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Abstract—Understanding the individualized risks of undertak-
ing surgical procedures is essential to personalize preparatory,
intervention and post-care protocols for minimizing post-surgical
complications. This knowledge is key in oncology given the nature
of interventions, the fragile profile of patients with comorbidities
and drug exposure, and the possible cancer recurrence. Despite
its relevance, the discovery of discriminative patterns of post-
surgical risk is hampered by major challenges: 1) the unique
physiological and demographic individual profile, as well as
their differentiated post-surgical care, 2) the increasing high-
dimensionality and heterogeneous nature of available biomedical
data, combining non-identically distributed risk factors, clinical
and molecular variables, 3) the need to learn from populations
where tumors have significant histopathological differences and
individuals undertake unique surgical procedures (structurally
sparse data), 4) the need to focus on non-trivial patterns of
surgical risk, while guaranteeing their statistical significance and
discriminative power of post-surgical outcomes, and 5) the lack
of interpretability and actionability of current approaches.

This work proposes the use of biclustering, the discovery
of groups of individuals correlated on subsets of variables,
due to its unique properties of interest able to satisfy the
aforementioned challenges, and a discretization method, DI2
(Distribution Discretizer) enablying a more robust pattern dis-
covery on non-identically distributed variables. In this context,
this work proposes a structured view on why, when and how
to apply biclustering to mine discriminative patterns of post-
surgical risk with guarantees of usability, a subject remaining
unexplored up to date, and a fully autonomous, non-parametric
and prior-free discretization method, DI2, for mixed variables
with arbitrarily skewed distributions with support for multi-
item assignments. Results show its relevance to improve classic
discretization choices. The patterns offer a comprehensive view
on how the patient’s profile, cancer histopathology and entailed
surgical procedures determine: 1) post-surgical complications, 2)
survival, and 3) hospitalization needs.

The results confirm the role of biclustering in comprehen-
sively finding interpretable, actionable and statistically signifi-
cant patterns with a comprehensive view on how the patient’s
profile, cancer histopathology and entailed surgical procedures
determine: 1) post-surgical complications, 2) survival, and 3)
hospitalization needs. The patterns can be assisting healthcare
professionals to establish specialized pre-habilitation protocols
and support healthcare management decisions.

I. INTRODUCTION

Despite the relevance of discriminative pattern mining ap-
proaches, the discovery of patterns discriminating surgical
outcomes is hampered by major challenges. First, individuals
undertake personalized surgical procedures and differentiated
post-surgical care, as well as show unique demographic,
physiological, and tumor histopathological profiles. Second,
the high-dimensionality and heterogeneous nature of available

biomedical data, combining non-identically distributed risk
factors, clinical records and biophysiological variables which
contain structural sparsity, where the characterization of the
interventions and outcomes are highly specific, yet relevant
for the target end. Third, available data is inherently noisy and
show arbitrarily-high levels of missing values. Fourth, there is
the need to focus on non-trivial patterns of surgical risk able
to discriminate post-surgical complications. In addition, the
target patterns should strictly be statistically significant, thus
minimizing susceptibility of false positive and negative discov-
eries. Finally, there is the need to guarantee the actionability
and interpretability of the target patterns.

The nature of interventions, cancer recurrence, and fragile
profile of patients (generally debilitated by the tumor effects
and common need for cytotoxic chemotherapy) can cause
small to life-threatening post-surgical complications [1], [2].
This work aims at exploring patterns of pre-surgical profiles
to help professionals assess the various post-surgical outcomes
of patients in need of surgical interventions. This knowledge is
then translated into pre-surgical, surgical and post-surgical care
protocols. This work proposes a methodology for the discovery
of actionable pre-surgical patterns from available clinical data,
with particular incidence on patterns able to discriminate the
nature and severity of post-surgical complications, amount of
required time in the HDU (high dependency unit) after surgery,
and death susceptibility within the first year after surgery.

To address the aforementioned limitations of existing ap-
proaches, we propose the use of biclustering, the discovery of
coherent subspaces, to comprehensively explore discriminative
associations from heterogeneous oncological data.

The work is structured as follows. Section II introduces the
theoretical concepts on the techniques used in the solution
and the results obtained, and it also introduces traditional risk
scores on surgical patients contained within the data made
available to us. Section III surveys state-of-the-art pattern
discovery and other approaches. Section IV describes the
approached solution, the data used and its preprocessing,
the algorithm used, the post-processing and visualization of
the results. Section V presents the results obtained, their
interpretation, and actionability. Finally, Section VI presents
concluding remarks synthesized.

II. BACKGROUND

The data in this work is in the form of a tabular dataset
where each column represents a variable, each row represents a
patient, and aij represents the value for j variable of i patient.
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A. Traditional Risk scores

To facilitate perioperative risk assessment for the selection
of patients benefiting from surgery, a variety of traditional
scoring systems are used by the physicians: 1) P-POSSUM1

(Portsmouth Physiological and Operative Severity Score for
the enUmeration of Mortality and morbidity), proposed by
Prytherch et al. [3], 2) ACS NSQIP 2(American College of
Surgeons National Surgical Quality Improvement Program),
presented by Bilimoria et al. [4], 3) ARISCAT 3 (Assess
Respiratory Risk in Surgical Patients in Catalonia), proposed
by Canet et al. [5], and 4) Charlson comorbidity index4,
proposed by Charlson et al. [6]. All these simple risk scores
are based on doctor-entered data.

B. Biclustering

Given a dataset defined by a set of observations
X={x1, .., xn}, variables Y ={y1, .., ym}, and elements aij ∈
R observed for observation xi and variable yj :
• a bicluster B=(I,J) is a n × m subspace, where I =

(i1, .., in) ⊆ X is a subset of observations and J =
(j1, .., jm) ⊆ Y is a subset of variables;

• the biclustering task aims at identifying a set of biclusters
B = (B1, .., Bs) such that each bicluster Bk = (Ik, Jk)
satisfies specific criteria of homogeneity, dissimilarity and
statistical significance.

Homogeneity criteria are commonly guaranteed through the
use of a merit function, such as the variance of the values in
a bicluster. Merit functions are typically applied to guide the
formation of biclusters in greedy and exhaustive searches.

The pursued homogeneity determines the coherence, quality
and structure of a biclustering solution [7]. The coherence of
a bicluster is determined by the observed form of correlation
among its elements (coherence assumption) and by the allowed
value deviations from perfect correlation (coherence strength).
The quality of a bicluster is defined by the type and amount of
accommodated noise. The structure of a biclustering solution
is defined by the number, size, shape and positioning of
biclusters. A flexible structure is characterized by an arbitrary
number of (possibly overlapping) biclusters.

Given a dataset, the elements within a bicluster aij ∈ (I, J)
have coherence across variables (pattern on observations) if
aij=cj+γi+ηij , where cj is the expected value of variable yj ,
γi is the adjustment for observation xi, and ηij is the noise
factor of aij . A bicluster has constant coherence when γi=0,
and additive coherence otherwise, γi 6= 0.

Let r be the amplitude of values of the input data, coherence
strength is a value δ ∈ [0, r] such that aij = cj + γi + ηij
where ηij ∈ [−δ/2, δ/2].

1https://www.mdcalc.com/possum-operative-morbidity-mortality-risk,
accessed on December 2020

2https://riskcalculator.facs.org/RiskCalculator/index.jsp, accessed on De-
cember 2020

3https://www.mdcalc.com/ariscat-score-postoperative-pulmonary-
complications, accessed in December 2020

4https://www.mdcalc.com/charlson-comorbidity-index-cci, accessed De-
cember 2020

The bicluster pattern ϕJ is the set of expected values in
the absence of adjustments and noise {cj | yj ∈ J}.

Given a real-valued dataset, a bicluster B = (I, J) satisfies
the order-preserving coherence assumption if the values for
each observation in I follow the same ordering π along the
subset of variables J .

An example of constant and order-preserving type biclusters
can be seen in Figure 1.

Fig. 1: Pattern-based biclustering: discovery of two illustrative
biclusters with constant and order-preserving assumptions based on
frequent itemsets and frequent subsequences from transactional data
mapped from the input data matrix.

Statistical significance criteria, in addition to homogeneity
criteria, guarantees that the probability of a bicluster’s occur-
rence (against a null model) deviates from expectations [8].

In recent years, a clearer understanding of the synergies
between biclustering and pattern mining paved the rise of
a new class of algorithms, generally referred to as pattern-
based biclustering algorithms [7]. Pattern-based biclustering
algorithms are inherently prepared to efficiently find exhaus-
tive solutions of biclusters and offer the unprecedented possi-
bility to affect their structure, coherency and quality [9]. This
behavior explains why this class of biclustering algorithms are
receiving an increasing attention in recent years [7].

III. RELATED WORK

Veroneze et al. [10] presents an enumerative biclustering
algorithm that efficiently mines maximal biclusters in mixed-
attribute datasets without requiring any preprocessing steps
such as discretization or itemization of real-valued attributes.
Their proposed solution is an extension of RIn-Close CVC.
They argue that for mixed-attribute datasets only biclusters
with constant values on columns are optimal in mixed-attribute
datasets and propose a new definition for that type of bicluster,
maintaining the monotonicity and anti-monotonicity proper-
ties. To select significant biclusters from the enumerative
solution the authors propose two filters. One is based on formal
concept analysis metrics (support, confidence, lift) to measure
the quality of a rule. The second filter is a heuristic that locally
maximizes the row-coverage. Their results showed that for five
mixed-attribute labeled datasets the biclusters yield a tight set
of rules which provide useful and interpretable models.

To utilize some of the the biclustering algorithms both
Kaiser et al. [11] and Barkow et al. [12] implented toolboxes.
These provide the user with a number of preprocessing,
biclustering and cluster validation functions.
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Henriques et al. [13] provides a structured view on pattern
mining-based approaches to biclustering and applied a qualita-
tive comparison of the state-of-the-art pattern mining-based bi-
clustering approaches supporting their accuracy, efficiency and
biological relevance. The pattern mining-based biclustering
algorithms analysed were DeBi proposed by Serin et al. [14],
BiModule proposed by Okada et al. [15], GenMiner proposed
by Martinez et al. [16], BicPAM proposed by Henriques et
al. [9], RAP proposed by Pandey et al. [17], RCB Discovery
proposed by Atluri [18], and ET-Bicluster proposed by Gupta
et al. [19]. Henriques talks about what each of these state-
of-the-art algorithms has to offer and the challenges that arise
with the use of them. In terms of benificial factors, DeBi offers
a complete and statistical rigorous post-processing. BiMod-
ule offers multi-level discretization and removal of outliers.
GenMiner offers a more robust frame to deal with noisy
biclusters. ET-Bicluster offers a parameterizable discovery of
biclusters based on noise allowed. BicPAM can search for
additive/multiplicative/symmetric/plaid bicluster models and
deals with discretization, noise and missing. In terms of diffi-
culties that arise, DeBi has a decrease in efficiency due to post-
processing extension procedures, the data is binarized and can
miss a large number of potentially significant biclusters due
to discovering maximal patterns. BiModule has no merging-
extension option to handle noise. RAP is not able to deal
with noisy biclusters. RCB Discovery excludes biclusters with
meaningful differences across columns when searching for
biclusters with constant coherency overall, and has a com-
binatorial problem that impacts efficiency. ET-Bicluster does
not guarantee exhaustive solutions when searching for patterns.
BicPAM has efficiency problems for very large matrices when
searching for biclusters with non-constant models.

IV. SOLUTION

Our work aims at mining discriminative patterns of post-
surgical outcomes from cancer patients and variables of inter-
est. A pattern is a set of co-occurring attributes from surgical,
biopathological, physiological and/or demographic variables,
discriminative of post-surgical outcomes, and supported by
a statistically significant set of individuals. Biclustering, the
discovery of subspaces, is in this work suggested to this end.
The pattern of a bicluster corresponds to a specific clinical pro-
file, the pattern length corresponds to the number of attributes,
and the pattern support corresponds to the individuals sharing
the profile. The patterns searched follow either a constant
assumption, characterized by a subset of variables on which a
statistically significant number of patients have an identical
profile, or a non-constant assumption. We seek the non-
constant assumption due to the constant assumption suffering
from a problem: two individuals need to share the same pattern
in order to count as supporting observations for a bicluster.
However, variations may be coherently explained by differ-
ences on their physiology or comorbidities. In this context,
non-constant patterns should be pursued to guarantee a greater
robustness to the variability of the profile of individuals,
while still guaranteeing the coherence of the target patterns of

surgical outcomes. Particularly, the order-preserving relaxation
can be placed to find individuals with preserved orders of
values observed on risk-measuring variables. Illustrating, if
a specific risk score is higher than others for a group of
individuals, this ordering can be a pattern irrespectively of
the absolute value of the risk scores.
On WHY. Biclustering should be considered for mining
patterns discriminative of surgical outcomes to: 1) avoid
the drawbacks of classic pattern mining methods (including
their susceptibility to the item-boundaries problems5, inability
to comprehensively explore heterogeneous biomedical data),
2) find non-trivial patterns discriminative of post-surgical
outcomes with constant and order-preserving coherence, 3)
pursue patterns with parameterizable properties of interest
by customizing the target coherence strength, quality (noise-
tolerance), dissimilarity and statistical significance.
On WHEN. Similarly, biclustering should be applied when: 1)
the target patterns should provide guarantees of discriminative
power and/or statistical significance, 2) pursuing non-trivial
yet coherent forms of knowledge (including the introduced
constant or order-preserving assumptions), 3) discretization
drawbacks must be avoided, 4) heterogeneous data sources
may be available, and when 5) one seeks to find comprehensive
solutions with customizable homogeneity criteria.
On HOW: comprehensive exploration of clinical data.
Pattern-based biclustering offers principles to find complete
pattern solutions by: 1) pursuing multiple homogeneity crite-
ria, including multiple coherence strength thresholds, coher-
ence assumptions and quality thresholds, and 2) exhaustively
yet efficiently exploring different regions of the search space,
preventing that regions with large patterns jeopardize the
search [9]. As a result, non-trivial yet significant correlations
within the available clinical data are not neglected.

In addition, pattern-based biclustering does not require the
input of support thresholds as it explores the search space at
different supports [9], i.e. we do need to place expectations
on the minimum number of individuals with a shared profile
of surgical risk. Dissimilarity criteria and condensed repre-
sentations can be also placed [9] to prevent the delivery of
redundant patterns.
On HOW: statistical significance. A sound statistical test-
ing of the patterns of surgical risk is key to guarantee the
absence of spurious relations, and ensure the relevance of
the given patterns to support mobility decisions. To this end,
the statistical tests proposed in BSig [8] are suggested to
minimize false positives (outputted patterns yet not statistically
significant) without incurring on false negatives. This is done
by approximating a null model of the target clinical data and
statistically testing each bicluster against the null model in
accordance with its underlying coherence.
On HOW: robustness to noise. Pattern-based biclustering can
find biclusters with a parameterizable tolerance to noise [9].
Illustrating, a quality of 80% indicates that an upper limit given

5The possibility to allow deviations from value expectations (under limits
defined by the placed coherence strength) together with multi-item assign-
ments [9] are placed to prevent discretization problems from occurring
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by 20% of aij entries within a bicluster may fail to follow
the target clinical profile (µij /∈ [−δ/2, δ/2]). This possibility
ensures robustness to the individual-specific variations on a
specific variable from a given pattern.
On HOW: other opportunities. Additional benefits of
pattern-based biclustering that can be carried towards the anal-
ysis of surgical risk data include: 1) incorporation of domain
knowledge to guide the task in the presence of background
information (e.g. focus on a specific type of cancer of surgical
procedure) [20], 2) the possibility to remove uninformative
elements in data to guarantee a focus, for instance, on com-
plications [21], 3) support classification and regression tasks
using associative models composed by discriminative patterns
[7].

A. Dataset description

A retrospective cohort of cancer patients undertaken surgery
at the Portuguese Institute of Oncology, Porto, Portugal (IPO-
Porto) were monitored (2016 to 2018) for this study. The
gathered data, termed IPOscore dataset, contains information
pertaining to the demographic and physiological patient char-
acteristics, cancer location and histopathological determinants,
risk scores, surgical procedures, and post-surgical outcomes.
The risk scores within the dataset are P-POSSUM, ACS
NSQIP, ARISCAT, and Charlson comorbidity Index. The
IPO-Porto Ethics Committee approved (CES IPO:91/019) the
analysis of the anonymized IPOscore data.

The dataset contains 847 patients (samples/observations)
with 138 variables (33 binary, 45 nominal, 8 ordinal, 35
numerical, 13 free-text, 4 date). Of these variables in the
clustered setting 4 are considered as outcomes of interest: 1)
presence-absence of post-surgical complication, 2) Clavien-
Dindo index of post-surgical severity, 3) days spent in HDU,
and 4) death within 1 year. In the integrative setting 14
variables were considered as target variables, the previous
mentioned and 10 new ones: 1) request type anesthesia, 2)
provenance, 3) HDU motive of admission, 4) number of days
at IPO, 5) admitted into intensive care, 6) average nursery
points per day, 7) destination after HDU, 8) readmitted into
HDU, 9) destination after IPO, 10) moment of death after
surgery. The patients included in this study were selected
because they had co-morbidities or because the surgery to be
performed was complex, which advocated that the immediate
postoperative be monitored in the HDU.

Two informative text variables, named ICD-10 and ACS
procedures, exist in the dataset. These indicate the undertaken
surgical procedures and are discussed in the next section.

B. Data transformation

The dataset contained typing mistakes which were fixed,
a non uniform representation of missing values across the
columns existed and were all converted to a global repre-
sentation. Finally, texts columns, which contained important
information regarding the surgical interventions each patient
was subjected to, were normalized into binary columns.
Clustered versus integrative setting:

For the Clustered setting we considered that the patterns
should be able to discriminate four outcomes: 1) post-surgical
complication, 2) clavien-dindo post-surgical index, 3) days
spent at HDU, and 4) death within 1 year. The pattern
discriminates one of these outcomes if the measure lift6 is
above a certain threshold.

The dataset was partioned into four sub-datasets: 1) ICD-10,
2) ACS procs, both of these two sub-datasets contain only the
surgical interventions, 3) Scores, this sub-dataset contains only
the output variables of each score within the dataset, 4) Non-
score variables, this sub-dataset contains the physiological,
demographic and operative variables. A total of sixteen sub-
datasets were created, four sub-datasets for each outcome
considered. Feature ranking was applied in the non-score and
score output datasets to reduce the number of attributes.

In the integrative setting, nine outcomes are considered:
1) post-surgical complication, 2) clavien-dindo post-surgical
index, 3) days spent at HDU, 4) death within 1 year, 5) days
spent at IPO, 6) destination after HDU, 7) average points NAS
per day, 8) HDU readmission, 8) destination after IPO, and
9) moment of death after surgery. We also consider patterns
for: 1) request type anesthesia, 2) provenance, 3) HDU motive
of admission, and 4) passed by intensive care. In this setting
no attributes are removed based on feature ranking tests and
the dataset is not partitioned. Values from binary/categorical
variable that simbolize the absence of a disease/condition are
replaced with missing values, this substitution is also applied
to values that occur more than 70% within a variable. We
implemented and applied a new form of discretization of
numerical variables, DI2, and a range-based discretization,
where numerical variables are put into categories of equal
width based on range of the variable (from min to max), before
applying BicPAMs algorithm.

C. Data Discretizer approach

Approaches to discretization of continuous variables have
long been discussed alongside their pros and cons. Altman [22]
and Bennette et al. [23] both discuss the relevance and impact
of categorizing continuous variables and reducing the cardinal-
ity of categorical variables. Liao et al. [24] compares various
categorization techniques in the context of classification tasks
in medical domains, without using domain knowledge of field
experts. The relevance of discretization meets both descriptive
and predictive ends, encompassing state-of-the-art approaches
such as pattern-based biclustering [9] and associative models
such as XGBoost [25].

In this context, we propose DI2 (Distribution Discretizer),
an approach that makes use of non-parametric tests to find
the best fitting distribution for a given variable and dis-
cretize it accordingly. DI2 offers three major contributions:
1) corrections to the empirical distribution before statistical
fitting to guarantee a more robust approximation of candidate

6Given an association A =⇒ B where A is a pattern and B an outcome of
interest, lift measures P (B|A)/P (B), a ratio of the target pattern-conditional
support to the average support [?].
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distributions, 2) efficient statistical fitting of over 50 state-of-
the-art theoretical distributions, and, 3) assignment of multiple
items according to the proximity of values to the boundaries of
discretization, a possibility supported by numerous symbolic
approaches [9].

DI2 provides three data normalization techniques, which
are selected for preprocessing a given variable based on
its empirical distribution. The supported techniques are: 1)
min-max, 2) z-score, and 3) mean. Before discretizing the
data, two non-parametric tests are applied. 1) χ̃2 test [26],
and 2) Kolmogorov-Smirnov goodness-of-fit test [27]. The
Kolmogorov-Smirnov goodness-of-fit test can optionally be
used to remove up to 5% outlier points from the observed
distribution according to the matched theoretical continuous
distribution. The modified observed distribution from the it-
eration of the Kolmogorov-Smirnov test with the best KS-
statistic is used for the subsequent fitting stage. This cor-
rections guarantees the absence of penalizations caused by
abrupt yet spurious deviations driven by the selected histogram
granularity.

In the aforementioned tests the observed distribution is
matched with a theoretical continuous distribution7 provided
by the SciPy open-source library [28]. The binning of the
distributions for the χ̃2 test is based on the number of
categories the user inputs and are built using equal-frequency
binning. The user can either choose the χ̃2 or the Kolmogorov-
Smirnov goodness-of-fit as the primary fitting test.

After selecting the theoretical continuous distribution that
best fits the continuous variable, DI2 proceeds with the dis-
cretization. Given a desirable number of categories (bins),
multiple cut-off points are generated using the inverse cumula-
tive distribution function of the theoretical continuous distribu-
tion. The cut-off points guarantee an approximately uniform
distribution of observation per category, although empirical-
theoretical distribution differences can underlie imbalances.

DI2 supports multi-item assignments by identifying border
values for each category. To this end, the user can optionally
also define a percentage (between 0 and 50% with 20%
default) to affect the width of the borders. These borders
take an intermediate value which symbolize that it belongs
to both upper and lower category. Width extremes, 0% (50%)
correspond to none (one) additional category assigned to every
observation.

To illustrate some of the DI2 properties, we consider as
an example the breast-tissue dataset available at the UCI ma-
chine learning repository [29], containing electrical impedance
measurements in samples of freshly excised tissue from the
breast. It contains 106 instances and 9 continuous variables
(I0, PA500, HFS, DA, AREA, A/DA, MAX IP, DR, P).

The gathered results show the decisions placed by DI2 in the
absence and presence of Kolmogorov-Smirnov optimization.
For this analysis, we considered a min-max normalization for
all variables, a desirable number of 5 categories per variable,
and χ̃2 as the primary statistical test.

7https://docs.scipy.org/doc/scipy/reference/stats.html

Table I shows the best fitting distribution for each contin-
uous variable of the dataset without and with Kolmogorov-
Smirnov outlier removal. Variables ’I0’, ’PA500’, ’A/DA’,
’DR’, and ’P’ remained unchanged with a removal of up to 5%
of outlier points. Variables ’HFS’ and ’Area’ produced better
results in the χ̃2 test with the removal of outliers solidifying
the distribution choice. Finally, the fitting choice changed for
variables ’DA’ and ’Max IP’ under the χ̃2 test, revealing a
more solid choice from the analysis of the residuals.

TABLE I: Best fitting distributions for each continuous variable,
without and with Kolmogorov-Smirnov correction. Both χ̃2 (primary)
and KS statistics are shown.

Variables Without opt. χ̃2 Ks With opt. χ̃2 Ks
I0 alpha 8.8 0.12 alpha 8.8 0.11
PA500 exponnorm 2.98 0.07 exponnorm 2.98 0.07
HFS foldcauchy 2.25 0.07 foldcauchy 1.57 0.07
DA recipinvgauss 1.6 0.06 chi2 1.01 0.06
Area frechet r 0.5 0.07 frechet r 0.25 0.05
A/DA mielke 1.17 0.06 mielke 1.17 0.05
Max IP johnsonsu 4.72 0.05 alpha 1.09 0.07
DR johnsonsb 1.2 0.05 johnsonsb 1.2 0.05
P genextreme 5.13 0.09 genextreme 5.13 0.09

Considering variable ’DA’, Figures 4.4a and 4.4b show its
Q-Q (quantile-quantile) plot, offering a view on the adequacy
of the statistical fitting. In this context, we depict histograms
for the observed data with 100 bins (blue dots) and the best
theoretical distribution picked without and with Kolmogorov-
Smirnov correction (red line). A moderate improvement from
Figure 4.4a to 4.4b can be detected, with the observed quan-
tiles (blue dots) being closer to the theoretical continuous
quantiles (red line). After the fitting stage, cut-off points are
calculated to produce the final categories. Figure 4.4c com-
pares different discretization options: equal-frequency and the
two best fitting theoretical continuous distributions (without
and with Kolmogorov-Smirnov optimization). Cut-off points
are marked as red lines, and the border cut-off points in
yellow. This analysis shows how critical discretization can be,
determining the inclusion or exclusion of high density bins.
The ability of DI2 to assign multiple items using borders can
be explored by symbolic approaches to mitigate vulnerabilities
inherent to the discretization process.

D. BicPAM
As surveyed, pattern-based biclustering approaches provide

the unprecedented possibility to comprehensively find patterns
in real-valued data with parameterizable homogeneity and
guarantees of statistical significance. To be able to differentiate
different clinical profiles of interest, the coherence strength
and coherence assumption of biclustering solutions can be
customized in accordance with the desirable patient profile.
Henriques and Madeira [9] proposed BicPAM biclustering.
It integrates existing principles made available by state-of-
the-art pattern-based approaches with two new contributions.
First, BicPAM exhaustively mines non-constant types of bi-
clusters, including additive and multiplicative coherencies in
the presence or absence of symmetries. Second, BicPAM
provides strategies to effectively compose different bicluster-
ing structures. BicPAM is an ordered composition of three
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(a) Q-Q plot of empirical distribution (blue
dots) against the fitted recipinvgauss distribution
(red line).

(b) Q-Q plot of empirical distribution (blue
dots) against the fitted chi2 distribution (red
line).

(c) Empirical distribution (gray bins) and cor-
responding cut-off points using equal-width,
equal-frequency and D2I statistical fitting with
and without Kolmogorov-Smirnov correction.
Red and yellow lines correspond to category and
border boundaries.

Fig. 2: Figure 4.4a displays how the observed distribution matched with the theoretical distribution without the Kolmogorov-optimization.
Figure 4.4b displays how the observed distribution matched with the theoretical distribution with the Kolmogorov-optimization. Figure 4.4c
shows where the category boundaries are depending on the technique

stages: 1) mapping, where BicPAM handles missing values and
tackles noise as well as apply normalization and discretization
methods, 2) mining (pattern discovery), where BicPAM dis-
covers patterns using a pattern-based approach to biclustering,
the selected pattern representation, and the selected search
strategy, and 3) closing (post-processing), where BicPAM
merges and filters biclusters.

E. Extending pattern-based biclustering searches

Guarantees of discriminative power. BicPAMS [9] is not
originally prepared to assess and guarantee the discriminative
power of the returning patterns. In this context, in the presence
of an output variable, the search was extended to compute
interestingness measures, such as lift, for each pattern under
formation, and remove patterns with interestingness criteria
below a parameterizable threshold.
Biclustering mixed variables. The original version of Bic-
PAMS [9] provides two important principles for handling
mixed variable data: i) categorical variables are seen as sym-
bolic, irrespective of whether variables are nominal or ordinal,
and occurring symbols per variable need to match to form a
pattern (aij=cj); and ii) numeric entries per variable belong
to the same pattern if they satisfy a given coherence strength
(aij=cj+ηij with |ηij | ≤ δ/2). The behavior of BicPAMS
was further revised to guarantee a balanced cardinality among
ordinal variables, aligned with the chosen coherence strength.

F. Output: discriminative patterns of post-surgical risk

In the context of our work, a discriminative pattern of post-
surgical outcomes is an association of pre-surgical variables –
comprising biopathological, physiological, demographic fac-
tors – that satisfies the two following conditions:
• the pattern is supported by a statistically significant num-

ber of individuals in accordance with the characteristics
of the population under study;

• the pattern is discriminative of post-surgical outcomes,
such as presence/absence of post-surgical complications,

ranking of post-surgical complication, survivability as-
pects or hospitalization needs.

The patterns will be presented in simple visual represen-
tations, either as heatmaps or parallel coordinate charts, or
pattern descriptions. These are generally sufficient to guarantee
their usability near healthcare professionals.

The patterns found can be characterized according to their
source, including: 1) demographic and clinical variables, 2)
clinical risk scores, 3) and surgical interventions (e.g. ICD 10
tabled procedures). Or be characterized in accordance with
the target variable: 1) complication severity (e.g. Clavien-
Dindo), 2) presence-absence of surgery-related complications
in future or within specific time ranges, 3) survivability in a
given period (death or alive after a given time period after
surgery), 4) hospitalization needs: hospitalized period after
surgery in HDU and IPO, if the patient was in intensive care,
request type anesthesia, 5) provenance of patient, 6) reason
for admission into the HDU or if he had to be readmitted,
7) destination after HDU/IPO, and 8) average nursery points
per day (representative of effort given by nurses to a given
patient).

V. RESULTS

Considering the population monitored at IPO-Porto as a
study case, the proposed approach was applied to compre-
hensively discover patterns able to discriminate post-surgical
outcomes and additional variables of interest. This section
is organized as follows. First, an initial data exploration is
presented. Secondly, the experimental setting on how we
varied the search for patterns is presented. Then the results
for each experimental setting are presented and discussed.
Finally, the statistical significance and pattern actionability are
discussed.

A. Data exploration

The dataset contains a considerable amount of missings,
with 11 variables reaching at least 75% missing values. The
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data also has 47 variables where a single value occurs for at
least 70% observations. To better understand the impact each
variable might have in the output patterns (such as frequent
occurance in patterns), feature ranking tests were applied.
χ̃2 test was applied for binary and nominal input variables.
Kruskal-Wallis test was applied in the presence of ordinal and
ANOVA one-way test for numeric input variables. Figure 2
provides illustrative class conditioned distributions of some of
the input variables in IPOscore data, generally showing the
difficulty of discriminating post-surgical outcomes.

B. Experimental settings

BicPAMS algorithm is used with default parameters and
varying: 1) minimum lift of pattern: lift ∈{[1.3,3.0]}, 2) mini-
mum number of variables in the pattern: variables ∈ {3,8}, 3)
target classes: i) clavien-Dindo ∈ {I,II,IIIa, IIIb,IVa,IVb,V},
ii)post-surgical complication ∈ {yes, no}, iii) days at HDU
∈ {≤1, ]1,2], > 2}, and ∈ {≤1, ]1,4], > 4}, iv) 1-year
death ∈ {yes,no}, v) request type anesthesia ∈ {associated
pathology, surgical complexity}, vi) provenance ∈ {nursery,
intensive care unit, unscheduled service}, vii) HDU rea-
son for admission ∈ {post-surgery, heart, respiratory, age,
another pathology, co-morbidities, discharge from intensive
care, hemodynamic instability, bleeding, post-op reoperation,
ischemic stroke, sepsis/septic shock/BMD}, viii) days at IPO
∈ {< 7, [7, 10], >10}, ix)ICU ∈ {yes}, x) destination after
HDU ∈ {intensive care unit}, xi) average nursery points
per day ∈ {<60, 60≤}, xii) HDU readmission ∈ {yes},
xiii) destination after IPO ∈ {death}, xiv)moment of death ∈
{[0,30[, [30-60[, [60, 365]}, 4) coherence strength (δ=Ā/|L|:
|L| ∈ {3, 4, 5}), 5) decreasing support until |B| dissimilar
biclusters are found: |B| ∈ {2,10,50,100,200,1000}, 6) noise:
0% and up to 30% noisy elements allowed, 7) coherence
assumptions: constant and order-preserving, and 8) iterations:
between one and three search iterations were considered.

C. Clustered and integrative setting results

Tables III synthesizes the results for presence/absence of
post-surgical complication produced by biclustering IPOscore
data with BicPAMS [9] in the clustered setting. Table IV
synthesizes the results for Clavien-Dindo classes, presence
of post-surgery complication, days spent in HDU, and days
spent in IPO, in the integrative setting using DI2 discretization.
These results confirm the potentialities listed before, BicPAMS
was able to efficiently and comprehensively find a large
number of homogeneous, dissimilar and statistically significant
patterns able to discriminate post-surgical outcomes.

One can check, for instance, in the first row of Table III,
that among a total of 153 discovered discriminative biclusters
for the major clinical data variables, we found that 49 of
them are statistically significant (p-value lower that 0.1%).
Given these 49 biclusters, there are approximately 86 patients
per bicluster on average (µ(|I|)), 3 variables per bicluster
on average (µ(|J |)) when considering a constant assumption
(|L|=3 and δ ∈ [0, ~̄A/|L|]), and a perfect quality (no noise).

These results further show the impact of: tolerating
noise; placing different coherence assumptions (such as the
order-preserving assumption); and parameterizing coherence
strength (δ ∝ 1

|L| ) on the biclustering solution.
BicPAMS [9] was also applied to find less-trivial yet rele-

vant patterns of surgical risk, patterns with order-preserving
coherence assumptions. Figure 3c depicts order-preserving
patterns for Clavien-Dindo I.

Each bicluster shows a unique pattern of performance. For
instance, the constant bicluster from Figure 5a reveals a group
of 61 patients who coherently encountered high physiological
score and morbidity risk (P-Possum), and medium average risk
of reoperation (corresponding to the pattern {2,2,1} using 3
bins where 0 denotes low risk score and 2 a high risk score)
for Clavien-Dindo type V, showing us that patients who follow
this pattern end up dying in surgery.

These results motivate the relevance of finding both con-
stant and order-preserving biclusters to find coherent factors
propelling post-surgical status and hospitalization needs for a
statistically significant group of individuals. One can check
that a bicluster considers both identical physiological values
or risk scores values (where lines converge) and more loosely
similar values (where lines diverge). The profile of the patient
in a specific bicluster can be further analyzed to further
understand its influence on the resulting performance.

A closer analysis of the found discriminative patterns shows
their robustness to the item-boundaries problem: slightly de-
viating limits to the expected limit are not excluded from the
bicluster. This allows the discovery of patterns without the
drawbacks of the traditional discrete views.

No patterns are presented for the ACS procedures partition.
Despite multiple runs of BICPAMS with different criteria
applied, no patterns were found. The criteria varied for pat-
tern discovery was: discriminative power, lower number of
variables in found biclusters, number of biclusters, bicluster
type, noise tolerated.

D. Statistical Significance

As previously mentioned, Tables III and IV show the ability
of the target biclustering searches to find statistically signifi-
cant relations within IPOscore data. A bicluster is statistically
significant if the number of individuals sharing the given
pattern is unexpected [8]. Figure 6 provides two scatter plots
of the statistical significance (vertical axis) and area |I|x|J |
(horizontal axis) of constant type biclusters for each target
variable considered in the clustered setting, 6a) Post-surgical
complication, 6b) Clavien-Dindo, 6. This analysis suggests
the presence of a soft correlation between size and statistical
significance. A few biclusters with loose statistical significance
(left upper dots) can be discarded to not incorrectly bias
clinical decisions.

E. Pattern actionability

The found patterns, help healthcare professionals taking
decisions to better handle patients who follow the same
patterns. For example, Figure 3a suggests malnutrition that
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TABLE II: Properties of the biclustering solutions found in the three partitions of clinical variables for presence/absence of post-surgical
complications classes using BicPAMS (cf. experimental setting).

configuration Clinical variables ICD 10 Scores (%)

Assumption quality |L| #bics p-value
<0.001

µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|) #bics p-value

<0.001
µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|) |L| #bics p-value

<0.001
µ(|J|)
±σ(|J|)

µ(|I|)
±σ(|I|)

ab
se

nc
e

Constant 100% 3 341 113 5.1±1.7 144.9±111.1 68 48 2.7±0.7 5.0±5.0 3 8 6 8.2±1.1 34.0±7.8
Constant 70% 3 278 135 5.4±1.9 121.7±118.3 67 47 2.7±0.7 5.0±5.1 3 5 4 7.8±1.5 37.3±7.9
Constant 70% 4 136 55 4.9±1.5 154.3±154.9 – – – – 5 6 6 7.7±2.4 33.2±4.3
Constant 70% 5 358 120 5.3±1.9 150.7±140.4 – – – – 7 16 16 5.8±1.9 27.8±10.0

Order-preserving 100% – 98 89 5.7±1.2 68.2±81.8 63 42 2.7±0.7 5.5±5.2 – 26 26 4.6±0.7 29.2±4.9
Order-preserving 70% – 81 63 5.8±1.8 86.0±87.6 63 42 2.7±0.7 5.5±5.2 – 26 26 4.7±0.8 29.2±5.0

pr
es

en
ce

Constant 100% 3 94 29 2.9±0.9 62.7±24.9 30 24 3.1±0.9 11.3±10.9 3 4 4 3.8±0.8 58.5±1.5
Constant 70% 3 113 34 3.4±1.4 64.1±27.4 30 24 3.0±0.9 11.5±10.8 3 5 5 3.8±1.2 60.2±2.2
Constant 70% 4 170 52 3.9±1.7 74.7±32.0 – – – – 5 6 6 3.7±1.7 47.7±12.1
Constant 70% 5 186 61 3.6±1.6 57.9±34.0 – – – – 7 7 7 3.4±1.0 45.6±4.0

Order-preserving 100% – 42 39 3.0±0.8 125.4±51.1 15 15 2.7±0.8 15.2±12.3 – 7 7 3.9±0.3 29.7±7.5
Order-preserving 70% – 73 62 3.4±1.1 90.1±61.2 16 16 2.7±0.8 15.0±11.9 – 6 6 4.0±0.6 30.2±6.8

TABLE III: Clavien-Dindo classes, presence of post-surgery complication, days spent in HDU and days spent in IPO using BicPAMS
with DI2 discretization.

Assumption quality |L| |C| Lift #bics p-value
<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|) Lift #bics p-value
<0.001

µ(|J|)
±σ(|J|)

µ(|I|) ±σ(|I|)

C
la

vi
en

-D
in

do
ty

pe
I

Constant 70% 3 3 2 101 100 3.66 ± 0.87 149.6 ± 18.43

Pr
es

en
ce

of
Po

st
-s

ur
ge

ry
co

m
p.

1.5 138 138 4.09 ± 1.19 169.41 ± 24.46
Constant 70% 3 8 1.3 39 39 9.41 ± 1.61 133.67 ± 41.78 1.3 11 11 9.18 ± 1.33 152.81 ± 38.24
Constant 70% 4 3 2 124 103 3.69 ± 0.83 131.38 ± 25.38 1.5 112 112 3.76 ± 1.02 150.99 ± 20.38
Constant 70% 4 8 1.3 20 20 9.15 ± 1.49 107.5 ± 18.61 1.3 8 8 9.12 ± 0.93 111.88 ± 21.83
Constant 70% 5 3 2 155 127 3.56 ± 0.68 110.12 ± 18.61 1.5 160 157 3.58 ± 0.84 107.95 ± 17.24
Constant 70% 5 8 1.3 35 35 9.26 ± 1.75 75.68 ± 17.66 1.3 6 6 9.0 ± 0.82 76.33 ± 16.23

C
la

vi
en

-D
in

do
ty

pe
II

Constant 70% 3 3 1.5 116 105 3.78 ± 1.05 154.79 ± 23.54

H
D

U
da

ys
<

1

1.7 50 49 5.65 ± 1.64 150.47 ± 16.59
Constant 70% 3 8 1.3 16 16 8.62 ± 1.11 130.75 ± 22.48 1.3 22 22 9.54 ± 1.50 150.64 ± 45.67
Constant 70% 4 3 1.5 60 53 3.68 ± 0.80 144.55 ± 24.09 1.7 36 36 5.53 ± 1.58 139.83 ± 20.78
Constant 70% 4 8 1.3 10 10 8.7 ± 0.78 90.5 ± 13.46 1.3 13 13 9.31 ± 1.94 130.69 ± 28.47
Constant 70% 5 3 1.5 115 96 3.39 ± 0.67 113.14 ± 26.39 1.7 77 52 3.73 ± 0.76 159.03 ± 25.61
Constant 70% 5 8 1.3 15 15 8.47 ± 0.62 68.2 ± 11.08 1.3 10 10 9.5 ± 1.86 113.8 ± 25.35

C
la

vi
en

-D
in

do
ty

pe
II

I.a

Constant 70% 3 3 2 95 92 3.42 ± 0.74 165.53 ± 22.34

H
D

U
da

ys
1
−

2

1.3 22 22 3.95 ± 1.11 123.32 ± 10.60
Constant 70% 3 8 1.3 11 11 8.45 ± 0.65 130.45 ± 20.89 1.3 5 5 10.0 ± 1.67 146.0 ± 13.1
Constant 70% 4 3 2 120 108 3.22 ± 0.46 137.93 ± 30.14 1.3 46 40 4.53 ± 1.18 93.63 ± 7.04
Constant 70% 4 8 1.3 9 9 8.78 ± 0.63 81.22 ± 6.27 1.3 16 16 9.0 ± 1.12 93.06 ± 19.05
Constant 70% 5 3 2 101 76 3.18 ± 0.39 127.61 ± 32.95 1.3 107 91 3.79 ± 0.82 81.58 ± 12.70
Constant 70% 5 8 1.3 8 8 8.64 ± 0.70 65.38 ± 11.97 1.3 45 45 8.62 ± 0.87 63.49 ± 13.29

C
la

vi
en

-D
in

do
ty

pe
II

I.b

Constant 70% 3 3 2 37 32 4.44 ± 1.06 141.28 ± 16.67

H
D

U
da

ys
>

2

1.5 27 26 4.57 ± 1.50 152.73 ± 24.74
Constant 70% 3 8 1.3 32 32 8.97 ± 1.21 121.38 ± 34.44 1.2 5 5 9.2 ± 1.47 175.6 ± 20.44
Constant 70% 4 3 2 66 56 3.83 ± 0.72 119.73 ± 13.92 1.5 113 105 3.2 ± 0.51 141.07 ± 25.38
Constant 70% 4 8 1.3 13 13 9.54 ± 1.64 117.77 ± 25.93 1.2 5 5 8.4 ± 0.8 109.6 ± 25.34
Constant 70% 5 3 2 125 94 3.47 ± 0.66 88.52 ± 19.33 1.5 111 104 3.42 ± 0.64 90.15 ± 17.94
Constant 70% 5 8 1.3 2 2 11.0 ± 0.0 147.0 ± 0.0 1.2 6 6 8.66 ± 0.74 74.83 ± 15.02

C
la

vi
en

-D
in

do
ty

pe
IV

.a

Constant 70% 3 3 2 80 79 3.24 ± 0.53 210.09 ± 31.65

IP
O

da
ys

<
7

2 288 284 4.27 ± 1.36 192.96 ± 41.15
Constant 70% 3 8 1.3 14 14 9.07 ± 1.39 155.43 ± 25.87 1.3 18 18 9.83 ± 1.67 181.28 ± 37.47
Constant 70% 4 3 2 79 69 3.36 ± 0.59 173.61 ± 24.37 2 73 57 3.50 ± 0.77 173.96 ± 30.36
Constant 70% 4 8 1.3 13 13 9.23 ± 1.12 110.15 ± 21.83 1.3 24 24 9.16 ± 1.49 114.5 ± 32.69
Constant 70% 5 3 2 55 44 3.36 ± 0.68 153.79 ± 17.80 2 62 52 3.65 ± 0.96 163.17 ± 16.80
Constant 70% 5 8 1.3 22 22 9.14 ± 1.49 75.18 ± 15.25 1.3 10 10 9.5 ± 1.8 113.8 ± 25.36

C
la

vi
en

-D
in

do
ty

pe
IV

.b

Constant 70% 3 3 2 57 57 3.65 ± 0.85 195.73 ± 31.48

IP
O

da
ys

7
−

1
0

1.7 48 46 4.83 ± 1.46 165.0 ± 25.83
Constant 70% 3 8 1.3 7 7 9.41 ± 1.12 166.0 ± 32.98 1.3 3 3 9.0 ± 0.82 161.0 ± 34.32
Constant 70% 4 3 2 76 69 3.45 ± 0.77 159.72 ± 21.09 1.7 72 72 3.80 ± 0.93 122.68 ± 16.56
Constant 70% 4 8 1.3 21 21 8.85 ± 1.03 95.19 ± 21.45 1.3 2 2 8.5 ± 0.5 103.0 ± 18.0
Constant 70% 5 3 2 118 85 3.11 ± 0.34 120.4 ± 25.13 1.7 71 66 3.66 ± 0.78 109.51 ± 19.77
Constant 70% 5 8 1.3 34 34 9.14 ± 1.19 67.18 ± 9.94 1.3 5 5 8.4 ± 0.48 75.6 ± 8.8

C
la

vi
en

-D
in

do
ty

pe
V

Constant 70% 3 3 2 84 83 3.36 ± 0.72 194.18 ± 31.79

IP
O

da
ys

>
1
0

1.5 9 9 5.0 ± 1.49 195.22 ± 18.91
Constant 70% 3 8 1.3 11 11 9.45 ± 1.62 160.90 ± 23.58 1.3 17 17 9.23 ± 1.51 163.47 ± 30.44
Constant 70% 4 3 2 58 52 3.29 ± 0.66 152.02 ± 28.24 1.5 33 33 3.69 ± 0.99 155.84 ± 23.30
Constant 70% 4 8 1.3 8 8 9.13 ± 1.17 99.5 ± 13.51 1.3 6 6 8.83 ± 0.89 108.0 ± 28.85
Constant 70% 5 3 2 151 135 3.24 ± 0.57 102.36 ± 24.38 1.5 35 35 3.74 ± 0.93 127.51 ± 19.03
Constant 70% 5 8 1.3 16 16 8.94 ± 1.30 63.94 ± 10.84 1.3 10 10 9.1 ± 1.13 78.7 ± 12.81

can be tackled with specialized programs before surgery, other
previous addressable comorbidities can also be subjected to
pre-habilitation. Patterns such as 3bb are helpful logistic-
wise as they identify groups of patients susceptible to longer
monitoring periods after surgery, showing the possibility to
reserve beds in the HDU. Finally, patterns in Figures 5b and
5c help professionals identifying the possible nature of post-
surgical complications (Clavien-Dindo) and, accordingly, re-
vise surgical procedures and modes of pre- and post-operative

care.

VI. CONCLUSION

This work proposes a comprehensive set of principles on
how to mine discriminative patterns of post-surgical out-
comes from heterogeneous oncological data with guaran-
tees of usability. State-of-the-art contributions on pattern-
based biclustering are extended towards this end, offering the
unprecedented possibility to comprehensively discover non-
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(a) Discriminative pattern composed of demo-
graphic and physiological variables: patients in
a good and independent functional state, above
average height, and average weight. Lift = 1.71
and p-value = 3.58× 10−5

(b) Discriminative pattern of high hospitaliza-
tion length, quality 70%, |L|=3: low risk of
mortality, medium risk of serious complications,
low risk of pneumonia, medium risk of reoper-
ation. Lift = 2.18 and p-value = 3.21×10−172.

(c) Discriminative pattern of patients with
Clavien-Dindo severity I: low physiological
score (P-Possum), less susceptible to death, and
medium ARISCAT total score. Lift = 2.05 and
p-value = 3.89× 10−194.

Fig. 3: Constant pattern discriminative of Clavien-Dindo III.b (fig. 3a) and Clavien-Dindo I (fig. 3c), and order-preserving pattern
discriminative of high hospitalization length (fig. 3b).

(a) Discriminative pattern of patients with no
post-surgical complication: low physiological
score, medium surgical severity score, lower
complication risk, almost no risk of cardiac
complications and kidney failure, and medium
risk of high hospitalization length. Lift = 1.73
and p-value = 1.19× 10−25.

(b) Discriminative pattern of patients who died
within 1 year of surgery: low surgical sever-
ity score, low risk of mortality (P-Possum),
medium susceptibility to serious complications,
low death probability, and slightly higher prob-
ability of rehab needs. Lift = 2.01 and p-value
= 7.07× 10−36.

(c) Discriminative pattern of patients who
stayed between 1 and 4 days in the HDU:
medium risk of serious complications, average
risk for any complication, low probability of
pneumonia, average risk of cardiac complica-
tions, and medium average risk of reoperation.
Lift = 2.05 and p-value = 4.63× 10−65.

Fig. 4: Illustrative discriminative patterns of different post-surgical outcomes: no post-surgical complication (a), 1-year death (b) and ]1,4]
hospitalization-length (c). Patterns 4a.

(a) Discriminate pattern of Clavien-Dindo grade V, quality 100%, |L|=3:
medium physiological score, high morbidity, below average risk of average
risk of reoperation. Lift = 2.11 and p-value = 9.28× 10−20.

(b) Discriminative pattern of absent post-surgical complication, quality 70%,
|L|=3: patient with no dyspnoea, no peritoneal contamination, and patient with
mild systemic disease. Lift = 1.31 and p-value = 1.49× 10−4.

Fig. 5: Example of constant patterns of surgical risk found within the IPOscore dataset. Pattern 5a correlates with healthy patients whose
surgery went wrong in some way. Patterns 5b and 5c show both ends of the post-surgical complication spectrum: patients with high mortality
scores and patients with regular values in clinical variables. Pattern 5d shows that patients with a higher risk of developing post-surgical
complications need to be observed longer after surgery (in the HDU).

trivial, yet actionable and statistically significant associations
between cancer morphology, individual’s profile, undertaken
surgery and post-operatory outcomes. It also proposes a
fully autonomous, non-parametric and prior-free discretization
method, DI2, for numerical variables with arbitrarily skewed
distributions.

Results confirm the unique role of biclustering in finding
relevant discriminative patterns sensitive to highly variable
physiology and biopathological traits of individuals, as well
as the singularity of undertaken surgeries and post-surgical

care. In particular, the search for non-constant patterns (order-
preserving coherence assumptions) show a delineate ability
to tolerate individual differences, while still guaranteeing the
coherence and interpretability of the target patterns.

Results further show evidence of the ability to comprehen-
sively unveil actionable and statistically significant patterns of
post-surgical outcomes, thus providing a trustworthy context
for healthcare professionals to support the design of surgical
interventions, pre-surgical and post-surgical care.
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(a) Post-surgical complication (b) Clavien-Dindo classification

Fig. 6: Statistical significance versus size of constant patterns.
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