader to the paper for a more profound and complete explanation of the process.

The use of chameleon hash functions in this scenario enables the possibility of editing blocks.

When the data inside a block is edited, the resulting hash is different from the original. However,

by using a chameleon hash function, it is possible to compute an hash collision so that the hash

of the edited block remains the same as the hash of the original block. In this way, since the

hash of the blocks remain unchanged, the links between them are not severed and the whole

chain is still valid.

This approach works mostly for permissioned blockchains as the trapdoor key must be owned

by a central authority that is responsible for the editing of blocks. Although the authors claim

that there are ways to adapt it to permissionless blockchains by either distributing the trapdoor

key among all participants – which seems impractical – or only distributing it between a set of

known parties – which is questionable.

Deuber et al. developed a Redactable Blockchain for the Permissionless Setting [23] that

does not rely on heavy cryptographic tools or trust assumptions in order to remove data from the

blockchain, but instead uses a consensus-based voting mechanism which is dictated by policies

that set the requirements for a redaction to be accepted. Furthermore, any participant can make

requests for a redaction while also allowing public verifiability and accountability of the redacted

chain.
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The adjustments made to enable all these features are: extending the block structure so that

there is an extra field that contains a copy of the original transactions’ Merkle root, and the

creation of an editing policy that defines the constraints and requirements for an edit request to

be approved.

To perform an edit in the chain a user has to first propose an edit request by creating and

submitting a special transaction which, apart from other information, contains the index of the

block to be edited and the new candidate block that is going to potentially replace it. Next,

miners receive the request and verify it by checking if it contains the correct information about

the previous block, if it solves the crypto-puzzle, and if it does not invalidate the next block

in the chain. If all these conditions are fulfilled then the next step is for miners to vote for

the request to be accepted by, during a pre-determined voting period, including the hash of

the request in the next block they mine. After the voting period finishes, all participants can

verify if the request was accepted or not by checking the number of votes it received and see if

it matches the requirements set by the defined policies.

The authors mention that it is important to note that chain validation is performed similarly

as it is in a regular blockchain, with the exception that when validating an edited block it is

necessary to consider the hash of the original unedited block. This hash is computed by resorting

to the old value of the transaction’s Merkle root, as well as checking if the block was accepted

according to the editing policy.

Once again, this type of work is useful to hide or delete unwanted information in the

blockchain, hence being more appropriate for data redaction scenarios as opposed to transaction

reversion. Although, in both of the previously mentioned works, it is theoretically possible to

revert a transaction – and all its dependencies – by proposing a redaction to remove all the

transactions from their respective blocks. This would end up eliminating any records of it ever

happening in the blockchain, if the redaction request is accepted.

2.3.3 Transaction Reversion

There have been proposals for systems in which transaction reversion in blockchains was sup-

ported. Reversecoin [24] is a solution in which a user has access to two different types of accounts:

a standard account and a vault account. Standard accounts are to be used as a regular account

for day-to-day transactions, so ideally the user would never hold large amounts of coin in them.

Vault accounts should be considered as an equivalent to a savings account – where large amounts

of coin are held – and they provide the highest security. They are safer due to the fact that they

are backed by two key pairs – one online and one offline – as well as a configurable timeout from
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which transactions made using the online keys stay pending in the blockchain. Offline keys al-

lows users to perform transactions without being constrained by the timeout period. This means

they have the ability to perform immediate transactions and override pending transactions that

are made using the online keys.

However, this mechanism only works for transactions that are not yet confirmed in the

blockchain. Ideally, one would combine this approach with a monitoring tool that alerts the

user any time a transaction is be performed from his accounts. This would give an opportunity

for the user to use the offline keys to revert any undesired transactions.

Unconfirmed transaction replacement in the blockchain domain is a topic that has always

been discussed. In fact, in the first release of Bitcoin [1], there was a transaction replacement

feature called Replace-By-Fee which was later disabled [25] due to the fact that it could be

exploited for denial-of-service attacks. This feature was later re-implemented as described in

BIP 125 [26] and named Opt-in Replace-By-Fee with it being introduced in Bitcoin Core 0.12.0.

The main difference between both implementations is that replacement transactions now have

to pay extra fees thus discouraging denial-of-service attacks. Essentially, it allows spenders to

mark a transaction as replaceable in one of two ways:

• Explicit Signaling: Assign to the transaction a sequence number lower than 0xffffffff-1

• Inherited Signaling: Transactions which have ancestors that are both signaled for re-

placement and are unconfirmed are also replaceable

The requirements, as stated in BIP 125, that need to be fulfilled in order to replace one or

more transactions are the following:

1. The original transactions has to signal replaceability;

2. The replacement transaction may only include an unconfirmed input if that input is in-

cluded in one of the original transactions;

3. The replacement transaction pays an absolute fee of at least the sum paid by the original

transactions;

4. The replacement transaction must also pay for its own bandwidth at or above the rate set

by the minimum relay fee setting;

5. The number of original transactions to be replaced and their descendant transactions must

not exceed a total of 100.
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There are several potential use cases for this feature. Some examples are: to increase the fee

of an unconfirmed transaction so that miners are more likely to include it in their next block,

merge several transactions so as to reduce the total amount of fees paid, or even correct human

errors.

2.3.4 Summary

Table 2.2 shows a comparison between the works mentioned in this Section. The comparison

considers the types of blockchains the works are better suited for – permissioned or permissionless

– and the forms of recovery they are able to do. Data redaction refers to being able to remove

or hide data from the blockchain, unconfirmed transaction replacement covers the use case of

being able to stop a transaction that was already broadcasted from being confirmed, and linked

transaction reversion means being able to revert a transaction and all the transactions whose

validity depends on it.

Table 2.2: Comparative evaluation of Blockchain Recovery mechanisms.

Permissioned/ Data Unconfirmed Linked
System Permissionless Redaction Transaction Transaction

Replacement Reversion

Rewriting History in 3/ 7 3 7 7

Bitcoin and Friends [22]

Redactable 3/ 3 3 7 7

Blockchain [23]

Reversecoin [24] 3/ 3 7 3 7

Opt-in RBF [26] 3/ 3 7 3 7

In summary, Redactable Blockchain [22] works well for permissioned blockchains because

the trapdoor key for the chameleon hash algorithm has to be split among a set of entities

in order to allow block editing. For permissionless blockchains, Redactable Blockchain in the

Permissionless Setting [23] proposes a consensus-based solution that is controlled by editing

policies where miners can accept or deny an edit request through a voting mechanism. Both

of these solutions work in regards to removing or altering data without invalidating the next

blocks in the chain. If there is a need to revert a transaction that transfers cryptocurrencies

between any number of parties, these solutions no longer work as it is necessary to keep track

of the dependencies related to the coins involved, and they offer no mechanism to do so.

Reversecoin [24] increases the level of security for cryptocurrency holders. Although it can

be used to fix mistakes and some types of stealing attempts, it is not able to revert transactions
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that are stored in blocks already confirmed in the blockchain. Opt-in Replace by Fee [26] is a

feature currently present in Bitcoin and it allows participants to signal transactions so that they

become replaceable until they are not confirmed in the blockchain. It can be useful in cases

where the user makes a mistake in a transaction, but not when an attacker has access to his

wallet due to the fact that since the feature is “opt-in” the attacker can simply choose not to

signal the transaction as replaceable.

One feature that is lacking in these works is the ability to revert a transaction that is already

confirmed in the blockchain and has other transactions that depend on it.

2.4 Ethereum Platform

Although a brief introduction of Ethereum is given in Section 2.2, a more detailed description

of some of its components and features follows since it is the platform of choice for this work.

2.4.1 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) [2] is similar to the Java Virtual Machine (JVM) [27],

in the sense that both provide an abstraction of a computing environment – computation and

storage – and each have their own instruction set for program execution [8]. To allow the EVM

to be Turing-complete, all instructions (opcodes) are assigned a set gas cost.

Gas is a unit used in Ethereum to measure the computational effort of executing a trans-

action. When creating a transaction it is necessary to pay for the amount of gas that it will

consume using Ether. The sender of the transaction offers a value for each unit of gas. It is

possible to estimate how much gas a transaction will spend since every instruction has a set gas

cost.3 While the amount of gas a transaction will require is mostly predictable, the price to

pay for each unit of gas is not. It depends on different factors such as the number of pending

transactions and the number of active miners and how fast you want it to be confirmed in the

blockchain [28]. To determine how much the price will be in terms of a fiat currency (e.g., euros

or dollars) the formula is:

gasPrice × gasCost × etherCost

where gasPrice is the price of each unit of gas in Ether, gasCost is the amount of gas the

transaction requires and etherCost is the conversion rate from Ether to the desired fiat currency.

As the gas price offered by the sender increases so does the likelihood of a miner adding that

specific transaction to the block it is mining because the reward he gets from doing so also

3https://github.com/crytic/evm-opcodes
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increases.

There are a variety of Ethereum node client software [29, 30, 31], implemented in various

programming languages, which naturally contain their own EVM implementation. That said,

they all have to follow the formal specification of the Ethereum blockchain [2]. When a node is

running, it is actively downloading and verifying all blocks – and their transactions – to secure

the network. Every state change on the Ethereum blockchain is executed by transactions which

are handled by the EVM, including smart contract executions.

2.4.2 Smart contracts

In the context Ethereum, a smart contract is an immutable, deterministic computer program

that runs on top of the Ethereum blockchain. High-level languages [32, 33] are used to write

smart contracts that are compiled into EVM bytecode which is interpreted by the EVM. There

are two types of accounts in Ethereum: externally owned accounts (EOA) and contract accounts

(CA). Both types can receive, hold and send Ether and tokens as well as interact with deployed

smart contracts. What makes contract accounts different from externally owned accounts is

that: creating a contract account has a cost (because it uses network storage to store code);

they cannot initiate transactions (only EOAs can); and transactions sent from an EOA to a CA

can trigger code execution that may lead to state changes (transactions between EOAs can only

be ETH transfers).

Smart contracts have many possible use cases such as: being the backend for DApps (appli-

cations that are mostly or entirely decentralized); provide a way to enforce intellectual property

rights [34, 35]; buy and sell property without intermediaries [36]; or even fundraising through

Initial Coin Offerings [37]. Furthermore, it is very common in the aforementioned use cases to

make use of a digital token [38]. This naturally led to the necessity of having a standard interface

so that tokens would be easier to integrate in a variety of wallet clients and applications.

2.4.3 ERC-20 and ERC-721 Tokens

The first token standard was introduced as an Ethereum Request for Comments (ERC), and

it is named ERC-20 [6]. It defines an interface for implementing a token such that all ERC-20

tokens can be accessed and used using the same methods. The ERC-20 is currently the most

widely used standard for fungible tokens which means that different units of the same token

are interchangeable and hold the same value. A common example used to explain fungibility is

money. For instance, a genuine $5 (USD) bill has the same value than all other genuine $5 bills

even if they are not in exactly the same condition (one might be more rugged than the other).
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Additionally, it is interchangeable with five $1 coins or any other combination of coins that add

up to $5. In contrast, non-fungible tokens can be used to represent items that are unique and

therefore not interchangeable. To give an idea, most rare collectibles are non-fungible items.

For illustration purposes, imagine a system that uses tokens to represent ownership of rare

collectibles. In that system, a token that is used to represent a Fabergé egg and another to

represent Leonardo Da Vinci’s “Mona Lisa” are not equivalent, and thus not interchangeable.

In Ethereum, the standard for non-fungible tokens is ERC-721 [7].

These kinds of tokens are handled at the smart contract level as opposed to what can be

considered protocol level tokens, e.g. Ether and Bitcoin, meaning that the Ethereum protocol

does not have the ability to manage them. That task is the responsibility of the smart contract

that implements the token. Therefore, actions such as ownership, transfers and access rights to

tokens are handled by their respective smart contracts.

2.4.4 Initial Coin Offerings

Initial Coin Offerings, or ICOs for short, are a mechanism for fundraising that allows investors

to trade their currency, e.g. cryptocurrencies such as Bitcoin and Ether or fiat money such

as Dollars and Euros, for another currency which in most cases is a token created by the

company/startup that is doing the fundraising. People who decide to invest in ICOs believe

that the project will become successful causing the tokens to raise in value. If the tokens

become more valuable compared to when they were first acquired then they can be sold for a

profit. Ethereum is actually an example of what can be considered a successful ICO since it was

able to raise the amount of funds necessary to continue with the development of the project. As

a matter of fact, the use of smart contracts in the Ethereum blockchain allows ICOs to be held

in the blockchain itself. This means that one can develop a smart contract in order to create

their own token and start an ICO.

Exploits

Since smart contracts are developed by programmers, no matter the amount of effort put into

auditing and designing their implementation, there is always the possibility for vulnerabilities to

arise. The ICO market had over $14 billion (USD) being raised in 2018 alone [39]. This creates

a very good incentive for attackers to exploit these contracts in order to steal funds. There have

been a few documented cases of programming errors being taken advantage of by attackers.

BeautyChain (BEC) was the target of one of those attacks, more specifically, a common case

of an integer overflow vulnerability that allowed the attacker to gather a large amount of tokens.
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function batchTransfer(address[] _receivers, uint256 _value)

public

whenNotPaused

returns (bool)

{

uint cnt = _receivers.length;

uint256 amount = uint256(cnt) * _value;

require(cnt > 0 && cnt <= 20);

require(_value > 0 && balances[msg.sender] >= amount);

balances[msg.sender] = balances[msg.sender].sub(amount);

for (uint i = 0; i < cnt; i++) {

balances[_receivers[i]] = balances[_receivers[i]].add(_value);

Transfer(msg.sender, _receivers[i], _value);

}

return true;

}

Listing 2.1: batchTransfer function of the BeautyChain smart contract.

As shown in Listing 2.1, the variable amount is calculated as the product of cnt and value.

The type of the variable value is uint256 which corresponds to an arbitrary 256 bit unsigned

integer. The attacker set the value to eight vigintillion (an eight followed by 63 zeroes) causing

an overflow in the amount variable setting it to zero. With amount set to zero, the sanity checks

are fulfilled, the subtraction to the balance of the sender has no effect on its balance (as it is

effectively subtracting zero), and to the balance of the receivers the large value of value is

being added without deducting any balance of the msg.sender.

Another instance of an attack to smart contracts is the Parity multi-sig hack [40]. The

attacker was able to steal over 150,000 ETH – worth approximately $30 million (USD) at the

time – and would have stolen many more if not for a group of white-hat hackers that quickly

organized and in order to minimize the damage they used the same exploit on the remaining

vulnerable accounts so that the attacker could not have access to it and ended up saving over

$179 million (USD).

// constructor - just pass on the owner array to the multiowned and

// the limit to daylimit

function initWallet(address[] _owners, uint _required, uint _daylimit) {

initDaylimit(_daylimit);

initMultiowned(_owners, _required);

}

Listing 2.2: initWallet function of WalletLibrary contract.

In order to gain access to each account the attacker had to send two transactions to each of
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the affected wallet contracts: one to obtain exclusive access to the contract and the second to

move all its funds to an account he owns. The first transaction was a call to a function named

initWallet (shown in Listing 2.2) that had the role to extract the wallet’s constructor logic into

a separate library. Since the wallet forwards all unmatched function calls to that library, this

allows public functions of that library to be called by anyone – including the initWallet function.

Due to the fact that there were no checks to prevent an attacker from calling the function

after a contract had already been initialized, the attacker only had to call the initWallet function

and make himself the sole owner of the account as well as only requiring one confirmation to

perform transactions. Afterwards the attacker invoked the execute function to move the funds

of the exploited account to an account it owners.

The issue with this approach is mainly the use of the delegatecall method as a catch-all

forwarding mechanism as opposed to explicitly defining what library functions can be invoked

externally. Listing 2.3 shows the catch-all (unnamed) function. For the attacker to call the

execute function it had to send a transaction with no value (msg.value = 0 ) and with non-

empty msg.data. The contents of msg.data will match the execute function of the walletLibrary

contract which trigger its execution, thus completing the attack.

// gets called when no other function matches

function() payable {

// just being sent some cash?

if (msg.value > 0)

Deposit(msg.sender, msg.value);

else if (msg.data.length > 0)

_walletLibrary.delegatecall(msg.data);

}

Listing 2.3: Forwarding of unmatched function calls through the delegatecall method.

The solution was not optimal, and alternatives such as soft or hards forks so that the funds

could be returned to the respective owners would be difficult to both justify and enforce.

Many other cases of exploited vulnerabilities in smart contracts due to human programming

errors [41] would benefit from transaction reversion mechanisms, as an alternative to forking or

even performing no action at all.

2.4.5 ERC-1080

In spite of all these vulnerabilities and the risks associated with them, new applications that rely

on these digital tokens are constantly being developed. Moreover, considering the large amounts

of currency being exchanged, there is a need for users to have methods of securing their assets
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in case of loss, theft or fraud. The usual practice when setting up an Ethereum wallet is to have

an asymmetrical key pair generated based of a mnemonic seed which commonly has 12 to 24

words. If somehow access to the private key is lost then one can still use the mnemonic seed

to recover and regain access to the wallet. In the case of losing both the private key and the

mnemonic seed words then it is practically impossible to recover the wallet, meaning that all

assets associated with that address are going to be unusable.

Supposing that the wallet contained both Ether and a variety of tokens, then we can safely

assume that the Ether is unrecoverable since it is handled at the Ethereum protocol layer, unless

a hard fork is performed to move the funds to another address. However, tokens are handled at

the smart contract layer and the point of centralization are the smart contracts that implement

them. The smart contract that manages each particular token may have the authority to move

them from one address to another. If, hypothetically, there is a way to prove that the lost

address belonged to that user, then there could be a mechanism in the smart contract that

would transfer the tokens from the old (lost) wallet to the new one. In the case of theft, a

similar mechanism could be implemented. As long as the thief does not exchange the tokens for

a currency not controlled by the smart contract then it would be possible to retrieve them.

Regarding this topic, a new standard was proposed as an ERC, named Recoverable To-

ken [42]. According to its author, it is a “token standard that allows for users to dispute

transfers, report and recover lost accounts, and find appropriate resolution in the case of ac-

count theft” [43]. As of right now there are no known implementations of this standard, as it is

currently defined as an interface that is still up for discussion.

This approach, despite being less broad in the sense that it is limited to the handling of

tokens, is a good start into developing recovery mechanisms on top of the blockchain since it is

implemented at the smart contract layer and not the Ethereum protocol layer, thus being an

opt-in approach for account security.

2.4.6 Dispute Resolution

The above-mentioned interface proposal – ERC-1080 – suggests the usage of a dispute resolution

mechanism. In the legal system there are several types of dispute resolution mechanisms such

as lawsuits, mediation and arbitration. Arbitration is a method of resolving disputes outside

the court of law, commonly used in commercial and consumer disputes [44, 45]. Generically the

process consists in two parties that have a dispute to agree upon a group of arbitrators who

ideally constitutes, as a group, an unbiased third party. Then those arbitrators, after analyzing

the arguments and evidence provided by both parties, will make a decision in favor of one party
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or neither. A dispute involves the payment of a fee that is used to reward the arbitrators for

their work, i.e., as an incentive for them to do their job.

The idea to bring dispute resolution to the blockchain is being explored [46]. Kleros [47] is a

decentralized arbitration application in which crowd-sourced arbitrators give rulings on disputes.

The arbitrators are expected to rule correctly and fairly due to game theoretical incentives.

Aragon [48], a software used to create and govern organizations on the Ethereum blockchain,

has a component named Aragon Court that works similarly to Kleros but is limited to organi-

zations in the Aragon Network.

Mattereum [49] is a an infrastructure to build a layer to manage property or assets on-chain.

As it is the case with several types of transfers, disputes may arise, thus a dispute resolution

mechanism has to exist. The approach taken is akin to the standard used in common arbitration

courts. When a dispute is raised, either both parties have a predetermined agreement where the

arbitrator had already been chosen, or alternatively and by default, an arbitrator is appointed

from a panel of arbitrators.

In addition to those systems, there is a proposal for standard interfaces for both arbitration

and evidence submission, ERC-792 and ERC-1497 [50, 51] respectively.

Having dispute resolution systems in the blockchain gives them all the benefits of the

blockchain technology: public, immutable and decentralized dispute resolution.

2.5 Summary

This Chapter presented past literature of the main areas related to our work. It started with a

brief introduction of the area of intrusion recovery followed by a chronological review of previous

works. Next, it described the blockchain technology, namely: its characteristics, the problems it

solves, the most relevant blockchains, and an overview of how they operate. Then, it presented

the concept of blockchain recovery, the reasons behind its existence as well as its most recent

developments. The Chapter concluded with a description of the Ethereum platform along with

some of the features it provides that are going to be used in our proposal, presented in the next

Chapter.
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Chapter 3

Recoverable Token

This chapter presents our approach in greater detail. We will give an overview of the components

that make up our recovery system.

3.1 Recoverable Token Architecture

The architecture of the system is shown in Figure 3.1, i.e., of the Ethereum blockchain with the

Recoverable Token smart contracts and client (RCV App), users, and a storage service (IPFS).

To interact with the system, users need private keys. The tokens owned by an account are stored

and managed by the smart contracts deployed on the blockchain. These smart contracts are

extended with the functionality of those that implement our recovery mechanism: RCVToken,

Claims, and Profiles. Users also need to have access to an Ethereum node to send transactions

(value transfers or smart contract calls) and propagate them to other nodes so that they may

be validated and appended to the chain. Storing data on the blockchain is costly and as such

it is necessary to use an off-chain storage system. To that end, the system will make use of

a decentralized, tamper-resistant, content-addressable, peer-to-peer storage network. In the

architecture we consider that system to be the Inter-Planetary File System (IPFS) [52] that is

commonly-used and peer-to-peer. Users need access to an IPFS node so that they are able to

store and access data using the IPFS network. However, other decentralized storage systems

[53, 54] may be used, each with their own trade-offs.

3.1.1 Attack Model

A user can be a regular user or an arbitrator. The regular users (that we often designate simply

as users) are those entities that use the tokens provided by smart contracts. They own the

tokens and can perform any actions just as they would if there was no recovery mechanism in
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Figure 3.1: Recoverable Token system architecture. A user which owns a private key is able to
use the RCVApp to connect to a node of the Ethereum network and interact with the storage
network. Each Ethereum node runs a local copy of an EVM and maintains a copy of the chain.
The smart contracts that comprise the token recovery mechanism and the token which is to be
recovered (shown in a grey background) are deployed on the blockchain.

the system. The recovery mechanism allows these users to submit claims that may escalate to

disputes and in turn lead to account recoveries being performed. Arbitrators are special users

who have permission to rule disputes.

Both regular users and arbitrators may positively contribute to the system or play against

it. A user or arbitrator that does what it is supposed to is said to be correct, whereas one that

deviates from that behavior is said to be malicious. Some possible attacks that users may try to

perform against our mechanism include: submitting false claims; exploiting bugs; colluding with

arbitrators. Arbitrators have the ability to rule on disputes, they may give dishonest rulings

or none at all. We assume that less than a third (f) of the total amount of arbitrators (n)

participating in a dispute are malicious, i.e., n ≥ 3f + 1 (the same proportion as in common

Byzantine fault-tolerant consensus algorithms [55]).

We do the usual assumptions that Ethereum works as expected and that cryptography is not

compromised (e.g., no transactions can be issued on behalf of a user without his private keys).
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3.2 Recovery process

In this section we explain in detail from start to finish the necessary steps that need to be

executed in order to perform any recovery actions. Throughout this section we will be referring

to the methods specified in Table 3.1.

Table 3.1: Public methods of the RCVToken, Claims and Profiles contracts.

Method Name Description

RCVToken contract

claimLost(lostAccount) Report the lostAccount address as lost.
cancelLossClaim() Report the address as not being lost.
reportStolen() Report the address as being stolen.
chargeback(pendingTransferNumber) Request a transfer chargeback.
getPendingTransferTime(account) Get the time an account has to

chargeback a transfer.
setPendingTransferTime(account) Set the time an account has to

chargeback a transfer.
getLostAccountRecoveryTime(account) Get the time account has to wait before

a lost account dispute can start.
setLostAccountRecoveryTime(account) Set the time account has to wait before

a lost account dispute can start.
submitMetaEvidence(claimID, metaEvidence) Link a meta evidence URI to a claim.
submitEvidence(claimID, evidence) Link an evidence URI to a claim.
signUp(transferTime, recoveryTime) Sign up an account.
addRecoveryInfo(recovery, proof, identity) Submit proof of ownership.

Claims contract

createLossClaim(claimant, lostAccount) Create a loss claim.
createTheftClaim(claimant) Create a theft claim.
createChargebackClaim(claimant,transferID) Create a chargeback claim
voteOnClaim(claimID, vote) Vote on claim number claimID.
giveRuling(claimID) Commit to a final ruling.
rule(claimID, ruling) Enforce ruling on claim number claimID.

Profiles contract

appeal(disputeID, extraData) Request an appeal for a dispute.
appealCost() Return the cost of requesting an appeal.
appealPeriod() Return the time window for appeals.
arbitrationCost(extraData) Return the cost of submitting a claim.
currentRuling(disputeID) Return the current ruling of a dispute.
disputeStatus(disputeID) Return the status of a dispute.
isPendingTransfer(transferID) Check whether transfer status is pending.
enforceRuling(disputeID) Enforce ruling of a dispute.
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3.2.1 Initial configuration

To be able to trigger any recovery actions, the user has to perform an initial account config-

uration with the contract that holds the digital assets to be recovered. The first fundamental

configuration is performed by calling the signUp method of the RCVToken contract. This

method requires two arguments: transferTime and recoveryTime which correspond to the time

– in block units – that the user will have to chargeback a transfer or to cancel a loss claim.

The need for this is to prevent abuse of these two features. For chargebacks it ensures that if

transferTime number of blocks are mined after performing a transfer then it will no longer be

reversible. In case of loss claims, it ensures that if a fake claim is performed then the owner of

the account has recoveryTime number of blocks to cancel that claim and prevent a dispute from

starting.

However, this only allows for performing chargeback claims since it is the only case where

the token will return to the claimant’s account. To be able to perform both loss or theft claims

an additional step is required. This additional step consists in linking a secondary account that

will be the recovery account where the tokens will be transferred to in the case of either of

those claims resulting in a successful recovery. To link two accounts it is necessary to generate

what we refer to as proof of ownership. It essentially is the digital signature of a message that

contains three elements: an identity and the addresses of the account and its corresponding

recovery account. The keccak256 [56] hash of the proof of ownership message is digitally signed

with the private key of the recovery account and then submitted and stored in the blockchain

using the account that is being protected. To be more precise, the message components are

ABI-encoded 1 and then tightly packed, i.e. concatenated without padding. Next, the result

is prefixed with the string “\x19EthereumSignedMessage:\n” and the length of the hash of the

proof of ownership message. Finally, all that data is keccak256 hashed and then signed. So, in

the end, what is submitted into the blockchain is the digital signature of:

keccak256(”\x19EthereumSignedMessage : \n”, keccak256(msg).length, keccak256(msg))

This is to ensure that at least at this point in time one person has control over both accounts.

After generating the proof of ownership, then a call to the addRecoveryInfo method has to be

made. It requires three arguments: recoveryAccount, proof and identity which are respectively

the address of the recovery account, the proof of ownership and the identity that was recorded

in it. Only after all these previous steps are executed will the user have permission to submit

any type of claim using their account.

1https://docs.soliditylang.org/en/develop/abi-spec.html
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3.2.2 Submitting a claim

From here on out we assume that the user has performed the initial configuration steps mentioned

in the previous section. This implies that now the user is able to submit all types of claims.

Recall that there are three types of claims: loss, theft and chargeback claims. The process

for submitting a claim is very similar for all types barring some particularities of each one.

Nevertheless, we will go through each one in detail.

Loss claim

RCVToken Claims Profiles

User

claimLost()

Arbitrator

createLossClaim() addNew Claim()

submitMetaEvidence()
submitMetaEvidence()

updateClaimStatus()

voteOnClaim()

updateClaimStatus()

appeal()

voteOnClaim()

updateClaimStatus()

giveRuling()

per formAccountRecover y() enfor ceRuling()r ule()

updateClaimStatus()

Figure 3.2: Example of a successful loss claim.

To submit a loss claim the user has to call the claimLost method of the RCVToken contract

using the corresponding recovery account. This requires a fee to be paid and its value can be

discovered by calling the arbitrationCost method in the Profiles contract. The claimLost call

will trigger other contract interactions: first the createLossClaim method is called which creates
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a new loss claim followed by a call to addNewClaim od the Profiles contract which links it to

the claimant’s profile. Then, depending on the specific account configuration there is a time

window in which this claim can be cancelled (by calling the cancelLossClaim method using the

account that is claimed to be lost). This is necessary in case of someone falsely claiming that an

account is lost, by gaining access to its recovery account instead. This time window allows the

owner of the address to deny the claim therefore proving that the account was in fact not lost.

Theft claim

RCVToken Claims Profiles

User

r epor tStolen()

Arbitrator

createTheftClaim() addNew Claim()

submitMetaEvidence()
submitMetaEvidence()

updateClaimStatus()

voteOnClaim()

updateClaimStatus()

appeal()

voteOnClaim()

updateClaimStatus()

giveRuling()

per formAccountRecover y() enfor ceRuling()r ule()

updateClaimStatus()

Figure 3.3: Example of a successful theft claim.

In case of a theft claim, the process is very similar with only some slight differences. First

of all, only accounts that have a proof of ownership linked to them can be reported as stolen.

To start a theft claim the user has to call the reportStolen method of the RCVToken contract.

Another difference when compared to the account loss scenario is that there is no time window

in which the claim can be cancelled but instead the tokens owned by the account are frozen.
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Chargeback claim

RCVToken Claims Profiles

User

chargeback()

Arbitrator

createChargebackClaim() addNew Claim()

submitMetaEvidence()
submitMetaEvidence()

updateClaimStatus()

voteOnClaim()

updateClaimStatus()

appeal()

voteOnClaim()

updateClaimStatus()

giveRuling()

per formChargeback() enfor ceRuling()r ule()

updateClaimStatus()

Figure 3.4: Example of a successful chargeback claim.

Finally, when dealing with chargeback scenarios, a request is submitted to chargeback a

pending transfer via the chargeback method. A transfer is considered pending when the amount

of time specified by the account configuration (which can be discovered by calling getPending-

TransferTime) has not yet passed since the transfer was performed.

Meta evidence

The next step is to escalate the claim to a dispute. However, in order to do that, a meta

evidence file has to be linked to the ongoing claim. This mechanism is supported by an evidence

submission standard proposal [51] that enables linking evidence to disputes. That file contains

some form of argument towards the resolution of the dispute, i.e., towards the recovery being

accepted. The processing of the documents is done by the human arbitrators, so the format of
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/* MetaEvidence.json */

{

fileURI:

"ipfs://QmWRUgLu9iRk...",

fileHash:

"QmWRUgLu9iRk...",

fileTypeExtension: ".txt",

category: "Loss Claim",

description: "I lost access to my address.",

question:

"Should the tokens be transferred to the specified recovery account?",

rulingOptions: {

type: "single-select",

titles: ["Yes", "No"],

descriptions: [

"The account is indeed lost

Tokens will be transferred to the specified recovery account",

"There is not enough proof to conclude that the account is lost.

Tokens will remain in the account.",

],

},

}

Listing 3.1: Example meta evidence file.

the files is opaque to the system. Its purpose is to provide information regarding the context of

the dispute and to reference an URI to a file which is the basis of the dispute, e.g. a document

showing that the incident was reported to the local police department (an example of the meta

evidence file is in Listing 3.1). Without this file claims are unable to escalate to disputes.

If all the conditions are met according to the type of claim then it will escalate to a dispute

and we move on to the dispute resolution mechanism and a fee is split between the participating

arbitrators.

3.2.3 Dispute resolution

In order to perform any recovery actions, first a claim has to be submitted, then escalated to

a dispute and finally approved. This decision is the result of the dispute resolution mechanism.

The method we decided to use to choose arbitrators relies on address whitelisting. This means

that there is a known group of arbitrators who are trusted by the community to resolve disputes

by voting. A new arbitrator is able to join the group if all the current members agree on it and

the same process is used to remove a member.

The linking between a claim and the file is then performed by executing a smart contract

call such as submitMetaEvidence which will end up emitting an event that, in turn, is stored in

the event log of the resulting transaction. Users are then able to query the blockchain for events
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emitted by the smart contract and retrieve all evidence related to a particular dispute.

Voting

Our dispute resolution mechanism starts with the creation of a new dispute which is triggered

after the steps explained in Section 3.2.2 are successfully complete.

At this point, the users who are participating entities in the dispute (e.g. in the case of

a chargeback dispute the participating entities are the claimant and the user who received

the token) are now able to submit additional evidence using the same evidence submission

mechanism mentioned in Section 3.2.2 but now resorting to the submitEvidence method call

instead.

When it comes to the arbitrators job, they are able to analyze all the evidence related to

the dispute and eventually commit to a ruling decision. This commitment is made known after

an arbitrator makes a call to the voteOnClaim method. All disputes have a voting period where

if there are not sufficient votes, the dispute is cancelled. In our system, we define that at least

two thirds plus one arbitrators (2f + 1) have to vote. This is the same proportion as in common

Byzantine fault-tolerant consensus algorithms [55]; it ensures that there are at most f malicious

(n ≥ 3f + 1) and a majority of the 2f + 1 arbitrators are not malicious. A ruling is determined

based on the decisions of the participating arbitrators when giveRuling is called. At this point

in time an appeal period begins.

Appeals

After the ruling is acknowledged, the claimant has an opportunity to appeal that decision during

a previously defined time period. The request for an appeal is started through a call to the appeal

method and it will require an additional fee from the appellant (which could be the claimant

and additionally, in chargeback claims, the respondent). This fee will be used to pay the new

set of arbitrators that will be selected to participate in this new round of voting. The whole

voting process is then repeated from the initial voting to the final ruling.

3.2.4 Token recovery

We then reach the final step of the whole process and assume that the decision given by the

dispute resolution can be one of two: an approval or a denial. If the dispute resulted in denying

the claim then all that is left to do is to distribute the fee between all the participating arbitrators

as a reward for their work. However, if the dispute resulted in a claim approval then depending

on the type of claim a recovery action will be performed. These actions are enforced by final
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call to the enforceRuling method. For both loss and theft claims the recovery action is to

transfer the tokens from the lost or stolen account to the recovery account. When it comes to

chargebacks, the recovery action is to perform another transfer that will revert the one being

claimed (essentially creating a new one but swapping the source and destination).

3.3 Recoverable Token Application

As user interface (UI), we created an application tailored to both regular users and arbitrators

(RCV App in Figure 3.1). For a regular user, the application allows: signing up to the Re-

coverable Token system; generating and submitting proof of ownership; submitting new claims;

viewing on-going claims and disputes; viewing pending transfers; submitting evidence; appeal

the rulings given to disputes. For arbitrators the application allows them to: view claims and

disputes; access the evidence linked to disputes; rule (or vote) on disputes.

Figure 3.5: Using the RCV App to call the signUp method of the RCVToken smart contract.

Figure 3.5 shows the RCV App command line interface. When the app is launched, it starts

by booting up an IPFS node and then shows a list of the available interfaces, i.e. User, Arbitrator

and Utility. Each interface has a set of methods that are expected to be called by their respective

types, e.g. the submitMetaEvidence method is expected to be called by a user. When one of the

methods is selected the necessary inputs to perform that method are requested. Next, when the

inputs are provided then a transaction is created and broadcast to the network. Finally, when

the transaction is confirmed or if any error occurs (e.g. invalid inputs, insufficient gas) then the

result is shown to the user.
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3.4 Implementation
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Figure 3.6: Inheritance relationships of the smart contracts.

To implement the bulk of the Recoverable Token functionalities we developed a set of smart

contracts written in the Solidity programming language.

Figure 3.6 shows the inheritance relationships between the main types of contracts. Profiles

is the smart contract that holds information about all the addresses that signed up to use

the application and their disputes. It implements the IArbitrator interface of the ERC-792

arbitration standard we follow [50]. Additionally, it references the Ownership library which has

the necessary functions to validate the proof of ownership of an account. Depicted in Listing 3.2

is verifyProof function of the Ownership library which is used to verify the legitimacy of the proof

of ownership message. It starts by reconstructing the message (as detailed in Section 3.2) and

then computing its keccak256 hash. Then it extracts the data (v, r and s parameters) necessary

to verify the signature and using the ecrecover function it extracts the signer’s address. Finally, if

the signer’s address matches the recoveryAccount then the proof of ownership is valid, otherwise

it is not.

The role of the Claims contract is to hold the information related to any sort of dispute, i.e.,

loss, theft or chargeback claims. Through it arbitrators can vote on claims and enforce rulings

by calling the methods shown in Table 3.1.

Finally, the RCVToken contract implements the Recoverable Token interface and extends

the token that is the target of recovery, e.g., an ERC-20 or ERC-721 token. A non-arbitrator

user may perform the necessary actions to recover the tokens belonging to an account via the
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/* Ownership.sol */

function verifyProof(

string memory identity,

address account,

address recoveryAccount,

bytes memory proof

) public returns (bool success) {

uint8 v;

bytes32 r;

bytes32 s;

bytes32 msgHash = prefixed(

keccak256(abi.encodePacked(identity, account, recoveryAccount))

);

(v, r, s) = splitSignature(proof);

address signer = ecrecover(msgHash, v, r, s);

if (signer == recoveryAccount) {

emit ProofVerified(account, signer);

return true;

}

return false;

}

Listing 3.2: Proof of ownership verification function.

methods described in Table 3.1. Depending on the type of token being extended, there is a

need to modify the token transfer function so that the account freezing functionality may be

added. An example of what modifications are required is seen in Listing 3.3. The modified

transferFrom function starts by checking if the sender’s account is frozen. If it is not, then it

calls the transferFrom function of the parent contract, i.e. the contract of the token it extends,

and completes the transfer by adding it to the account’s pending transfers.

/* RCVToken.sol */

function transferFrom(address from, address to, uint256 tokenID) public override {

RCVLib.Profile memory profile = _profiles.getAccountProfile(from);

require(!profile.isClaimedStolen, "FROZEN");

super.transferFrom(from, to, tokenID);

uint256 transferNumber = _profiles.addTransfer(from, to, tokenID);

emit PendingTransfer(from, to, tokenID, transferNumber);

}

Listing 3.3: Changes to transferFrom function.

All the previously mentioned contracts use a library – RCVLib – that stores definitions of

structures shared between them.
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3.5 Summary

This Chapter provided an outline of the design of the proposed solution. It started by presenting

the overall architecture and the assumptions made regarding the attack model. Then it explains,

from start to finish, the process of performing a recovery of the digital assets linked to an account.

Afterwards, a brief description of the application for users to interact with the Recoverable

Token system is given. The chapter concludes with implementation details of a proof of concept

Recoverable Token system.
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Chapter 4

Evaluation

In this chapter we discuss the evaluation of our system. Our goal with this evaluation is to

ascertain if it is feasible – mainly in terms of cost – to perform an account recovery. We start

by describing the evaluation methodology and then proceed to interpret the obtained results.

4.1 Evaluation Methodology

For our evaluation we applied the Recoverable Token system to an application 1 that makes use

of an ERC-721 token. We deployed the smart contracts using Truffle 2 on Ropsten, a public

test network for Ethereum that to most extent mimics the Ethereum main network. Using a

test network allowed us to request Ether from publicly available faucets for free (although the

amount is limited depending on the faucet used). All smart contracts were compiled with solc

v0.6.8. In the evaluation we assess source code metrics (Section 4.2) for our smart contracts as

well as gas (Section 4.3) and time (Section 4.4) for the methods commonly used by all three

main use cases of the system: trying to recover from the scenarios S1, S2 and S3 (Chapter 1).

For gas and time, the metrics represented are the result of calculating the average of 10 claims

performed in the Ropsten testnet. In every scenario the account to be recovered only holds one

token and there are three arbitrators ruling on the claim. All method calls were performed

resorting to a modified version of our RCVApp which output metrics for each method executed

and used Infura 3 nodes to connect to the Ethereum network. In the context of a single claim,

it also executed each method call immediately after the previous one had been confirmed in the

blockchain, i.e. included in a valid block.

Before moving on to the interpretation of the results gathered in our experimental evaluation

1https://github.com/CodinMaster/Crypto-Car-Battle
2https://www.trufflesuite.com/docs/truffle/overview
3https://infura.io/docs
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it is necessary to give more insight to what the meaning of the time consumption metric is in

this context. In EVM-based blockchains, computational effort is not measured in CPU cycles

nor wall-clock time, but rather in gas consumption. Therefore, what we are actually measuring

when we refer to time consumption is the time it took from creation the transaction locally

to it being confirmed in the blockchain. In between those two events are a number of steps

that contribute to the total execution time: a) making a call to the Infura API endpoint

responsible for broadcasting the transaction to the Ethereum network; b) that same transaction

being included in a valid block by a miner node; c) the block that includes the transaction

being broadcast to the network until it is received by the node that we are interacting with; d)

receiving the response from the call made in step a). At this point we consider the transaction

to be completed.

Due to the fact that we do not have control over all entities involved in these steps it

is infeasible for us to individually measure the time it took each of these steps to complete.

However, in normal conditions, we can safely assume that the ones that most contribute to

the total time are b) and c). The time to complete those two steps is heavily influenced by

the current blockchain network conditions, e.g. participating nodes and number of pending

transactions. Although knowing the exact value of the total number of nodes contributing to a

network is difficult [57], it is reasonable to assume that test networks such as Ropsten are more

volatile when it comes to the rate at which nodes join and leave the network. Moreover, since

Ropsten contains significantly less nodes it means that volatility is more impactful. This means

that the exact same transaction might take a largely different amount of time to be executed

depending on the network state.

4.2 Source code

Table 4.1: Recoverable Token contracts’ source code metrics.

Contract Deployed Bytecode Gas Cost (USD) LoC

RCVToken 15703 bytes 3635595 $171.02 175 lines
Claims 14469 bytes 3280773 $154.33 345 lines
Profiles 10100 bytes 2294378 $107.93 305 lines
Ownership 1126 bytes 295402 $13.90 51 lines

Total 41398 bytes 9506148 $447.17 876 lines

To get an idea of the deployment costs and the overhead the system would introduce, four

different source code metrics were gathered: deployed bytecode, which is the size of bytecode (in
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bytes) that is stored on-chain; gas, the amount of gas used to deploy the contract; cost, how

much it would cost (in USD) to deploy each contract; and finally lines of code, the number of

source code lines – excluding comments – after running a code formatter. To calculate the cost

we used the approximate average values of gas price (96× 10−9ether), i.e. the fee paid for each

gas unit, and Ether price ($490 USD), i.e. the market value for 1 Ether, from the month of

November 4.

Looking at Table 4.1, we notice that the RCVToken contract has the highest bytecode size

per lines of code ratio. This is due to the fact that it extends the contract that implements

the ERC-721 token which already has a size of 6836 bytes, therefore having an overhead of

8867 bytes. Furthermore, as is to be expected, the amount of gas required to deploy the smart

contract increases linearly with the size of the deployed bytecode. Note that the values of the

size of the deployed bytecode vary with the compiler used as well as the optimizer settings. For

reference, the configuration used is shown in Listing 4.1.

In terms of costs, most people would consider them too high. A total of $447.17 (USD) just

to deploy the contracts might seem unreasonable, but it is no cause for concern. First, this

is a one-time cost since it is only necessary to deploy the contracts once. Second, scalability

issues [58] have plagued both the Bitcoin and Ethereum blockchains in the past few years.

As their popularity increases the network becomes more congested which causes fees to raise.

Solutions for the scalability issues [59, 60] are being proposed and worked on. Third, even if

these solutions are disregarded, it is possible to significantly reduce the cost by lowering gas

price. The trade-off would be that the transaction would take more time to confirm as the ones

which offer an higher value would be prioritized by the miners.

/* truffle-config.js */

compilers: {

solc: {

version: '0.6.8',

settings: {

optimizer: {

enabled: true,

runs: 1500,

},

},

},

},

Listing 4.1: Solidity compiler settings in Truffle.

4All historical data was gathered from: https://www.etherscan.io/
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4.3 Gas consumption

The metrics collected for our gas evaluation were: the amount of gas used; the amount of gas

used relative to the total (in percentage); the cost (in USD) of executing the transaction; and

the standard deviation (σ) of the obtained values.

Claim Type

G
as

 

0K

250K

500K

750K

1000K

Loss Theft Chargeback

enforceRuling
voteOnClaim (round 2)
appeal
giveRuling
voteOnClaim (round 1)
submitMetaEvidence
claimLost / reportStolen /
chargeback

Figure 4.1: Average gas consumed by methods for each type of claim.

As far as gas consumption is concerned, we notice that in each scenario the most compu-

tationally expensive operation is the one that is responsible for submitting the claim as shown

in Figure 4.1. This corresponds to claimLost for lost claims, reportStolen for stolen claims and

chargeback for chargeback claims.

Note that some operations do not have a constant gas cost, i.e. a non-zero standard deviation,

which could be attributed to the initialization and iteration of the data structures that store

information about the different types of claims. This is supported by the fact that, for the

claimLost, reportStolen and the submitMetaEvidence methods, its value only deviates once.

However this is not true for chargeback calls since, apart from having to create the necessary

data structures, it also has extra logic to manage pending transfers. All the other methods have

a constant gas cost and this is not surprising since, in each scenario, they were called with the

same arguments and so the same instructions were executed (they are deterministic functions).
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Table 4.2: Gas breakdown for the Loss, Theft and Chargeback dispute resolution scenarios.

Action Gas Gas (%) Cost (USD) σ

Loss claim dispute resolution

claimLost 319035 38.52% $15.01 9487
submitMetaEvidence 41546 5.02% $1.95 531
voteOnClaim (round 1) 93406 11.28% $4.39 0
giveRuling 134627 16.26% $6.33 0
appeal 48323 5.83% $2.27 0
voteOnClaim (round 2) 56768 6.85% $2.67 0
enforceRuling 134467 16.24% $6.33 0

Total 825172 100.00% $38.95 -

Theft claim dispute resolution

reportStolen 293482 35.76% $13.81 4743
submitMetaEvidence 42205 5.14% $1.99 0
voteOnClaim (round 1) 92557 11.28% $4.35 0
giveRuling 133774 16.30% $6.29 0
appeal 48323 5.89% $2.27 0
voteOnClaim (round 2) 55915 6.81% $2.63 0
enforceRuling 154335 18.82% $7.26 0

Total 820591 100.00% %38.60 -

Chargeback claim dispute resolution

chargeback 303209 36.37% $14.26 6415
submitMetaEvidence 43054 5.16% $2.03 0
voteOnClaim (round 1) 93406 11.20% $4.39 0
giveRuling 134623 16.15% $6.33 0
appeal 48323 5.80% $2.27 0
voteOnClaim (round 2) 56764 6.81% $2.67 0
enforceRuling 154278 18.51% $7.28 0

Total 833656 100.00% $39.23 -
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Figure 4.2: Average time to execute methods for each type of claim.

4.4 Time consumption

In this Section we present and analyse the results obtained in regards to time related metrics.

Figure 4.2 is a chart of the time data shown in Table 4.3. As anticipated, there is no clear

pattern that allows us to determine how long the execution of a method should take. The appeal

method is a good example to demonstrate this point. Looking at the chart, we notice that it

is not on average consistently faster or slower than the others. In the theft scenario it is the

second fastest on average (13.66 seconds) and in the chargeback scenario it is the slowest (23.64

seconds). Although one of the reasons for this is due to an outlier – in one of the runs it took

over 60 seconds for the transaction to execute – even if it is ignored the point still stands since,

by looking at the gas usage in Table 4.2, the computational effort of executing it is exactly 48323

gas in all three scenarios.

On average, the time it took to complete each operation is between 10 to 30 seconds. These

values were to be expected since this is the rate at which blocks in the Ropsten network are

mined. Moreover, the relatively high standard deviation values for most operations are an

indicator of how volatile the Ropsten network activity can be.
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Table 4.3: Time breakdown for the Loss, Theft and Chargeback dispute resolution scenarios.

Action Time (s) Time (%) σ

Loss claim dispute resolution

claimLost 25.48 22.27% 13.44
submitMetaEvidence 13.82 12.08% 12.24
voteOnClaim (round 1) 16.40 14.34% 12.32
giveRuling 15.11 13.20% 16.89
appeal 16.08 14.05% 10.18
voteOnClaim (round 2) 12.38 10.82% 6.57
enforceRuling 15.17 13.24% 11.82

Total 114.44 100.00% -

Theft claim dispute resolution

reportStolen 11.83 9.35% 8.92
submitMetaEvidence 23.62 18.67% 16.26
voteOnClaim (round 1) 21.71 17.16% 18.75
giveRuling 21.60 17.07% 15.24
appeal 13.66 10.80% 5.76
voteOnClaim (round 2) 19.65 15.53% 13.29
enforceRuling 14.45 11.42% 9.79

Total 126.52 100.00% -

Chargeback claim dispute resolution

chargeback 14.84 13.14% 8.05
submitMetaEvidence 15.60 13.81% 9.68
voteOnClaim (round 1) 16.44 14.55% 10.90
giveRuling 12.80 11.33% 6.82
appeal 23.64 20.92% 19.73
voteOnClaim (round 2) 14.30 12.66% 7.75
enforceRuling 15.35 13.59% 12.85

Total 112.97 100.00% -
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4.5 Summary

This chapter presented the results of our experimental evaluation. It started by describing the

scenarios in which the experiments were ran and the metrics that were measured. The Chapter

concluded with an analysis of the results obtained from the performed experimental evaluation.
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Chapter 5

Conclusions

In this chapter, we conclude this document by summing up our accomplishments and proposing

features and research to improve upon this work.

5.1 Achievements

This document presented Recoverable Token, a system that combines several standards in order

to provide an opportunity for recovering digital assets stored on the Ethereum blockchain without

modifying its fundamental properties. We believe this to be useful to increase adoption of

blockchain systems as a means for storing value and performing transactions.

To evaluate our system we applied it to an application that implements an ERC-721 token

and demonstrated that it is possible to recover the tokens in a variety of scenarios, i.e. account

loss, account theft and chargeback.

Our evaluation has shown that the mechanism allows doing recovery in a reasonable amount

of time and at a reasonable cost, given the benefits of being able to do such an operation that

is currently not supported in Ethereum or any other EVM-based blockchain.

5.2 Future Work

In spite of all the work that was developed, it contains several aspects that could be improved

upon.

5.2.1 Privacy

If we consider our evidence submission mechanism, its current design allows anyone to have

access to the evidence submitted for each and every claim. One possible improvement would be

to create a permissioned system to only give access to the arbitrators assigned to each claim.
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We studied the possibility of leveraging the Enigma [61] project in our system and believe

that, when integration with the Ethereum blockchain is implemented it can be an interesting

approach. With Enigma it would be possible to perform computation on encrypted data and

use it in Ethereum contracts.

Another privacy concern is when related to the current voting mechanism. Again, just like

all evidence is publicly available so are the votes submitted by arbitrators. Although there is no

direct incentive for arbitrators to vote according to the majority, we argue that implementing a

commit-reveal mechanism would still be an improvement. This would prevent arbitrators from

being influenced by the already submitted votes.

5.2.2 Decentralization

Decentralization is one of the most desired features of a public blockchain. As mentioned in

Section 3.2.3, the method used to select arbitrators also has the drawback of introducing a

degree of centralization since users can only become arbitrators if all current arbitrators approve

it. There are more decentralized alternative methods to select arbitrators such as the one used

by both Kleros [47] and Aragon [48] which essentially requires users to stake their tokens so that

they are allowed to arbitrate.

5.3 Final remarks

The research performed in this work leads us to believe that the study of recovery mechanisms

for blockchain systems is worth pursuing. As mentioned throughout this document, there are a

variety of use cases for these systems, from trying to fix user mistakes to recovering from exploits

that might compromise the trust in the blockchain as a whole [21]. Although it is common

for works in this area to sometimes be disregarded as they commonly break the immutability

inherent to the blockchain, opt-in approaches similar to the work we presented, are in our

opinion, a good starting point. It gives users the option to rely on recovery systems if they feel

the need to do so, which could lead to an increase in adoption of blockchain since it introduces

the possibility of recovering from scenarios where it would not be possible otherwise.
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