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Resumo

Transferências de energia mı́nima têm, tipicamente, um tempo de transferência (só ida) de cerca de

259 d. Adicionalmente, uma estadia de cerca de 453 d é necessária para esperar por condições ótimas

de retorno. Tempos longos aumentam o risco devido à radiação e a ambientes de gravidade reduzida.

Estes podem ser reduzidos indo mais rápido, mas levam a penalidades na massa. Uma vez que massa

e tempo são indicadores de custo e risco, respetivamente, viagens rápidas têm riscos menores, mas

custos maiores.

Para verificar o impacto de várias escolhas na massa geral, os elementos requeridos para cada

arquitetura de missão foram identificados e a sua massa estimada. Sistemas de propulsão represen-

tativos foram selecionados, para sistemas atuais e para futuros. Para estimar a massa de propelente,

a equação do foguete foi modificada para incluir perdas por gravidade e o descarte de tanques vazios

durante manobras. Esta inclusão levou a novos efeitos, não englobados pela equação tradicional, como

a existência de um tempo total mı́nimo para a viagem.

Os resultados obtidos sugerem que missões rápidas podem não ser ainda atingı́veis com massa

razoável. Porém, são encorajadores para o futuro próximo. Como comparação, a Design Reference

Architecture 5.0, a referência na exploração tripulada a Marte, indica uma massa inicial em órbita baixa

de 849 t para um tempo de viagem total de 916 d. Para a mesma massa, uma duração de 200 d pode

ser atingida com um impulso especı́fico de 1 000 s e um rácio propulsão-peso de 75.

Palavras-chave: missões espaciais tripuladas, Marte, transferências rápidas, planeamento

de missões espaciais
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Abstract

Traditional minimum-energy transfers have a long transfer time (one leg) of about 259 d. Additionally, a

stay of about 453 d is required to wait for the optimal return conditions. Such long times increase the

risks posed by radiation and reduced gravity environments. These can be reduced by going faster, but

lead to mass penalties. Since mass and time are proxies for cost and risk, respectively, rapid trips have

lower risks but higher costs.

In order to assess the impact of several choices in the overall mass, required elements for each

mission architecture were identified and its mass estimated. Representative propulsion systems were

selected, for actual and for future systems. For propellant mass estimations, the rocket equation was

modified in order to include gravity losses and the disposal of empty tanks during manoeuvres. The

former lead to new effects, unperceived by the traditional equation, such as the existence of a minimum

total trip time.

Obtained results suggest that rapid missions may not yet be achievable with reasonable mass. How-

ever, they are encouraging for the near future. As a comparison, the Design Reference Architecture 5.0,

the benchmark in crewed Mars exploration, states an Initial Mass in Low Earth Orbit of 849 t for a total

trip time of 916 d. For the same mass, a duration of 200 d can be achieved with a specific impulse of

1 000 s and a thrust-to-weight ratio of 75.

Keywords: crewed space missions, Mars, rapid transfers, space mission design
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Chapter 1

Introduction

1.1 Objectives and Motivation

This work is a preliminary assessment of the feasibility of rapid crewed round-trip missions to Mars with

high-thrust propulsion. By rapid, it is meant a total travel time up to a few months. Shorter times lessen

the risks to the crew but incur in mass penalties due to extra propellant needs. By selecting architectures

focused on the essentials, the trade-off may become favourable and competitive with longer missions.

1.2 Challenges of Crewed Missions to Mars

When considering interplanetary travels to Mars, minimum-energy transfers tend to be chosen. Although

this is a measure to reduce the mission mass, the travel time is largely compromised. For one-way

missions, the outbound travel takes around 259 d [1]. For round trips (e.g. sample returns and most

crewed missions), a stay of about 453 d is also required to wait for the optimal return conditions [1].

Such extensive times imply a long exposure to dangers such as radiation and reduced gravity, both

present during the travel and the stay. Galactic cosmic radiation is the long-term predominant form of

radiation [2], while solar particle events are sporadic and well correlated with the Sun’s period of most

intense activity [2]. As for reduced gravity, significant, long-term physiological changes are induced:

blood loss, muscle atrophies, bone demineralisation, fatigue and performance loss [3]. These are more

severe during the interplanetary travel, but should present during the stay as well.

Rapid missions mitigate these adversities by decreasing the exposure time. However, much higher

changes in velocity are required in order to achieve significant reductions [4]. Since mission mass and

duration can be defined as a proxy to cost and risk, respectively, minimum-energy transfers minimise the

mission cost by accepting higher risks while rapid missions minimise the risk by accepting higher costs.

1



1.3 Literature Review

Several proposals have been made in an effort to assess costs and risks of different options for crewed

missions to Mars. Of particular importance is the Design Reference Architecture (DRA) 5.0 [5], which

constitutes a benchmark for the community. Nonetheless, the relevance of some architectural choices

are questionable [6]. Of these, crew size is perhaps the most important due to its large impact across

most systems [6, 7].

In order to decrease risk, a split scenario can be used, in which the mission is divided into cargo

and crewed components [5]. Although it might be debatable whether or not this is effective in certain

cases [8], it is vital in the context of rapid trips since it also significantly reduces the mass of the mission.

The crew can fly in a faster, safer trajectory while the cargo can be sent on an efficient minimal-energy

transfer.

Aerocapture can also be employed in order to decrease the required mass, by reducing, or even

eliminating, the propellant needed for the Mars Orbit Insertion (MOI) [5]. However, the large payloads

associated with human class missions may be problematic [9]. Furthermore, the high velocities inherent

to rapid travels increase the complexity of the problem.

In Situ Resource Utilisation (ISRU) is yet another option to decrease the mission mass, which is

typically considered for the production of Mars ascent propellant and life support consumables [5, 10,

11]. The technology still has a low Technology Readiness Level (TRL) [12], but it is estimated that 1 kg

of Mars produced fuel reduces Initial Mass in Low Earth Orbit (IMLEO) by about 10 kg [11]. However,

the larger benefit for rapid travels lies in the ISRU for the production of return propellant. Unfortunately,

information regarding this topic has not been found.

More creative trajectories can also be utilised to lower the required velocity changes. One such

alternative employs Venus flybys in either or both legs of the journey [13]. Despite allowing for faster

travel times than minimum-energy transfers [13], these are not fast enough to be considered in the

context of this work. Another alternative lies in cycler orbits, which maintain a constant movement

between Earth and Mars through successive flybys at the planets [14]. In this case, the interplanetary

spacecraft does not need to change its orbit, but a smaller spacecraft is needed to ferry the crew to and

from each planet. Overall, there is a high initial set-up cost and long travel times [14], which make them

more suited to long, sustained missions rather than short, isolated ones. For the same purpose, it has

also been proposed to use a rotating tether system to launch and capture spacecrafts from each planet,

which could reduce the transfer time to 94 d with aerobraking (or between 130 d to 160 d without it) [15].

The construction and deployment of such system carries its own set of problems, and does not seem to

be neither in progress nor planned for the near future. Therefore, it was not considered further.

Rapid crewed missions to Mars have already been addressed and were found competitive with the

DRA 5.0 [1, 4]. However, the focus was primarily on the design of the interplanetary portion, and did not

delve as deep in the system engineering aspects. The complete mass analysis was performed only for a

total travel time of 407 d, with rough estimations for the cargo mission. Different propulsion systems were

not investigated either. Another study focused on the comparison of four propulsion systems (including
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future proposals) and reported difficulties in obtaining significant reductions for the total travel time [16].

Still, that conclusion was drawn in the absence of ISRU and aerocapture, and the parameters for the

selected propulsion systems might have been overly conservative.

1.4 Overview

The developed work starts with a high-level analysis of possible mission scenarios. Architectural options

are discussed and trimmed to a manageable size, based on the most promising ones. Then, mass and

size of the required elements are estimated. The rocket equation is also adapted to include burn losses

and the benefits of propellant tank staging.

Next, a brief review of current and advanced propulsion systems is performed and representative

values for characteristic parameters are selected for high-thrust systems, compatible with the impulsive

manoeuvre approximation.

Finally, Pareto fronts for IMLEO against total travel time are obtained and the results analysed in the

context of rapid crewed missions to Mars.
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Chapter 2

Mission Design

2.1 Architectural Choices

There are myriad ways of reaching Mars. Distinct features, such as ISRU or a different crew size, require

different plans, each with its own corresponding mass. In order to analyse and compare these options,

the required elements must be identified, pieced together into a coherent architecture and its mass

estimated. Only then can the overall mass of each architecture be estimated and weighted against its

benefits.

At each stage, there are multiple choices. Table 2.1 summarises the most prominent. From here, two

Choice Possibilities

Crew size [5, 7, 17, 18] 1 2 3 4 5 6
Cargo deployment [5, 8] Pre-deployment All-up
MOI [5, 6, 19] Direct All-propulsive Aerocapture
EDL strategy [6] All-propulsive Rigid aeroshell IAD
ISRU [5, 6, 11, 12] None Atmosphere-based Atmosphere-based with regolith
Surface power system [5] SPS FSPS
Return strategy [20, 21] Skip entry All-propulsive
Propulsion [16] Impulsive thrust Continuous thrust

Table 2.1: Summary of key architectural options. Acronyms: Mars Orbit Insertion (MOI), Entry, Descent
and Landing (EDL), Inflatable Atmospheric Decelerator (IAD), In Situ Resource Utilisation (ISRU), Solar
Power System (SPS) and Fission Surface Power System (FSPS).

different approaches can be carried in order to select an architecture. An extensive one implies the com-

putation of selected figures of merit across all possibilities. This can reveal less intuitive advantages but,

at 2 592 different combinations, be very time consuming. Often, studies follow a baseline architecture,

established on certain hypotheses, and conduct individual trades [22]. This was the method taken to

trim the combinations to a manageable number1 and allow a direct comparison between the survivors.

IMLEO was chosen as the figure of merit due to its widespread use and consensus in being a well

defined cost metric [22]. The focus of this work is then to assess the impact of the mission alternatives
1This merely removes trimmed architectures from the subsequent analyses but does not rule them out as viable options.
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(specially the propulsion) in said metric. Where applicable, the best options were selected (according to

the literature) and possible issues identified for further study.

Independently of the architecture, all missions must include a Transit Habitat (THAB) and the asso-

ciated propulsion system, propellant and propellant tanks. The last are predicted to be numerous for

rapid missions, and are discarded during the manoeuvres when empty. This is the bare minimum for

an Apollo-like mission to Mars, with reduced exploration goals when compared to long-stay missions.

Nonetheless, other elements may or may not be included depending on the specific architecture. In line

with the DRA 5.0, the following elements were also incorporated: Mars Descent Module (MDM), Surface

Habitat (SHAB), surface power system, Mars Ascent Vehicle (MAV) and re-entry capsule.

Generally, the mission can be divided into a crewed mission and two cargo missions, which Figs. 2.1

to 2.4 synthesise in a graphical manner. Cargo mission I carries elements that can be left in a parking

EarthEarth

Cargo 
Mission I

MAV/SHAB
+

MDM

Return
Propellant

+ Tanks

Re-Entry 
Capsule

Return 
Consumables

Engines
Propellant

+ Tanks

Mars

5 sol
250 km x 119 450 km

MAV/SHAB
+

MDM

Return
Propellant

+ Tanks

Re-Entry 
Capsule

Return 
Consumables

Earth Departure:
Propellant used 

and tanks discarded

Mars Arrival:
Propellant used 

and tanks discarded

LEO
500 km x 500 km

Figure 2.1: Bat diagram for cargo mission I. Acronyms: Mars Ascent Vehicle (MAV), Surface Habitat
(SHAB), Mars Descent Module (MDM) and Low Earth Orbit (LEO).

orbit, while cargo mission II delivers onto the surface the elements required for the stay. The latter is

done with the aid of MDMs. Elements division is summarised in Table 2.2. In every case, the crew

departs in the THAB, which is put into a high-energy Mars parking orbit upon arrival. Return propellant

tanks are then loaded from the cargo spacecraft into the THAB. Next, the crew descends to the surface,

performs the required activities and ascends in the MAV when the stay is over. The MAV then carries

the astronauts back to the THAB for the return journey. When approaching Earth, the crew shifts into

the re-entry capsule and the THAB is discarded. Propulsive manoeuvres are used throughout except in

this last stage, where it may not be needed (discussed further in Section 2.2.9).

Specifically, operations differ only in the descent and ascent portion of the mission. For architectures

including ISRU, the MAV needs to be sent onto the surface in order to be fuelled. In this case, the SHAB

is used by the crew for the descent. This is not required for architectures without ISRU, in which the

SHAB can be sent to the surface and the MAV used for both descent and ascent.
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Figure 2.2: Bat diagram for cargo mission II. Acronyms: Mars Ascent Vehicle (MAV), Surface Habitat
(SHAB), Mars Descent Module (MDM) and Low Earth Orbit (LEO).

Element Mission

THAB Crewed
MDM Cargo II
SHAB Cargo I or Cargo II
Surface power system Cargo II
MAV Cargo I or Cargo II
Return propellant Cargo I
Re-entry capsule Cargo I
Return consumables Cargo I

Table 2.2: Elements and corresponding mission for the outbound portion of the travel. Acronyms: Transit
Habitat (THAB), Mars Descent Module (MDM), Surface Habitat (SHAB) and Mars Ascent Vehicle (MAV).

A crew of two is the obvious choice to minimise mass [18]. This is not unprecedented, since some

International Space Station (ISS) expeditions have featured only two members2. Crew size has a big

impact in numerous subsystems, be it direct (e.g. life support system) or indirect (e.g. Entry, Descent

and Landing (EDL) and aerocapture) [7]. Typical values range from three to six astronauts, selected in

a top-down manner [5, 7, 17, 23], but can be as low as one [18]. It has been suggested that any crew

should feature at least one member per each type of personnel: an engineer or technician, a geologist

or biologist, and a doctor [7]. However, functions performed by a doctor can be bypassed for shorter

missions. Unlike longer ones, the reduction in exposure to the risk environment decreases the value

that a doctor might have.

Cargo was chosen to be pre-deployed in separate spacecrafts. Sending the crew in a fast trajectory

is a measure to reduce exposure to space hazards. This comes at the expense of a large mass penalty

2Garcia, M., ”Past Expeditions,” https://www.nasa.gov/mission_pages/station/expeditions/past.html, February 2020.
Retrieved 17 December 2020.
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Figure 2.3: Bat diagram for the outbound portion of the crewed mission. Acronyms: Transit Habitat
(THAB), Low Earth Orbit (LEO), Mars Ascent Vehicle (MAV), Surface Habitat (SHAB) and Mars Descent
Module (MDM).

but the same requirement does not apply to the cargo, which can be sent in a low energy transfer at a

prior date. Doing so leads to longer systems cumulative time but significantly reduces the total IMLEO

[5].

Propulsive braking was selected as the method for MOI. Direct entry is not adequate for the fast

mission concept. The associated velocities are large and Mars’ atmosphere is thinner than Earth’s.

Aerocapture is usually an option to lower propellant mass, but it was not considered in this work because

it poses serious challenges in this context. Namely, can the propulsion system stay attached during the

manoeuvre, or is another system required for the return trip? Can solar panels be retracted during the

manoeuvre? Can the Thermal Protection System (TPS) be re-utilised? Can aerocapture support the

typically large payloads associated with crewed missions? Furthermore, aerocapture loses some of its

value when applied to fast missions. For such large velocities, most of the braking would likely have to

be done with propellant anyway. Aerocapture has huge difficulties that must be addressed in an in-depth

study that lies outside the scope of this work.

For the EDL, a rigid aeroshell was chosen. All-propulsive solutions were not selected due to the large

payload mass fractions expected [5]. As for Inflatable Atmospheric Decelerators (IADs), initial DRA 5.0

data was lacking in the desired range and extrapolations were too big to be considered acceptable [5].

A detailed EDL analysis was not performed, and the required values were taken from DRA 5.0 instead.

ISRU for Mars ascent propellant production was left open for comparison, and the three options

available are summarised in Table 2.3. All the required elements can be produced on-site if water

is retrieved from Martian regolith [11]. However, additional equipment is necessary in order to mine

it. Besides, the operation of said equipment, like excavators and haulers, has unresolved significant

challenges [5].
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Figure 2.4: Bat diagram for the return portion of the crewed mission. Acronyms: Mars Ascent Vehicle
(MAV), Transit Habitat (THAB) and Low Earth Orbit (LEO).

ISRU type Product Reagent Source

None
O2 – Earth

CH4 – Earth

Atmosphere-based
O2 CO2 Martian atmosphere

CH4 – Earth

Atmosphere-based
O2 and CH4

CO2 Martian atmosphere
with regolith H2O Martian regolith

Table 2.3: ISRU types summary. Acronyms: In Situ Resource Utilisation (ISRU).

The surface power system decision is dependent on the ISRU strategy. For architectures employing

ISRU, a Fission Surface Power System (FSPS) was chosen [5]. This allows a continuous operation of

the ISRU plant while a Solar Power System (SPS) is limited to eight hours per day3 and results in higher

power needs [5]. Additionally, the former has a lower mass and it is easier to deploy autonomously [5].

Without ISRU both options are left open. The crew can deploy the solar arrays on arrival, eliminating

the complexities associated with autonomous deployment. Lower power requirements [5] also reduce

system mass making the solar option more competitive.

The preferred return strategy is the skip entry, which naturally encompasses direct entries (i.e. skip

entries with zero skips). Direct entries are more easily controlled, but skipping in the atmosphere al-

lows for cool-down periods which limit the amount of aerodynamic heating [21]. Historically, difficulties

stemmed from computational limitations [21], but improvements in Earth approach navigation [24] have

reduced this issue. A skip entry is also endorsed in the DRA 5.0 [20]. Nonetheless, some cases require

some degree of propulsive braking in order to cope with the re-entry limits (either heat or maximum

3A large quantity of fuel cells reactants would be needed for continuous operations [5].
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acceleration thresholds). Details regarding re-entry and TPS mass estimation can be found in Sec-

tion 2.2.9.

Summarising, the considered options regarding the ISRU and the surface power system are listed in

Table 2.4.

Option ISRU Surface power system

A None SPS
B None FSPS
C Atmosphere-based FSPS
D Atmosphere-based with regolith FSPS

Table 2.4: Considered ISRU and surface power system options. Acronyms: In Situ Resource Utilisation
(ISRU), Solar Power System (SPS) and Fission Surface Power System (FSPS).

2.2 Mass Budget

2.2.1 Consumables

In order to estimate the mass of the consumables, a choice must be made between an open- and a

closed-loop Environmental Control and Life Support System (ECLSS). For this end, Table 2.5 sum-

marises the recycling systems available in the ISS along with their mass, consumables mass that would

be saved should the system be implemented and number of days required for the system to be worth

[25]. It can be seen that most systems require longer missions in order to be beneficial. The Carbon

System
System Spares* Total Mass use for a

Break-even, d
mass, kg mass, kg mass, kg crew of two, kg/d

OGS 676 399 1 075 3.36 319.9

CDRA 195 156 351 3.50 100.3

CRS 329 219 548 1.64 334.1

UPA + 31%WPA† 742 366 1 108 2.88 384.7

69%WPA‡ 641 353 994 6.42 154.8

WRS§ 1 383 719 2 102 9.30 226.0

* One set only.
† Urine processing system, requiring the UPA and 31% of the WPA [25].
‡ Condensate and hygiene processing, comprised by 69% of the WPA [25].
§ Composed by the UPA and WPA [25].

Table 2.5: Mass of consumables recycling systems, based on the ISS. Data retrieved from [25] and
adapted for a crew of two. Acronyms: Oxygen Generation System (OGS), Carbon Dioxide Removal
Assembly (CDRA), Carbon Dioxide Reduction System (CRS), Urine Processor Assembly (UPA), Water
Processor Assembly (WPA) and Water Recovery System (WRS).

Dioxide Removal Assembly (CDRA) is the one with the lowest break-even value at around 100 d. This

value sits towards the end of the range of interest, and calculations involved only one set of spares. It is

not unusual to have more [25], which would further lower the benefit. Therefore, an open-loop ECLSS

was preferred for this application.
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Water requirements can be seen in Table 2.6. For the open-loop ECLSS, the corresponding con-

Purpose Mass, kg d−1 person−1

Hydration 2.0

Food rehydration 0.5

Personal hygiene 0.4

Total 2.9

Table 2.6: Water mass per allocation per day and per person. Data retrieved from [26].

sumables are given in Table 2.7. Water and oxygen storage tank masses are considered separately in

Consumable Mass, kg d−1 person−1

Food 2.39*

Water 2.90†

Oxygen 0.82‡

Lithium Hydroxide§ 1.75‖

Total 7.86

* ISS value from 2017 (including packaging) retrieved
from [27].

† Retrieved from Table 2.6.
‡ Nominal value retrieved from [27].
§ Needed for carbon dioxide removal [25].
‖ Retrieved from [25]. Includes the canister mass.

Table 2.7: Consumables mass per day and per person. Acronyms: International Space Station (ISS).

Table 2.8.

Consumable Mass, kg per consumable kg Mass, kg d−1 person−1

Oxygen 0.236 0.194

Water 6.136× 10−3 1.779× 10−2

Table 2.8: Mass of storage tanks. Data retrieved from [28].

Remaining consumables are divided based on usage frequency (one time or daily) and amount (one

per crewmember or one for the whole crew). These are summarised in Table 2.9.

2.2.2 Mars Transit Habitat

At a high level, the THAB can be divided into structure, radiation shielding, accommodations and sub-

systems.

In order to estimate the structural mass, it is necessary to estimate the required habitable volume.

To that end, the maximum mission duration was plotted against the minimum volume required per

crewmember for a mission of such duration, in the case of several historical spacecraft (Fig. 2.5). It

was necessary to include stations in order to provide data for longer missions. However, a regression

including both Skylab and ISS, corresponding to the green full line in Fig. 2.5, did not capture the data
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Consumable Mass

One time, kg 182.500 0

One time per crewmember, kg 51.625 0

Daily, kg d−1 0.312 5

Daily per crewmember, kg d−1 1.813 3

Table 2.9: Other consumables including personal stowage, medical, hygiene and cleaning supplies.
Data retrieved from [28].
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Figure 2.5: Correlation between pressurised volume per crewmember and duration. Blue dots and or-
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purple dash-dotted line correspond to a regression including stations, a regression excluding stations
and a regression excluding just the ISS and the Skylab, respectively. Acronyms: International Space
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for lower mission times. Since Skylab was adapted from the upper stage of a Saturn Rocket4, and ISS

is a modular space station with collaboration from several different countries, it is likely they were not

built with habitable volume in mind and were not considered further. The chosen fit was the purple dash-

dotted line in Fig. 2.5, since it provides data for longer durations but does not forgo the data for shorter

ones. The corresponding expression is given by

V/Ncrew ≈ 1.239d0.594, (2.1)

where V is the volume of the THAB, Ncrew is the number of crewmembers (two for this work) and d is

the mission duration in days.

4Whiting, M., ”Skylab: America’s First Space Station,” https://www.nasa.gov/feature/skylab-america-s-first-space-
station, May 2018. Retrieved 17 December 2020.
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A similar analysis was conducted to relate structural mass and volume. Since the habitat is a shell,

structural mass is proportional to the surface area and scales with the two-thirds power of the volume

[29]. A cylindrical shape was chosen over a conical shape since it lead to a lower mass for the same

duration. Furthermore, conical shapes are prevalent in re-entry scenarios, which is not needed for

the THAB. Using Eq. (2.1), the structure mass can then be given as a function of the duration by the

expression

mstructure ≈ 106.304V 2/3 ≈ 122.606
(
Ncrewd

0.594
)2/3

, (2.2)

where mstructure is the structural mass of the THAB.

For the radiation shielding, a side-wall density of 20 g/cm2 was considered to be enough [5]. The

cylinder base and top do not require extra shielding, since there are usually other elements (propulsion

system, for example) that already provide enough of it [28].

Accommodations were selected for short-term missions and focused on the essentials [28].

Subsystems mass and power are shown in Table 2.10. Apart from the consumables mass, an open-

Element Mass, kg Power, W

ECLSS [28] 1 207.0 2 294.6

TCS [28] 1 053 878

ADCS [28] 623 276

DHCS [28] 94.4 283

EPS 1 032.6* –
Total 4 010.0 6 226.6

* Value calculated following the analysis pro-
vided in [28].

Table 2.10: Subsystems mass and power budget. Acronyms: Environmental Control and Life Support
System (ECLSS), Thermal Control System (TCS), Attitude Determination and Control System (ADCS),
Data Handling and Control System (DHCS) and Electrical Power System (EPS).

loop ECLSS still requires some basic equipments which contribute to the mass and power budget.

Thermal Control System (TCS) mass and power is not significantly affected by crew size: comparison

between crews of two and four members revealed differences below 50 kg and below 50W in mass and

power, respectively [28]. Thus, constant mass and power were assumed. Attitude Determination and

Control System (ADCS) mass and power is independent of spacecraft size since the involved velocities

are very small [28]. Fuel consumption is either negligible or accounted for in propulsion system margins,

for the same reason [28]. The Data Handling and Control System (DHCS) achieves communications

between Earth and the spacecraft [28]. Mass and power requirements do not change significantly for

missions inside the inner solar system, despite being dependent on the exact trajectory [28]. Values

were estimated from the Mars reconnaissance orbiter hardware [28]. The Electrical Power System

(EPS) consists of solar panels capable of achieving Sun orientation, along with a storage and control

unit [28].

The THAB mass budget is summarised in Table 2.11.
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Element Mass, kg

Structure 122.6
(
Ncrewd

0.6
)2/3

Radiation shielding 804.4
(
Ncrewd

0.6
)2/3

Accommodations 670.9

Subsystems 4 010.0

Table 2.11: THAB mass budget. Acronyms: Transit Habitat (THAB).

2.2.3 Surface Habitat

The SHAB is designed for a smaller duration, but shares the same characteristics of the THAB. The ex-

ception is the EPS. Thus, the SHAB mass budget is very similar to the THAB, and is shown in Table 2.12.

The SHAB power budget is the same, since the EPS does not contribute for it.

Element Mass, kg

Structure 122.6
(
Ncrewd

0.6
)2/3

Radiation shielding 804.4
(
Ncrewd

0.6
)2/3

Accommodations 670.9

Subsystems 2 977.4

Table 2.12: SHAB mass budget. Acronyms: Surface Habitat (SHAB).

2.2.4 Crew and Samples

When estimating crew mass, an average of 82 kg was used for each crewmember [27].

For samples, the total mass was assumed to be 239 kg [30]. 10 containers, each with a mass of

1.1 kg, were also selected to transport the samples [30].

2.2.5 Mars Descent Module

The MDM is in charge of landing payloads to the surface of Mars. This includes the ISRU plant, the

SHAB and the MAV. The main components are summarised in Table 2.13, which was adapted from the

DRA 5.0 Addendum II [31].

2.2.6 Mars Ascent Vehicle

The MAV ferries the crew from Mars surface back into the parking orbit, where it meets the THAB

for the return trip. Choosing a more energetic orbit means that the THAB does not have to brake or

accelerate as much when reaching or leaving Mars, respectively. However, it is also harder for the MAV

to reach said orbit. The best compromise in order to alleviate the propellant needs of the THAB was a

250 km× 119 450 km orbit with a corresponding period of 5 sol [30]. The resulting mass is summarised in

Table 2.14.
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Element Mass, kg

Liquid oxygen 14 818

Liquid methane 4 939

Oxygen tanks 158

Fuel tanks 158

Main propulsion subsystem* 203.6

Six engines† 2 082.0

Structures 4 641.9

Thermal management* 636.7

Pressurant system* 289

RCS-Bipropellant* 249.1

Avionics* 544.7

EVA umbilical services* 8.3

Total (excluding payload) 28 728.3

* Extrapolated from Altair [31].
† Same engines as the MAV [31].

Table 2.13: MDM mass budget excluding the payload. Data adapted from [31]. Acronyms: Reaction
Control System (RCS), Extravehicular Activity (EVA), Mars Ascent Vehicle (MAV) and Mars Descent
Module (MDM).

2.2.7 In Situ Resource Utilisation

ISRU requirements are shown in Table 2.15. The driver for the ISRU system is dependent on its type. For

atmospheric-based ISRU, only oxygen is produced. However, if regolith is mined as well, both oxygen

and methane are produced at a mass ratio of 4:1 (assuming that a Sabatier reaction is employed) [11].

This is slightly higher than typical engine ratios, which vary between 3:1 and 3.5:1 [11]. Thus, excess

oxygen is produced and the required methane drives the number of units needed.

Table 2.16 shows the characteristics of an ISRU unit for each type, and the corresponding mass and

power requirements.

2.2.8 Surface Power System

Depending on the architecture chosen, there are two types of surface power system: solar or nuclear.

For scenarios without ISRU (options A and B), the SHAB is the only power concern. Otherwise (options

C and D), there are two phases: ascent propellant production, during which only the ISRU plant is being

used, and crewed phase, where all propellant has already been produced and only the SHAB needs to

be powered. ISRU power needs surpass by far the ones from the SHAB, thus being the driver.

Table 2.17 shows the mass budget for the surface power system. The values were obtained by

extrapolating the data present in DRA 5.0 and include an extra 20% contingency [5].

2.2.9 Re-Entry Capsule

Re-entry is typically limited by the amount of heat the spacecraft can dissipate, along with g-force limits

for crewed missions. Since the interplanetary travel velocities are large for rapid missions, particular
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Element Mass, kg

Crew cabin
Structures 1 303

Power 377

Avionics 241

Thermal 642

ECLSS 502

Cargo 808

Non-propellant fluids 295

Total 4 168

First stage
Dry mass* 3 233

Liquid oxygen 19 352

Liquid methane 6 158

Total 28 742

Second stage
Dry mass* 2 510

Liquid oxygen 8 616

Liquid methane 2 734

Total 13 859

MAV
Total 46 769

* Includes engines and tanks [32].

Table 2.14: MAV liftoff mass for a 5 sol parking orbit. Data retrieved from [30], with cargo mass adapted
for a crew of two. Acronyms: Mars Ascent Vehicle (MAV).

care needs to be taken when sizing the re-entry capsule.

In this analysis, the re-entry capsule was divided into non-TPS and TPS mass. The former is con-

stant, while the latter varies with the re-entry velocity (dependent on the specific mission considered).

The TPS mass fraction can then be defined as

χ =
mTPS

mTPS +mnon-TPS
, (2.3)

where χ is the TPS mass fraction, mTPS is the mass of the TPS and mnon-TPS is the mass of the non-TPS

portion. The TPS mass fraction correlates well with the total heat load, and a fit based on historical data

ISRU type Driver
Required Production Required
mass, kg rate, kg h−1 unit−1 units*

Atmospheric-based O2 27 968 0.7 4

Atmospheric-based with regolith† CH4 8 892 0.2 4

* Assuming continuous production for 480 days [11].
† Assuming typical regolith, whose water content is 1.3% [11] (worst-case scenario).

Table 2.15: ISRU units production rate. Data calculated from [11]. Acronyms: In Situ Resource Utilisation
(ISRU).
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ISRU type
Mass per Power per Total Total
unit, kg unit, kW mass, kg power, kW

Atmospheric-based 300.0 11.3 1 200.0 45.3

Atmospheric-based with regolith 566.7 17.3 2 266.7 69.3

Table 2.16: ISRU plant mass and power. The plant is composed by four units working in parallel. Unit
data calculated from [11]. Acronyms: In Situ Resource Utilisation (ISRU).

Option Mass, kg

A 5 838

B 5 423

C 10 450

D 13 450

Table 2.17: Surface power system mass budget.

for ablative shielding is given by [33]

χ = 9.100× 10−4
(
Q× 10−4

)0.515 75
, (2.4)

where Q is the total heat load in J/m2.

Determining the exact heat load is not easy, and often requires a detailed simulation of the re-entry

environment. For the scope of this work, a conservative estimate was done, which is meant to be refined

by further work. The use of lift can open new re-entry trajectories [24], but is another convoluted topic.

For the sake of simplicity, it was assumed that no lift was acting on the capsule and the ballistic re-entry

equations of motion [29, 34] were numerically solved for the 1976 US Standard Atmosphere [29]. Then,

both conductive [29] and radiative [35] heating rates were integrated to provide the total heat load. Apollo

data [29, 33] was used as a benchmark since it is readily available and flight proven.

The afore analysis was repeated for several velocities at Earth infinity. For each, the arrival hyperbolic

orbit impact parameter was varied as to provide the lowest TPS mass fraction possible. Overall, the re-

entry heat load limit was given by Eq. (2.3) (since χ < 1) while the g-force was set to a maximum of 8-g

[20, 29]. The number of skips was left unconstrained as long as the spacecraft was captured in the end

without crossing the afore mentioned thresholds. The resulting data can be seen in Table 2.18. For the

remainder of the work, an interpolation of this data was used, which is shown graphically in Fig. 2.6. For

a velocity of 11 km/s, no solution was found. Therefore, for velocities larger than 10 km/s, a propulsive

braking was used to reduce it to this value.

2.2.10 Propellant

For propellant estimations, consider the rocket equation, given in non-dimensional form by [36]

∆v = −gISP log
[
ε+ (1 − ε)$

]
, (2.5)
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Velocity at Earth infinity, km/s TPS mass fraction, %

7 31.2

8 37.7

9 46.5

10 58.5

Table 2.18: Velocity at Earth infinity and corresponding TPS mass fraction. Acronyms: Thermal Protec-
tion System (TPS).
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Figure 2.6: TPS mass fraction as a function of the velocity at Earth infinity. Acronyms: Thermal Protec-
tion System (TPS).

where ∆v is the total change in velocity, g is the gravitational acceleration at Earth’s surface (9.806 7m/s2

[29]), ISP is the specific impulse of the engine, ε = ms/(ms+mp) is the structural ratio,ms is the structural

mass, mp is the propellant mass, $ = m∗/m0 is the payload ratio, m∗ is the payload mass and m0 is the

mass at the start of the manoeuvre.

Finite burn losses can be incorporated as

∆v = ∆videal + ∆vlosses, (2.6)

where ∆videal is the ideal change in velocity (from an impulsive manoeuvre) and ∆vlosses is the extra

amount needed to compensate the losses. An estimate of the latter is given by [37, 38]

∆vlosses =
1

24

µ

r3
tburn

2∆videal, (2.7)

where µ is the gravitational parameter of the primary, r is the distance to the primary when executing the

impulsive manoeuvre and tburn is the time for the propellant to be burnt. This is a conservative estimate,
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since actual burn losses can be smaller by up to a factor of two [38]. The burn time is a function of the

propellant mass through [38]

tburn =
gISP

T
mp, (2.8)

where T is the thrust. Using Eqs. (2.5) to (2.8), the modified rocket equation can be written as

∆videal

[
1 +

1

24

µ

r3

(
gISP

T

)2

mp
2

]
= −gISP log

[
ε+ (1 − ε)$

]
. (2.9)

In order to include the gains from the disposal of empty propellant tanks, an analogy was made with a

rocket with N stages [36]. For that end, the structural ratio and payload ratio of the k-th stage is defined

as

εk =
msk

msk +mpk

(2.10)

and

$k =
m0k+1

m0k

, (2.11)

where msk is the structural mass of the k-th stage, mpk is the propellant mass of the k-th stage, m0k+1 is

the initial mass of the stage k+1 and m0k is the initial mass of the stage k. Assuming that the same tank

technology is used for every stage, the structural ratio is also the same [36]. This result is independent

of the relation between tank mass and propellant mass. But in order to calculate the structural factor,

it was also assumed that the tank mass was proportional to the propellant mass. In principle, it should

be proportional to the two-thirds power of the latter, since it scales with the tank surface area instead of

the tank volume. However, the deposits arrangement and connections should also be more complex as

the number of tanks increases, leading to higher masses. In order to take a conservative approach, the

linear relation5 was kept. In this case, the structural ratio is given by

εk =
Kmpk

Kmpk +mpk

=
K

K + 1
, (2.12)

where K is the constant of proportionality. Data retrieved for common chemical propellants6 and propel-

lant tanks 7 resulted in K ≈ 0.040. Assuming that the propellant tanks all have the same size,

mpk =
mp

N
, (2.13)

where mpk is the propellant mass of the k-th stage. Since the payload of the k-th stage is the initial

mass of stage k + 1, it is possible to find recurrence relations by accounting the initial mass, propellant

mass, structural mass and payload mass of the k-th stage. Using Eqs. (2.10) and (2.11), they can be

re-written in terms of the stage structural and payload ratios. It can then be shown that the closed-form

5This type of linear relation has also been used in other works [39].
6Braeunig, R. A., ”Rocket Propellants,” http://www.braeunig.us/space/propel.htm, 2008. Retrieved 17 December 2020.
7Astrium, ”Propellant Tanks for Spacecraft,” https://www.yumpu.com/en/document/view/17516891/propellant-tanks-

for-spacecraft-astrium-st-service-portal-eads, 2013. Retrieved 15 December 2020.
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solution for the k-th stage payload ratio is given by

$k =
m∗(1 − ε) + (N − k)mp/N

m∗(1 − ε) + (N − k + 1)mp/N
, (2.14)

when the tanks are equal, i.e. same technology and size. Since Eq. (2.9) is applicable to each stage,

the overall change in velocity can be written as

∆videal

[
1 +

1

24

µ

r3

(
gISP

T

)2

mp
2

]
= −gISP

(
1 +

1

24

µ

r3
g2ISP

2

T 2

mp
2

N2

)−1
×

×
N∑

k=1

log

(
ε+ (1 − ε)

Nm∗(1 − ε) + (N − k)mp

Nm∗(1 − ε) + (N − k + 1)mp

)
.

(2.15)

In the context of rapid missions, propellant mass is expected to be considerable. Thus, a high number of

propellant tanks of regular size can be used. Equation (2.15), can be re-written in terms of the Gamma

function [40] and the limit when N tends to infinity taken, leading to

mp = m∗(1 − ε)

(
exp

[
1

1 − ε

∆videal
gISP

(
1 +

1

24

µ

r3
g2ISP

2

T 2
mp

2

)]
− 1

)
. (2.16)

This is similar to the traditional rocket equation expressing the propellant mass,

mp = mf

[
exp

(
∆v

gISP

)
− 1

]
, (2.17)

where mf is the mass at the end of the manoeuvre, but accounts for both the tank mass (assuming each

tank is disposed when empty and small enough for the continuous approximation to be valid) and finite

burn losses. Thus, Eq. (2.16) was used throughout the work for the propellant estimations.

2.3 Manoeuvres

The THAB is mainly subject to four manoeuvres: at Earth departure, Mars arrival, Mars departure and

Earth arrival. The required changes in velocity for the interplanetary trajectory (for the considered high-

thrust scenario) are the solution to a Lambert’s problem with co-planar circular orbits.

The mission starts from a circular Low Earth Orbit (LEO) with an altitude of 500 km, considered to be

a good starting point and comparable with the literature [16]. In order to reduce departure gravity losses,

two apogee raising manoeuvres are performed before placing the THAB in the escape trajectory. This

assures that the burn loss estimation is valid but likely overestimated.

When reaching Mars, the THAB is placed into a parking orbit via a propulsive braking at the periapsis

of the arrival orbit. Mars departure is achieved in an analogous way. In this case, no apogee raising

manoeuvres are needed since the parking orbit is already quite energetic.

For the return trip, a maximum allowed velocity at Earth infinity of 10 km/s (corresponding to a re-

entry velocity of about 14.927 km/s) was defined following the analysis of Section 2.2.9. For higher

incoming velocities, additional propulsive braking is required. In this case, the perigee is inside Earth’s
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atmosphere. A propulsive braking at such location may be difficult or even infeasible. On the other hand,

braking at Earth infinity is inefficient but allows for plenty of time to execute the manoeuvre and perform

security checks. A compromise between the two extremes is likely the optimum solution, but an in-depth

analysis is required (which may, eventually, be dependent on the detailed design). Thus, it was opted to

brake at Earth infinity for both simplicity and to be conservative.
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Chapter 3

Propulsion

3.1 Overview

In this work only impulsive manoeuvres were considered, which corresponds to a high-thrust scenario.

The case of continuous thrust manoeuvres will be analysed in a future work.

Propulsion systems are characterised by two parameters: specific impulse and thrust-to-weight ratio.

The first is a measure of its efficiency, while the latter expresses its acceleration in multiples of Earth’s

gravitational acceleration. Thrust itself is not characteristic of the system since engines can be, to

a certain degree, added in parallel. Figure 3.1 shows these two parameters for several modern and

proposed propulsion systems [41]. Chemical systems are characterised by a high thrust-to-weight ratio
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Figure 3.1: Specific impulse and thrust-to-weight ratio for several modern and proposed propulsion sys-
tems. Blue dots, orange squares and green diamonds represent chemical, non-chemical and advanced
systems, respectively. Data retrieved from [41].
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but relatively low specific impulse. These are at least at a TRL of six. Non-chemical systems (for instance

electrical), are more efficient but tend to produce smaller accelerations. Although some are at a TRL

of nine, others can be as low as three. Lastly, advanced systems values do not follow a specific trend.

Available information is estimated since the TRL is, at most, three.

3.2 Representative Values for High-Thrust Propulsion Systems

In order to select representative values for the propulsion system parameters, points with highest thrust-

to-weight ratios for a given specific impulse (corresponding to the high-thrust scenario) were identified in

Fig. 3.1. A linear regression (in logarithmic scale) was then made, and optimistic and pessimistic curves

were drawn. These were shifted vertically by a symmetric amount regarding the regression. Finally,

points were chosen at regular1 specific impulse intervals, with the corresponding thrust-to-weight ratios

being rounded for ease in display. The results are shown in Fig. 3.2, with expressions given by
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Figure 3.2: Most promising propulsion systems (blue dots) and corresponding regression (blue full line).
Optimistic and pessimistic curves (orange dashed and green dash-dotted lines, respectively) obtained by
a symmetric amount of vertical shifting regarding the regression. Orange squares and green diamonds
are the chosen optimistic and pessimistic representative values, respectively.

T/W = cISP
−0.775, (3.1)

where T/W is the thrust-to-weight ratio, ISP is the specific impulse in s and c is 8 826.177, 15 887.118 and

4 903.431 for the regression, optimistic curve and pessimistic curve, respectively.

1Specific impulse values were chosen in the format a× 10b, with a ∈ {1, 3} and b ∈ [2, 6]. Since a logarithmic scale was used,
values in the form 3× 10b sit approximately in the middle of 10b and 10b+1.
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3.3 Cases Studied and Assumptions

Originally, this work intended to analyse all of the 16 cases chosen as representative values for the

parameters of high-thrust propulsion systems. However, the number had to be limited to five due to time

constraints. In these circumstances, the left-most (in Fig. 3.2) optimistic points were kept. For ease of

reference, these were summarised in Table 3.1. It makes sense to start with the left-most points since

Case Specific impulse, s Thrust-to-weight ratio

I 3× 102 190.0

II 1× 103 75.0

III 3× 103 32.0

IV 1× 104 12.6

V 3× 104 5.4

Table 3.1: Studied values for the propulsion system parameters.

these correspond to a higher TRL. At the same time, this work took a conservative approach on most

topics that required further study. If values from the pessimistic curve were taken instead, the results

could have been too overestimated. Nonetheless, all the cases will be investigated in a future work. But

for a first impression, the optimistic ones were deemed more useful.

Besides the unstudied cases from Section 3.2, propulsion systems with lower thrust-to-weight ratios

will also be studied in future works. These are not adequate for an impulsive approach, but may be

useful in a continuous thrust scenario. This requires a different approach than the Lambert’s solver

employed in this work, and should be studied separately.

The systems shown in Fig. 3.1 cover the whole TRL range, from one to nine. In particular, systems

categorised as advanced have notoriously low TRL values, implying that the values are speculative and

uncertain. It may seem unrealistic to include them in such analysis, but there is merit in doing so. With

the propulsion of today, rapid trips to Mars require large amounts of propellants that lead to exceedingly

high values for IMLEO. Will this paradigm change? Does any of the currently proposed systems, even if

somewhat far-fetched, enable rapid travels with reasonable mass? These are the type of questions that

can be answered by encompassing these systems.

Lastly, two important assumptions were made. First, it was considered that engines could be added

in parallel in order to ensure the high-thrust required for the impulsive scenario. This essentially turns

the thrust (or equivalently the number of engines) into a design parameter, which can be varied to

yield the best result. Second, some propulsion systems also require a separate power source. When

applicable, and unless otherwise stated by the source, it was considered that this was included in the

thrust-to-weight ratio of the system.
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Chapter 4

Results

The trade-off between IMLEO and total trip time (proxies for cost and risk, respectively) is considered for

several architectures. Each includes a distinct combination of the options referred in Table 2.4 with the

propulsive systems selected in Table 3.1, for a total of 20. Only rapid trips with short stays were studied,

in order to avoid the long waiting times associated with longer, more economic missions. This way, the

exposure to radiation and reduced-gravity environments is minimised.

Code-wise, the algorithm has four inputs, namely an option from Table 2.4, specific impulse, thrust-

to-weight ratio and duration of the stay. These correspond to selecting one of the afore mentioned

architectures. Due to time constraints, only a stay of 30 d was considered (consistent with the duration

mentioned in the DRA 5.0 for short-stay missions [5]) but more will be analysed in a future work. For

each input combination, there are four free parameters which can varied to yield the lowest output

(i.e. IMLEO) for a certain total trip time: thrust, time of departure, duration of the outbound travel, and

duration of the return travel. All times were counted from an opposition1 configuration. Time resolution

was variable, depending on the needs, but was no higher than 1 d.

In the following results, the total trip time includes the stay time. Although the adverse effects, from

radiation [42] and reduced gravity [43], are slightly reduced in Mars, they still pose a considerable risk.

Since the results are meant to be a proxy of the trade-off between cost and risk, all the exposure

time must be accounted for, and not just the time spent travelling between the planets. IMLEO was

also capped at 105 t. Although this might seem excessive for today’s standards, it is meant to give a

perspective of what might be achievable in the future. Typically, IMLEO can go up to around 1 000 t [4, 5]

but there is an effort to reduce launch costs by a factor of 1002. Thus, an IMLEO of 100 × 103 t = 105 t

might become reasonable.

1This is the time in which the Sun, Earth and Mars are in a straight line, with Mars and the Sun in opposite positions when seen
from Earth [1].

2Galeon, D., ”Elon Musk: With New SpaceX Tech, Rocket Costs Will Drop by a Factor of 100,” https://futurism.com/elon-
musk-with-new-spacex-tech-rocket-costs-will-drop-by-a-factor-of-100, September 2017. Retrieved 30 December
2020.
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4.1 General Shape of the Pareto Front

In order to understand the relation between the best IMLEO (for each total trip time) and the total trip

time, under the assumptions of this work, an example of the corresponding Pareto front is shown in

Fig. 4.1. For longer missions, IMLEO variations are small. But as the round trip time starts decreasing,

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●

●●●
●●

●●
●●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

50 100 150 200 250
200

220

240

260

280

300

320

340

Total trip time, d

IM
LE
O
,t

Figure 4.1: Pareto front for option C and propulsion case IV, with a stay time of 30 d. IMLEO range was
cropped to show the derivative discontinuity. Acronyms: Initial Mass in Low Earth Orbit (IMLEO).

the curve gets steeper and steeper. This behaviour implies there is a mathematical limit to the minimum

travel time, which is due to the burn losses term in Eq. (2.16). Unlike the traditional rocket equation,

there is no guarantee that a solution, for the propellant mass, exists for every combination of values.

Furthermore, each scenario also has a practical limit, for which it is not worthwhile to try do decrease

the total trip time further due to the high steepness of the curve.

The other interesting feature is the discontinuity in the derivative, which occurs around the 170 d mark

for the given example. This signals the need of a propulsive braking manoeuvre when approaching

Earth, as mentioned in Section 2.3. Although this is present in every case, the variation is small and can

be easily masked when showing a larger IMLEO range.

4.2 Influence of the Specific Impulse and Thrust-to-Weight Ratio

Although all of the studied cases display the same behaviour mentioned in Section 4.1, there are, natu-

rally, significant changes to minimum travel time, IMLEO range and IMLEO for longer missions, depend-

ing on the selected propulsion system. The Pareto fronts for each case (recall Table 3.1) are shown in

Figs. 4.2 to 4.5, for options A, B, C and D (recall Table 2.4), respectively.

For propulsion case I, only a section of the curve appears since even for the largest times considered,
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Figure 4.2: Pareto fronts for option A and propulsion cases I through V, with a stay time of 30 d. Blue
dots, orange squares, green diamonds, red upright triangles and purple inverted triangles correspond to
propulsion cases I, II, III, IV and V, respectively. Acronyms: Initial Mass in Low Earth Orbit (IMLEO).

the IMLEO ranges from about 3× 104 t to 105 t. The remaining cases feature the vast majority of the

curve despite cases III through V not reaching the cap of 105 t (a resolution higher than 1 d was needed).

When progressing from propulsion cases I through V, the best IMLEO for a certain time starts de-

creasing. This variation is large at first, but it gets progressively smaller. For 250 d, for instance, compare

the massive reduction from about 6× 104 t to about 700 t (from case I to case II) with the less significant

reduction from the latter to about 300 t (from case II to case III). From case III onwards, the gains in

IMLEO are even smaller. Furthermore, the gains are larger for faster trips.

The gains in minimum total trip time exhibit a similar behaviour to those in the IMLEO. For propulsion

case I, the minimum total trip time is not present in the plots since it leads to masses higher than 105 t.

From cases II to IV, it is about 100 d, 65 d and 50 d, respectively. Case V shares the same minimum total

trip time of case IV.

From the above results, it can be concluded that propulsion case I does not fit the rapid mission

archetype. Since this case is mostly representative of today’s propulsion technology limits, rapid mis-

sions are likely not yet achievable with a reasonable IMLEO.

In order to explain the lower gains when progressing from propulsion cases I through V, first it is

useful to closely inspect Eq. (2.16), re-written here for convenience

mp = m∗(1 − ε)

(
exp

[
1

1 − ε

∆videal

gISP

(
1 +

1

24

µ

r3
g2ISP

2

T 2
mp

2

)]
− 1

)
.

Specifically, the effects of thrust, specific impulse and thrust-to-weight ratio. These are enclosed in

Eq. (2.16), despite other elements contribution to the IMLEO.
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Figure 4.3: Pareto fronts for option B and propulsion cases I through V, with a stay time of 30 d. Blue
dots, orange squares, green diamonds, red upright triangles and purple inverted triangles correspond to
propulsion cases I, II, III, IV and V, respectively. Acronyms: Initial Mass in Low Earth Orbit (IMLEO).

Thrust impacts the equation in two ways: a direct decrease in the argument of the exponential and

an indirect increase in the payload mass of the manoeuvre through the propulsion system mass. The

latter is adverse, and the effect is more severe the lower the thrust-to-weight ratio. The former is trickier

to analyse, since this is an implicit equation for the propellant mass, without a closed form solution. For

reasonable values, the burn losses can be made small by increasing the thrust, which means that

1

24

µ

r3
g2ISP

2

T 2
mp

2 � 1, (4.1)

and a closed form approximation is obtained,

mp ≈ m∗(1 − ε)

[
exp

(
1

1 − ε

∆videal

gISP

)
− 1

]
. (4.2)

The reduction of burn losses is beneficial albeit limited, since they can only be null, at best. However, as

the thrust increases, so does the propellant mass. After a certain point, the latter is comparable to the

former, and Eq. (4.1) no longer holds (notice that the burn losses term is also proportional to the square

of propellant mass). Thus, there must be an optimal value for thrust. Indeed, this was experienced when

obtaining the Pareto fronts, and a graphical example is shown in Fig. 4.6.

Specific impulse has two contrary effects on the argument of the exponential term in Eq. (2.16),

since a part of it is proportional to the specific impulse while the other is proportional to the inverse.

Equation (4.2) holds for low values of specific impulse, where it is beneficial to increase it (much like the
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Figure 4.4: Pareto fronts for option C and propulsion cases I through V, with a stay time of 30 d. Blue
dots, orange squares, green diamonds, red upright triangles and purple inverted triangles correspond to
propulsion cases I, II, III, IV and V, respectively. Acronyms: Initial Mass in Low Earth Orbit (IMLEO).

traditional rocket equation). However, the burn loss term should dominate for higher values, resulting in

mp ≈ m∗(1 − ε)

[
exp

(
1

24

∆videal

1 − ε

µ

r3
gISP
T 2

mp
2

)
− 1

]
, (4.3)

for which increases in specific impulse clearly have a negative impact in the propellant mass. Nonethe-

less, the example of Fig. 4.7 (the same as the one featured in Fig. 4.6, but with constant thrust and

variable specific impulse instead) only shows the propellant mass decrease with the inverse of the spe-

cific impulse. Thus, increasing the specific impulse seems to be, overall, beneficial.

Thrust-to-weight ratio has the simplest influence. Essentially, the higher the ratio the lower the pay-

load mass of the manoeuvre, which contributes to a lower propellant mass, if a solution exists, or to the

existence of the solution, otherwise.

When combining these effects with the results described, it can be inferred that when progressing

from propulsion cases I through V, the beneficial effects (i.e. increasing the specific impulse) dominate at

first. However, these eventually become comparable with the adverse effects. The latter seem to be due

to the decrease in the thrust-to-weight ratio, since Fig. 4.7 seems to indicate that the specific impulse is

never high enough to have a negative impact. This has been verified for this example (with fixed thrust

and departure, outbound, stay and return times), but a larger simulation with the specific impulse freed

as a parameter should be carried, in a future work, to grasp the full effect on IMLEO.

For the unstudied propulsion systems with specific impulses higher than 3× 104 s (displayed in

Fig. 3.2), it is expected that the curves will either converge (if positive effects stay superior to the nega-

tive ones), or invert the tendency and start yielding worse results (if the negative effects of decreasing
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Figure 4.5: Pareto fronts for option D and propulsion cases I through V, with a stay time of 30 d. Blue
dots, orange squares, green diamonds, red upright triangles and purple inverted triangles correspond to
propulsion cases I, II, III, IV and V, respectively. Acronyms: Initial Mass in Low Earth Orbit (IMLEO).

the thrust-to-weight ratio eventually dominate).

4.3 Comparison Between Architectures

In order to compare the studied architectures, Figs. 4.2 to 4.5, were plotted together in Fig. 4.8. The

figure is a little confusing, but that itself is the key point to be taken. Differences in the studied options

(Table 2.4) have minor influences, which only become noticeable when the curves start to flatten. This

happens because, for faster missions, a higher portion of the IMLEO is constituted by propellant mass.

Thus, the analysed options are more relevant for minimum-energy transfers, where the mass is more

evenly distributed between elements, than for rapid round trips, where most of the mass stems from the

propellant. The effect may appear more prominent for higher specific impulses, but that stems from the

logarithmic scale used in the plots. Overall, architectures are mostly dependent on the characteristics of

the propulsion system.

It is important to recall that ISRU is only being considered for the production of ascent propellant. In

fact, were it possible to produce the return fuel on Mars, IMLEO could be significantly lower. This should

be addressed in a future work as it requires major changes in the architecture.
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Figure 4.6: Effect of thrust on IMLEO. Example for option C and propulsion case IV, for an outbound
travel time, stay time, return travel time and departure time of 60 d, 30 d, 60 d and 680 d, respectively.
Acronyms: Initial Mass in Low Earth Orbit (IMLEO).

4.4 Relation Between Outbound and Return Travel Times

Besides the IMLEO, it is also interesting to analyse the relation between outbound and return travel

times. This is shown in Figs. 4.9 to 4.12 for options A, B, C and D, respectively.

It can be seen that the relation is approximately linear, with slightly faster outbound travels. Since

all the propellant for the return trip must first be carried to Mars, it is less expensive to accelerate the

outbound trip rather than the return one. Unsurprisingly, this holds for every propulsion case and every

option since it is only related to the geometry of the interplanetary trajectories.

As a side note, the points start to disperse for larger times. This is likely due to the lower parameter

resolution that was used for calculations in that area. Although it was enough to obtain satisfying results

for the IMLEO, it might not have been enough to establish this relation in those cases.

4.5 Implications for Rapid Missions to Mars

The unfavourable results for the propulsion case I, representative of today, indicate that rapid missions

may not yet be achievable with a reasonable mass. However, the results are encouraging for the near

future. In particular, the DRA 5.0 states an IMLEO of 849 t for a total trip time of 916 d. Even if one does

not account for the large stay of 496 d [5], it still features a trip of 420 d. For the propulsion case II, the

one most likely to be available in the near future, a mission with similar mass can be undertaken in about

200 d, corresponding to a trip of about 170 d. This corresponds approximately to a 59.5% decrease in

travel time (excluding stay), or a 78.2% decrease in total trip time. The time can be decreased further,

for propulsion cases III through V, but each case is farther away in the future.
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Overall, rapid crewed missions to Mars are likely to become competitive with the traditional minimal-

energy approach. Nonetheless, there are aspects that would benefit from better estimations while others

were not pursued in this work. The former encompasses the re-entry portion of the mission (in need of a

detailed simulation in the range applicable to rapid missions), the burn losses (in need of a more accurate

analytical expression, or simulations in the desired range) and the propulsion system mass (including

better estimations for the tank mass and number, as well the required elements for advanced systems).

The latter encompasses the use of aerocapture at Mars, the location of the propulsive braking when

approaching Earth, and the use of ISRU for the production of return propellant. The last, in particular, is

expected to require large changes to the architecture, as well as a way to store the propellant for a large

amount of time.
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Figure 4.8: Pareto fronts for options A through D and propulsion cases I through V, with a stay time
of 30 d. The first, second, third and fourth row in the legend correspond to options A, B, C and D,
respectively. Acronyms: Initial Mass in Low Earth Orbit (IMLEO).
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Figure 4.9: Relation between outbound and return travel times for option A and propulsion cases I
through V. Blue dots, orange squares, green diamonds, red upright triangles and purple inverted trian-
gles correspond to the propulsion case I, II, III, IV and V, respectively.
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Figure 4.10: Relation between outbound and return travel times for option B and propulsion cases I
through V. Blue dots, orange squares, green diamonds, red upright triangles and purple inverted trian-
gles correspond to the propulsion case I, II, III, IV and V, respectively.
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Figure 4.11: Relation between outbound and return travel times for option C and propulsion cases I
through V. Blue dots, orange squares, green diamonds, red upright triangles and purple inverted trian-
gles correspond to the propulsion case I, II, III, IV and V, respectively.
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Figure 4.12: Relation between outbound and return travel times for option D and propulsion cases I
through V. Blue dots, orange squares, green diamonds, red upright triangles and purple inverted trian-
gles correspond to the propulsion case I, II, III, IV and V, respectively.
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Chapter 5

Conclusions

This work determines the trade-off between IMLEO and round trip time for rapid crewed missions to Mars

with high-thrust. The most promising architectures were identified, and the required elements estimated.

Finally, different characteristic values were selected for both modern and foreseen propulsion systems.

It has been found that there is a minimum value for the travel time, which depends on the character-

istics of the propulsion system used. Such limit stems from the inclusion of a burn losses term in the

rocket equation. Due to that same term, there is an optimum thrust value that yields the lowest IMLEO

for a certain total trip time. This behaviour differs greatly from the traditional rocket equation, for which

there is a solution to every total trip time. In the ideal case, the propellant mass increases monotonically

with thrust through the propulsion system mass (with higher increases for lower thrust-to-weight ratios).

The large amount of propellant required constitutes most of the mass. For this reason, all considered

architectures performed equally for faster missions and showed only small differences for slower ones.

In particular, the usage of ISRU for the production of ascent propellant makes no significant difference

for rapid trips.

Finally, this work suggests that this type of mission can be possible in the future. For comparison,

DRA 5.0 states an IMLEO of about 849 t for a round trip time of 916 d [5]. For the same mass, the mission

can be achieved in about 200 d with case II propulsion.

5.1 Future Work

This work is a first approach to address the problem, and was developed at the level of preliminary

design. There are subjects in need of development, which require a dedicated approach. Some can

be found in the literature, albeit in a non-applicable range for the rapid mission concept. Namely, burn

losses estimation, re-entry and aerocapture. Although the last should still be studied, chances are that

the mass savings will not be significant enough (due to TPS limitations) in this same context, much like

ISRU usage for Mars ascent propellant production. Trajectory-wise, the calculations need to be extended

to the real case, with eccentric and non-coplanar orbits.

Of particular importance is whether or not ISRU can be used for the production of the return propel-
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lant. This will demand a considerable re-design of the mission in order to solve the problem of transport-

ing the propellant to orbit. But with the vast majority of the IMLEO concentrated in the propellant, there

is potential for large savings by producing it on site rather than carrying it from Earth.
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