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Abstract

Understanding the individualized risks of undertaking surgical procedures is essential to personalize

preparatory, intervention and post-care protocols for minimizing post-surgical complications. This knowl-

edge is key in oncology given the nature of interventions, the fragile profile of patients with comorbidities

and drug exposure, and the possible cancer recurrence. Despite its relevance, the discovery of dis-

criminative patterns of post-surgical risk is hampered by major challenges: 1) the unique physiological

and demographic individual profile, as well as their differentiated post-surgical care, 2) the increasing

high-dimensionality and heterogeneous nature of available biomedical data, combining non-identically

distributed risk factors, clinical and molecular variables, 3) the need to learn from populations where tu-

mors have significant histopathological differences and individuals undertake unique surgical procedures

(structurally sparse data), 4) the need to focus on non-trivial patterns of surgical risk, while guarantee-

ing their statistical significance and discriminative power of post-surgical outcomes, and 5) the lack of

interpretability and actionability of current approaches.

This work proposes the use of biclustering, the discovery of groups of individuals correlated on sub-

sets of variables, due to its unique properties of interest able to satisfy the aforementioned challenges,

and a discretization method, DI2 (Distribution Discretizer) enabling a more robust pattern discovery on

non-identically distributed variables. Results show its relevance to improve classic discretization choices.

The patterns offer a comprehensive view on how the patient’s profile, cancer histopathology and entailed

surgical procedures determine: 1) post-surgical complications, 2) survival, and 3) hospitalization needs.

The results confirm the role of biclustering in comprehensively finding interpretable, actionable and

statistically significant patterns with a comprehensive view on how the patient’s profile, cancer histopathol-

ogy and entailed surgical procedures determine: 1) post-surgical complications, 2) survival, and 3)

hospitalization needs. The patterns can be assisting healthcare professionals to establish specialized

pre-habilitation protocols and support healthcare management decisions.

Keywords: surgical risk, biclustering, oncology, post-surgical complications, discriminative pattern

mining, data analysis, biostatistics, data mining, software tool
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Resumo

Compreender os riscos da realização de procedimentos cirúrgicos é essencial para personalizar os pro-

tocolos preparatórios, de intervenção e pós-cirurgico. Este conhecimento é fundamental na área da on-

cologia, dada a natureza das intervenções, o perfil frágil dos pacientes com comorbilidades e exposição

a quimioterapia, e o possı́vel reaparecimento do cancro. Apesar da sua relevância, a descoberta de

padrões discriminativos de risco pós-cirúrgico apresenta alguns desafios: 1) o perfil individual fisiológico

e demográfico, bem como os cuidados pós-cirúrgicos diferenciados do paciente, 2) a crescente alta di-

mensionalidade e natureza heterogenea dos dados disponı́veis 3) a necessidade de aprender com

as populações onde os tumores têm diferenças significativas e os indivı́duos realizam procedimentos

cirúrgicos únicos (dados estruturalmente esparsos), 4) a necessidade de foco em padrões não triviais

de risco cirúrgico, ao mesmo tempo que garantem sua significância estatı́stica e poder discriminativo

dos resultados pós-cirúrgicos, e 5) a falta de interpretabilidade e capacidade de ação das abordagens

atuais.

Esta tese propõe o uso de biclustering, a descoberta de grupos de indivı́duos correlacionados em

subconjuntos de variáveis, devido às suas propriedades únicas que satisfazem os desafios previa-

mente mencionados, e também um método de discretização, DI2 (Distribution Discretizer), tornando a

procura de padrões mais robusta, quando na presença de variáveis não identicamente distribuidas. Os

padrões encontrados oferecem uma visão abrangente sobre como o perfil do paciente, a histopatologia

do cancro e os procedimentos cirúrgicos envolvidos com a capacidade de determinar: 1) complicações

pós-cirúrgicas, 2) sobrevivencia, e 3) necessidades de hospitalares.

Os resultados obtidos confirmam o papel fundamental do biclustering em encontrar de forma abra-

gente padrões interpretáveis, com capacidade de ação e estatisticamente significativos. Os padrões

encontrados podem ajudar os profissionais de saúde a estabelecerem protocolos especializados de

pré-habilitação e decisões de cuidados hospitalares.

Keywords: risco cirúrgico, biclustering, oncologia, complicações pós-cirurgicas, padrões discrimina-

tivos, análise de dados, bioestatı́stica, ferramenta de software
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Chapter 1

Introduction

Cancer is a disease1 with genetic and/or epigenetic precedence [26, 61]. It is primarily caused by

functional or transcriptional changes that control how our cells function. Normally cells grow and divide to

form new cells as the body needs them but when they become older or damaged apoptosis is activated to

program their death and other existing cells take their place. Nonetheless, these silent changes together

lead to the accumulation of cells that create their microenvironment, gaining their independence, and

can invade nearby tissue. The behavior of those cells will depend on the place they started, their cell

type and other host conditions, the human health state. These extra cells can divide without stopping

and may form a neoplasm. This neoplasm can be benign, but, they can also be malignant which means

they can spread into, or invade nearby tissues.

In Portugal, according to data retrieved by the 2018 National Cancer Registry2, in 2018, the number

of new cancer cases was 58 199 and the number of deaths from cancer was 28 960.

Compared with other areas of biological research, the science of molecular oncology is a recent

arrival. It began near the year 1975 and, since then, the access to demographic, clinical and molecular

data of patients undertaking oncological surgical procedures is growing [58, 82]. This is important

because as more data is collected, more analysis can be done. For example, one way to clinically

address cancer is to operate the patient and remove the affected cells. This can lead to post-operative

complications due to the procedure, physiological response, or external factors (such as infections). If

information about the patient is collected, a comparison can be made with previous patients, and the

doctors might be able to predict said negative impacts. But this is not an easy process, it requires the

data to be collected, consolidated, analyzed and visualized to pinpoint patterns.

One way to determine if a previous subset of conditions of a subset of patients was frequent, and

led to a negative impact, is to search for patterns using pattern mining techniques, and, test if they are

discriminative. But despite the relevance of discriminative pattern mining approaches, the discovery of

patterns discriminating surgical outcomes and other variables of interest is hampered by major chal-

lenges. First, individuals undertake personalized surgical procedures and differentiated post-surgical

care, as well as show unique demographic, physiological, and tumor histopathological profiles. Sec-

1https://www.cancer.gov/about-cancer/understanding/what-is-cancer, accessed January 2020
2https://gco.iarc.fr/today/data/factsheets/populations/620-portugal-fact-sheets.pdf, accessed January 2020
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ond, the high-dimensionality and heterogeneous nature of available biomedical data, combining non-

identically distributed risk factors, clinical records and biophysiological variables which contain structural

sparsity, where the characterization of the interventions and outcomes are highly specific, yet relevant

for the target end. Third, available data is inherently noisy and show arbitrarily-high levels of missing

values. Fourth, there is the need to focus on non-trivial patterns of surgical risk able to discriminate

post-surgical complications. In addition, the target patterns should strictly be statistically significant,

thus minimizing susceptibility of false positive and negative discoveries. Finally, there is the need to

guarantee the actionability and interpretability of the target patterns.

Due to the nature of interventions, cancer recurrence, and fragile profile of patients (generally de-

bilitated by the tumor effects and common need for chemotherapy) can cause small to life-threatening

post-surgical complications [25, 44]. Thus, this work aims at exploring patterns of pre-surgical profiles

to help professionals assess the various post-surgical outcomes of patients in need of surgical inter-

ventions. This knowledge is then translated into pre-surgical, surgical and post-surgical care protocols.

This work proposes a methodology for the discovery of actionable pre-surgical patterns from available

clinical data, with particular incidence on patterns able to discriminate the nature and severity of post-

surgical complications, amount of required time in the HDU (high dependency unit) after surgery, and

death susceptibility within the first year after surgery, and other variables and outcomes of interest.

To address the aforementioned limitations of existing approaches, we propose the use of biclustering,

the discovery of coherent subspaces, to comprehensively explore discriminative associations from het-

erogeneous oncological data. Although biclustering has been largely used in the biological domain, its

potential to assess surgical and post-surgical care remains untapped. To this end, we provide illustrative

patterns of surgical risk, with a particular emphasis on their sensitivity to the unique clinical record of the

individuals and ability to discriminate outcomes and variables of interest. We propose a structured view

on why, when and how to use biclustering for their effective and efficient discovery. We show how each

of the identified challenges can be addressed by extending state-of-the-art principles on pattern-based

biclustering. Due to a considerable number of data mining approaches for biomedical data analysis,

including state-of-the-art associative models, requiring a form of data discretization and despite mul-

tiple discretization approaches already have been proposed, they generally work under a strict set of

statistical assumptions which are arguably insufficient to handle the inherent heterogeneity associated

with clinical and molecular variables. In addition, an increasing number of symbolic approaches in bioin-

formatics support the assignment of multiple items for values occurring near discretization boundaries

for superior robustness. We propose a fully autonomous, non-parametric and prior-free discretization

method, DI2, supporting multi-item assignments. Finally, we guarantee the actionability, usability and

statistical significance of the target patterns, thus providing a trustworthy context for healthcare profes-

sionals to design pre-surgical, surgical and post-surgical care protocols.

The thesis is structured as follows. Background chapter introduces the theoretical concepts on the

techniques used in the solution and the results obtained, and it also introduces traditional risk scores on

surgical patients contained within the data made available to us. Related work surveys state-of-the-art

pattern discovery and other approaches on analyzing oncological data, it also surveys the use of the

2



traditional risk scores in various cohort studies. Solution chapter describes the approached solution, the

data used and its preprocessing, the algorithm used, the post-processing and visualization of the results.

Results and Discussion chapter presents the results obtained, their interpretation, and actionability. The

Conclusion chapter presents concluding remarks synthesized. Finally, Future work chapter presents the

work yet to be done.
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Chapter 2

Background

This chapter lays out fundamental concepts of pattern mining, biclustering and pattern-based bicluster-

ing, while also providing a brief introduction to post-surgical traditional risk scores for patients undergoing

surgery. We will start by giving an introduction to the concept of a tabular dataset followed by the section

Traditional Risk Scores presenting the various variables contained within our tabular dataset. Then in

section Pattern Mining we will give an introduction to concepts such as transactional dataset and fre-

quent itemsets, and present some of the best known algorithms. Section Biclustering introduces the

concept of biclustering, the various types and structures of biclusters, and some algorithmic approaches

to biclustering. Finally, Pattern-based biclustering section presents the concept of combining pattern

mining and biclustering to search for patterns.

Before we dive into the sections introduced let us establish some main concepts. A dataset is a

collection of data. In the case of tabular data, a dataset corresponds to one or more database tables,

where every column of a table represents a particular variable, and each row corresponds to a given

sample of the dataset in question. A dataset can be analyzed and the analysis may belong to one of two

classes: 1) univariate, and 2) multivariate / bivariate.

Univariate data consists of data with only one variable. For example the height of a group of people.

In this type of data, conclusions can be drawn by calculating the mean, median, mode, and the dispersion

of the data (range, minimum, maximum, quartiles, variance, and standard deviation).

When considering two variables, bivariate, or more, multivariate, the analysis is done to find out the

relationship between the two or more variables. If we consider a supervised scenario, one variable is

independent and the others are considered dependent. If we consider an unsupervised scenario, all the

variables are considered dependent.

The data in this work is in the form of a tabular dataset and its structure can be observed in Table

2.1. Each column represents a variable, each row represents a patient, and aij represents the value for

j variable of i patient.
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Table 2.1: Tabular dataset structure

Variable 1 ... Variable j ... Variable m
Patient 1 a11 ... a1j ... a1m
Patient ... ... ... ... ... ...
Patient i ai1 ... aij ... aim
Patient ... ... ... ... ... ...
Patient n an1 ... anj ... anm

Table 2.2: Tabular dataset example

y1 y2 y3 y4
Patient 1 8 4 2 1
Patient 2 5 4 3 1
Patient 3 8 4 3 1

2.1 Traditional Risk scores

To facilitate perioperative risk assessment for the selection of patients benefiting from surgery, a variety

of traditional scoring systems are used by the physicians. In this subsection, four clinical risk scores

contained within our data will be introduced as they play a fundamental role in this work: 1) P-POSSUM

(Portsmouth Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity)
1, 2) ACS NSQIP 2 (American College of Surgeons National Surgical Quality Improvement Program),

3) ARISCAT 3 (Assess Respiratory Risk in Surgical Patients in Catalonia), and 4) Charlson comorbidity

index 4. Later in the Related Work section some works where these scores were applied are presented.

POSSUM score, proposed by Copeland et al. [23], and its extension, P-POSSUM score, proposed

by Prytherch et al. [83], are methods for normalizing patient data so that direct comparisons of patient

outcome could be made despite differing patterns of referral and population. These methods were

validated by multiple studies [18, 47, 59, 71, 76, 78]. In our work, P-POSSUM consists in 12 physiological

and 6 operative factors detailed in Table 2.4. These factors are then inserted into two formulas of both

morbidity and mortality rates in order to predict said outcomes.

ACS NSQIP surgical risk calculator, presented by Bilimoria et al. [11], uses preoperative factors

(demographics and comorbidities) to predict 18 outcomes, originally only 8, within 30-days following

surgery. The ACS NSQIP subset of universal preoperative factors considered in the target cohort study

are described in Table 2.4.

ARISCAT, proposed by Canet et al. [14], is a predictive score to identify postoperative pulmonary

complications. The authors inputted multiple variables into a regression model and ended up with 7

predictive variables. The score was later validated by Mazo et al. [57] in a large European cohort.

Charlson et al. [16] developed a comorbidity index based on the 1-year mortality. This index contains

19 binary weighted variables and was validated by multiple studies [69, 70]. The index aims to define

a taxonomy of comorbid conditions which singly or in combination might alter the risk of short-term

1https://www.mdcalc.com/possum-operative-morbidity-mortality-risk, accessed on December 2020
2https://riskcalculator.facs.org/RiskCalculator/index.jsp, accessed on December 2020
3https://www.mdcalc.com/ariscat-score-postoperative-pulmonary-complications, accessed in December 2020
4https://www.mdcalc.com/charlson-comorbidity-index-cci, accessed December 2020
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mortality for patients enrolled in longitudinal studies.

All these simple risk scores are based on doctor-entered data.

Table 2.3: Outcomes for each of the risk scores introduced.

Risk scores Outcomes predicted

P-POSSUM Mortality,
Morbidity

ACS NSQIP

Mortality,
Morbidity,

Pneumonia,
Cardiac,

Surgical site infection,
Urinary tract infection,

Deep venous thrombosis,
Renal failure

ARISCAT Postoperative pulmonary complication

Charlson Comorbidity Index Risk of death from comorbid disease,
Survival 10-years after surgery

2.2 Pattern Mining

A transactional dataset consists in n transactions containing a variable number of variables. A tabular

dataset can be mapped to a transactional dataset through discretization and dummyfication. Table 2.5

shows the conversion to a transactional dataset of the tabular dataset example presented in Table 2.2.

Pattern mining discovers patterns within a transactional dataset. These patterns can come in the

form of: 1) itemsets, 2) association rules, 3) substructures. They appear with frequency no less than a

specified threshold and contain varying numbers of variables.

Definition 1. Let L be a finite set of items, and P be an itemset P ⊆ L. A transaction t is a pair

(tid, P ) with id ∈ N. An itemset database D over L is a finite set of transactions {t1, ..., tn}.

Definition 2. A transaction (tid, P ) contains P ′, denoted P ′ ⊆ (tid, P ) if P ′ ⊆ P . The coverage φP

of an itemset P occurs: φP = {t ∈ D|P ⊆ t}. The support of an itemset P in D, denoted supP , can

either be absolute, being its coverage size |φP |, or a relative threshold given by |φP |/|D|.

Definition 3. Give an itemset database D and a minimum support threshold θ, the frequent itemset

mining (FIM) problem consists of computing the set {P |P ⊆ L, θ ≤ supP }.

• Support: Support(X) = |t ∈ T ;X ⊆ t|
|T |

, where T is a set of transactions of a given database, X is

an itemset, t is a set of transactions which contain the itemset X

An accepted pattern is a frequent itemset that satisfies any other placed constraints over D. For ex-

ample considering Table 2.5 we have |L| = |{1, ..., 8}| = 8, φ{y1(8),y2(4)} = {t1, t3} and sup{y1(8),y2(4)} =

|{t1, t3}|/3 = 0.(6). For θ = 2, the FIM tasks returns {{y1(8)}, {y2(4)}, {y3(3)}, {y4(1)}, {y1(8), y2(4)}},

{y2(4), y4(1)}}, {y3(3), y4(1)}}, {y2(4), y3(3)}}, {y1(8), y4(1)}}, {y1(8), y2(4), y4(1)}}.
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Table 2.4: Input variables and corresponding categories for each traditional risk score

P-POSSUM
Variable Categories

Age (years) ≤ 60 | 61-70 | ≥ 70
Cardiac signs No failure | Diuretic, digoxin, antianginal or hypertensive therapy | Peripheral oedema; warfarin therapy

| Raised jugular venous pressure
Chest radiograph Borderline cardiomegaly | cadiomegaly

Respiratory history No dyspnoea | Dyspnoea on exertion | Limiting dyspnoea | Dyspnoea at rest
Blood pressure (systolic) (mmHg) 110-130 | 100-109, 131-170 | ≥ 171, 90-99 | ≤ 89

Pulse (beats/min) 50-80 | 81-100, 40-49 | 101-120 | ≥ 121, ≤ 39
Glasgow coma score 15 | 12-14 | 9-11 | ≤ 8

Haemoglobin (g/100 ml) 13-16 | 11.5 - 12.9, 16.1 - 17.0 | 10.0 - 11.4, 17.1 - 18.0 | ≤ 9.9, ≥ 18.1
White cell count (×1012/l) 4-10 | 10.1-20.0, 3.1 - 4.0 | ≥ 20.1, ≤ 3.0

Urea (mmol/l) ≤ 7.5 | 7.6-10.0 | 10.1 - 15.0 | ≥ 15.1
Sodium (mmol/l) ≥ 136 | 131-135 | 126 - 130 | ≤125

Potassium (mmol/l) 3.5 - 5.0 | 3.2 -3.4, 5.1 - 5.3 | 2.9 - 3.1, 5.4 - 5.9 | ≤ 2.8, ≥ 6.0
Electrocardiogram Normal | Atrial fibrallation (rate 60 - 90) | Any other abnormal rhythm or ≥ 5 ectopocs/min Q waves or

ST/T wave changes
Operative severity Minor | Moderate | Major | Major +

Multiple procedures 1 | 2 | > 2
Total blood loss (ml) ≤ 100 | 101-500 | 501-999 | ≥ 1000

Peritoneal soiling None | Minor (serous fluid) | Local pus | Free bowel content, pus or blood
Presence of malignancy None | Primary only | Nodal metatases | Distant metastases

Mode of surgery Elective | Emergency ressuscitation of≤ 2 h possible + Operation≤ 24 h after admission | Emergency
(immediate surgery ≤ 2 h needed)

ACS NSQIP
Variable Categories

Age (years) < 65 | 65-74 | 75-84 | ≥ 85
Sex Male | Female

Functional status Independent | Partially dependent | Totally dependent
Emergency case Yes | No

ASA class 1 | 2 | 3 | 4 | 5
Steroid use for chronic condition Yes | No
Ascites within 30 d preoperatively Yes | No

System sepsis within 48 h preoperatively None | SIRS | sepsis | septic shock
Ventilator dependent Yes | No
Disseminated cancer Yes | No

Diabetes No | Oral | Insulin
Hypertension requiring medication Yes | No

Previous cardiac event Yes | No
Congestive heart failure in 30 d preoperatively Yes | No

Dyspnea Yes | No
Current smoker within 1 y Yes | No

History of COPD Yes | No
Dialysis Yes | No

Acute renal failure Yes | No
BMI class Underweight | Normal | Overweight | Obese 1 | Obese 2 | Obese 3

ARISCAT
Variable Categories

Age in years ≤ 50 | 51-80 | > 80
Preoperative Oxygen % ≥ 96 | 91-95 | ≤ 90

Respiratory infection in the last month Yes | No
Preoperative anemia (<11g/dl) Yes | No

Surgical incision Peripheral | Upper abdominal | Intrathoracic
Duration of surgery in hours ≤ 2 | 2-3 | ≥ 3

Emergency procedure Yes | No

CHARLSON
Variable Categories

Myocardial infart Yes | No
Congestive heart failure Yes | No

Peripheral vascular disease Yes | No
Cerebrovascular disease Yes | No

Dementia Yes | No
Chronic pulmonary disease Yes | No
Connective tissue disease Yes | No

Ulcer disease Yes | No
Mild liver disease Yes | No

Diabetes Yes | No
Hemiplegia Yes | No

Moderate or severe renal disease Yes | No
Diabetes with end organ damage Yes | No

Any tumor Yes | No
Leukemia Yes | No

Lymphoma Yes | No
Moderate or severe liver disease Yes | No

Metastatic solid tumor Yes | No
AIDS Yes | No
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Table 2.5: Transactional dataset structure based on tabular dataset in Table 2.2

Transaction id Items
1 {y1(8), y2(4), y3(2), y4(1)}
2 {y1(5), y2(4), y3(3), y4(1)}
3 {y1(8), y2(4), y3(3), y4(1)}

Definition 4. Given an itemset matrix, a support threshold θ, and the coverage function φ : 2L → 2D

that maps an itemset P to its set of supporting transactions:

• A frequent itemset P is an itemset that satisfies |φ(P )| ≥ θ

• A closed frequent itemset is a frequent itemset with no superset with same support (∀P⊂P ′ |P | >

|P ′|)

• A maximal frequent itemset is a frequent itemset with all supersents being infrequent (∀P⊂P ′ |φ(P ′)| <

θ)

If we consider the transactional database in Table 2.5 and a given threshold θ = 2 and P ≥ 2, there

are two maximal frequent itemset ({y1(8), y2(4), y4(1)}, {y2(4), y3(3), y4(1)}) and there are three closed

frequent itemsets ({y1(8), y2(4), y4(1)}, {y2(4), y3(3), y4(1)} and {y2(4), y4(1)}).

Definition 5. Consider two itemsets P ∈ 2L and P ′ ∈ 2L, where P ′ ⊆ P , and a predicate M . M is

monotonic when M(P )⇒M(P ′) and M is anti-monotonic when ¬M(P ′)⇒ ¬M(P ).

The previously introduced properties are the basis of FIM. Finding patterns is critical to derive re-

lations from data. Association rules are a way to direct the search for itemsets in an informative way

as they discriminate the values along specific variables (rule’s consequent) based on the occurrence

of other items in the transaction (rule’s antecedent). To evaluate each rule a set of standard metrics is

used, including:

• Confidence: Confidence(X =⇒ Y ) = Support(X ∪ Y )
Support(X) , which tells us how often the rule has

been found to be true

• Lift: Lift(X =⇒ Y ) = Support(X ∪ Y )
Support(X)× Support(Y ) , gives us the ratio of the observed support to

that expected if X and Y were independent.

If we consider the example in Table 2.5 and the association rule {y2(4); y3(3)} → {y1(8)}:

• Confidence({y2(4), y3(3)} → {y1(8)}) = (1/3)
(2/3) = 1

2

• Lift({y2(4), y3(3)} → {y1(8)}) = (1/3)
(2/3)×(2/3) = 3

4

Since the earlier introduction of FIM and association rule mining by Agrawal in [1], various algorithms

have been proposed to do frequent itemset mining [84]. Among the best-known algorithms are: 1)
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Apriori, it applies a breadth-first search and the downward closure property (any superset of a non-

frequent itemset is non-frequent), to prune the search tree, is exhaustive in search for pattern and

requires a large memory space due to candidate generation. 2) FPGrowth, it applies divide-and-conquer

strategy and an FP-tree data structure (condensed representation of the transactional database), making

it possible to only use two database ID scans (one to build the FP-Tree, second to extract the frequent

itemsets), and requires a large memory space to build said tree. 3) Eclat, it applies a depth-first search

and a vertical layout (each item is represented by a set of transaction IDs, tidset), the support of an

itemset is the size of the tidset representing it, the size of tidsets is one of the main factors affecting the

running time and memory usage of eclat.

2.3 Biclustering

Pattern mining approaches have three major problems. First, efficiency decreases when the dimension-

ality of the data increases. Second, they don’t handle well numerical variables. Third, a high volume of

outputs is generated.

The term biclustering was first used by Cheng and Church [21] in gene expression data analysis. It

refers to a distinct class of clustering algorithms that perform simultaneous sample-variable clustering.

Variants such as coclustering, bidimensional clustering, and subspace clustering, among others, are

often used in the literature to refer to the same problem formulation.

Then what is the difference between clustering and biclustering? While clustering can be applied

to either the samples or the variables of the data matrix separately, biclustering, on the other hand,

performs clustering in two dimensions simultaneously. This means that clustering derives a global model

while biclustering produces a local model. In this context when clustering algorithms are used, each

patient in a given patient cluster is defined using all the variables. Similarly, each variable in a variable

cluster is characterized by the activity of all the patients that belong to it. However, each patient in a

bicluster is selected using only a subset of the variables and each variable in a bicluster is selected

using only a subset of the patients. The goal of biclustering techniques is thus to identify subgroups

of patients and subgroups of variables, by performing simultaneous clustering of both samples and

variables of the patients matrix, instead of clustering these two dimensions separately.

Definition 6. Given a matrix, A=(X,Y ), with a set of rows X={x1, , ..., xn}, columns Y ={y1, ..., ym},

and elements aij ∈ R relating row i and column j:

• We define a cluster of rows as a subset of rows that exhibit a similar behavior across that the set

of all columns. This means that a row cluster AIY =(I, Y ) is a subset of rows defined over the set

of all columns Y , where I={i1, ..., ik} is a subset of rows (I ⊆ X and k ≤ n). A cluster of rows

(I, Y ) can thus be defined as a k by m submatrix of the matrix A.

• We define a cluster of columns as a subset of columns that exhibit similar behavior across the set

of all rows. A column cluster AXJ=(X, J) is a subset of columns defined over the set of all rows

X, where J={j1, ..., js} is a subset of columns (J ⊆ Y and s ≤ m). A cluster of columns (X, J)
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can then be defined as an n by s submatrix of the matrix A.

• A bicluster is a subset of rows that exhibit similar behavior across a subset of columns, and

vice versa. The bicluster AIJ=(I, J) is thus a subset of rows and a subset of columns where

I={i1, ..., ik} is a subset of rows (I ⊆ X and k ≤ n), and J={j1, ..., js} is a subset of columns

(J ⊆ Y and s ≤ m). A bicluster (I, J) can be defined as a k by s submatrix of the matrix A.

• The biclustering task aims to identify a set of biclusters Bk=(Ik, Jk) such that each bicluster Bk

satisfies specific criteria of homogeneity, where Ik ⊂ X, Jk ⊂ Y and k ∈ N.

Approaches to solve the biclustering task rely on a merit function to define the homogeneity criteria

(the variance of the bicluster’s values is an example of such function). Merit functions guarantee one or

both of the following:

• Intra-bicluster’s homogeneity.

• Inter-bicluster homogeneity (overall homogeneity of the output set of biclusters).

The merit function defines the type, quality and structure of biclustering solutions. Alternatively, merit

functions can be defined to locally maximize greedy iterative searches, to combine row- and column-

based clusters, to exploit matrices recursively, or to guide the space exploration in exhaustive searches.

In exhaustive searches, which commonly rely on constrained formulation, merit functions are the heuris-

tics that guide the space exploration.

The pursued homogeneity determines the coherence, quality and structure of a biclustering solution

[35]. The coherence of a bicluster is determined by the observed form of correlation among its ele-

ments (coherence assumption) and by the allowed value deviations from perfect correlation (coherence

strength). The quality of a bicluster is defined by the type and amount of accommodated noise. The

structure of a biclustering solution is defined by the number, size, shape and positioning of biclusters.

A flexible structure is characterized by an arbitrary number of (possibly overlapping) biclusters. These

concepts are discussed in the following sections.

Given a dataset, the elements within a bicluster aij ∈ (I, J) have coherence across variables (pattern

on observations) if aij=cj+γi+ηij , where cj is the expected value of variable yj , γi, presented later on

as either αi or βj depending on the the type of coherence, is the adjustment for observation xi, and ηij

is the noise factor of aij . Let r be the amplitude of values of the input data, coherence strength is a

value δ ∈ [0, r] such that aij = cj + γi + ηij where ηij ∈ [−δ/2, δ/2].

2.3.1 Bicluster types

As mentioned before merit functions define the type of biclusters found, Figure 2.1 illustrates different

types of biclusters.These different types of biclusters can be categorized into four major classes:

• Constant values. (Figure 2.1a).

• Constant values on rows or columns. (Figure 2.1b and 2.1c).
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• Coherent values. (Figure 2.1d and 2.1e).

• Coherent evolutions. (Figure 2.1f, 2.1g and 2.1h).

(a) Constant bicluster. (b) Constant rows. (c) Constant columns. (d) Coherent values (addic-
tive model).

(e) Coherent values (multi-
plicative model).

(f) Coherent evolution on
the rows.

(g) Coherent evolution on
the columns.

Figure 2.1: Examples of different types of biclusters.

Each of these four major classes of biclusters has one or multiple expressions that define a perfect

bicluster. For example a perfect constant bicluster is a submatrix (I, J), where all values are equal, for

all i ∈ I and j ∈ J :

aij = µ . (2.1)

A perfect bicluster with constant rows is a submatrix (I, J), where all the values within the bicluster

can be obtained using one of the following expressions:

aij = µ+ αi , (2.2)

aij = µ× αi , (2.3)

where µ is the typical value within the bicluster and αi is the adjustment for row i ∈ I. This adjustment

can be obtained either in an additive (Fig. 2.1d) or multiplicative way (Fig. 2.1e).

Similarly, a perfect bicluster with constant columns is a submatrix (I, J), where all the values within

the bicluster can be obtained using one of the following expressions:

aij = µ+ βj , (2.4)

aij = µ× βj , (2.5)

where µ is the typical value within the bicluster and βj is the adjustment for column j ∈ J .
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If we consider the tabular dataset introduced earlier, Table 2.2, an example of a perfect bicluster with

constant columns is shown on Table 2.6 where µ = 1 and β1 = 7, β2 = 3, β4 = 0

Table 2.6: An example of a perfect bicluster within the tabular dataset in Table 2.2

y1 y2 y4
Patient 1 8 4 1
Patient 3 8 4 1

A perfect bicluster with coherent values, considering an additive model, is a subset of rows and a

subset of columns, whose values aij can be predicted using the following expression:

aij = µ+ αi + βj , (2.6)

where µ is the typical value within the bicluster, αi is the adjustment for row i ∈ I, and βj is the adjust-

ment for column j ∈ J .

A perfect bicluster with coherent values, considering a multiplicative model, are given by the following

expression:

aij = µ′ × α′i × β′j . (2.7)

Finally, for the fourth category, coherent evolutions, can be present as an order-preserving submatrix

where, for example, aj4 ≤ aj2 ≤ aj3 ≤ aj1 represent a bicluster with coherent evolutions on its columns.

An example using the tabular dataset previously introduced is the whole dataset where y1 ≥ y2 ≥ y3 ≥

y4.

2.3.2 Bicluster structure

The existence of biclusters can be viewed as a single submatrix or as multiple submatrixes inside a

matrix. When considering the existence of several biclusters in the data matrix, the following bicluster

structures can be obtained:

• exclusive row and column biclusters (Fig. 2.2b).

• nonoverlapping biclusters with checkerboard structure (Fig. 2.2c).

• exclusive-rows biclusters (Fig. 2.2d) or exclusive-columns biclusters (Fig. 2.2e).

• nonoverlapping biclusters with tree structure (Fig. 2.2f).

• nonoverlapping nonexclusive biclusters (Fig. 2.2g).

• overlapping biclusters with hierarchical structure (Fig. 2.2h).

• arbitrarily positioned overlapping biclusters (Fig. 2.2i).
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(a) Single bicluster. (b) Exclusive row and
column.

(c) Checkerboard
structure.

(d) Exclusive rows bi-
clusters.

(e) Exclusive columns
biclusters.

(f) Nonoverlapping
biclusters with tree
structure.

(g) Nonoverlap-
ping nonexclusive
biclusters.

(h) Overlapping bi-
clusters with hierar-
chical structure.

(i) Arbitrarily posi-
tioned overlapping
biclusters.

Figure 2.2: Bicluster structures.

An ideal reordering of the matrix would produce an image, similar to Fig.2.2b, with some number K

of rectangular blocks on the diagonal. This ideal corresponds to the existence of K mutually exclusive

and exhaustive clusters of rows, and a corresponding K − way partitioning of the columns. Every row

and every column in the matrix belongs exclusively to one of the K biclusters. Figure 2.2c structure is

produced if we consider that rows and columns may belong to more than one bicluster, and assume a

checkerboard structure, we allow the existence of K nonoverlapping and nonexclusive biclusters. In this

case each row in the data matrix belongs to exactly K biclusters. If we assume that rows (or columns)

can only belong to one bicluster, while columns (or rows), can belong to several biclusters, the structure

produced is similar to Fig.2.2d and 2.2e. Other bicluster structures include the tree structure depicted in

figures 2.2f and 2.2g.

The previously discussed structures assume that the biclusters are exhaustive, that is, every row and

every column belongs to at least one bicluster (there are nonexhaustive variations of these structures

that make it possible that some rows and columns do not belong to any bicluster), and are restrictive

in many ways. Some assume that, for visualization purposes, all the identified biclusters should be

observed directly on the data matrix. Others assume that the biclusters are exhaustive. However, it is

more likely that, in real data, 1) some rows or columns do not belong to any bicluster at all, and, 2) that

the biclusters overlap in some places. If we consider a hierarchical structure, depicted in figure 2.2h,

that requires that either the biclusters are disjoint or that one includes the other, it is possible to have the

two previously mentioned properties without relaxing the visualization property. A more general bicluster

structure allows the existence ofK possibly overlapping biclusters without taking into account their direct

observation on the data matrix with a common reordering of its rows and columns, figure 2.2i.

Considering the tabular dataset example from earlier, Table 2.2, figure 2.3 displays the found struc-

tures. Biclusters have the cells painted with a darker blue and red boxes, if the cell contains a darker

blue and is inside two red boxes then it belongs to two biclusters.

When considering overlapping structures of biclusters we can consider an additive or multiplicative
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overlap. Figure 2.4 illustrates examples of different types of biclusters overlapped with a general addic-

tive model, and, figure 2.5 with a multiplicative model.

(a) Single bicluster (b) Exclusive columns bicluster

(c) Arbitrarily positioned overlapping biclusters
(d) Overlapping biclusters with hierarchical
structure

Figure 2.3: Example of bicluster structures found within tabular dataset 2.2.

(a) Constant biclusters (b) Constant rows (c) Constant columns (d) Coherent values
Figure 2.4: Overlapping biclusters with general additive model.

(a) Constant biclusters (b) Constant rows (c) Constant columns (d) Coherent values
Figure 2.5: Overlapping biclusters with general multiplicative model.

2.3.3 Algorithms

Some approaches attempt to identify one bicluster at a time, others one set of biclusters at a time. Algo-

rithms can perform simultaneous bicluster identification, which means that the biclusters are discovered

all at the same time. Given the complexity of the problem, a number of different heuristic approaches

have been used:
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• Iterative row and column clustering combination.

– They apply clustering algorithms to the rows and columns of the data matrix separately, and

then combine the results using some sort of iterative procedures to combine the two cluster

arrangements.

• Divide and conquer.

– They break the problem into several subproblems that are similar to the original problem but

smaller in size, solve the problems recursively, and then combine the solutions to create a

solution to the original problem. It has the significant advantage of being potentially very fast,

however, it is likely to miss good biclusters that may be split before they can be identified.

• Greedy iterative search.

– They always make a locally optimal choice in the hope that this choice will lead to a globally

good solution. They create biclusters by adding or removing rows/columns from them, using

a criterion that maximizes the local gain.

• Exhaustive bicluster enumeration.

– They are based on the idea that the best biclusters can only be identified using an exhaustive

enumeration of all possible biclusters existent in the matrix. Due to their high complexity, they

can only be executed by assuming restrictions on the size of the biclusters.

• Distribution parameter identification.

– They assume a given statistical model and try to identify the distribution parameters used to

generate the data by iteratively minimizing a certain criterion.

2.4 Pattern-based biclustering

As more biclustering algorithms started to emerge, a new approach to biclustering, pattern-based bi-

clustering, appeared to address some of the commonly observed limitations of peer approaches[34]. A

pattern-based biclustering approach allows for an efficient and exhaustive space search. It relies on an

itemization step, where the original matrix is transformed into a transactional dataset, followed by the

application of frequent itemset mining and sequential pattern mining methods (for real value matrices

normalization and discretization procedures are applied). This approach produces a non-fixed number

of biclusters within a flexible structure. By using a transactional dataset, pattern-based biclustering deals

with missing and noisy values, as they search transactions with varying length, making it possible to re-

move missings or be associated with zero or multiple values. Despite pattern-based biclustering being

inherent oriented to search for biclusters with constant model, it was extended to search for additive,

multiplicative, symmetric, order-preserving and plaid models. The search for biclusters can also be ex-

tended using discriminative pattern mining or incorporate pattern mining-based constraints to guide the

search by pruning the search space and focus on non-trivial biclusters.
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Figure 2.6: Pattern-based biclustering: discovery of two illustrative biclusters with constant and order-preserving
assumptions based on frequent itemsets and frequent subsequences from transactional data mapped from the input
data matrix.

Definition 7. Given a matrix A and a minimum support threshold θ, a set of biclusters ∪kBk, where

Bk = (Ik, Jk), can be derived from the set of frequent itemsets ∪kPk by either mapping (Ik, Jk) =

(φPk
, Pk) to compose biclusters with coherency on rows, or by mapping (Ik, Jk) = (Pk, φPk

) to compose

biclusters with coherency on columns.

Pattern-based biclustering can be viewed as a sequence of three steps: 1) Mapping, handling of

outliers, noise and missings, real-value matrix handling, and itemization. 2) Mining, pattern mining

approaches, application schemas for non-constant models, target patterns and algorithms. 3) Closing,

merging structures and overlapping, noise tolerance, filtering biclusters.

Two classes of pattern-based biclustering approaches can be considered:

• Directly apply pattern miners over discrete matrices.

• Target numeric matrices by customizing the support metric (itemization step is optional).

Figure 2.6 maps a matrix into two distinct transactional databases (given by index concatenations

and orderings) for the subsequent discovery of constant and order-preserving biclusters derived from

frequent patterns.
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Chapter 3

Related work

This section surveys the usage of the traditional risk scores introduced in the previous section and state-

of-the-art advances on pattern discovery as well as applied efforts of bridging these contributions in the

oncological domains. Accordingly, this chapter is divided into sections: 1) traditional risk scores, and 2)

pattern discovery. In the risk scores section, for each risk score presented in the Background chapter,

there is a subsection. In each of these subsections, multiple works where the score was applied for a

healthcare system are presented. In each case different types of patients, and the effectiveness of the

scores are presented. Pattern discovery contains four subsections: 1) Unsupervised analysis of oncol-

ogy data, where multiple works using other techniques besides classical pattern mining and biclustering

is used in the oncological domain, 2) Classic pattern mining, where extensions/modifications to classi-

cal pattern mining approaches are presented, 3) Biclustering, where multiple algorithms, cohorts, and

toolboxs are presented, and 4) Pattern visualization, where state of the art visualization of patterns is

presented.

3.1 Traditional Risk Scores

3.1.1 P-POSSUM

Emergency laparotomy1 is considered a high-risk surgical procedure with high morbidity and mortality.

Therefore, it is important to have an accurate pre-operative assessment of the associated risks, morbid-

ity and mortality. Cao et al. [15] evaluated the predictive power of mortality scores of patients, 65 or older,

undergoing emergency laparotomy surgery. Patients who had a conversion from laparoscopic, a mini-

mally invasive surgery, to a laparotomy or those subjected to laparotomy due to traumatic injury were not

included in the study. They tested the predictive power using 2 models, a logistic regression and random

forests, and 3 scalers, standard scaler, min-max, and, robust scaler. Their results showed that the mod-

els used considered P-POSSUM variables to always be between first and fifth most important predictive

variables (in all of the 3 different scalers). In the logistic model P-POSSUM morbidity and mortality were

always present in the top 5 predictive variables, and, in the random forest model P-POSSUM morbidity
1https://www.medicalnewstoday.com/articles/laparotomy
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was always present in the top 5 predictive variables. Thahir et al. [77] evaluated the accuracy of the mor-

tality given by two scores, P-POSSUM and NELA, in the same emergency procedure. They considered

a wider range of patients, ranging from 18 to 99 years old, and don’t mention any exclusive type proce-

dures. They compared the mortality predicted versus mortality observed and their results showed that

P-POSSUM tended to over-predict mortality. Chen et al. [19] present an extension to the P-POSSUM

score, the West Australian Categorisation of Operative Severity (WA classification (WA classification)

created for all neurosurgical procedures. Their study showed that P–POSSUM models are predictive

of the overall mortality in a general neurosurgical service, but, POSSUM consistently overestimated the

mortality rates in all groups of patients. They showed that P–POSSUM using the WA system is highly

predictive of overall mortality. Johns et al. [39] tested P-POSSUM score in hip fracture mortalities. They

conducted study on all hip fracture mortalities over a 2-year period and only used patients who died after

surgery. When evaluated with only patients who died after surgery their results showed that P-POSSUM

underpredicted the observed mortality rate. However P-POSSUM scoring system was able to predict

morbidity effectively.

In the oncology domain, Bakshi et al. [6] investigates if the current practices of pain management af-

ter emergency laparotomy in cancer patients are the most appropriate. They analyze factors influencing

the choice of pain management techniques such as time of surgery, patient factors including American

Society of Anaesthesiologists (ASA) physical status scores and P-POSSUM scores. Pain management

was recorded as a numeric value between 1 and 10 (being 10 the most satisfied). P-POSSUM predicted

mortality and pain management technique were compared using a one-way ANOVA test. Their results

showed that there was no association between P-POSSUM predicted mortality and pain management

technique. Karan et al. [41] conducted a study to evaluate the discriminative power of the P-POSSUM

mortality and morbidity scores. They defined a composite endpoint of 30-day morbidity as complications

occurring within 30 days of surgery or discharge, mortality was documented within 30 days of surgery.

In their results P-POSSUM predicted morbidity was higher than the observed morbidity. The mortality

score could not be assessed as the observed 30 day mortality was nil, at 90 days was 4, and, at 180

days was 7. P-POSSUM in their study was not able to discriminate well the likelihood of perioperative

complications. The authors propose that a reason for their study showing conflicting results compared

to other studies is the differences in the study populations, and inclusion of both elective and emergency

surgeries in other studies.

3.1.2 ACS NSQIP SRC

O’Neill et al. [63] conducted a study to evaluate the predictive value of the ACS NSQIP calculator in

patients undergoing microvascular breast reconstruction. The study used 515 patients and demon-

strated that the ACS NSQIP surgical risk calculator accurately predicted the proportion of patients that

developed post-operative complications but it couldn’t identify the individual patents who were at risk of

complications.

In the oncology domain, Sahara et al. [72] conducted a study to validate and examine the accuracy
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of the ACS NSQIP SRC to predict outcomes among elderly patients undergoing liver resection (due to

cancer). Their study concluded that ACS NSQIP SRC failed to estimate accurately the risk of many

adverse outcomes, such as complications after resection of the liver, while it overestimated the risk

for 30-day readmission and non-home discharge. Cusworth et al. [24] aimed to determine the ability

of ACS NSQIP SRC to accurately predict risk of complications and length of hospital stay who under-

went Pancreaticoduodenectomy (remove cancerous tumors off the head of the pancreas). If the patient

developed a pancreatic-specific post-surgical complication then the underestimated the risk, but if the

patient developed a non-pancreatic-specific post-surgical complication then the prediction matched with

the observed.

3.1.3 ARISCAT

Kupeli et al. [46] conducted a study to compare the ASA scale and ARISCAT to predict pulmonary com-

plications after renal transplant. The study used 172 patients primarily male. The authors had a previous

study where they considered ARISCAT a useful tool, Kupeli et al. [45], in predicting the aforementioned

complications on renal transfer patients, in this study they concluded again that ARISCAT was reliable

and useful to stratify risk when advising patients before surgery.

3.1.4 Charlson

Birim et al. [12] evaluated the impact of the Charlson Comorbidity Index in early stage lung cancer and its

predicting capability on long-term survival. The study used 433 patients and concluded that Charlson is a

better predictor of survival and validated its ability to stratify comorbidity severity for patients undergoing

early stage lung cancer surgery. Voskuijl et al. [81] studied if a higher Charlson Comorbidity Index was

associated with readmission of the patient, an increased risk of surgical infection or mortality. They

concluded that Charlson Comorbidity index was not associated with infection but was associated with

a higher risk of death within 30 days of discharge for patients receiving oncologic treatment. Charlson

index was also associated with readmission after surgery for spine and trauma surgeries, thus having a

significant influence on readmission.

3.2 Pattern discovery

3.2.1 Unsupervised analysis of oncology data

Li et al. [49] introduces a new method to discover statistically significant association rules in high-

dimensional profiling data, to aggregate the discriminative power of these rules for reliable predictions.

In this approach, they use decision trees to discover rules but use committees of trees, instead of a

single tree, where every leaf is a collection of rules. They weight the rules according to their coverage in

the original training dataset which causes the rules to reflect precisely the nature of the original training

data. The final decision to classify a test sample is done by voting, in a weighted manner, the rules in
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the k trees of the committee that the test sample satisfies. The authors present three facts from real

examples of high-dimensional profiling data. First, statistically significant association rules often contain

globally low-ranked features. Second, if the construction of a tree is confined to a set of globally top-

ranked features, the rules in the resulting tree may be less significant than those rules derived by using

the whole feature space. Third, alternative trees can often outperform or compete with the performance

of the ’optimal’ tree when the same set of test data is applied. The authors report that their method

provides a highly competitive accuracy compared to current approaches and highly comprehensible

rules that help translate raw data into knowledge.

Bellazzi et al. [8] presents a review on the main features of predictive clinical pattern mining such

as methods able to deal with temporal data and the efforts performed to translate molecular medicine

results into clinically useful pattern mining models. The authors refer to the application of pattern mining

in clinical medicine as being related to a predictive (supervised) and descriptive (unsupervised) task.

These tasks also employ a feature selection to better the predictive model created. Time series have

been also studied with traditional signal processing and feature extraction methods, which are devoted

to summarizing the temporal information in attributes suitable for classification algorithms. A predictive

model can then be constructed to forecast a response variable. This variable can be categorical or

numerical, so that predictive pattern mining may deal with classification and regression problems. Fea-

ture selection can occur before the model estimation. This is done using feature ranking based on the

attribute predictive capability, for example, information gain.

Pendharkar et al. [67] shows how pattern mining using association rules and classification ap-

proaches can be a viable tool to predict and diagnose the occurrence of breast cancer. The paper

focuses on exploring data envelopment analysis (DEA), for binary classification problems, and artifi-

cial neural networks (ANN) using discriminative analysis for mining breast cancer patterns. DEA seeks

to determine a subset of k decision-making units that determine the envelopment surface when all k

decision-making units consist of m inputs and s outputs. The authors start by filling in the missing val-

ues to ensure the data was complete and valid. Then a division was made, the data was split in two, one

for learning the patterns and the other for testing the predictive performance. Once the records were

divided, extraneous data associated with each record was eliminated and the models were trained. The

authors found that comparing the results obtained with other studies on an equitable basis difficult as 1)

DEA uses information about one class to determine the discriminant function whereas, other techniques

use information about two classes to determine the discriminant function, 2) The performance of DEA is

likely to vary if DEA and its variant is used for the 2 classes separately, 3)The datasets are different and

attributes considered in this study are different from the attributes considered in other studies. Despite

this, the solo evaluation reveals that both DEA and ANN outperform the traditional statistical discriminant

analysis, with ANN being superior as DEA assumes the convexity of the acceptable cases and neural

networks relax this assumption.
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3.2.2 Classic pattern mining

Fang et al. [27] presents an approach to mine low-support discriminative patterns from dense and high-

dimensional data. They do this by proposing a family of antimonotonic measures named SupMaxK.

SupMaxK conceptually organizes the set of discriminative patterns into nested layers of subsets. As it

does, they become progressively more complete in their coverage but require increasingly more com-

putation for their discovery. In particular, a special member of this family is presented by the authors

as best suitable for dense and high-dimensional data and can serve a complementary role to the ex-

isting approaches by helping to discover low-support discriminative patterns. It is named SupMaxPair,

because K = 2. To evaluate the patterns discovered using SupMaxPair they used synthetic datasets

and a cancer gene expression dataset, and two criteria, 1) pattern-based biological relevance, 2) Gene

collection-based biological relevance. The experimental results they obtained showed that SupMax1

generally provides very poor approximation of the absolute difference of the relative supports (if the

absolute difference is bigger than a given r, then the itemset is discriminative), the approximation is im-

proved substantially when K goes to 2 and 3 but when K is increased further to 3 and 4, the computation

time increases exponentially, in spite of the approximation improving much slower when compared to the

improvement obtained when K goes from 1 to 2.

Borgelt et al. [13] presents an algorithm to find fragments in a set of molecules that help to discrimi-

nate between different classes of activity in a drug discovery context. The proposed algorithm maintains

parallel embeddings of a fragment into all molecules throughout the growth process and exploits a local

order of the atoms and bonds of a fragment to prune the search tree, this results in a fast search and a

restricted depth-first search algorithm, similar to the Eclat algorithm. They use a pruning technique not

based on support nor size but a third type which they call structural pruning. Structural pruning ensures

that every itemset is considered in one branch only, even though adding items in different orders can

yield the same itemset. They do not define a global order of the atoms they number the atoms in a

substructure and record how a substructure was constructed in order to constrain its extensions. The

results obtained from applying the algorithm found relevant fragments using data from a well-known

HIV-screening compound database.

3.2.3 Biclustering

The Bimax algorithm, proposed by Prelic et al. [68], finds subgroups in a binary matrix where all entries

are one. In a divide-and-conquer fashion, this is done by iterating two steps: 1) Rearrange the samples

and variables to concentrate entries with ones in the upper right corner of the matrix, and 2) Divide the

matrix into two submatrices. Submatrices with only ones are returned. To obtain satisfying results, the

method needs to be restarted several times with different starting points.

The CC (Cheng and Church) algorithm, proposed by Cheng and Church [21], it defines a bicluster as

a subset of samples and variables with a high similarity score (equation 3.1). In particular, the authors

aim at finding large and maximal biclusters with scores below a certain threshold δ. This means that the

values in each sample or variable can be generated by shifting the values of other samples or variables
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by a common offset. Unfortunately, due to noise in data, δ-biclusters may not always be perfect. The

concept of residue was thus introduced to quantify the difference between the actual value of an element

aij and its expected value predicted from the corresponding sample mean, variable mean, and bicluster

mean. To assess the overall quality of a δ-bicluster, Cheng and Church defined the mean squared

residue, H, of a bicluster (I, J) as the sum of the squared residues, equation 3.2.

H(I, J) = 1
|I||J |

∑
i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (3.1)

H(I, J) = 1
|I||J |

∑
i∈I,j∈J

r(aij)2, (3.2)

where aiJ represents the row mean, aIj represents the column mean, aIJ the bicluster mean.

The algorithm is divided into three major steps:

1. Deleting samples and variables with a score larger than alpha times the matrix score;

2. Deleting samples and variables with largest scores;

3. Adding samples or variables until alpha level is reached;

These steps are repeated until a maximum number of biclusters is reached or no bicluster is found.

Spectral algorithm, proposed by Kluger et al. [43], addresses the problem of identifying biclusters

with coherent values. It looks for checkerboard structures in the data matrix by integrating biclustering of

samples and variables with normalization of the data matrix. The authors assume that after a particular

normalization, which was designed to accentuate biclusters if they exist, the contribution of a bicluster is

given by a multiplicative model. To identify the structure the algorithm goes through the following steps:

1. Reorder the data matrix and choose a normalization method

2. Compute a singular value singular value decomposition to get eigenvalues and eigenvectors

3. Depending on the chosen normalization methods, construct biclusters beginning from the largest

or second largest eigenvalue

The number of biclusters correlates with the number and value of the eigenvalues. The biclusters

found have a checkerboard structure and have higher or lower values than the samples and variables

around them.

The previous biclustering approaches evaluate separately the contribution of each bicluster without

taking into consideration the interactions between biclusters. In particular, they do not explicitly take

into account that the value of a given element, aij , in the data matrix can be seen as a sum of the

contributions of the different biclusters to whom the sample i and the variable j belong. Plaid model,

proposed by Lazzeroni et al. [48], addressed this limitation by viewing the value of an element in the

data matrix as a sum of terms called layers. In the plaid model, the data matrix is described as a linear

function of variables (layers) corresponding to its biclusters. The plaid model is defined as follows:
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aij =
K∑
k=1

θijk + ρik + κjk, (3.3)

where K is the number of layers (biclusters) and the value of θijk specifies the contribution of each

bicluster k specified by ρik and κjk. The terms ρik and κjk are binary values that represent, respectively,

the membership of sample i and variable j in bicluster k.The algorithm follows these three steps:

1. Update all parameters one after another S (user defined) times

2. Calculate the sum of squares of the layer (LSS) using the resulting parameters

3. Compare Result with random permutation and return bicluster if LSS is higher

The steps repeat until no new bicluster is found.

The Xmotifs algorithm, proposed by Murali et al. [60], searches for samples with constant values

over a set of variables. The main aspect of this algorithm is to define a sample state where a sample is

called conserved if it has the same state in all variables. Once the data matrix represents the states, the

algorithm chooses a random number of variables n times and performs the following steps:

1. Choose a subset from these variables and collect all samples with equal state in this subset

2. Collect all variables where these samples have the same state

3. Return the bicluster if it has the most samples from all found and is also larger than a alpha fraction

of the data

The algorithm finds submatrices where all samples have the same value structure over the variables.

To collect more than 1 bicluster the calculation can be rerun without the samples and variables already

found, or just return small combinations that were found. It is possible to find groups with a large variance

in their values in the sample direction.

Veroneze et al. [79] presents an enumerative biclustering algorithm that efficiently mines maximal

biclusters in mixed-attribute datasets without requiring any preprocessing steps such as discretization

or itemization of real-valued attributes. Their proposed solution is an extension of RIn-Close CVC. They

argue that for mixed-attribute datasets only biclusters with constant values on columns are optimal in

mixed-attribute datasets and propose a new definition for that type of bicluster, maintaining the mono-

tonicity and anti-monotonicity properties. To select significant biclusters from the enumerative solution

the authors propose two filters. One is based on formal concept analysis metrics (support, confidence,

lift) to measure the quality of a rule. The second filter is a heuristic that locally maximizes the row-

coverage. Their results showed that for five mixed-attribute labeled datasets the biclusters yield a tight

set of rules which provide useful and interpretable models.

The work done by Harpaz et al. [30] used the Bimax algorithm to identify drug groups that share

a common set of adverse events. The data used was collected from Adverse Event Reporting System

reports which contain a total of 441 009 individual reports, 65 975 unique drugs and 10 886 unique

adverse events. These numbers were reduced when the authors mapped to generic drugs and removed
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the duplicate reports. To use the Bimax algorithm the authors defined as parameters the minimum

number of drugs and the minimum number of adverse events, this defines the minimum size for a

bicluster found. The biclusters defined consisted of a small set of drugs, each of which is associated

with the same small set of adverse events. The results obtained demonstrated that a significant number

of biclusters, relating adverse drug events by grouping similar drugs with a common set of adverse

events, were identified. Additionally, the authors ran two statistical tests to prove that the biclusters found

were extremely unlikely to have occurred by chance. The first statistical test used a standard graph-

theoretic approach to compute the expected number and probability of random 3 by 3 complete bipartite

graphs. The second statistical test conducted a hypothesis test by creating a set of 100 random 3 by

3 biclusters sampled from the Adverse Event Reporting System drug and adverse events distributions

and by comparing the number of known biclusters identified in the random set with the number of known

biclusters identified they identified.

The Plaid model biclustering algorithm was highly emphasized by Alavi and co-workers [2], as being

one of the most flexible algorithms proposed, and, in their work, they provided an evaluation of the

Plaid models in both simulation data and real data. The simulation data generated consists of two

matrices with different degrees of overlap and noise with two embedded biclusters. The real dataset

contains information related to breast cancer (docetaxel resistance) [42]. They begin by normalizing

the information with a median approach and then filling the missing values using KNN. Plaid model is

then applied to both data. The authors concluded that in big datasets with little noise, Plaid model could

provide useful information.

A method to efficiently select relevant genes using Spectral biclustering was proposed by Liu et

al. [51]. The key idea of their method is to use the best class partitioning eigenvectors, given by

spectral biclustering, and select the top 100-200 genes, from these genes, they select the best 2-gene

combinations, which can accurately divide the cancer data. The results achieved for the lymphoma data

was a selection of two genes which managed to separate samples perfectly. For liver cancer data, the

best two-gene combinations selected separated samples well, with only two samples misclassified.

An exhaustive study, presented by Mandal et al. [55], to identify biomarkers using two approaches,

frequency-based (Frequency is nothing but several occurrences of a gene or miRNA in all the biclusters)

and network-based (this technique incorporates external biological knowledge with biclustering results)

use several biclustering techniques. They applied over seventeen different biclustering algorithms to four

different single type cancer gene expression datasets such as blood, lung, colon, prostate, one multi-

tissue microarray cancer dataset, and one miRNA breast cancer dataset. As far as preprocessing done,

to the miRNA expression data for breast cancer they filtered out extremely low expression values across

all samples then applied z-score normalization, to the other datasets preprocessing was not done as

the data used was already treated. After this they had to specify the biclustering parameters for each

biclustering technique, these were selected from previous studies using these algorithms. The funda-

mental goal of the publication was to do a systematic comparison among a few prominent biclustering

algorithms and to evaluate their effectiveness based on their ability to provide relevant information such

as biomarkers and subtypes for a given disease. The conclusions they reached were that of the biclus-
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tering algorithms one of the best suited for finding subtypes for blood, colon, prostate and breast cancer

was Cheng and Church algorithm. For the microarray data, Cheng and Church was also one of the best

performing algorithms throughout all the datasets except prostate cancer. For biomarker identification

methods Cheng and Church and Xmotifs both proved to be well suited.

To utilize some of the the biclustering algorithms previously mentioned both Kaiser et al. [40] and

Barkow et al. [7] implemented toolboxes. These provide the user with a number of preprocessing,

biclustering and cluster validation functions. Table 3.1 lists the functions available in each toolbox.

Table 3.1: List of functions for preprocessing, biclustering, and bicluster analysis of each toolbox.

biclust BicAT

Preprocessing

normalization,
discretization,

independent scaling,
bistochastization,
log interactions

normalization
(log2, mean,centric),

discretization

Biclustering Algorithms

Bimax,
Cheng and Church,

Xmotifs,
plaid model,

Spectral

Bimax,
Cheng and Church,

Xmotifs,
Iterative Signature [37] [38],

Orderpreserving Submatrix [9]

Biclusters Validation

Jaccard index,
Variation index [54],

Scoring function [22],
F Statistic

Analysis of gene pair
occurrence to derive gene

interconnection graphs

3.2.4 Pattern-based biclustering

Henriques et al. [34] provides a structured view on pattern mining-based approaches to biclustering and

applied a qualitative comparison of the state-of-the-art pattern mining-based biclustering approaches

supporting their accuracy, efficiency and biological relevance. The pattern mining-based biclustering

algorithms analysed were DeBi proposed by Serin et al. [75], BiModule proposed by Okada et al. [62],

GenMiner proposed by Martinez et al. [56], BicPAM proposed by Henriques et al. [36], RAP proposed by

Pandey et al. [66], RCB Discovery proposed by Atluri [5], and ET-Bicluster proposed by Gupta et al. [29].

Henriques talks about what each of these state-of-the-art algorithms has to offer and the challenges

that arise with the use of them. In terms of beneficial factors, DeBi offers a complete and statistical

rigorous post-processing. BiModule offers multi-level discretization and removal of outliers. GenMiner

offers a more robust frame to deal with noisy biclusters. ET-Bicluster offers a parameterizable discovery

of biclusters based on noise allowed. BicPAM can search for additive/multiplicative/symmetric/plaid

bicluster models and deals with discretization, noise and missing. In terms of difficulties that arise, DeBi

has a decrease in efficiency due to post-processing extension procedures, the data is binarized and can

miss a large number of potentially significant biclusters due to discovering maximal patterns. BiModule

has no merging-extension option to handle noise. RAP is not able to deal with noisy biclusters. RCB

Discovery excludes biclusters with meaningful differences across columns when searching for biclusters

with constant coherency overall, and has a combinatorial problem that impacts efficiency. ET-Bicluster
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does not guarantee exhaustive solutions when searching for patterns. BicPAM has efficiency problems

for very large matrices when searching for biclusters with non-constant models.

3.2.5 Pattern visualization

Visualizing correctly and with a clean layout the results found through pattern mining is essential to get

the correct interpretation of the data. Some standard visualizations were discussed in the Background

section and in this subsection, some work that uses them and some new approaches are presented.

The work presented by Liu et al. [52] is a system called AssocExplorer to support exploratory data

analysis via association rule visualization and exploration. They use a scatter plot to provide a global

view of the rules. The X-axis represents the coverage of rules and the Y-axis represents confidence.

The authors also use colors to help highlight the relevant results to the user. They highlight length-1

rules as they are simple and easy to comprehend. They also allow the user to color rules based on a

selected attribute, rules that do not contain the attribute are colored gray, filter out or zoom in on rules

that are interesting to them.

Santamaria et al. [73] present BicOverlapper, a tool to visualize biclusters from gene-expression ma-

trices using a graph visualization. Nodes represent genes or conditions, and edges join nodes that are

grouped by one or more biclusters. Each bicluster is represented as an undirected complete subgraph.

The overlap between biclusters is visualized by means of intersecting hulls. The use of glyphs on genes

and conditions nodes improves our understanding of instances of overlapping when the representation

becomes complex. With these details the tool helps to compare biclustering methods, to unravel trends

and to highlight relevant genes and conditions.

The open-source software tool BiVisu, presented by Cheng et al. [20] focus on detecting and visu-

alizing biclusters embedded in gene expression matrix. Apart from the preprocessing, biclustering and

filtering the tool offers it also presents to the user a way to visualize the biclusters found through Parallel

Coordinates visualization. They use the yeast dataset to prove the effectiveness of the tool. Parallel Co-

ordinates together with the mean square residual score and average correlation value, subjective and

objective judgment of bicluster homogeneity can be achieved.

In Santamaria et al. [74] the authors present an interactive framework that helps to infer differences

or similarities between biclustering results. The visualization presented contains multiple representation-

s/display options to help bring forth the results such as Parallel Coordinates, Heatmaps, Bubble charts,

TRN graphs, and Overlapper [73]. In this work, the visualizations are connected to each to help the user

visualize different properties. The heatmap presented represents a single bicluster and is reordered

to represent the similarities between the rows and columns, in hierarchical biclustering the heatmap is

accompanied by a dendrogram. The Bubble chart is used to represent the biclusters and their proper-

ties where its position and size depending on characteristics such as size and their homogeneity. With

the different visualizations working together, the researchers can extract interesting features from the

biclustering results, especially the highlighting of overlapping zones that usually represent robust groups

of genes and/or conditions.
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Chapter 4

Solution

Our work aims at mining discriminative patterns of post-surgical outcomes from cancer patients and vari-

ables of interest. A pattern is a set of co-occurring attributes from surgical, biopathological, physiological

and/or demographic variables, discriminative of post-surgical outcomes, and supported by a statistically

significant set of individuals. Biclustering, the discovery of subspaces, is in this work suggested to this

end. The pattern of a bicluster corresponds to a specific clinical profile, the pattern length corresponds to

the number of attributes, and the pattern support corresponds to the individuals sharing the profile. The

patterns searched follow either a constant assumption, characterized by a subset of variables on which

a statistically significant number of patients have an identical profile, or a non-constant assumption. We

seek the non-constant assumption due to the constant assumption suffering from a problem: two in-

dividuals need to share the same pattern in order to count as supporting observations for a bicluster.

However, variations may be coherently explained by differences on their physiology or comorbidities. In

this context, non-constant patterns should be pursued to guarantee a greater robustness to the variabil-

ity of the profile of individuals, while still guaranteeing the coherence of the target patterns of surgical

outcomes. Particularly, the order-preserving relaxation can be placed to find individuals with preserved

orders of values observed on risk-measuring variables (Fig.5.3d). Illustrating, if a specific risk score is

higher than others for a group of individuals, this ordering can be a pattern irrespectively of the absolute

value of the risk scores.

This chapter is structured as follows: 1) we will present a structured view on why, when and how to

bicluster oncological data to understand post-surgical outcomes and variables of interest in cancer pa-

tients, 2) the dataset characteristics will be presented, 3) the data preprocessing done such as removing

errors, dataset divisions, and discretization will be presented, 4) BicPAMS algorithm will be introduced,

5) the output produced and how it is presented, and visualizations implemented to facilitate the explo-

ration of the dataset as well as feature ranking.

Figure 4.1 presents the three main steps, as a pipeline, to produce the results presented in the next

chapter.

On WHY . Biclustering should be considered for mining patterns discriminative of surgical outcomes

to: 1) avoid the drawbacks of classic pattern mining methods (including their susceptibility to the item-
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Figure 4.1: Main steps in the solution

boundaries problems1, inability to comprehensively explore heterogeneous biomedical data), 2) find

non-trivial patterns discriminative of post-surgical outcomes with constant and order-preserving coher-

ence, and 3) pursue patterns with parameterizable properties of interest by customizing the target co-

herence strength, quality (noise-tolerance), dissimilarity and statistical significance.

On WHEN . Similarly, biclustering should be applied when: 1) the target patterns should provide guaran-

tees of discriminative power and/or statistical significance, 2) pursuing non-trivial yet coherent forms of

knowledge (including the introduced constant or order-preserving assumptions), 3) discretization draw-

backs must be avoided, 4) heterogeneous data sources may be available, and when 5) one seeks to

find comprehensive solutions with customizable homogeneity criteria.

On HOW : comprehensive exploration of clinical data. Pattern-based biclustering offers principles

to find complete pattern solutions by: 1) pursuing multiple homogeneity criteria, including multiple co-

herence strength thresholds, coherence assumptions and quality thresholds, and 2) exhaustively yet

efficiently exploring different regions of the search space, preventing that regions with large patterns

jeopardize the search [36]. As a result, non-trivial yet significant correlations within the available clinical

data are not neglected.

In addition, pattern-based biclustering does not require the input of support thresholds as it explores

the search space at different supports [36], i.e. we do need to place expectations on the minimum

number of individuals with a shared profile of surgical risk. Dissimilarity criteria and condensed repre-

sentations can be also placed [36] to prevent the delivery of redundant patterns.

On HOW : statistical significance. A sound statistical testing of the patterns of surgical risk is key to

guarantee the absence of spurious relations, and ensure the relevance of the given patterns to support

mobility decisions. To this end, the statistical tests proposed in BSig [33] are suggested to minimize false

positives (outputted patterns yet not statistically significant) without incurring on false negatives. This is

done by approximating a null model of the target clinical data and statistically testing each bicluster

against the null model in accordance with its underlying coherence.

On HOW : robustness to noise. Pattern-based biclustering can find biclusters with a parameterizable

tolerance to noise [36]. Illustrating, a quality of 80% indicates that an upper limit given by 20% of aij

entries within a bicluster may fail to follow the target clinical profile (µij /∈ [−δ/2, δ/2]). This possibility

ensures robustness to the individual-specific variations on a specific variable from a given pattern.

On HOW : other opportunities. Additional benefits of pattern-based biclustering that can be carried
1The possibility to allow deviations from value expectations (under limits defined by the placed coherence strength) together

with multi-item assignments [36] are placed to prevent discretization problems from occurring
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towards the analysis of surgical risk data include: 1) incorporation of domain knowledge to guide the

task in the presence of background information (e.g. focus on a specific type of cancer of surgical

procedure) [31], 2) the possibility to remove uninformative elements in data to guarantee a focus, for

instance, on complications [32], and 3) support classification and regression tasks using associative

models composed by discriminative patterns [35].

4.1 Dataset description

A retrospective cohort of cancer patients undertaken surgery at the Portuguese Institute of Oncology,

Porto, Portugal (IPO-Porto) were monitored (2016 to 2018) for this study. The gathered data, termed

IPOscore dataset, contains information pertaining to the demographic and physiological patient char-

acteristics, cancer location and histopathological determinants, risk scores, surgical procedures, and

post-surgical outcomes. The risk scores within the dataset are P-POSSUM, ACS NSQIP, ARISCAT, and

Charlson comorbidity Index. The IPO-Porto Ethics Committee approved (CES IPO:91/019) the analysis

of the anonymized IPOscore data.

The dataset contains 847 patients (samples/observations) with 138 variables (33 binary, 45 nominal,

8 ordinal, 35 numerical, 13 free-text, 4 date). Of these variables in the clustered setting 4 are considered

as outcomes of interest: 1) presence-absence of post-surgical complication, 2) Clavien-Dindo index of

post-surgical severity, 3) days spent in HDU, and 4) death within 1 year. In the integrative setting 14

variables were considered as target variables, the previous mentioned and 10 new ones: 1) request

type anesthesia, 2) provenance, 3) HDU motive of admission, 4) number of days at IPO, 5) admitted

into intensive care, 6) average nursery points per day, 7) destination after HDU, 8) readmitted into HDU,

9) destination after IPO, 10) moment of death after surgery. The patients included in this study were

selected because they had co-morbidities or because the surgery to be performed was complex, which

advocated that the immediate postoperative be monitored in the HDU.

Two informative text variables, named ICD-10 and ACS procedures, exist in the dataset. These

indicate the undertaken surgical standard procedures and are discussed in the next section.

4.2 Data preprocessing

This section presents the undertaken data transformations. It describes the data cleaning applied to the

data, the data normalization done to some columns, and, how the data was handled for the first results

and for the second results.

4.2.1 Data transformation

The dataset contained typing mistakes which were fixed, for example ’5.5.’ which should be ’5.5’. A non

uniform representation of missing values across the columns existed, for example ’sem dados’, ’nan’,

’n/a’, and were all converted to a global representation ’?’. Finally, text columns, which contained im-
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portant information regarding the surgical interventions each patient was subjected to, were normalized

into binary columns. These columns are ’ICD10 interventions’ and ’ACS procedures’. Figure 4.2 shows

how the information present in ’ICD10 interventions’ variable was transformed to binary columns.

Figure 4.2: Normalization of column ’ICD10 interventions’

4.2.2 Clustered versus integrative setting

For the Clustered setting we considered that the patterns should be able to discriminate four outcomes:

1) post-surgical complication, 2) clavien-dindo post-surgical index, 3) days spent at HDU, and 4) death

within 1 year. The pattern discriminates one of these outcomes if the measure lift is above a certain

threshold (later defined and discussed in Results chapter).

The dataset was partitioned into four sub-datasets: 1) ICD-10, 2) ACS procs, both of these two sub-

datasets contain only the surgical interventions, 3) Scores, this sub-dataset contains only the output

variables of each score within the dataset, 4) Non-score variables, this sub-dataset contains the phys-

iological, demographic and operative variables. Figure 4.3 displays the aforementioned partitioning. A

total of sixteen sub-datasets were created, four sub-datasets for each outcome considered.

Figure 4.3: Partitioning of the dataset. Black represents a given outcome variable, blue represents non-score
variables, orange represents score output variables, green represents ICD10 interventions, yellow represents ACS
procedures.

Feature ranking was applied in the non-score and score output datasets to reduce the number of

attributes. This preserves only the attributes most correlated with the corresponding outcome. The

selected feature ranking approaches are later discussed in the Results section.
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In the integrative setting, nine outcomes are considered: 1) post-surgical complication, 2) clavien-

dindo post-surgical index, 3) days spent at HDU, 4) death within 1 year, 5) days spent at IPO, 6) des-

tination after HDU, 7) average points NAS per day, 8) HDU readmission, 8) destination after IPO, and

9) moment of death after surgery. We also consider patterns for: 1) request type anesthesia, 2) prove-

nance, 3) HDU motive of admission, and 4) passed by intensive care. In this setting no attributes are

removed based on feature ranking tests and the dataset is not partitioned. Values from binary/categor-

ical variable that symbolize the absence of a disease/condition are replaced with missing values, this

substitution is also applied to values that occur more than 70% within a variable. We implemented and

applied a new form of discretization of numerical variables before applying BicPAMS algorithm. The

proposed DI2 (Data Discretizer) is discussed in next section. This allows for a more careful discretiza-

tion of variables, as some variables follow skewed distributions, and more robust pattern discovery by

BicPAMS algorithm. Finally we also created a version of the dataset where numerical variables are

categorized using the range-based discretization. In range-based discretization numerical variables are

put into categories of equal width based on range of the variable (from min to max).

4.3 DI2: Data Discretizer Approach

Approaches to discretization of continuous variables have long been discussed alongside their pros and

cons. Altman [3] and Bennette et al. [10] both discuss the relevance and impact of categorizing contin-

uous variables and reducing the cardinality of categorical variables. Liao et al. [50] compares various

categorization techniques in the context of classification tasks in medical domains, without using domain

knowledge of field experts. The relevance of discretization meets both descriptive and predictive ends,

encompassing state-of-the-art approaches such as pattern-based biclustering [36] and associative mod-

els such as XGBoost [17].

In this context, we propose DI2 2, an approach that makes use of non-parametric tests to find the

best fitting distribution for a given variable and discretize it accordingly. DI2 offers three major contri-

butions: 1) corrections to the empirical distribution before statistical fitting to guarantee a more robust

approximation of candidate distributions, 2) efficient statistical fitting of over 50 state-of-the-art theoretical

distributions, and, 3) assignment of multiple items according to the proximity of values to the boundaries

of discretization, a possibility supported by numerous symbolic approaches [36].

DI2 provides three data normalization techniques, which are selected for preprocessing a given

variable based on its empirical distribution. The supported techniques are: 1) min-max, 2) z-score,

and 3) mean. Before discretizing the data, two non-parametric tests are applied. 1) χ̃2 test [53], and

2) Kolmogorov-Smirnov goodness-of-fit test [28]. The Kolmogorov-Smirnov goodness-of-fit test can

optionally be used to remove up to 5% outlier points from the observed distribution according to the

matched theoretical continuous distribution. The modified observed distribution from the iteration of

the Kolmogorov-Smirnov test with the best KS-statistic is used for the subsequent fitting stage. This

correction guarantees the absence of penalizations caused by abrupt yet spurious deviations driven by

2https://github.com/JupitersMight/DI2
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the selected histogram granularity.

In the aforementioned tests the observed distribution is matched with a theoretical continuous distri-

bution3 provided by the SciPy open-source library [80]. The binning of the distributions for the χ̃2 test

is based on the number of categories the user inputs and are built using equal-frequency binning. The

user can either choose the χ̃2 or the Kolmogorov-Smirnov goodness-of-fit as the primary fitting test.

After selecting the theoretical continuous distribution that best fits the continuous variable, DI2 pro-

ceeds with the discretization. Given a desirable number of categories (bins), multiple cut-off points are

generated using the inverse cumulative distribution function of the theoretical continuous distribution.

The cut-off points guarantee an approximately uniform distribution of observation per category, although

empirical-theoretical distribution differences can underlie imbalances.

DI2 supports multi-item assignments by identifying border values for each category. To this end, the

user can optionally also define a percentage (between 0 and 50% with 20% default) to affect the width

of the borders. These borders take an intermediate value which symbolize that it belongs to both upper

and lower category. Width extremes, 0% (50%) correspond to none (one) additional category assigned

to every observation.

To illustrate some of the DI2 properties, we consider as an example the breast-tissue dataset avail-

able at the UCI machine learning repository [4], containing electrical impedance measurements in sam-

ples of freshly excised tissue from the breast. It contains 106 instances and 9 continuous variables (I0,

PA500, HFS, DA, AREA, A/DA, MAX IP, DR, P).

The gathered results show the decisions placed by DI2 in the absence and presence of Kolmogorov-

Smirnov optimization. For this analysis, we considered a min-max normalization for all variables, a

desirable number of 5 categories per variable, and χ̃2 as the primary statistical test.

Table 4.1 shows the best fitting distribution for each continuous variable of the dataset without and

with Kolmogorov-Smirnov outlier removal. Variables ’I0’, ’PA500’, ’A/DA’, ’DR’, and ’P’ remained un-

changed with a removal of up to 5% of outlier points. Variables ’HFS’ and ’Area’ produced better results

in the χ̃2 test with the removal of outliers solidifying the distribution choice. Finally, the fitting choice

changed for variables ’DA’ and ’Max IP’ under the χ̃2 test, revealing a more solid choice from the analy-

sis of the residuals.

Table 4.1: Best fitting distributions for each continuous variable, without and with Kolmogorov-Smirnov correction.
Both χ̃2 (primary) and KS statistics are shown.

Variables Without opt. χ̃2 Ks With opt. χ̃2 Ks

I0 alpha 8.8 0.12 alpha 8.8 0.11
PA500 exponnorm 2.98 0.07 exponnorm 2.98 0.07
HFS foldcauchy 2.25 0.07 foldcauchy 1.57 0.07
DA recipinvgauss 1.6 0.06 chi2 1.01 0.06
Area frechet r 0.5 0.07 frechet r 0.25 0.05
A/DA mielke 1.17 0.06 mielke 1.17 0.05
Max IP johnsonsu 4.72 0.05 alpha 1.09 0.07
DR johnsonsb 1.2 0.05 johnsonsb 1.2 0.05
P genextreme 5.13 0.09 genextreme 5.13 0.09

Considering variable ’DA’, Figures 4.4a and 4.4b show its Q-Q (quantile-quantile) plot, offering a
3https://docs.scipy.org/doc/scipy/reference/stats.html
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(a) Q-Q plot of empirical distribution (blue dots) against
the fitted recipinvgauss distribution (red line).

(b) Q-Q plot of empirical distribution (blue dots) against
the fitted chi2 distribution (red line).

(c) Empirical distribution (gray bins) and corresponding
cut-off points using equal-width, equal-frequency and D2I
statistical fitting with and without Kolmogorov-Smirnov
correction. Red and yellow lines correspond to category
and border boundaries.

Figure 4.4: Figure 4.4a displays how the observed distribution matched with the theoretical distribution
without the Kolmogorov-optimization. Figure 4.4b displays how the observed distribution matched with
the theoretical distribution with the Kolmogorov-optimization. Figure 4.4c shows where the category
boundaries are depending on the technique
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view on the adequacy of the statistical fitting. In this context, we depict histograms for the observed

data with 100 bins (blue dots) and the best theoretical distribution picked without and with Kolmogorov-

Smirnov correction (red line). A moderate improvement from Figure 4.4a to 4.4b can be detected, with

the observed quantiles (blue dots) being closer to the theoretical continuous quantiles (red line). After

the fitting stage, cut-off points are calculated to produce the final categories. Figure 4.4c compares dif-

ferent discretization options: equal-frequency and the two best fitting theoretical continuous distributions

(without and with Kolmogorov-Smirnov optimization). Cut-off points are marked as red lines, and the

border cut-off points in yellow. This analysis shows how critical discretization can be, determining the

inclusion or exclusion of high density bins. The ability of DI2 to assign multiple items using borders can

be explored by symbolic approaches to mitigate vulnerabilities inherent to the discretization process.

Tables 4.2 to 4.5 show the best distributions for each numeric variable of IPOscore dataset and the

corresponding results for each statistical test, with and without Kolmogorov optimization.

Table 4.2: DI2 best distribution and statistical test results for each variablo for 3 and 4 categories (part 1/2).

3 labels 4 labels

Without optimization With optimization Without optimization With optimization

Variables distribution χ̃2 KS distribution χ̃2 KS distribution χ̃2 KS distribution χ̃2 KS

P-Possum

physiological score (%)
genhalflogistic 1.40 0.07 halfnorm 4.67 0.05 genhalflogistic 3.57 0.07 norm 3.80 0.09

P-Possum surgical

severity score (%)
loggamma 1.90 0.19 dweibull 0.46 0.16 exponnorm 118.77 0.18 genhalflogistic 4.76 0.12

P-Possum morbidity (%) dweibull 1.67 0.06 foldnorm 0.58 0.03 dweibull 11.92 0.06 gengamma 2.82 0.04

P-Possum mortality (%) mielke 0.03 0.04 betaprime 0.02 0.02 mielke 0.55 0.04 mielke 1.54 0.02

ACS altura frechet r 0.68 0.07 frechet r 0.79 0.05 foldcauchy 3.35 0.09 foldcauchy 1.92 0.09

ACS peso chi 0.45 0.03 mielke 0.08 0.02 crystalball 0.41 0.45 norm 0.35 0.03

Serious complications (%) kappa3 0.57 0.07 chi 1.09 0.02 frechet r 0.11 0.03 beta 0.62 0.02

Average risk of

serious complications (%)
betaprime 1.41 0.07 genlogistic 0.18 0.07 cauchy 3.52 0.11 lognorm 2.24 0.05

Any complication (%) kappa3 0.05 0.06 kappa3 0.82 0.06 beta 0.42 0.04 beta 1.25 0.04

Average risk of

any complications (%)
foldnorm 0.03 0.08 mielke 2.03 0.05 chi 1.29 0.06 beta 1.25 0.04

Pneumonia (%) pearson3 0.06 0.03 genpareto 0.12 0.02 exponnorm 3.03 0.04 betaprime 1.38 0.03

Average risk

of pneumonia (%)
cauchy 2.17 0.15 alpha 0.08 0.07 logistic 1.26 0.11 logistic 1.49 0.11

Cardiac complications (%) pearson3 0.05 0.09 pearson3 0.24 0.07 alpha 9.99 0.06 lognorm 12.37 0.04

Average risk of

cardiac complications (%)
maxwell 0.94 0.15 foldnorm 1.23 0.10 rayleigh 7.26 0.15 dgamma 6.28 0.09

Surgical infection (%) halfcauchy 1.64 0.12 beta 4.76 0.03 mielke 8.19 0.07 chi 8.92 0.04

Average risk of

surgical infection (%)
halfcauchy 6.43 0.13 halfcauchy 1.59 0.12 halfcauchy 10.32 0.13 lomax 15.36 0.07
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Table 4.3: DI2 best distribution and statistical test results for each variablo for 3 and 4 categories (part 2/2).

3 labels 4 labels

Without optimization With optimization Without optimization With optimization

Variables distribution χ̃2 KS distribution χ̃2 KS distribution χ̃2 KS distribution χ̃2 KS

ITU (%) chi 0.38 0.06 nakagami 0.42 0.04 chi 1.01 0.06 nakagami 0.61 0.04

Average risk of ITU (%) dgamma 0.81 0.11 foldcauchy 0.22 0.09 dgamma 1.39 0.11 dgamma 0.16 0.11

Venous thromboembolism (%) hypsecant 0.27 0.12 frechet r 0.26 0.04 foldcauchy 0.95 0.08 fatiguelife 4.24 0.04

Average risk of

venous thromboembolism (%)
halfcauchy 4.59 0.17 maxwell 0.38 0.09 loggamma 2.99 0.10 loggamma 10.98 0.09

Kidney failure (%) gilbrat 1.14 0.09 gilbrat 0.40 0.07 loglaplace 13.82 0.07 lognorm 6.56 0.07

Average risk of

kidney failure (%)
moyal 4.40 0.16 beta 0.02 0.08 loglaplace 15.59 0.17 foldnorm 11.02 0.15

Ileus (%) dgamma 0.08 0.06 triang 0.02 0.05 gennorm 20.01 0.05 gennorm 0.01 0.05

Average risk of ileus (%) foldcauchy 10.71 0.28 gennorm 3.98 0.29 foldcauchy 10.71 0.28 gennorm 3.98 0.29

Anastomotic leak (%) foldcauchy 0.09 0.12 foldcauchy 0.08 0.12 foldnorm 0.33 0.07 beta 0.25 0.08

Average risk of

anastomotic leak (%)
loglaplace 1.37 0.38 loglaplace 1.37 0.38 trapz 44.05 0.26 dweibull 26.18 0.49

Readmission (%) beta 0.76 0.02 chi 0.02 0.01 gengamma 0.54 0.02 nakagami 0.25 0.01

Average risk

of readmission (%)
beta 2.19 0.06 frechet r 0.67 0.04 genlogistic 10.49 0.07 t 2.20 0.06

Reoperation (%) dgamma 0.08 0.11 mielke 0.07 0.02 mielke 0.38 0.03 pearson3 0.41 0.03

Average risk

of reoperation (%)
hypsecant 0.38 0.10 hypsecant 0.33 0.09 laplace 2.61 0.11 dweibull 1.35 0.10

Death (%) lognorm 4.52 0.08 lognorm 3.45 0.06 levy 3.10 0.06 levy 3.09 0.05

Average risk of death (%) moyal 0.19 0.13 dgamma 0.76 0.16 loglaplace 1.01 0.08 loglaplace 2.91 0.08

Discharge to nursing

or rehad facility (%)
chi 1.55 0.07 gengamma 1.60 0.03 gengamma 1.91 0.03 gengamma 0.84 0.03

Average risk of discharge to

nursing or rehad facility (%)
halfcauchy 0.20 0.14 halfcauchy 1.19 0.13 logistic 1.66 0.12 dgamma 3.76 0.11

ACS forecast of

hospitalization days (%)
dweibull 1.21 0.08 dgamma 2.24 0.07 foldcauchy 0.77 0.07 foldcauchy 1.68 0.06

ARISCAT total score foldcauchy 0.04 0.40 chi2 7.83×10−15 0.99 kappa3 6.44 0.38 chi2 1.6×10−14 0.99

Charlson Comorbidity Index anglit 3.22 0.19 f 8.06×10−15 0.07 kappa3 23.38 0.27 rdist 2.43×10−14 0.77

Survivability (10 years) gengamma 0.03 0.41 frechet r 0.24 0.38 frechet r 3.48 0.41 loglaplace 26.42 0.37
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Table 4.4: DI2 best distribution and statistical test results for each variablo for 5 categories (part 1/2).

5 labels

Without optimization With optimization

Variables distribution χ̃2 KS distribution χ̃2 KS

P-Possum

physiological score (%)
genhalflogistic 10.97 0.07 maxwell 4.12 0.10

P-Possum surgical

severity score (%)
exponnorm 79.88 0.18 exponnorm 77.53 0.15

P-Possum morbidity (%) genpareto 7.99 0.06 gengamma 2.77 0.04

P-Possum mortality (%) mielke 0.94 0.03 lomax 21.17 0.03

ACS altura t 2.23 0.05 loggamma 4.10 0.05

ACS peso chi 3.54 0.03 crystalball 1.08 0.03

Serious complications (%) beta 6.96 0.02 mielke 1.99 0.03

Average risk of

serious complications (%)
loggamma 10.80 0.08 gennorm 12.0 0.10

Any complication (%) pearson3 10.85 0.03 chi 1.52 0.03

Average risk of

any complications (%)
gennorm 2.84 0.10 rdist 1.67 0.10

Pneumonia (%) betaprime 8.82 0.04 expon 3.45 0.03

Average risk

of pneumonia (%)
frechet l 36.61 0.07 logistic 1.49 0.11

Cardiac complications (%) alpha 5.88 0.06 alpha 7.03 0.04

Average risk of

cardiac complications (%)
foldcauchy 8.07 0.11 dgamma 10.18 0.10

Surgical infection (%) chi2 9.02 0.06 pareto 9.24 0.04

Average risk of

surgical infection (%)
exponnorm 24.49 0.10 beta 3.70 0.07
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Table 4.5: DI2 best distribution and statistical test results for each variablo for 3 and 4 categories (part 2/2).

5 labels

Without optimization With optimization

Variables distribution χ̃2 KS distribution χ̃2 KS

ITU (%) genpareto 6.27 0.04 nakagami 0.94 0.04

Average risk of ITU (%) dgamma 13.33 0.11 dgamma 2.17 0.11

Venous thromboembolism (%) foldcauchy 4.74 0.08 frechet r 3.12 0.04

Average risk of

venous thromboembolism (%)
dgamma 23.79 0.10 dweibull 20.28 0.02

Kidney failure (%) loglaplace 7.37 0.07 halfcauchy 5.55 0.06

Average risk of

kidney failure (%)
exponnorm 102.0 0.14 halflogistic 38.46 0.13

Ileus (%) rice 0.25 0.05 frechet r 0.07 0.05

Average risk of ileus (%) gennorm 74.51 0.32 genpareto 7.61 0.29

Anastomotic leak (%) cauchy 5.80 0.11 foldnorm 5.72 0.07

Average risk of

anastomotic leak (%)
trapz 24.71 0.26 dweibull 15.56 0.50

Readmission (%) beta 3.84 0.02 chi 0.05 0.01

Average risk

of readmission (%)
maxwell 20.81 0.05 pearson3 1.99 0.05

Reoperation (%) betaprime 7.47 0.02 mielke 1.09 0.02

Average risk

of reoperation (%)
dgamma 1.10 0.10 fatiguelife 6.13 0.05

Death (%) invweibull 23.44 0.06 kappa3 10.0 0.06

Average risk of death (%) moyal 17.50 0.13 dgamma 13.11 0.16

Discharge to nursing

or rehad facility (%)
gengamma 8.87 0.04 frechet r 22.18 0.04

Average risk of discharge to

nursing or rehad facility (%)
gengamma 44.44 0.08 mielke 9.83 0.05

ACS forecast of

hospitalization days (%)
gumbel r 5.47 0.05 gumbel r 22.44 0.04

ARISCAT total score powerlaw 157.39 0.38 chi2 2.34×10−14 0.99

Charlson Comorbidity Index kappa3 23.76 0.27 betaprime 4.71 0.72

Survivability (10 years) beta 15.49 0.41 kappa3 31.46 0.41
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4.4 BicPAMS

As surveyed, pattern-based biclustering approaches provide the unprecedented possibility to compre-

hensively find patterns in real-valued data with parameterizable homogeneity and guarantees of statis-

tical significance. To be able to differentiate different clinical profiles of interest, the coherence strength

and coherence assumption of biclustering solutions can be customized in accordance with the desirable

patient profile. Henriques and Madeira [36] proposed BicPAMS biclustering. It integrates existing prin-

ciples made available by state-of-the-art pattern-based approaches with two new contributions. First,

BicPAMS exhaustively mines non-constant types of biclusters, including additive and multiplicative co-

herencies in the presence or absence of symmetries. Second, BicPAMS provides strategies to effectively

compose different biclustering structures. BicPAMS is an ordered composition of three stages: mapping,

mining (pattern discovery), closing (post-processing).

Mapping: In mapping BicPAMS handles missing values and tackles noise. The normalization criteria

can be applied in the context of a row, a column or the overall matrix, it also makes available a zero-mean

value to allow for symmetries. Three discretization methods are available in BicPAMS, the use of fixed

ranges, bins, and Gaussian, with key implications on the target solution.

Mining: In mining to have adequate use of pattern mining for biclustering it relies on three points, 1)

the adopted pattern-based approach to biclustering, 2) the target pattern representation, and 3) the

search strategy. BicPAMS uses frequent itemsets as the default pattern-based option to biclustering. If

the database is purely categorical FIM-based biclusters are perfect biclusters. If the database contains

real-value variables the biclusters can handle noise since two elements with the same item may be

numerically distant (due to category boundaries), but sometimes items with a close numerical distance

can belong to different items. The default pattern representation used by BicPAMS is a frequent closed

pattern, the set of all and maximal frequent patterns are also an option within BicPAMS. By using closed

itemsets BicPAMS allows for overlapping biclusters only if a reduction on the number of columns from

a specific bicluster results in a higher number of rows. The search strategy by default of BicPAMS is a

variant of FP-growth that traces the set of transactions per frequent pattern, but there are other available

options to deal with a large number of columns and largescale datasets are Carpenter [64] and Cobbler

[65].

Closing: Finally, in the closing step BicPAMS has post-processing criteria that can be used to minimize

two challenges of the noise dilemma, 1) being too restrictive when it comes to noise tolerance and 2)

heightened levels of noise allowance. The criteria is composed of three stages: 1) extension, 2) merging

and 3) filtering. To extend the discovery of biclusters BicPAMS has three options, 1) the use of statistical

tests, 2) traditional approaches and merit functions and 3) use patterns discovered under more relaxed

criteria. The merging operations will control the noise allowance and overall biclustering structure ma-

nipulation. Filtering is made possible at two levels: 1) at the bicluster level, 2) at the row-column level.

The first type is required to remove duplicates and biclusters that are contained in larger biclusters. The

second type can be used to exclude rows or columns from a particular bicluster to intensify its homo-
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geneity. Clinical variables are structurally sparse, especially variables describing surgical interventions

(locations and selected procedures) and post-surgical outcomes. As a consequence, an arbitrarily-high

fraction of elements is missing, creating a new requirement: ability to discover patterns in the presence

of highly sparse data. BicPAMS also handles missing values with three possible strategies: 1) removal,

2) replacement, and 3) handling as a special value. This is particularly relevant to guarantee that miss-

ing values do not affect our ability to discover patterns with attributes from surgical interventions and

post-surgical outcomes. Patterns found for surgical interventions source in the dataset consist manly of

missing values.

4.5 Extending pattern-based biclustering searches

4.5.1 Guarantees of discriminative power

BicPAMS [36] is not originally prepared to assess and guarantee the discriminative power of the returning

patterns. In this context, in the presence of an output variable, the search was extended to compute

interestingness measures, such as lift, for each pattern under formation, and remove patterns with

interestingness criteria below a parameterizable threshold. To do this we first separate the class column

from the rest of the dataset. Then we search for biclusters and test if they discriminate a selected class

value. This pipeline is exemplified in Figure 4.5.

Figure 4.5: Separation of class variable from rest of the dataset then discovery of a bicluster with constant as-
sumption

The bicluster discovered in Figure 4.5 depending on the selected class value he can be discriminative

of that class. If we select the class value y1(8) then the bicluster will not be discriminative of this class

(lift < 1), according to the lift formula introduced in the Background section, but if we select y1(5) then

the pattern found is discriminative of this class (lift > 1).

• lift(bicluster =⇒ y1(8)) =
1
3

2
3×

2
3

= 3
4 = 0.75

• lift(bicluster =⇒ y1(5)) =
1
3

2
3×

1
3

= 3
2 = 1.5

Interestingly, as BicPAMS dynamically changes the support threshold when exploring the data space,

the presence of discriminative criteria (e.g. lift above 2.0) does not necessarily restrict the number of

found patterns. If, amongst candidate patterns, only few are discriminative of a given post-surgical

outcome, then BicPAMS will further explore the search space at lower support thresholds.
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4.5.2 Biclustering mixed variables

The original version of BicPAMS [36] provides two important principles for handling mixed variable data:

1) categorical variables are seen as symbolic, irrespective of whether variables are nominal or ordinal,

and occurring symbols per variable need to match to form a pattern, and 2) numeric entries per vari-

able belong to the same pattern if they satisfy a given coherence strength (aij=αi+ηij or aij=βj+ηij

with |ηij | ≤ δ/2). The behavior of BicPAMS was further revised to guarantee a balanced cardinality

among ordinal variables, aligned with the chosen coherence strength. Considering numeric variables

are scaled in [0,1], a coherence strength of δ=0.2 is translated into a 5-symbol cardinality for ordinal

variables with higher cardinalities. In this context, coherence strength is applied over numeric variables

(ηij /∈ [−δ/2, δ/2]), while value equivalences are pursued for categorical variables (ηij = 0). This allows

pattern-based biclustering to be applicable over mixed variables irrespective of their domain, whether 1)

nominal (e.g. demographic variables), 2) ordinal (e.g. risk scales), or 3) numerical (e.g. physiological

variables).

4.6 Output: discriminative patterns of post-surgical risk

In the context of our work, a discriminative pattern of post-surgical outcomes is an association of pre-

surgical variables – comprising biopathological, physiological, demographic factors – that satisfies the

two following conditions:

• the pattern is supported by a statistically significant number of individuals in accordance with the

characteristics of the population under study;

• the pattern is discriminative of post-surgical outcomes, such as presence/absence of post-surgical

complications, ranking of post-surgical complication, survivability aspects or hospitalization needs.

The patterns will be presented in simple visual representations, either as heatmaps or parallel co-

ordinate charts (as the example depicted in Figure 4.6), or pattern descriptions. These are generally

sufficient to guarantee their usability near healthcare professionals.

Figure 4.6 illustrates a pattern of categorical variables that reveals the presence of a statistically

significant group of patients who died within 1 year after surgery and show the following profile: cancer

is disseminated, no peritoneal contamination, the tumor is malignant, and the presence of a systemic

disease. The pattern is discriminative of the 1-year survivability condition (lift = 1.54), and statistically

significant (p-value = 4.31×10−22 in accordance with [33]), meaning that the probability of this pattern

occurring by chance is highly unlikely.

4.6.1 Clustered setting

The patterns found in the clustered setting can be characterized according to their source, including:

1) demographic and clinical variables, 2) clinical risk scores, 3) and surgical interventions (e.g. ICD 10

tabled procedures). Figure 4.7 provides illustrative patterns for the first and second type of source.
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Figure 4.6: Discriminative pattern of death within 1 year after surgery: severe systemic disease (ASA class from
ACS scores), high state of malignancy and dissemination (ACS score), and low peritoneal contamination risk.
Lift=1.54 and p-value=4.31× 10−22. Given the discriminative outcome of this pattern and the patients displaying a
severe systemic disease This can potentially be associated with an advanced state of the disease.

An example of a surgical interventions pattern discriminating Clavien-Dindo III.b would be: variables

= {Lung Lobectomy Not Classifiable Elsewhere, Lung Decortication, Total Pancreatectomy}, lift = 2.96

and p-value = 7.2×10−12.

The patterns can be further characterized in accordance with the target variable (including its cardi-

nality and imbalance), figure 5.3. Possible outcomes of interest include:

• complication severity (e.g. Clavien-Dindo);

• presence-absence of surgery-related complications in future or within specific time ranges;

• survivability in a given period (death or alive after a given time period after surgery);

• hospitalization needs: hospitalized period after surgery.

(a) Discriminative pattern composed of demographic and phys-
iological variables: patients in a good and independent func-
tional state, above average height, and average weight. Lift =
1.71 and p-value = 3.58× 10−5

(b) Discriminative pattern composed of risk scores: low physi-
ological score and less susceptible to death (P-POSSUM mor-
tality), slightly more susceptible to a venous thromboembolism
but less to kidney failure, and a medium hospitalization length
forecast (ACS score). Lift = 2.08 and p-value = 1.51× 10−8

Figure 4.7: Constant patterns discriminative of Clavien-Dindo III.b (fig. 4.7a) and II (fig. 4.7b) class of complica-
tions. The pattern 4.7a might be correlated with malnourished patients. The pattern 4.7b demonstrates that low risk
in scores correlates to low severity in complications.

4.6.2 Integrative setting

In the Integrative setting, patterns are characterized in accordance with the target variable:
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Figure 4.8: Discriminative pattern of death within 1 year after surgery: medium P-POSSUM score and high risk
of morbidity (P-POSSUM), low risk of cardiac complications, and medium risk of readmission. Lift=2.04 and p-
value=4.47×10−29.

• complication severity (e.g. Clavien-Dindo);

• presence-absence of surgery-related complications in future or within specific time ranges;

• survivability in a given period (death or alive after a given time period after surgery);

• hospitalization needs: hospitalized period after surgery in HDU and IPO, if the patient was in

intensive care, request type anesthesia.

• provenance of patient

• reason for admission into the HDU or if he had to be readmitted

• destination after HDU/IPO

• average nursery points per day (representative of effort given by nurses to a given patient)

Since the dataset in the Integrative setting is combined there is no separation by source, only by

target variables.

Other visualization to help explore the dataset were implemented. Figure 4.9a shows the violin chart

visualization where it is possible to see the distribution of a variable in the whole dataset and given

an outcome variable. Figure 4.9b shows the histogram visualization where it is possible to see the

distribution of the variable aswell as the normal curve. Figure 4.9c displays a box plot visualization

where each box plot where the lower and higher whiskers being calculated with Q1 − 1.5 × IQR and

Q3 + 1.5 × IQR respectively. Figure 4.9d represents a parallel coordinates visualization where in the

future pattern will be visualized but as of now you can visualize how the variable selected corresponds

to an outcome variable. Figure 4.9e displays a bar chart visualization where the users can visualize the

feature ranking tests applied to the data.
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(a) Violin Chart (b) Histogram

(c) Box plot
(d) Parallel Coordinates

(e) Bar chart visualization

Figure 4.9: Data exploration visualizations.
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Chapter 5

Results

Considering the population monitored at IPO-Porto as a study case, the proposed approach was ap-

plied to comprehensively discover patterns able to discriminate post-surgical outcomes and additional

variables of interest. This chapter is organized as follows. First, an initial data exploration is presented.

Secondly, the experimental setting on how we varied the search for patterns is presented. Then the

results for each experimental setting are presented and discussed. Finally, the statistical significance

and pattern actionability are discussed.

5.1 Data exploration

The dataset contains a considerable amount of missings, with 11 variables reaching at least 75% missing

values. The data also has 47 variables where a single value occurs for at least 70% observations, two

examples of this can be seen in Figures 4.9a and 4.9b. These Figures display the distribution of two

attributes ”Destination after HDU” and ”PP ureia”. These Figures serve as an example of data being

unbalanced in some variables.

The variables can be clustered in accordance with clinical data, patient characteristics, demographic,

surgical proceduredures, and risk scores.

To better understand the impact each variable might have in the output patterns (such as frequent

occurance in patterns), feature ranking tests were applied. Table 5.1 shows the top 3 variables that

have the best correlation matched with each output variable in the clustered setting. χ̃2 test was applied

for binary and nominal input variables. Kruskal-Wallis test was applied in the presence of ordinal and

ANOVA one-way test for numeric input variables (optionally F-Regression test could also be applied to

numeric variables). Figure 5.1 provides illustrative class conditioned distributions of some of the input

variables in IPOscore data, generally showing the difficulty of discriminating post-surgical outcomes.
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Table 5.1: Top ranked variables from the dataset in accordance with their ability to discriminate the target four
output variables. Only the top three variables per variable type are displayed.

Post-surgical complication Clavien-Dindo post-surgical
index

Days spent at HDU Death within 1 year

binary
variables

(χ̃2)

ARISCAT emergent procedure ARISCAT emergent procedure ARISCAT emergent procedure ARISCAT emergent proce-
dure

ARISCAT pre-surgery anemia ARISCAT pre-surgery anemia ARISCAT pre-surgery anemia ARISCAT pre-surgery ane-
mia

ARISCAT respiratory infection ARISCAT respiratory infection ARISCAT respiratory infection ARISCAT respiratory infec-
tion

nominal
variables

(χ̃2)

ARISCAT surgical incision ARISCAT surgery duration ARISCAT surgery duration ARISCAT surgical incision
ARISCAT peripheral oxygen
saturation

ARISCAT surgical incision ARISCAT peripheral oxygen
saturation

ARISCAT peripheral oxy-
gen saturation

ARISCAT surgery duration ARISCAT peripheral oxygen
saturation

ARISCAT surgical incision ARISCAT Age

ordinal
variables
(Kruskal)

P-Possum surgical severity
score

P-Possum surgical severity
score

Age Age

P-Possum physiological score P-Possum physiological score P-Possum surgical severity
score

P-Possum physiological
score

ACS height ACS height P-Possum physiological score P-Possum surgical severity
score

numeric
variables
(ANOVA)

ACS forecast of hospitalization
days

ACS forecast of hospitalization
days

ACS forecast of hospitalization
days

ACS forecast of hospitaliza-
tion days

Avg. risk of any complications
(%)

Avg. risk of reoperation (%) Risk of reoperation (%) Discharge to nursing/rehab
facility

Avg. risk of serious complica-
tions (%)

Discharge to nursing/rehab fa-
cility

Risk of pneumonia (%) Risk of Death (%)

(a) Distribution of P-Possum morbidity (score variable) for all
patients (top), patients with the absence and presence of com-
plications (middle and bottom).

(b) Distribution of PP hemoglobin (physiological variable) for
all patients (top), patients with categories I to V of Clavien-
Dindo index (remaining).

(c) Age distribution of all patients (top) and patients who
stayed in HDU for between 0 and 1 days, 1 and 4 days, and
more than 4 days.

(d) Distribution of P-Possum morbidity (risk score) for all pa-
tients (top), patients with 1-year survival (middle) and death
(bottom).

Figure 5.1: Class-conditional distribution charts for the input variables P-Possum morbidity, PP hemoglobin, NAS-
Points considering different outcomes of interest (presence of complication, Clavien-Dindo, hospitalization length,
survivability) using violin plots.
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5.2 Experimental settings

In the clustered setting for discriminative pattern discovery, BicPAMS algorithm is used with default

parameters and varying:

• minimum lift of pattern: lift ∈ {1.3, 1.7, 2.0}

• target classes:

– clavien-Dindo ∈ {I,II,IIIa, IIIb,IVa,IVb,V}

– post-surgical complication ∈{0,1}

– days at HDU ∈ {≤1, ]1,4], > 4}

– 1-year death ∈ {yes,no}

• coherence strength (δ=Ā/|L|: |L| ∈ {3, 4, 5, 7})

• decreasing support until |B| dissimilar biclusters are found: |B| ∈ {2,10,50,100,200}

• noise: 0% and up to 30% noisy elements allowed

• coherence assumptions: constant and order-preserving

Three search iterations were considered by masking the biclusters discovered after the Clustered

setting to ensure a more comprehensive exploration of the data space and a focus on less-trivial patterns

discriminative of surgical outcome.

In the Integrative setting for pattern discovery, BicPAMS algorithm is used with default parameteres

and varying:

• minimum lift of pattern: lift ∈{[1.3,3.0]}

• minimum number of variables in the pattern: variables ∈ {3,8}

• target classes:

– clavien-Dindo ∈ {I,II,IIIa, IIIb,IVa,IVb,V}

– post-surgical complication ∈ {yes}

– days at HDU ∈ {≤1, ]1,2], > 2}

– 1-year death ∈ {yes,no}

– request type anesthesia ∈ {associated pathology, surgical complexity}

– provenance ∈ {nursery, intensive care unit, unscheduled service}

– HDU reason for admission ∈ {post-surgery, heart, respiratory, age, another pathology, co-

morbidities, discharge from intensive care, hemodynamic instability, bleeding, post-op reop-

eration, ischemic stroke, sepsis/septic shock/BMD}

– days at IPO ∈ {< 7, [7, 10], >10}
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– ICU ∈ {yes}

– destination after HDU ∈ {intensive care unit}

– average nursery points per day ∈ {<60, 60≤}

– HDU readmission ∈ {yes}

– destination after IPO ∈ {death}

– moment of death ∈ {[0,30[, [30-60[, [60, 365]}

• coherence strength (δ=Ā/|L|: |L| ∈ {3, 4, 5})

• decreasing support until |B| dissimilar biclusters are found: |B| ∈ {50, 200, 1000}

• noise: 30% noisy elements allowed

• coherence assumptions: constant

• iterations: between one and three search iterations were considered.

5.3 Clustered setting

Tables 5.2 to 5.5 synthesize the first results produced by biclustering IPOscore data with BicPAMS

[36]. Confirming the potentialities listed in the previous chapter, BicPAMS was able to efficiently and

comprehensively find a large number of homogeneous, dissimilar and statistically significant patterns

able to discriminate absence/presence of post-surgical complications, Clavien-Dindo categories, 1-year

survivability, and HDU hospitalization-length.

Table 5.2: Properties of the biclustering solutions found in the three partitions of clinical variables for 1-year
survivability using BicPAMS (cf. experimental setting).

configuration Clinical variables ICD 10 Scores (%)

Assumption quality |L| #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

#bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

|L| #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

Constant 100% 3 396 65 3.2±0.7 82.9±35.4 7 7 2.7±0.7 21.0±13.2 3 90 86 4.0±1.0 69.4±37.1

Constant 70% 3 367 92 3.8±0.9 77.9±40.9 7 7 2.7±0.7 21.0±13.2 3 79 73 4.3±1.3 76.5±41.6

Constant 70% 4 414 62 3.3±1.1 72.3±36.8 – – – – 5 137 131 3.6±1.1 41.2±21.9

Constant 70% 5 395 68 3.4±1.0 58.9±31.6 – – – – 7 155 142 3.4±0.8 28.6±16.2

Order-preserving 100% – 272 246 3.7±0.9 63.1±65.7 7 7 2.6±0.7 21.9±12.8 – 93 93 3.6±0.6 28.9±15.8

Order-preserving 70% – 229 212 3.9±1.1 74.0±72.3 7 7 2.6±0.7 21.9±12.8 – 92 92 3.6±0.6 29.0±15.8

One can check, for instance, in the first row of Table 5.3, that among a total of 153 discovered

discriminative biclusters for the major clinical data variables, we found that 49 of them are statistically

significant (p-value lower that 0.1%). Given these 49 biclusters, there are approximately 86 patients per
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Table 5.3: Properties of the biclustering solutions found in the three partitions of clinical variables for presence/ab-
sence of post-surgical complications classes using BicPAMS (cf. experimental setting).

configuration Clinical variables ICD 10 Scores (%)

Assumption quality |L| #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

#bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

|L| #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

ab
se

nc
e

Constant 100% 3 341 113 5.1±1.7 144.9±111.1 68 48 2.7±0.7 5.0±5.0 3 8 6 8.2±1.1 34.0±7.8

Constant 70% 3 278 135 5.4±1.9 121.7±118.3 67 47 2.7±0.7 5.0±5.1 3 5 4 7.8±1.5 37.3±7.9

Constant 70% 4 136 55 4.9±1.5 154.3±154.9 – – – – 5 6 6 7.7±2.4 33.2±4.3

Constant 70% 5 358 120 5.3±1.9 150.7±140.4 – – – – 7 16 16 5.8±1.9 27.8±10.0

Order-preserving 100% – 98 89 5.7±1.2 68.2±81.8 63 42 2.7±0.7 5.5±5.2 – 26 26 4.6±0.7 29.2±4.9

Order-preserving 70% – 81 63 5.8±1.8 86.0±87.6 63 42 2.7±0.7 5.5±5.2 – 26 26 4.7±0.8 29.2±5.0

pr
es

en
ce

Constant 100% 3 94 29 2.9±0.9 62.7±24.9 30 24 3.1±0.9 11.3±10.9 3 4 4 3.8±0.8 58.5±1.5

Constant 70% 3 113 34 3.4±1.4 64.1±27.4 30 24 3.0±0.9 11.5±10.8 3 5 5 3.8±1.2 60.2±2.2

Constant 70% 4 170 52 3.9±1.7 74.7±32.0 – – – – 5 6 6 3.7±1.7 47.7±12.1

Constant 70% 5 186 61 3.6±1.6 57.9±34.0 – – – – 7 7 7 3.4±1.0 45.6±4.0

Order-preserving 100% – 42 39 3.0±0.8 125.4±51.1 15 15 2.7±0.8 15.2±12.3 – 7 7 3.9±0.3 29.7±7.5

Order-preserving 70% – 73 62 3.4±1.1 90.1±61.2 16 16 2.7±0.8 15.0±11.9 – 6 6 4.0±0.6 30.2±6.8

Table 5.4: Properties of the biclustering solutions found in the three partitions of clinical variables for hospitaliza-
tion length at HDU using BicPAMS (cf. experimental setting).

configuration Clinical variables ICD 10 Scores (%)

Assumption quality |L|
#bics p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

#bics p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

|L|
#bics p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

da
ys
∈

[0
,1

]

Constant 100% 3 243 66 3.3±0.6 107.1±55.9 62 48 2.6±0.8 4.1±3.9 3 21 13 7.5±1.3 10.7±1.3

Constant 70% 3 214 87 3.5±0.8 103.5±72.6 61 47 2.6±0.8 4.2±4.0 3 25 18 7.8±1.8 10.8±2.6

Constant 70% 4 224 100 3.3±1.0 111.9±87.0 – – – – 5 16 11 6.2±2.3 14.1±4.4

Constant 70% 5 286 96 3.6±0.9 84.8±62.4 – – – – 7 16 14 4.6±1.7 20.6±6.3

Order-preserving 100% – 236 225 4.1±0.9 70.3±85.5 63 49 2.6±0.8 4.1±3.9 – 30 30 4.8±0.8 14.8±5.2

Order-preserving 70% – 242 225 4.2±1.1 70.6±85.2 36 32 2.6±0.9 5.1±4.4 – 29 29 4.9±1.0 15.1±5.2

da
ys
∈

]1
,4

]

Constant 100% 3 290 88 4.0±1.0 72.5±43.8 90 73 2.8±0.9 7.0±6.2 3 10 9 7.1±1.7 17.9±6.0

Constant 70% 3 250 100 4.0±1.2 67.7±48.7 93 76 2.8±0.9 7.2±6.2 3 12 11 6.9±2.0 19.5±6.3

Constant 70% 4 310 98 4.0±1.3 57.4±45.2 – – – – 5 17 14 4.7±1.4 20.4±3.6

Constant 70% 5 391 111 3.7±1.2 50.2±37.1 – – – – 7 29 26 4.7±1.1 13.4±2.4

Order-preserving 100% – 215 205 4.4±1.0 48.7±63.2 71 60 2.7±0.8 8.2±6.3 – 52 52 4.5±0.8 8.4±3.8

Order-preserving 70% – 257 236 4.8±1.1 44.3±65.6 77 66 2.7±0.8 8.1±6.1 – 51 51 4.6±0.9 8.5±3.8

da
ys
∈

]4
,∞

[

Constant 100% 3 364 105 3.4±1.1 55.8±45.1 34 30 2.8±0.9 11.6±10.4 3 121 86 4.0±1.7 63.5±40.4

Constant 70% 3 357 110 3.5±1.1 55.7±45.4 34 30 2.8±0.8 12.0±10.4 3 126 90 4.3±1.8 66.6±42.4

Constant 70% 4 391 90 3.2±1.3 52.0±34.1 – – – – 5 244 182 3.3±1.0 33.3±20.4

Constant 70% 5 411 110 3.1±1.1 47.4±34.0 – – – – 7 235 152 3.0±1.1 29.4±14.3

Order-preserving 100% – 182 173 4.0±1.0 81.6±81.6 37 34 2.8±0.8 11.1±9.9 – 40 40 3.2±0.6 61.8±21.5

Order-preserving 70% – 230 222 4.1±1.0 69.6±79.8 40 36 2.7±0.8 11.3±9.7 – 40 40 3.2±0.6 61.8±21.5

bicluster on average (µ(|I|)), 3 variables per bicluster on average (µ(|J |)) when considering a constant

assumption (|L|=3 and δ ∈ [0, ~̄A/|L|]), and a perfect quality (no noise).

These initial results further show the impact of: tolerating noise; placing different coherence assump-

tions (such as the order-preserving assumption); and parameterizing coherence strength (δ ∝ 1
|L| ) on

the biclustering solution.

Figure 5.4 provides the details of an illustrative set of four discriminative constant patterns with dif-
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Table 5.5: Properties of the biclustering solutions found in the three partitions of clinical variables for different
Clavien-Dindo classes using BicPAMS (cf. experimental setting).

configurations Clinical variables ICD 10 Scores (%)

Assumption quality |L| #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

#bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

|L| #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

ty
pe

I

Constant 100% 3 153 49 3.2±0.7 85.6±41.1 14 11 2.8±0.9 4.5±3.3 3 65 65 4.4±1.3 86.9±16.7

Constant 70% 3 134 52 3.3±1.0 90.9±53.3 14 12 2.7±0.9 4.3±3.2 3 52 52 4.9±1.7 99.0±13.8

Constant 70% 4 145 79 3.3±1.1 89.3±61.8 – – – – 5 34 34 3.9±1.0 87.3±8.6

Constant 70% 5 194 64 3.5±1.0 86.2±61.2 – – – – 7 55 55 3.5±0.8 68.0±11.1

Order-preserving 100% – 163 163 3.7±0.6 57.6±59.7 7 7 2.6±0.7 6.3±3.0 – 135 134 3.3±0.5 64.8±13.9

Order-preserving 70% – 159 159 3.9±1.0 53.1±65.8 7 7 2.6±0.7 6.3±3.0 – 106 105 3.4±0.5 67.3±14.8

ty
pe

II

Constant 100% 3 157 38 3.9±1.0 54.7±28.5 26 15 3.1±0.9 3.0±1.3 3 7 7 7.4±0.9 12.1±2.6

Constant 70% 3 139 47 4.0±1.1 52.4±32.0 26 15 3.1±0.9 3.0±1.3 3 7 7 7.4±1.0 12.6±2.3

Constant 70% 4 178 53 4.6±1.1 35.9±27.9 – – – – 5 7 7 5.7±1.0 12.9±1.1

Constant 70% 5 199 56 4.3±1.2 31.1±23.2 – – – – 7 91 74 5.5±1.9 7.9±1.7

Order-preserving 100% – 167 165 4.5±0.8 21.5±27.4 27 16 2.8±0.5 2.9±1.2 – 8 8 5.5±1.0 15.8±2.3

Order-preserving 70% – 208 204 4.8±1.0 17.8±23.7 26 13 2.8±0.5 3.0±1.3 – 8 8 5.6±1.0 15.9±2.2

ty
pe

III
.a

Constant 100% 3 170 48 3.8±1.1 49.5±33.2 14 9 3.4±1.2 3.6±1.9 3 122 109 3.7±0.7 59.0±10.7

Constant 70% 3 142 52 4.0±1.2 52.5±35.3 14 9 3.4±1.2 3.6±1.9 3 104 91 3.9±0.9 62.4±11.7

Constant 70% 4 197 55 3.8±0.9 35.4±33.1 – – – – 5 88 79 4.2±1.3 46.9±8.4

Constant 70% 5 204 53 3.9±1.4 41.7±29.9 – – – – 7 60 52 4.0±1.1 41.9±7.6

Order-preserving 100% – 130 129 4.0±1.0 43.2±40.3 8 7 2.9±0.8 4.1±1.8 – 110 102 3.7±0.5 61.8±17.3

Order-preserving 70% – 145 144 4.1±1.0 45.2±43.8 9 6 2.7±0.7 4.3±1.9 – 92 81 3.7±0.5 58.6±20.9

ty
pe

III
.b

Constant 100% 3 123 40 4.1±1.3 46.3±21.6 16 13 3.2±1.3 3.7±0.6 3 7 7 4.7±2.0 36.3±10.4

Constant 70% 3 124 41 4.5±1.6 50.2±26.5 16 13 3.2±1.5 3.8±0.8 3 25 14 6.4±2.6 39.9±13.9

Constant 70% 4 176 59 4.6±1.6 28.5±19.2 – – – – 5 46 36 5.2±2.1 35.4±6.5

Constant 70% 5 298 46 4.7±1.9 23.2±19.3 – – – – 7 55 49 5.1±1.9 29.7±6.8

Order-preserving 100% – 133 131 4.1±0.9 33.3±27.7 12 8 2.5±0.7 4.1±0.3 – 20 16 3.8±0.4 39.9±4.2

Order-preserving 70% – 229 217 4.8±1.4 20.6±26.9 14 10 2.4±0.9 4.3±0.5 – 120 101 4.1±0.7 29.3±8.1

ty
pe

IV
.a

Constant 100% 3 181 52 3.3±0.9 44.8±21.9 10 10 2.3±0.5 11.2±7.3 3 69 44 3.3±0.6 41.9±11.9

Constant 70% 3 177 49 3.5±1.2 44.4±26.5 10 10 2.3±0.5 11.2±7.3 3 74 46 4.0±0.9 45.0±16.6

Constant 70% 4 279 73 3.9±1.2 24.3±17.1 – – – – 5 38 21 3.6±0.8 46.8±6.0

Constant 70% 5 269 66 3.8±1.0 24.0±15.8 – – – – 7 58 35 3.5±0.8 34.0±5.0

Order-preserving 100% – 145 141 3.8±0.8 41.1±41.1 8 8 2.3±0.4 12.1±7.9 – 77 73 3.4±0.5 79.9±16.8

Order-preserving 70% – 142 139 3.9±1.1 40.7±41.9 8 8 2.3±0.4 12.1±7.9 – 53 51 3.6±0.6 81.8±19.0

ty
pe

IV
.b

Constant 100% 3 165 47 3.6±1.2 33.5±15.2 7 7 2.7±1.0 11.4±8.4 3 17 16 3.3±0.4 72.6±4.1

Constant 70% 3 150 50 4.1±1.5 35.4±17.7 7 7 2.7±1.0 11.4±8.4 3 20 18 3.8±0.7 74.3±6.7

Constant 70% 4 223 75 4.1±1.5 27.1±19.7 – – – – 5 33 30 3.6±1.0 43.7±5.4

Constant 70% 5 261 85 3.7±1.2 25.0±17.8 – – – – 7 61 54 3.8±0.9 35.3±4.7

Order-preserving 100% – 141 139 3.9±0.9 47.6±47.6 5 5 4.5±0.8 15.2±7.6 – 114 108 3.5±0.5 78.1±16.8

Order-preserving 70% – 154 148 4.0±0.9 45.3±46.2 5 5 4.5±0.8 15.2±7.6 – 105 100 3.7±0.5 74.4±19.1

ty
pe

V

Constant 100% 3 192 32 3.6±1.0 41.0±23.8 9 7 3.0±1.4 4.6±1.6 3 29 6 3.0±0.0 63.8±5.9

Constant 70% 3 204 31 3.8±1.2 39.9±24.1 9 7 3.0±1.4 4.6±1.6 3 41 15 3.7±1.2 69.9±9.5

Constant 70% 4 221 55 3.9±1.1 36.5±20.3 – – – – 5 22 10 3.3±0.6 41.5±4.3

Constant 70% 5 274 71 3.7±1.0 28.4±15.8 – – – – 7 41 15 3.3±0.6 31.0±2.5

Order-preserving 100% – 154 147 3.7±1.0 45.4±44.8 4 4 2.5±0.9 5.8±1.3 – 142 115 3.5±0.5 63.2±19.7

Order-preserving 70% – 131 129 3.9±1.0 45.9±46.5 4 4 2.5±0.9 5.8±1.3 – 126 91 3.6±0.5 65.7±18.1

ferent target output variables: Clavien-Dindo, post-surgical complications, and hospitalization-length.
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BicPAMS [36] was also applied to find less-trivial yet relevant patterns of surgical risk, patterns with

order-preserving coherence assumptions. Figure 5.2 depicts order-preserving patterns for two of the

targeted output variables: 1-year survivability and hospitalization-length. These coherence assumptions

are useful to accommodate coherent orders and shifts in surgical risk profiles, thus being able to account

for coherent differences between individuals, possibly driven by the unique biopathological aspects of

the cancer, physiology of individuals and undertaken surgical procedures.

Each bicluster shows a unique pattern of performance. For instance, the constant bicluster from

Figure 5.4b reveals a group of 61 patients who coherently encountered high physiological score and

morbidity risk (P-Possum), and medium average risk of reoperation (corresponding to the pattern {2,2,1}

using 3 bins where 0 denotes low risk score and 2 a high risk score) for Clavien-Dindo type V, showing

us that patients who follow this pattern end up dying in surgery. Figure 5.4a show a pattern displaying a

group of healthy patients with surgery containing only two procedures but with free content of intestine,

pus or blood accumulating inside thus causing the death after surgery. This is most likely caused by the

surgery going wrong.

These results motivate the relevance of finding both constant and order-preserving biclusters to find

coherent factors propelling post-surgical status and hospitalization-length for a statistically significant

group of individuals. One can check that a bicluster considers both identical physiological values or risk

scores values (where lines converge) and more loosely similar values (where lines diverge). The profile

of the patient in a specific bicluster can be further analyzed to further understand its influence on the

resulting performance.

A closer analysis of the found discriminative patterns shows their robustness to the item-boundaries

problem: slightly deviating limits to the expected limit are not excluded from the bicluster. This allows

the discovery of patterns without the drawbacks of the traditional discrete views.

No patterns are presented for the ACS procedures partition. Despite multiple runs of BICPAMS

with different criteria applied, no patterns were found. The criteria varied for pattern discovery was:

discriminative power, lower number of variables in found biclusters, number of biclusters, bicluster type,

and noise tolerated.
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(a) Discriminative pattern of death within 1 year, quality 100%, |L|=3: high risk of morbidity, medium risk of serious complications
and any complication, and low susceptibility to death. Lift = 2.01 and p-value = 9.38× 10−58.

(b) Discriminative pattern of high hospitalization length, quality 70%, |L|=3: low risk of mortality, medium risk of serious complica-
tions, low risk of pneumonia, medium risk of reoperation. Lift = 2.18 and p-value = 3.21× 10−172.

Figure 5.2: Two order-preserving patterns of surgical risk found within the IPOscore dataset. Pattern 5.2a portraits
patients with high risk of complications but low death risk can be also subjected with post-surgical problems. Pattern
5.2b shows patients who were re-operated need more time in the HDU.
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(a) Discriminative pattern of patients with Clavien-Dindo sever-
ity I: low physiological score (P-Possum), less susceptible to
death, and medium ARISCAT total score. Lift = 2.05 and p-
value = 3.89× 10−194.

(b) Discriminative pattern of patients with no post-surgical com-
plication: low physiological score, medium surgical severity
score, lower complication risk, almost no risk of cardiac com-
plications and kidney failure, and medium risk of high hospital-
ization length. Lift = 1.73 and p-value = 1.19× 10−25.

(c) Discriminative pattern of patients who died within 1 year of
surgery: low surgical severity score, low risk of mortality (P-
Possum), medium susceptibility to serious complications, low
death probability, and slightly higher probability of rehab needs.
Lift = 2.01 and p-value = 7.07× 10−36.

(d) Discriminative pattern of patients who stayed between 1 and
4 days in the HDU: medium risk of serious complications, av-
erage risk for any complication, low probability of pneumonia,
average risk of cardiac complications, and medium average risk
of reoperation. Lift = 2.05 and p-value = 4.63× 10−65.

Figure 5.3: Illustrative discriminative patterns of different post-surgical outcomes: Clavien-Dindo class I (a), no
post-surgical complication (b), 1-year death (c) and ]1,4] hospitalization-length (d). Patterns 5.3a and 5.3b both
demonstrate that low scores correlate with absence of post-surgical complication or low severity in post-surgical
complications. Pattern 5.3c might be correlated with patients whose surgeries went wrong turning a healthy patient
susceptible to a high mortality risk. Pattern 5.3d shows that patients who have a higher risk of developing post-
surgical complications are in observation longer after surgery.
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(a) Discriminative pattern of Clavien-Dindo grade IVb, quality 70%, |L|=4: healthy patient, thee surgical procedures, and presence
of intestine content, pus or blood. Lift = 5.32 and p-value = 2.02× 10−9.

(b) Discriminate pattern of Clavien-Dindo grade V, quality 100%, |L|=3: medium physiological score, high morbidity, below average
risk of average risk of reoperation. Lift = 2.11 and p-value = 9.28× 10−20.

(c) Discriminative pattern of absent post-surgical complication, quality 70%, |L|=3: patient with no dyspnoea, no peritoneal
contamination, and patient with mild systemic disease. Lift = 1.31 and p-value = 1.49× 10−4.

(d) Discriminative pattern of medium hospitalization length, quality 70%, |L|=5: very low risk of mortality, low risk of pneumonia,
medium hospitalization length, medium ARISCAT total score. Lift = 2.19 and p-value = 9.04× 10−10.

Figure 5.4: Example of constant patterns of surgical risk found within the IPOscore dataset. Pattern 5.4a correlates
with healthy patients whose surgery went wrong in some way. Patterns 5.4b and 5.4c show both ends of the
post-surgical complication spectrum: patients with high mortality scores and patients with regular values in clinical
variables. Pattern 5.4d shows that patients with a higher risk of developing post-surgical complications need to be
observed longer after surgery (in the HDU).
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5.4 Integrative setting

Tables 5.6, A.1 and A.2 synthesize the results produced by biclustering IPOscore data with range based

discretization of numeric variables, with BicPAMS [36]. Tables 5.7 and 5.8 synthesize the results with DI2

discretization of numeric variables. BicPAMS in this setting is also able to efficiently and comprehensively

find a large number of homogeneous, dissimilar and statistically significant patterns able to discriminate

the various target variables.

A closer inspection of Tables 5.6 to 5.8 and Tables A.1 to A.2 reveals that overall the patterns found

with the discretization done by DI2 have more patients per pattern (Clavien-Dindo I,II, III.a, IV.a, IV.b, V,

Post-surgery complication, days spent in HDU > 2, days spent in IPO < 7 and > 10, death after IPO,

ICU after HDU, death within 30 days and between 30 and 60 days, passed through ICU, readmission

into HDU, death within 1 year) and in some outcomes a higher discriminative power (death within 1 year,

days spent in HDU < 1).

(a) Discriminative pattern of provenance nursery, |L|=5: low
patient weight, not the first surgery, severe systemic disease,
and the patients are hypertensive. Lift = 2.01 and p-value =
4.82× 10−9.

(b) Discriminative pattern of HDU admission after surgery,
|L|=5: low risk of any complication and pneumonia, very low
risk of ITU, venous thromboembolism, reoperation, stay at hos-
pital, thoracic speciality with intrathoracic surgical incision. Lift
= 1.32 and p-value = 9.54× 10−137.

(c) Discriminative pattern of anesthesia requested because of
surgical complexity, |L|=5: low P-Possum surgical severity, very
low expected survivability in 10 years, digestive speciality with
disseminated cancer with malignant tumor in distant metastasis,
medium ARISCAT score and abdominal surgical incision. Lift =
1.84 and p-value = 3.39× 10−126.

Figure 5.5: Constant patterns, quality 70%, with range based discretization.
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Table 5.6: HDU admission motive, and type of requested anesthesia using BicPAMS with range based dis-
cretization.

Assumption quality |L| |C| Lift #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)
Lift #bics

p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)

H
D

U
ad

m
is

si
on

po
st

-s
ur

ge
ry

Constant 70% 3 3 1.3 25 24 5.41± 2.07 93.29 ± 16.42

H
D

U
ad

m
is

si
on

he
m

od
yn

am
ic

in
st

ab
ili

ty

3 115 104 4.61± 1.54 107.13± 18.79

Constant 70% 3 8 1.3 34 34 8.82± 1.19 62.32 ± 17.38 1.3 37 37 8.76± 0.79 103.51± 43.97

Constant 70% 4 3 3 59 57 4.61± 1.57 85.18 ± 16.11 3 356 329 3.92± 0.89 89.44 ± 22.98

Constant 70% 4 8 1.3 12 12 9.33± 1.17 84.0 ± 18.16 1.3 128 128 8.63± 0.94 63.01 ± 15.30

Constant 70% 5 3 3 18 18 5.28± 1.85 96.94 ± 13.62 3 304 279 4.00± 0.94 105.86± 17.34

Constant 70% 5 8 1.3 22 22 9.45± 1.83 88.86 ± 19.39 1.3 52 52 8.90± 0.97 76.94 ± 26.14

H
D

U
ad

m
is

si
on

H
ea

rt

Constant 70% 3 3 2.5 75 75 5.29± 1.43 99.08 ± 27.22

H
D

U
ad

m
is

si
on

bl
ee

di
ng

2 74 67 6.37± 2.41 109.40± 14.71

Constant 70% 3 8 1.3 43 43 8.67± 0.98 91.79 ± 39.47 1.3 7 7 9.0 ± 1.41 157.0 ± 25.65

Constant 70% 4 3 2.5 55 52 5.58± 1.28 97.67 ± 17.12 2 239 218 5.16± 1.62 107.33± 11.88

Constant 70% 4 8 1.3 63 63 8.62± 0.93 70.40 ± 26.43 1.3 20 20 8.55± 0.74 105.47± 11.39

Constant 70% 5 3 2.5 67 65 4.26± 0.86 106.97± 12.63 2 170 156 4.97± 1.72 105.47± 11.39

Constant 70% 5 8 1.3 35 35 8.86± 0.96 81.03 ± 22.74 1.3 6 6 8.83± 0.90 160.33± 40.67

H
D

U
ad

m
is

si
on

re
sp

ira
to

ry

Constant 70% 3 3 2.5 49 48 4.33± 1.19 135.17± 12.72

H
D

U
ad

m
is

si
on

po
st

-o
p

re
-o

pe
ra

tio
n 2.5 41 40 3.65± 0.85 143.8 ± 29.82

Constant 70% 3 8 1.3 47 47 8.57± 0.98 80.36 ± 30.57 1.3 42 42 8.67± 0.84 82.17 ± 33.80

Constant 70% 4 3 2.5 102 96 3.83± 0.80 125.18± 18.92 2.5 83 82 3.38± 0.66 122.87± 25.78

Constant 70% 4 8 1.3 180 180 8.81± 0.97 52.72 ± 20.11 1.3 47 47 8.60± 0.73 67.57 ± 21.54

Constant 70% 5 3 2.5 152 144 4.56± 1.06 106.1 ± 13.95 2.5 72 68 3.47± 0.74 132.78± 20.98

Constant 70% 5 8 1.3 13 13 8.62± 0.84 106.0 ± 24.73 1.3 50 50 8.74± 0.89 80.52 ± 26.17

H
D

U
ad

m
is

si
on

A
ge

Constant 70% 3 3 3 227 202 4.19± 1.03 147.54± 51.13

H
D

U
ad

m
is

si
on

Is
ch

em
ic

st
ro

ke
3 593 508 4.40± 1.30 173.22± 57.08

Constant 70% 3 8 1.3 41 41 8.90± 1.20 117.17± 66.84 1.3 26 26 8.42± 0.74 123.69± 74.50

Constant 70% 4 3 3 286 256 3.43± 0.58 158.79± 27.93 3 1067 884 3.95± 1.08 154.11± 46.37

Constant 70% 4 8 1.3 52 52 8.46± 0.60 99.06 ± 39.07 1.3 15 15 8.93± 0.85 166.67± 39.14

Constant 70% 5 3 2.5 180 161 3.37± 0.66 172.81± 19.39 3 964 827 4.20± 1.19 150.01± 33.54

Constant 70% 5 8 1.3 39 39 8.59± 0.90 103.13± 34.10 1.3 13 13 9.15± 0.77 164.38± 46.19

H
D

U
ad

m
is

si
on

an
ot

he
rp

at
ho

lo
gy

Constant 70% 3 3 2.5 82 66 4.54± 1.38 111.15± 18.93

H
D

U
ad

m
is

si
on

S
ep

si
s

/

se
pt

ic
sh

oc
k

/B
M

D 2.5 55 51 4.35± 1.28 173.86± 40.05

Constant 70% 3 8 1.3 76 75 8.6 ± 0.73 68.85 ± 23.32 1.3 30 30 8.53± 0.72 101.8 ± 63.34

Constant 70% 4 3 2.5 60 56 4.38± 1.16 129.23± 18.71 2.5 178 161 3.88± 0.98 129.36± 20.46

Constant 70% 4 8 1.3 36 36 8.67± 0.85 99.11 ± 23.32 1.3 33 33 8.55± 0.78 88.64 ± 26.60

Constant 70% 5 3 2.5 108 86 4.02± 1.05 112.17± 19.26 2.5 178 166 3.92± 0.91 136.58± 15.99

Constant 70% 5 8 1.3 34 34 8.71± 0.86 99.71 ± 24.70 1.3 24 24 8.58± 0.70 95.46 ± 18.93

H
D

U
ad

m
is

si
on

co
-m

or
bi

di
tie

s

Constant 70% 3 3 2.5 76 72 4.21± 1.37 124.43± 20.73

an
es

th
es

ia

as
so

ci
at

ed

pa
th

ol
og

y

2.5 74 69 4.03± 1.22 106.71± 16.72

Constant 70% 3 8 1.3 55 55 8.51± 0.81 65.35 ± 42.81 1.3 35 35 8.51± 1.02 100.71± 95.97

Constant 70% 4 3 2.5 92 85 3.56± 0.71 109.42± 13.61 2.5 78 69 3.75± 0.81 112.25± 13.45

Constant 70% 4 8 1.3 37 37 9.41± 1.38 77.78 ± 16.02 1.3 28 28 8.64± 0.89 112.39± 26.53

Constant 70% 5 3 2.5 89 83 3.88± 0.94 106.60± 12.87 2.5 71 68 4.06± 1.01 121.0 ± 14.02

Constant 70% 5 8 1.3 48 48 8.83± 0.77 69.0 ± 13.16 1.3 31 31 8.94± 1.16 97.87 ± 23.19

H
D

U
ad

m
is

si
on

di
sc

ha
rg

e
fro

m

in
te

ns
iv

e
ca

re

Constant 70% 3 3 2.5 31 31 4.68± 1.45 92.65 ± 8.19

an
es

th
es

ia

su
rg

ic
al

co
m

pl
ex

ity

1.5 20 19 4.68± 1.49 183.95± 41.37

Constant 70% 3 8 1.3 51 51 8.61± 0.91 76.14 ± 33.63 1.3 31 31 8.77± 1.00 95.97 ± 66.59

Constant 70% 4 3 2.5 42 38 3.61± 0.67 88.71 ± 8.47 1.5 60 58 3.78± 1.05 144.26± 38.37

Constant 70% 4 8 1.3 28 28 8.82± 0.89 74.0 ± 8.77 1.3 37 37 8.57± 0.75 90.24 ± 36.60

Constant 70% 5 3 2.5 40 39 4.23± 1.00 71.05 ± 7.85 1.5 73 69 3.69± 1.10 159.94± 30.16

Constant 70% 5 8 1.3 21 21 8.90± 0.92 74.90 ± 13.57 1.3 50 50 8.72± 0.92 97.86 ± 39.81
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Table 5.7: Clavien-Dindo classes, presence of post-surgery complication, days spent in HDU and days
spent in IPO using BicPAMS with DI2 discretization.

Assumption quality |L| |C| Lift #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)
Lift #bics

p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)

C
la

vi
en

-D
in

do

ty
pe

I

Constant 70% 3 3 2 101 100 3.66± 0.87 149.6 ± 18.43

P
re

se
nc

e
of

Po
st

-s
ur

ge
ry

co
m

p. 1.5 138 138 4.09± 1.19 169.41± 24.46

Constant 70% 3 8 1.3 39 39 9.41± 1.61 133.67± 41.78 1.3 11 11 9.18± 1.33 152.81± 38.24

Constant 70% 4 3 2 124 103 3.69± 0.83 131.38± 25.38 1.5 112 112 3.76± 1.02 150.99± 20.38

Constant 70% 4 8 1.3 20 20 9.15± 1.49 107.5 ± 18.61 1.3 8 8 9.12± 0.93 111.88± 21.83

Constant 70% 5 3 2 155 127 3.56± 0.68 110.12± 18.61 1.5 160 157 3.58± 0.84 107.95± 17.24

Constant 70% 5 8 1.3 35 35 9.26± 1.75 75.68 ± 17.66 1.3 6 6 9.0 ± 0.82 76.33 ± 16.23

C
la

vi
en

-D
in

do

ty
pe

II

Constant 70% 3 3 1.5 116 105 3.78± 1.05 154.79± 23.54

H
D

U
da

ys

<
1

1.7 50 49 5.65± 1.64 150.47± 16.59

Constant 70% 3 8 1.3 16 16 8.62± 1.11 130.75± 22.48 1.3 22 22 9.54± 1.50 150.64± 45.67

Constant 70% 4 3 1.5 60 53 3.68± 0.80 144.55± 24.09 1.7 36 36 5.53± 1.58 139.83± 20.78

Constant 70% 4 8 1.3 10 10 8.7 ± 0.78 90.5 ± 13.46 1.3 13 13 9.31± 1.94 130.69± 28.47

Constant 70% 5 3 1.5 115 96 3.39± 0.67 113.14± 26.39 1.7 77 52 3.73± 0.76 159.03± 25.61

Constant 70% 5 8 1.3 15 15 8.47± 0.62 68.2 ± 11.08 1.3 10 10 9.5 ± 1.86 113.8 ± 25.35

C
la

vi
en

-D
in

do

ty
pe

III
.a

Constant 70% 3 3 2 95 92 3.42± 0.74 165.53± 22.34

H
D

U
da

ys

1
−

2

1.3 22 22 3.95± 1.11 123.32± 10.60

Constant 70% 3 8 1.3 11 11 8.45± 0.65 130.45± 20.89 1.3 5 5 10.0± 1.67 146.0 ± 13.1

Constant 70% 4 3 2 120 108 3.22± 0.46 137.93± 30.14 1.3 46 40 4.53± 1.18 93.63 ± 7.04

Constant 70% 4 8 1.3 9 9 8.78± 0.63 81.22 ± 6.27 1.3 16 16 9.0 ± 1.12 93.06 ± 19.05

Constant 70% 5 3 2 101 76 3.18± 0.39 127.61± 32.95 1.3 107 91 3.79± 0.82 81.58 ± 12.70

Constant 70% 5 8 1.3 8 8 8.64± 0.70 65.38 ± 11.97 1.3 45 45 8.62± 0.87 63.49 ± 13.29

C
la

vi
en

-D
in

do

ty
pe

III
.b

Constant 70% 3 3 2 37 32 4.44± 1.06 141.28± 16.67

H
D

U
da

ys

>
2

1.5 27 26 4.57± 1.50 152.73± 24.74

Constant 70% 3 8 1.3 32 32 8.97± 1.21 121.38± 34.44 1.2 5 5 9.2 ± 1.47 175.6 ± 20.44

Constant 70% 4 3 2 66 56 3.83± 0.72 119.73± 13.92 1.5 113 105 3.2 ± 0.51 141.07± 25.38

Constant 70% 4 8 1.3 13 13 9.54± 1.64 117.77± 25.93 1.2 5 5 8.4 ± 0.8 109.6 ± 25.34

Constant 70% 5 3 2 125 94 3.47± 0.66 88.52 ± 19.33 1.5 111 104 3.42± 0.64 90.15 ± 17.94

Constant 70% 5 8 1.3 2 2 11.0 ± 0.0 147.0 ± 0.0 1.2 6 6 8.66± 0.74 74.83 ± 15.02

C
la

vi
en

-D
in

do

ty
pe

IV
.a

Constant 70% 3 3 2 80 79 3.24± 0.53 210.09± 31.65

IP
O

da
ys

<
7

2 288 284 4.27± 1.36 192.96± 41.15

Constant 70% 3 8 1.3 14 14 9.07± 1.39 155.43± 25.87 1.3 18 18 9.83± 1.67 181.28± 37.47

Constant 70% 4 3 2 79 69 3.36± 0.59 173.61± 24.37 2 73 57 3.50± 0.77 173.96± 30.36

Constant 70% 4 8 1.3 13 13 9.23± 1.12 110.15± 21.83 1.3 24 24 9.16± 1.49 114.5 ± 32.69

Constant 70% 5 3 2 55 44 3.36± 0.68 153.79± 17.80 2 62 52 3.65± 0.96 163.17± 16.80

Constant 70% 5 8 1.3 22 22 9.14± 1.49 75.18 ± 15.25 1.3 10 10 9.5 ± 1.8 113.8 ± 25.36

C
la

vi
en

-D
in

do

ty
pe

IV
.b

Constant 70% 3 3 2 57 57 3.65± 0.85 195.73± 31.48

IP
O

da
ys

7
−

10

1.7 48 46 4.83± 1.46 165.0 ± 25.83

Constant 70% 3 8 1.3 7 7 9.41± 1.12 166.0 ± 32.98 1.3 3 3 9.0 ± 0.82 161.0 ± 34.32

Constant 70% 4 3 2 76 69 3.45± 0.77 159.72± 21.09 1.7 72 72 3.80± 0.93 122.68± 16.56

Constant 70% 4 8 1.3 21 21 8.85± 1.03 95.19 ± 21.45 1.3 2 2 8.5 ± 0.5 103.0 ± 18.0

Constant 70% 5 3 2 118 85 3.11± 0.34 120.4 ± 25.13 1.7 71 66 3.66± 0.78 109.51± 19.77

Constant 70% 5 8 1.3 34 34 9.14± 1.19 67.18 ± 9.94 1.3 5 5 8.4 ± 0.48 75.6 ± 8.8

C
la

vi
en

-D
in

do

ty
pe

V

Constant 70% 3 3 2 84 83 3.36± 0.72 194.18± 31.79

IP
O

da
ys

>
10

1.5 9 9 5.0 ± 1.49 195.22± 18.91

Constant 70% 3 8 1.3 11 11 9.45± 1.62 160.90± 23.58 1.3 17 17 9.23± 1.51 163.47± 30.44

Constant 70% 4 3 2 58 52 3.29± 0.66 152.02± 28.24 1.5 33 33 3.69± 0.99 155.84± 23.30

Constant 70% 4 8 1.3 8 8 9.13± 1.17 99.5 ± 13.51 1.3 6 6 8.83± 0.89 108.0 ± 28.85

Constant 70% 5 3 2 151 135 3.24± 0.57 102.36± 24.38 1.5 35 35 3.74± 0.93 127.51± 19.03

Constant 70% 5 8 1.3 16 16 8.94± 1.30 63.94 ± 10.84 1.3 10 10 9.1 ± 1.13 78.7 ± 12.81
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Table 5.8: Destination after IPO, destination after HDU, moment of death after surgery and readmission into
HDU, death after surgery within 1 year, admitted into ICU, average nursery care points using BicPAMS with
DI2 discretization.

Assumption quality |L| |C| Lift #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)
Lift #bics

p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)

D
es

tin
at

io
n

af
te

r

IP
O

:D
ea

th

Constant 70% 3 3 2 203 198 3.50 ± 0.88 183.52± 36.15

re
ad

m
is

si
on

in
to

H
D

U 2 41 41 3.70 ± 0.91 179.78± 20.12

Constant 70% 3 8 1.3 15 15 9.93 ± 1.91 167.4 ± 25.96 1.3 6 6 9.16 ± 1.67 159.5 ± 30.40

Constant 70% 4 3 2 201 194 3.44 ± 0.76 136.84± 30.07 2 68 61 3.68 ± 0.91 140.55± 19.64

Constant 70% 4 8 1.3 18 18 8.55 ± 0.90 88.05 ± 22.77 1.3 27 27 9.40 ± 1.59 106.14± 24.84

Constant 70% 5 3 2 189 174 3.34 ± 0.64 116.29± 22.89 2 70 59 3.27 ± 0.54 117.16± 19.29

Constant 70% 5 8 1.3 18 18 8.77 ± 0.92 71.72 ± 13.66 1.3 7 7 11.28 ± 0.87 113.14± 15.23

D
es

tin
at

io
n

af
te

r

H
D

U
:D

ea
th

Constant 70% 3 3 2 54 52 4.11 ± 1.22 169.81± 17.27
D

ea
th

af
te

rs
ur

ge
ry

w
ith

in
1

ye
ar

2 45 43 5.27 ± 1.71 158.53± 18.81

Constant 70% 3 8 1.3 6 6 9.33 ± 1.37 166.0 ± 32.07 1.3 5 5 10.0 ± 1.26 190.8 ± 21.97

Constant 70% 4 3 2 65 59 3.52 ± 0.79 138.37± 18.28 2 56 52 4.0 ± 1.16 135.42± 15.60

Constant 70% 4 8 1.3 9 9 8.89 ± 1.28 101.11± 16.36 1.3 7 7 8.85 ± 1.12 109.85± 23.55

Constant 70% 5 3 2 108 95 3.41 ± 0.69 106.76± 19.14 2 63 58 3.44 ± 0.69 112.62± 15.99

Constant 70% 5 8 1.3 29 29 8.93 ± 1.01 71.62 ± 14.52 1.3 16 16 8.87 ± 1.05 68.25 ± 12.70

D
ea

th
af

te
rs

ur
ge

ry

0
−

30
(d

ay
s)

Constant 70% 3 3 2 39 38 5.31 ± 2.16 49.55 ± 5.80

A
dm

itt
ed

in
to

IC
U

2 43 43 4.34 ± 1.39 183.81± 25.13

Constant 70% 3 8 1.3 10 10 9.6 ± 2.2 55.0 ± 10.68 1.3 10 10 9.4 ± 1.74 162.0 ± 33.70

Constant 70% 4 3 2 45 41 4.63 ± 1.72 39.73 ± 3.90 2 41 40 3.6 ± 1.01 151.17± 18.57

Constant 70% 4 8 1.3 16 16 9.5 ± 1.73 37.38 ± 10.06 1.3 5 5 8.6 ± 0.8 108.6 ± 25.71

Constant 70% 5 3 2 44 38 4.05 ± 1.32 37.16 ± 3.80 2 74 73 3.41 ± 0.73 120.17± 19.59

Constant 70% 5 8 1.3 16 16 8.94 ± 1.09 30.75 ± 6.83 1.3 25 25 8.72 ± 0.87 67.16 ± 9.95

D
ea

th
af

te
rs

ur
ge

ry

30
−

60
(d

ay
s)

Constant 70% 3 3 2 19 17 10.11 ± 3.73 33.05 ± 5.76

A
ve

ra
ge

nu
rs

er
y

ca
re

po
in

ts
pe

r

da
y

:
<

60

1.7 71 71 5.72 ± 1.85 133.83± 15.56

Constant 70% 3 8 1.3 13 13 9.77 ± 1.80 48.23 ± 12.16 1.3 19 19 9.63 ± 1.46 134.10± 41.20

Constant 70% 4 3 2 104 87 4.85 ± 1.64 22.86 ± 4.19 1.7 50 47 5.19 ± 1.69 120.25± 15.58

Constant 70% 4 8 1.3 34 34 9.24 ± 1.33 26.20 ± 9.43 1.3 18 18 9.22 ± 1.61 90.56 ± 30.80

Constant 70% 5 3 2 61 56 5.30 ± 1.43 25.88 ± 4.21 1.7 13 13 4.54 ± 1.45 121.0 ± 17.19

Constant 70% 5 8 1.3 25 25 8.96 ± 1.31 20.72 ± 7.00 1.3 8 8 9.75 ± 1.47 106.88± 26.01

D
ea

th
af

te
rs

ur
ge

ry

60
−

36
5

(d
ay

s)

Constant 70% 3 3 1.3 6 6 3.5 ± 0.5 36.0 ± 2.52

A
ve

ra
ge

nu
rs

er
y

ca
re

po
in

ts
pe

r

da
y

:
≥

60

1.2 5 5 3.6 ± 0.8 148.6 ± 6.71

Constant 70% 3 8 1.1 2 2 10.0 ± 1.0 37.0 ± 1.0 1.2 1 1 8.0 ± 0.0 116.0 ± 0.0

Constant 70% 4 3 1.3 49 29 3.72 ± 0.83 26.86 ± 3.5 1.2 117 103 3.73 ± 0.95 95.15 ± 16.05

Constant 70% 4 8 1.3 1 1 9.0 ± 0.0 21.0 ± 0.0 1.2 2 2 8.5 ± 0.5 83.5 ± 8.5

Constant 70% 5 3 1.3 44 38 4.05 ± 1.31 37.18 ± 3.80 1.2 96 83 3.57 ± 0.68 82.99 ± 13.34

Constant 70% 5 8 1.3 6 6 8.83 ± 1.07 16.0 ± 3.21 1.2 2 2 8.5 ± 0.5 59.5 ± 3.5
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(a) Discriminative pattern of death after IPO, |L|=3:
High P-Possum morbidity, Male patients, and severe
systemic disease. Lift = 2.35 and p-value = 3.82 ×
10−14.

(b) Discriminative pattern of ICU after HDU, |L|=5:
very low ARISCAT total score, Charlson comorbid-
ity index and expected survivability of 10 years,
Digestive speciality surgery, disseminated cancer,
medium ARISCAT score, the tumor is solid malig-
nant and is in distant metastasis. Lift = 1.76 and
p-value = 2.35× 10−89.

(c) Discriminative pattern of average nursery points
per day > 60, |L|=5: medium risk of readmission,
low ARISCAT total score, a long duration in surgery,
and a medium ARISCAT score. Lift = 1.22 and p-
value = 9.37× 10−11.

(d) Discriminative pattern of death within 30 − 60
dias after surgery, |L|=4: medium low risk of pneu-
monia, hemoglobin < 10or > 18g/dl, and se-
vere systemic disease. Lift = 2.08 and p-value =
1.55× 10−4.

(e) Discriminative pattern of HDU
readmission, |L|=4: high P-Possum
morbidity, low ARISCAT total score,
and the patients are hypertensive. Lift
= 2.32 and p-value = 1.29× 10−13.

(f) Discriminative pattern of days spent
at IPO > 10, |L|=5: very high risk of
P-Possum mortality, very low ARISCAT
total score, disgestive speciality. Lift =
1.56 and p-value = 1.94× 10−12.

(g) Discriminative pattern of patients who passed
through ICU, |L|=5: very low risk of kidney failure,
death, ARISCAT total score, male patients in head
and neck speciality with a solido tumor subjected
to surgery for the first time, the surgical incision is
peripheral. Lift = 1.34 and p-value = 3.06× 10−98.

Figure 5.6: Constant patterns, quality 70%, with DI2 discretization.
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5.5 Statistical Significance

As previously mentioned, Tables 5.2 to 5.8 show the ability of the target biclustering searches to find

statistically significant relations within IPOscore data. A bicluster is statistically significant if the number

of individuals sharing the given pattern is unexpected [33]. To test the statistical significance of a given

bicluster B, the regularities of the input matrix needs to be adequately modeled to assess the probability

of occurrence of bicluster B. The probability of occurrence can be computed by testing B against ap-

proximated distributions computing Binomial tails to estimate the probability of constant bicluster B from

the joint probability (for order-preserving patterns we use permutation probability) of a specific pattern

to occur for a minimum number of rows.

Figure 5.7 provides four scatter plots of the statistical significance (vertical axis) and area |I|x|J | (hor-

izontal axis) of constant type biclusters for each target variable considered in the clustered setting, 5.7a)

Post-surgical complication, 5.7b) Clavien-Dindo, 5.7c) 1-year Survivability, 5.7d) HDU hospitalization-

length. This analysis suggests the presence of a soft correlation between size and statistical signif-

icance. A few biclusters with loose statistical significance (left upper dots) can be discarded to not

incorrectly bias clinical decisions.

(a) Post-surgical complication (b) Clavien-Dindo classification

(c) 1-year Survivability (d) HDU hospitalization length

Figure 5.7: Statistical significance versus size of constant patterns.

5.6 Pattern actionability

The found patterns, help healthcare professionals taking decisions to better handle patients who follow

the same patterns. For example, Figure 4.7a suggests malnutrition that can be tackled with specialized

programs before surgery. Figure 4.8 suggests that patients with previous addressable comorbidities can

be subjected to pre-habilitation to reduce the risk of death. Patterns such as in figures 5.3d, 5.4d and
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5.2b are helpful logistic-wise as they identify groups of patients susceptible to longer monitoring periods

after surgery, showing the possibility to reserve beds in the HDU. Finally, patterns in Figures 4.7b, 5.3a,

5.3b, 5.4b and 5.4c help professionals identifying the possible nature of post-surgical complications

(Clavien-Dindo) and, accordingly, revise surgical procedures and modes of pre- and post-operative care.
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Chapter 6

Conclusions

This work proposes a comprehensive set of principles on how to mine discriminative patterns of post-

surgical outcomes from heterogeneous oncological data with guarantees of usability. State-of-the-art

contributions on pattern-based biclustering are extended towards this end, offering the unprecedented

possibility to comprehensively discover non-trivial, yet actionable and statistically significant associations

between cancer morphology, individual’s profile, undertaken surgery and post-operatory outcomes. It

also proposes a fully autonomous, non-parametric and prior-free discretization method, DI2, for mixed

variables with arbitrarily skewed distributions.

The proposed solution is able to deal with the heterogeneous, structurally sparse, and high-dimensional

nature of the available clinical data as the underlying pattern-based biclustering searches hold unique

properties of interest: efficient yet exhaustive searches; knowledge from mixed data; ability to discover

patterns with parameterizable coherence; tolerance to noise and missing data; ability to incorporate do-

main knowledge; absence of pattern positioning or overlapping restrictions; and sound statistical testing.

Results confirm the key role of biclustering in finding relevant discriminative patterns sensitive to

highly variable physiology and biopathological traits of patients, as well as the singularity of undertaken

surgeries and post-surgical care. In particular, the search for non-constant patterns (order-preserving

coherence assumptions) show a delineate ability to tolerate individual differences, while still guarantee-

ing the coherence and interpretability of the target patterns.

Results further show evidence of the ability to comprehensively unveil actionable and statistically

significant patterns of post-surgical outcomes, thus providing a trustworthy context for healthcare pro-

fessionals to support the design of surgical interventions, pre-surgical and post-surgical care.
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6.1 Scientific Contributions

Throughout the development of this work three institutional presentations with IPO-Porto were made,

and the following scientific contributions:

• IEEE Journal of Biomedical and Health Informatics (Revision): ”Mining pre-surgical patterns able

to discriminate post-surgical outcomes in the oncological domain”. Authors: Leonardo Alexandre,

Rafael S. Costa, Lúcio Lara Santos, Rui Henriques

• Bioinformatics (Submitted): ”DI2: prior-free and multi-item discretization of biomedical data and its

applications”. Authors: Leonardo Alexandre, Rafael S. Costa, Rui Henriques. Software available

at: https://github.com/JupitersMight/DI2

6.2 Future work

For future work we propose:

• break up the dataset into gender base and cancer specialities.

• create a full report of the new patterns found for the healthcare professionals.

• create a score based on matching patterns given a new patient for an outcome.

• implement the pattern into the already implemented view, parallel coordinates, for web visualization

by healthcare professionals.

• integrate both the pattern discovery module and pattern visualization module in the online platform.
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Appendix A

Appendix

A.1 Clustered setting data description:

Missing data:

Score ACS

”Ileus (%)”: 90% missing values

”Average risk of ileus (%)”: 90% missing values

”fuga anastomótica (%)”: 90% missing values

”Average risk of anastomotic leak (%)”: 90% missing values

Score Charson

”Charlson Comorbidity Index”: 97% missing values

Attributes:

”Provenance” contains 85% of value 1,0

”UCI motive of admission” contains 74% of value 1,0

”Type of surgery” contains 87% of value 1,0

”Destination after UCI” contains 96% of value 2,0

”Pre-surgery chemotherapy” contains 73% of value 0,0

”readmission into HDU” contains 91% of value 0,0

”Destination after IPO” contains 96% of value 1,0

”Death within 1 year” contains 83% of value 0,0

Score PP 10/18

”PP respiratory” contains 71% of value 1,0

”PP leukocytes” contains 84% of value 1,0

”PP urea” contains 87% of value 1,0

”PP sodium” contains 93% of value 1,0

”PP potassium” contains 95% of value 1,0
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”PP glasgow scale” contains 100% of value 1,0

”PP surgery type” contains 100% of value 3,0

”PP number of procedures” contains 90% of value 1,0

”PP peritoneal contamination” contains 89% of value 1,0

”PP CEPOP surgery classification” contains 89% of value 1,0

Score ACS 13/21

”ACS functional state” contains 81% of value 1,0

”ACS emergency surgery” contains 89% of value 1,0

”ACS steroids” contains 80% of value 1,0

”ACS ascites” contains 94% of value 1,0

”ACS systemic sepsis” contains 94 of value 1,0

”ACS ventilator dependent” contains 96% of value 1,0

”ACS diabetes” contains 75% of value 1,0

”ACS ICC” contains 79% of value 1,0

”ACS dyspnoea” contains 77% of value 1,0

”ACS smoker” contains 77% of value 1,0

”ACS DPOC” contains 81% of value 1,0

”ACS dialysis” contains 98% of value 1,0

”ACS acute renal failure” contains 89% of value 1,0

ARISCAT 2/7

”ARISCAT Age” contains 77% of value 2,0

”ARISCAT SpO2 ” contains 93% of value 1,0

CHARLSON 14/15

”CHARLSON diabetes” contains 73% of value 0,0

”CHARLSON liver disease” contains 95% of value 0,0

”CHARLSON malignancy of solid tumor” contains 79% of value 2,0

”CHARLSON AIDS” contains 100% of value 0,0

”CHARLSON chronic kidney disease (Moderate to severe)” contains 86% of value 0,0

”CHARLSON cardiac insufficiency” contains 88% of value 0,0

”CHARLSON myocardial infarction” contains 98% of value 0,0

”CHARLSON DPOC” contains 87% of value 0,0

”CHARLSON Doença Vascular periférica” contains 97% of value 0,0

”CHARLSON stroke or Transient Ischemic Attack” contains 93% of value 0,0

”CHARLSON dementia” contains 99% of value 0,0

”CHARLSON Doença do Tecido Conjuntivo” contains 100% of value 0,0

”CHARLSON connective Tissue Disease” contains 98% of value 0,0

Numerical attributes

Age: Average 64.72 / Standard deviation 13.13 / Confidence(95) [63.84 , 65.61] / patients 847
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Days spent at HDU: Average 1.95 / Standard deviation 1.83 / Confidence(95) [1.83 , 2.081] / patients

847

Days spent at IPO: Average 19.42 / Standard deviation 23.41 / Confidence(95) [17.83 , 21] / patients

840

Total points of NAS: Average 130.12 / Standard deviation 120.27 / Confidence(95) [121.39 , 138.85] /

patients 733

Points NAS per day: Average 64.42 / Standard deviation 14.29 / Confidence(95) [63.39 , 65.46] / pa-

tients 733

P-Possum physiological score (%): Average 22.05 / Standard deviation 7.6 / Confidence(95) [21.53 ,

22.57] / patients 823

P-Possum surgical severity score (%): Average 14.06 / Standard deviation 4.51 / Confidence(95) [13.75

, 14.37] / patients 823

P-Possum morbidity (%): Average 52.18 / Standard deviation 25.74 / Confidence(95) [50.42 , 53.94] /

patients 823

P-Possum mortality (%): Average 9.34 / Standard deviation 17.42 / Confidence(95) [8.15 , 10.53] / pa-

tients 823

ACS height: Average 164.76 / Standard deviation 8.97 / Confidence(95) [164.15 , 165.38] / patients 823

ACS weight: Average 69.87 / Standard deviation 15.15 / Confidence(95) [68.84 , 70.91] / patients 823

Serious complications (%): Average 20.68 / Standard deviation 12.73 / Confidence(95) [19.81 , 21.55] /

patients 820

Average risk of serious complications (%): Average 16.24 / Standard deviation 8.48 / Confidence(95)

[15.66 , 16.82] / patients 820

Any complication (%): Average 23.83 / Standard deviation 14.50 / Confidence(95) [22.83 , 24.82] / pa-

tients 820

Average risk of any complications (%): Average 18.91 / Standard deviation 9.78 / Confidence(95) [18.23

, 19.58] / patients 820

Pneumonia (%): Average 4.66 / Standard deviation 5.14 / Confidence(95) [4.31 , 5.01430707961717] /

patients 817

Average risk of pneumonia (%): Average 2.87 / Standard deviation 2.34 / Confidence(95) [2.71 , 3.028]

/ patients 817

Cardiac complications (%): Average 1.77 / Standard deviation 2.58 / Confidence(95) [1.59 , 1.95] / pa-

tients 820

Average risk of cardiac complications (%): Average 0.8 / Standard deviation 0.66 / Confidence(95) [0.75

, 0.84] / patients 820

Surgical infection (%): Average 7.32 / Standard deviation 6.22 / Confidence(95) [6.89 , 7.75] / patients

818

Average risk of surgical infection (%): Average 6.53 / Standard deviation 5.25 / Confidence(95) [6.17 ,

6.89] / patients 818

ITU (%): Average 2.38 / Standard deviation 2.01 / Confidence(95) [2.24 , 2.52] / patients 820
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Average risk of ITU (%): Average 1.68 / Standard deviation 1.31 / Confidence(95) [1.58 , 1.76] / patients

820

Venous thromboembolism (%): Average 2.25 / Standard deviation 1.79 / Confidence(95) [2.13 , 2.38] /

patients 819

Average risk of venous thromboembolism (%): Average 1.52 / Standard deviation 1.03 / Confidence(95)

[1.45 , 1.59] / patients 819

Kidney failure (%): Average 1.39 / Standard deviation 2.33 / Confidence(95) [1.22 , 1.56] / patients 725

Average risk of kidney failure (%): Average 0.76 / Standard deviation 0.706 / Confidence(95) [0.71 , 0.81]

/ patients 724

Ileus (%): Average 24.33 / Standard deviation 10.19 / Confidence(95) [22.11 , 26.54] / patients 85

Average risk of ileus (%): Average 19.14 / Standard deviation 6.48 / Confidence(95) [17.73 , 20.54] /

patients 85

Anastomotic leak (%): Average 4.39 / Standard deviation 1.99 / Confidence(95) [3.96 , 4.82] / patients

85

Average risk of anastomotic leak (%): Average 3.53 / Standard deviation 0.99 / Confidence(95) [3.32 ,

3.75] / patients 85

Readmission (%): Average 12.08 / Standard deviation 6.59 / Confidence(95) [11.63 , 12.53] / patients

817

Average risk of readmission (%): Average 8.81 / Standard deviation 3.92 / Confidence(95) [8.54 , 9.08]

/ patients 816

Reoperation (%): Average 6.52 / Standard deviation 4.76 / Confidence(95) [6.19 , 6.85] / patients 820

Average risk of reoperation (%): Average 5.63 / Standard deviation 3.95 / Confidence(95) [5.36 , 5.90] /

patients 819

Death (%): Average 5.94 / Standard deviation 13.77 / Confidence(95) [5 , 6.88] / patients 820

Average risk of death (%): Average 1.13 / Standard deviation 1.45 / Confidence(95) [1.03 , 1.23] / pa-

tients 819

Discharge to nursing or rehad facility (%): Average 16.78 / Standard deviation 19.72 / Confidence(95)

[15.43 , 18.14] / patients 818

Average risk of discharge to nursing or rehad facility (%): Average 7 / Standard deviation 6.37 / Confi-

dence(95) [6.564 , 7.44] / patients 817

ACS forecast of hospitalization days (%): Average 8.097 / Standard deviation 5.46 / Confidence(95)

[7.72 , 8.47] / patients 818

ARISCAT total score: Average 28.74 / Standard deviation 14.61 / Confidence(95) [27.74 , 29.74] / pa-

tients 823

Charlson Comorbidity Index: Average 5.96 / Standard deviation 1.88 / Confidence(95) [5.22 , 6.71] /

patients 28

Survivability (10 years): Average 0.24 / Standard deviation 0.31 / Confidence(95) [0.21 , 0.27] / patients

379
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There are 374 patients (complications yes)

There are 449 patients (complications no)

94 patients (complications yes, quimio antes yes)

125 patients (complications no, quimio antes yes)

280 patients (complications yes, quimio antes no)

324 patients (complications no, quimio antes no)

197 patients (complications yes, first surgery yes)

272 patients (complications no, first surgery yes)

177 patients (complications yes, first surgery no)

177 patients (complications no, first surgery no)

75 patients (complications yes, cirurgia urgente yes)

15 patients (complications no, cirurgia urgente yes)

299 patients (complications yes, cirurgia urgente no)

434 patients (complications yes, cirurgia urgente no)

29 patients (complications yes) (torax speciality)

86 patients (complications no) (torax speciality)

160 patients (complications no) (digestive speciality)

181 patients (complications yes) (digestive speciality)

87 patients (complications yes) (head speciality)

103 patients (complications no) (head speciality)

77 patients (complications yes) (another speciality)

100 patients (complications no) (another speciality)

84 patients (complications yes, Death within 1 year yes)

51 patients (complications no, Death within 1 year yes)

288 patients (complications yes, Death within 1 year no)

398 patients (complications no, Death within 1 year no)

44 patients (complications yes) (readmission into HDU)

13 patients (complications no) (readmission into HDU)

330 patients (complications yes) (no readmission into HDU)

436 patients (complications no) (no readmission into HDU)

Location: colon : 97 patients, stomach : 66 patients, liver : 48 patients, lungs : 102 patients, larynx : 43

patients, rectum : 49 patients, oral cavity : 70 patients
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speciality: digestive : 349 patients, torax : 115 patients, general : 127 patients, head and neck : 67

patients

A.2 Clustered setting bicluster extra analysis

Each cell represents the % of a variable within all the biclusters found and the value it takes. For

example, in Figure A.1 first line after 3 labels we can see that ”P-POSSUM mortality” appears in 100%

of the biclusters found and in those biclusters 100% of the time appears with category 1.

A.2.1 Post-surgical complication

A.2.2 Death within 1 year

A.2.3 Days spent at HDU

A.2.4 Clavien-Dindo

A.3 Range based extra tables
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Figure A.1: Occurrence of variables and their values in the biclusters of post-surgical complications, scores
dataset.
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Figure A.2: Occurrence of variables and their values in the biclusters of post-surgical complications, non-scores
dataset.
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Figure A.3: Occurrence of variables and their values in the biclusters of post-surgical complications, ICD-10
dataset.
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Figure A.4: Occurrence of variables and their values in the biclusters of death within 1 year, scores dataset.

Figure A.5: Occurrence of variables and their values in the biclusters of death within 1 year, non-scores dataset.
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Figure A.6: Occurrence of variables and their values in the biclusters of death within 1 year, ICD-10 dataset.

Figure A.7: Occurrence of variables and their values in the biclusters of days spent at HDU, scores dataset.
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Figure A.8: Occurrence of variables and their values in the biclusters of days spent at HDU, non-scores dataset.

Figure A.9: Occurrence of variables and their values in the biclusters of days spent at HDU, ICD-10 dataset.

81



Figure A.10: Occurrence of variables and their values in the biclusters of Clavien-Dindo score, scores dataset.
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Figure A.11: Occurrence of variables and their values in the biclusters of Clavien-Dindo score, scores dataset.
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Figure A.12: Occurrence of variables and their values in the biclusters of Clavien-Dindo score, variables dataset.
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Figure A.13: Occurrence of variables and their values in the biclusters of Clavien-Dindo score, variables dataset.

Figure A.14: Occurrence of variables and their values in the biclusters of Clavien-Dindo score, ICD-10 dataset.
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Table A.1: Destination after IPO, destination after HDU, moment of death after sugery categories, admitted
into ICU, readmission into HDU, death within 1 year after surgery, provenance of patient using BicPAMS with
range based discretization.

Assumption quality |L| |C| Lift #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)
Lift #bics

p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)

D
es

tin
at

io
n

af
te

r

IP
O

:D
ea

th

Constant 70% 3 3 2.5 76 71 3.97± 1.00 121.01± 20.38

re
ad

m
is

si
on

in
to

H
D

U 2.5 74 70 3.76± 0.78 114.53± 17.09

Constant 70% 3 8 1.3 47 47 8.59± 0.79 90.29 ± 41.28 1.3 50 50 8.76± 1.21 77.72 ± 30.69

Constant 70% 4 3 2.5 190 168 3.54± 0.81 92.11 ± 19.21 2.5 84 72 3.28± 0.51 92.42 ± 11.81

Constant 70% 4 8 1.3 40 40 8.53± 0.77 73.98 ± 27.52 1.3 39 39 8.62± 1.03 70.54 ± 19.20

Constant 70% 5 3 3 109 91 3.60± 0.86 100.54± 21.51 2.5 94 75 3.48± 0.67 77.45 ± 10.36

Constant 70% 5 8 1.3 49 49 8.77± 1.11 83.08 ± 16.26 1.3 60 60 8.65± 0.87 64.57 ± 18.32

D
es

tin
at

io
n

af
te

r

H
D

U
:I

C
U

Constant 70% 3 3 2.5 100 99 3.63± 0.78 105.41± 18.94

D
ea

th
af

te
rs

ur
ge

ry

w
ith

in
1

ye
ar

1.5 104 101 3.50± 0.93 141.54 ± 22.0

Constant 70% 3 8 1.3 52 52 8.71± 0.81 111.89± 38.07 1.3 41 41 8.76± 1.00 87.27 ± 42.68

Constant 70% 4 3 2.5 106 98 3.58± 0.83 97.69 ± 14.89 1.5 124 98 3.34± 0.79 125.06± 29.76

Constant 70% 4 8 1.3 68 68 8.44± 0.69 71.05 ± 23.98 1.3 41 41 8.49± 0.63 79.66 ± 21.42

Constant 70% 5 3 2.5 153 130 3.59± 0.77 75.01 ± 14.82 1.5 117 81 3.25± 0.56 116.41± 20.15

Constant 70% 5 8 1.3 33 33 8.75± 0.85 97.58 ± 18.65 1.3 31 31 8.61± 0.79 86.26 ± 19.74

D
ea

th
af

te
rs

ur
ge

ry

0
−

30
(d

ay
s)

Constant 70% 3 3 2.5 51 41 4.0 ± 1.05 22.27 ± 2.53

P
ro

ve
na

nc
e

nu
rs

er
y

2 33 27 5.85± 1.51 111.93± 14.53

Constant 70% 3 8 1.3 40 40 8.68± 0.82 20.05 ± 8.74 1.3 38 38 8.74± 0.96 77.5 ± 44.51

Constant 70% 4 3 2.5 57 39 4.02± 0.86 23.72 ± 3.69 2 46 31 4.32 ± 1 91.19 ± 10.70

Constant 70% 4 8 1.3 41 41 8.88± 1.02 18.39 ± 4.43 1.3 98 98 8.64± 0.87 68.15 ± 22.08

Constant 70% 5 3 2.5 43 38 3.58± 0.75 22.39 ± 3.07 2 92 57 4.44± 1.08 86.6 ± 12.10

Constant 70% 5 8 1.3 31 31 9.29± 1.11 22.74 ± 3.80 1.3 33 33 8.73± 0.86 85.91 ± 17.29

D
ea

th
af

te
rs

ur
ge

ry

30
−

60
(d

ay
s)

Constant 70% 3 3 2.5 27 24 5.88± 1.45 18.54 ± 2.25

P
ro

ve
na

nc
e

IC
U

2 81 78 3.67± 0.87 105.79± 22.05

Constant 70% 3 8 1.3 35 35 8.71± 0.85 23.28 ± 7.34 1.3 44 44 8.55± 0.78 81.95 ± 39.65

Constant 70% 4 3 2.5 31 31 5.45± 1.72 17.94 ± 1.72 2 147 138 3.36± 0.63 86.75 ± 21.18

Constant 70% 4 8 1.3 31 31 8.52± 0.76 18.77 ± 4.90 1.3 69 69 8.59± 0.84 61.65 ± 21.79

Constant 70% 5 3 2.5 25 19 4.37± 0.81 17.11 ± 0.79 2 132 112 3.46± 0.72 80.66 ± 16.83

Constant 70% 5 8 1.3 11 11 8.82± 1.19 25.27 ± 5.45 1.3 38 38 8.76± 0.93 74.68 ± 11.95

D
ea

th
af

te
rs

ur
ge

ry

60
−

36
5

(d
ay

s)

Constant 70% 3 3 1.3 94 74 4.77± 1.21 24.80 ± 3.39

P
ro

ve
na

nc
e

un
sc

he
du

le
d

se
rv

ic
e 2 74 74 3.78± 0.99 221.73± 45.01

Constant 70% 3 8 1.3 29 29 9.03 ± 1.3 16.93 ± 5.59 1.3 40 40 8.63± 0.83 104.95± 57.26

Constant 70% 4 3 1.3 40 30 4.4 ± 1.01 26.50 ± 3.35 2.5 480 440 3.67± 0.78 138.04± 27.23

Constant 70% 4 8 1.3 21 21 9.05± 1.13 15.95 ± 2.44 1.3 137 137 8.78± 0.88 91.34 ± 21.35

Constant 70% 5 3 1.3 40 35 4.2 ± 0.91 27.0 ± 3.07 2.5 470 411 3.74± 0.89 125.86± 26.93

Constant 70% 5 8 1.3 48 48 8.85± 1.10 13.40 ± 3.17 1.3 34 34 8.59± 0.73 96.65 ± 29.57

A
dm

itt
ed

in
to

IC
U

Constant 70% 3 3 2 104 98 3.60± 0.75 111.29± 19.49 – – – – –

Constant 70% 3 8 1.3 57 57 8.56± 0.82 75.58 ± 35.07 – – – – –

Constant 70% 4 3 2 129 113 3.22± 0.47 85.15 ± 12.05 – – – – –

Constant 70% 4 8 1.3 60 60 8.55± 0.78 71.27 ± 21.63 – – – – –

Constant 70% 5 3 2 36 28 3.14± 0.35 85.75 ± 7.35 – – – – –

Constant 70% 5 8 1.3 67 67 8.69± 0.85 62.82 ± 11.84 – – – – –
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Table A.2: Clavien-Dindo classes, presence of post-surgery complication, days spent in HDU and days
spent in IPO using BicPAMS with range based discretization.

Assumption quality |L| |C| Lift #bics
p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)
Lift #bics

p-value

<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)

C
la

vi
en

-D
in

do

ty
pe

I

Constant 70% 3 3 2.5 76 67 5.74± 1.73 96.56 ± 17.60

P
re

se
nc

e
of

Po
st

-s
ur

ge
ry

co
m

p. 1.5 54 54 4.09± 1.15 117.11± 21.21

Constant 70% 3 8 1.3 32 32 8.43± 0.66 124.78± 70.52 1.3 42 42 8.52± 0.66 77.38 ± 37.51

Constant 70% 4 3 2.5 54 51 4.6 ± 1.17 122.01± 19.60 1.5 143 139 3.35± 0.67 77.85 ± 12.92

Constant 70% 4 8 1.3 83 83 8.44± 0.56 107.36± 42.12 1.3 69 69 8.49± 0.81 62.94 ± 21.37

Constant 70% 5 3 2.5 127 106 5.19± 1.49 92.18 ± 19.31 1.5 112 107 3.45± 0.73 78.11 ± 11.47

Constant 70% 5 8 1.3 117 117 8.67± 0.81 99.84 ± 36.72 1.3 22 22 8.82± 0.94 79.82 ± 15.91

C
la

vi
en

-D
in

do

ty
pe

II

Constant 70% 3 3 1.7 70 66 4.12± 1.08 108.89± 20.01

H
D

U
da

ys

<
1

1.5 67 55 5.83± 1.73 119.0 ± 25.62

Constant 70% 3 8 1.3 46 46 8.63± 0.81 86.78 ± 33.61 1.3 31 31 8.61± 0.97 102.12± 58.91

Constant 70% 4 3 1.7 82 80 3.85± 0.71 109.5 ± 12.09 1.5 113 105 5.84± 1.76 106.93± 30.57

Constant 70% 4 8 1.3 120 120 8.63± 0.94 60.82 ± 20.31 1.3 53 53 8.64± 0.91 107.26± 40.77

Constant 70% 5 3 1.7 103 97 4.14± 1.04 99.73 ± 9.89 1.5 166 143 4.92± 1.32 113.91± 37.28

Constant 70% 5 8 1.3 48 48 8.75± 0.92 74.02 ± 19.73 1.3 18 18 8.83± 0.89 150.5 ± 55.82

C
la

vi
en

-D
in

do

ty
pe

III
.a

Constant 70% 3 3 2.5 141 140 4.48± 1.32 120.68± 29.08

H
D

U
da

ys

1
−

2

1.3 75 56 5.03± 1.68 92.08 ± 16.75

Constant 70% 3 8 1.3 55 55 8.83± 0.90 86.90 ± 44.27 1.3 11 11 9.45± 1.59 101.91± 15.19

Constant 70% 4 3 3 74 74 4.35± 1.16 105.35± 23.55 1.3 68 54 4.62± 1.43 98.62 ± 16.94

Constant 70% 4 8 1.3 43 43 8.65± 0.83 80.41 ± 30.94 1.3 48 48 8.71± 0.93 71.58 ± 21.09

Constant 70% 5 3 2.5 170 165 3.73± 0.93 115.12± 21.45 1.3 99 74 4.22± 1.11 88.0 ± 9.34

Constant 70% 5 8 1.3 64 64 8.78± 0.85 80.47 ± 30.42 1.3 80 80 9.03± 1.21 59.81 ± 10.51

C
la

vi
en

-D
in

do

ty
pe

III
.b

Constant 70% 3 3 2.5 93 82 5.44± 1.63 79.68 ± 10.23

H
D

U
da

ys

>
2

2 11 11 5.36± 2.01 104.81± 15.93

Constant 70% 3 8 1.3 57 57 8.38± 0.61 78.33 ± 31.96 1.3 48 48 8.81± 1.13 86.33 ± 39.70

Constant 70% 4 3 2.5 26 25 4.36± 1.26 95.32 ± 9.78 2 37 37 4.21± 1.37 78.16 ± 8.29

Constant 70% 4 8 1.3 44 44 8.84± 0.97 96.93 ± 21.43 1.3 32 32 8.65± 1.04 82.5 ± 30.33

Constant 70% 5 3 2.5 48 40 4.33± 1.10 77.18 ± 5.98 1.5 123 104 3.31± 0.59 102.78± 22.47

Constant 70% 5 8 1.3 11 11 8.73± 0.75 119.27± 32.09 1.3 37 37 8.78± 0.90 84.91 ± 27.21

C
la

vi
en

-D
in

do

ty
pe

IV
.a

Constant 70% 3 3 3 138 134 3.91± 1.25 127.57± 20.50

IP
O

da
ys

<
7

2.5 46 40 5.55± 1.90 124.65± 41.55

Constant 70% 3 8 1.3 32 32 8.88± 0.99 102.94± 40.93 1.3 32 32 8.37± 0.59 112.68± 81.85

Constant 70% 4 3 3 149 126 3.88± 0.83 98.60 ± 9.74 2.5 102 89 5.03± 1.56 106.02± 31.02

Constant 70% 4 8 1.3 55 55 8.43± 0.68 71.94 ± 19.22 1.3 39 39 8.56± 0.74 115.41± 44.99

Constant 70% 5 3 3 153 126 3.57± 0.77 88.13 ± 11.9 2.5 113 107 5.28± 1.70 121.42± 29.25

Constant 70% 5 8 1.3 15 15 8.6 ± 1.02 92.27 ± 24.00 1.3 78 78 8.74± 0.85 123.08± 43.81

C
la

vi
en

-D
in

do

ty
pe

IV
.b

Constant 70% 3 3 3 143 133 4.18± 0.97 107.54± 17.95

IP
O

da
ys

7
−

10

1.7 18 16 5.31± 1.44 126.56± 37.47

Constant 70% 3 8 1.3 39 39 8.71± 0.96 98.71 ± 29.78 1.3 37 37 8.83± 0.94 118.54± 66.30

Constant 70% 4 3 3 75 70 3.74± 0.87 96.92 ± 9.90 1.7 49 48 4.72± 1.03 127.58± 23.26

Constant 70% 4 8 1.3 73 73 8.46± 0.68 58.86 ± 16.27 1.3 38 38 8.55± 0.87 90.44 ± 32.88

Constant 70% 5 3 3 81 75 3.71± 0.98 91.32 ± 9.21 2 37 37 5.59± 1.51 109.81± 11.88

Constant 70% 5 8 1.3 49 49 8.63± 0.72 71.61 ± 20.03 1.3 42 42 8.78± 0.96 90.66 ± 31.21

C
la

vi
en

-D
in

do

ty
pe

V

Constant 70% 3 3 3 66 59 4.35± 1.23 96.18 ± 19.23

IP
O

da
ys

>
10

1.5 71 69 4.04± 1.21 102.63± 20.90

Constant 70% 3 8 1.3 64 64 8.46± 0.68 77.29 ± 35.04 1.3 28 28 8.78± 0.72 91.96 ± 47.29

Constant 70% 4 3 2.5 117 95 3.58± 0.79 109.31± 32.28 1.5 77 77 3.61± 0.72 106.77± 19.84

Constant 70% 4 8 1.3 63 63 8.44± 0.68 69.39 ± 26.35 1.3 29 29 8.55± 0.72 76.13 ± 16.01

Constant 70% 5 3 3 137 123 3.59± 0.87 78.82 ± 15.56 1.5 81 78 3.71± 0.87 85.5 ± 12.0

Constant 70% 5 8 1.3 48 48 8.48± 0.65 81.48 ± 22.86 1.3 16 16 8.62± 0.92 82.18 ± 14.69
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