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Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

Social mobile robots should be capable of effectively open interaction with people. However, greeting
someone is a complex task. Adam Kendon modeled greetings as a set of six phases: Initiation of
Approach, Distance Salutation, Head Dip, Approach, Final Approach, and Close Salutation. These are
valuable for a social robot to infer people’s greeting intentions and comply with them.

This work proposes a system for mobile social robots that estimates the greeting phase through an
HMM (Hidden Markov Model) by extracting observable features, and follows it with the appropriate
behaviors using BTs (Behavior Trees).

We used publicly available datasets to train the HMM, through the EM (Expectation-Maximization)
algorithm, extracting and labeling the necessary observable greeting features. Later, we tested the state
estimation with sequences from the same datasets, and obtained an average accuracy of 80,9%.

To test the system we used a mobile humanoid robot from the Institute for Systems and Robotics,
Vizzy. We conducted experiments on a simulator, obtaining an accuracy around 92% while predicting
states seen by the robot, in different greeting situations. When connecting BTs to the state prediction,
we confirmed that every state was properly replicated and natural greetings were achieved, confirming
the system’s applicability for HRI (Human-Robot Interaction).
Keywords: social robots, greetings, Hidden Markov Model, Behavior Trees

1. Introduction

Although most of the time people do not notice
it, at the beginning of every interaction between
humans, the two parties tend to follow a greeting
ritual. Kendon [13] proposed a model for this rit-
ual, composed of several steps, starting on the mo-
ment people sight each other and finishing, gener-
ally, with a salutation.

Greeting may be a struggling and unnatural be-
havior even for humans, since there are plenty of
different approaches that can be taken. These may
vary, for instance, according to the social relation-
ship between the two parties, cultures, or education.

Despite the difficulties, the greeting ritual
emerges with major social importance, both for hu-
mans and social robots. Proper and natural greet-
ings can be the beginning of a good interaction, as
unnatural and strange behaviors may bring a lack
of comfort, or make the other abandon the interac-
tion. Social robots have been growing substantially
in the last few years, already serving human jobs
such as receptionist [19, 20, 22] or companion of
people in need [15, 17]. Therefore, to approximate
the greeting behavior to the humans’ is crucial for

their Human-Robot Interaction (HRI).

For this, we will be based on Kendon’s greeting
model [13], which consists of six distinct phases:
Initiation of Approach, Distance Salutation, Head
Dip, Approach, Final Approach, and Close Saluta-
tion. These phases, described in the following sec-
tion, do not happen always nor necessarily by this
order. Thus, a social robot needs to be able to es-
timate the current phase from observable human
social signals.

To keep track of the greeting ritual, we will model
the phase estimation problem as a Hidden Markov
Model (HMM). HMMs are probabilistic models de-
fined by a set of states which are not directly ob-
servable (hidden), and a set of possible observations
that the states depend on. For this problem, the
hidden states will represent the six greeting phases.
An HMM bases its ideas on the Markov property,
which assumes that, at each moment, the decision
of the next state depends entirely on the present
state. Since these states are hidden, an HMM will
also depend on which observations are found. In our
case, observations can be seen as characteristics of
the phases, as detailed later.
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Our robot will then use a Behavior Tree (BT) as
a control mechanism to react to the predicted state.
BTs consist of flexible sequences of tasks (actions or
movements, for example), that are performed ac-
cording to conditions. A BT can be divided into
several smaller trees, allowing us to create a sub-tree
for each greeting phase, with its distinctive move-
ments.

The content of this article is described as follows.
Section 2 presents background content and related
works; section 3 contains the implementation with
an HMM; section 4 describes the robot reaction
model using BTs; section 5 draws some conclusions
and proposes future works.

2. Related Work

As stated earlier, Kendon [13] created a greeting
model composed of six phases, based on a deep
video analysis of a birthday party.

These phases are described as follows: i) Initi-
ation of Approach (IA), where people sight a tar-
get person, make the decision to greet and start to
prepare for the approach by orienting their body
and looking directly; ii) Distance Salutation (DS),
where people display a long-distance salutation,
without physical contact. This salutation can vary
from a head movement (head tossing, head lower
or nod, for instance) to an arm movement (such
as waving) and is usually accompanied by a smile
and direct gaze; iii) Head Dip (HD), a subtle head
lower movement, that commonly follows a DS; iv)
Approach (APP), where people begin to move to-
ward the target, sometimes without looking directly
to him/her; v) Final Approach (FA), the final mo-
ments of the approach, where the greeters start to
prepare for a close interaction, by adjusting their
head position, looking directly to the other and,
usually, smiling; and vi) Close Salutation (CS),
where the sequence generally ends, by performing a
salutation, such as a handshake, kisses, embracing,
or a subtle head movement.

To the best of our knowledge, Heenan et al. [9]
built the only solution to directly predict Kendon’s
phases and replicate them with a social robot, how-
ever, the authors opted for a Finite State-Machine
to control the state changing. This model always
performed the same phase sequence, which did not
bring much flexibility. Also, it could not change
state until the movement had ended, and ignored
many of the social signals involved, as well as its
uncertainty, in opposition to an HMM.

Other social robots [3, 24, 26] computed charac-
teristics such as the person’s position, orientation
and availability to interact. However, these were
usually used to change between their own greet-
ing phases, and never to estimate them in a person
greeting.

Regarding the phases implementation, several
projects [3, 9, 23, 24, 26] implemented an approach
movement toward a target person on a social robot,
even though only a few [9, 24, 26] could distin-
guish an Approach and a Final Approach phase,
where the robot would begin to prepare for an in-
teraction. Only two projects [9, 23] implemented a
waving movement as a Distance Salutation, while
[3, 7, 9, 24] displayed a Close Salutation, despite
only [9] produced a contact salutation (a hand-
shake). The IA was the phase most commonly repli-
cated [3, 7, 9, 23, 24, 26], given that most HRIs call
for it, while the Head Dip did not seem to have any
public reproduction.

3. Greeting Model using a Hidden Markov
Model

3.1. Overview

As stated before, we model Kendon’s greeting
model as a Hidden Markov Model (HMM), where
each phase of the greeting corresponds to one hid-
den state. For this, we chose to adopt a Gaussian
HMM, assuming that our observation features fol-
low a Gaussian distribution. This was adequate
since the features selected were mostly physical fea-
tures that are always present, though with differ-
ent values, and not events that either happen or do
not, as the general HMM observations. However,
this brings a few differences, when comparing to
the common HMM.

Firstly, our HMM contains a sequence of obser-
vations, o1,o2, ...,oV , where each one is a vector
with length M, with each value being the numerical
value of one of the M features.

Secondly, the emission probability matrix B is
split into: i) A matrix M , with the mean values
for each observation in each state; ii) A covariance
matrix C for each state, with the covariance values
between observations, or variances, in the diagonal
values.

As the usual HMMs, our model will also have a
matrix A with the transition probabilities between
states and a vector π with the probabilities for the
initial state.

3.2. Observations

To have the model predicting the states accurately,
there was a need to choose observable features that
characterized only some phases or could allow to
distinguish them. We chose an observation rate of
5 per second to be high enough for the model to
change states without noticeable time gaps, but also
low enough to not exceed any other robot connec-
tion rate, provoking errors. The five chosen obser-
vation features are described as follows.

Distance. In a greeting sequence, people com-
monly start far away from the target and end up
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close. Therefore, the robot-person distance is a key
factor for predicting the state. For the calculations,
we used OpenFace [2], which returns the face in-
formation according to the camera, including the
3D position and orientation. As we are only in-
terested in a 2D distance, we discarded the height
coordinate. After a transformation from the cam-
era referential to the robot’s base frame (see figure
1), distance is given, in millimeters by the follow-
ing equation, where p′(x, y) is the position of the
person in the robot’s XY plane:

Distance = ‖p′‖ (1)

Figure 1: Representation of the robot (x,y,z) and
world (X,Y,Z) coordinate frames

Speed. The speed of a target person allows distin-
guishing static phases of the greeting model (usually
IA and CS) and moving phases (APP and FA, at
least). For a simple computation of this feature, we
used the distance that a person moves in the robot’s
direction within two observations, and later divided
it by the time interval between observations, 0.2 sec-
onds. Having the person-robot distance in the last
observation, PreviousDistance, and the distance
from the person to the last observation’s robot po-
sition, Distance′, speed can be given, in millimeters
per second, by:

Speed =
(PreviousDistance−Distance′)

0.2
(2)

Gaze. The direction of a person’s gaze is another
meaningful factor in this greeting model, as already
described. Therefore, we developed two methods in
order to compute if the person appears to be looking
at the robot, or not. The first method uses eye gaze
direction vectors, extracted from OpenFace (green
lines starting at the eyes in figure 2) to estimate a
gaze point, that is, a point in the robot’s YZ plane

to which the gaze direction of the person is point-
ing. Having the 3D position of both eyes (also re-
turned from OpenFace) in robot coordinates, e0, e1
and the direction vectors, g0, g1, the gaze point gp
is computed by:

gp =
(g0 + e0) + (g1 + e1)

2
(3)

In the above equation, we assume the gaze point
to be estimated by the center of both left and right
eye gaze points.

To determine the likelihood of direct gaze, we
used the cone model for the field of view of a hu-
man [1, 28]. Larger opening angles of the cone are
associated with images progressively more blurred,
while smaller angles bring more details in the view.
Our visual attention is commonly associated with
an angle smaller than 60º. Thus, we pictured a cone
with the vertex on the person’s eye and a 60º angle
opening which represented the person’s view. We
consider the person is looking directly if the robot’s
face is inside the cone’s base, i.e., ‖gp− f‖ < r, be-
ing f the center of the robot face, in its coordinates
and r the radius of the base. The gaze feature is
given by the following equation, where smaller val-
ues correspond to a higher gaze likelihood.

Gaze =
‖gp− f‖

r
(4)

Figure 2: Output of OpenFace: face landmarks,
face orientation and gaze direction

As the direction vectors proved to be inaccurate
at long distances, we also built a gaze direction de-
tector based on the face’s orientation (blue struc-
ture in Figure 2, which Kendon [13] stated could be
a good indicator in most cases.

To estimate the gaze point, gp(gpy, gpz) we used
the following equations:

gpy = |tx| tan(λ)− ty (5)
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gpz = |tx| tan(β) + tz (6)

Where β and λ are the rotations of the face
around the Y and Z axes of the robot’s referen-
tial, and t = (tx, ty, tz) is the face’s position. After
estimating GP , the method is identical to the first
one, and Gaze values are calculated.

Smile. The intensity of smiling is yet another very
important characteristic of some phases of Kendon’s
greeting model and it will also function as an ob-
servation feature. To create a reliable smile detec-
tor, we used the Action Units (AUs) detector from
OpenFace. AUs are defined by the Facial Action
Coding System as the contraction or relaxation of
one or more facial muscles and are commonly used
in various fields to detect emotions, for instance.
Several studies, for instance [21, 25], mention that
the feeling of happiness can be physically displayed
by the combination of AU6 and AU12, i.e., the com-
bination of a raise of the cheeks and a pull of the
lip corners. With the presumable assumption that
both AUs have similar importance, the smile fea-
ture is given as follows:

Smile =
AU6 +AU12

2
(7)

Here, the value of Smile depends on the Open-
Face AU scale, in which we considered 1 to be ap-
proximately a neutral face, and 2 to be a common
smile.

Movements. The Distance Salutation, Head Dip
and Close Salutation phases are characterized by a
typical head or arms movement. Therefore, the last
observation feature would be a detector that could
distinguish between these three kinds of movement
and return the probability for each one.

Due to its implementation complexity, the
detector implemented rested on a non-automated
process of a user, external to the greeting, pressing
a key, whether a movement from one of the three
kinds was performed, and returning a probability
of 1, depending on the kind detected. We separated
these 3 probabilities into HDip, DSal and CSal,
therefore, every observation vector has the format
O =

[
Distance Speed Gaze Smile DSal CSal HDip

]
3.3. Model training
The training of our HMM was performed using in-
formation from videos of real greeting sequences,
extracted from the AVDIAR Dataset [8] and the
UoL 3D Social Interaction Dataset [5].

This information would serve as input for the
Expectation-Maximization (EM) algorithm [11],
which, given a sequence of observations O, and the
set of possible states for the HMM, should return

an estimate for the matrix parameters. This algo-
rithm starts with an initial estimation of the HMM
parameters. Then, two steps run iteratively until
the algorithm reaches a convergence point: The E-
Step and the M-Step. The E-Step uses the matri-
ces from the last iteration to estimate an expected
state transition count and the expected amount of
transitions between each pair of states, through the
entire given sequence. On the M-Step, these esti-
mations are used to compute new probabilities for
the HMM and to make an estimation of the four
matrix parameters, for a Gaussian HMM.

To use the EM algorithm, we had to extract
several sequences of observations from the above-
mentioned datasets. The AVDIAR dataset, apart
from the videos, provided a file with the 2D head
position from all the participants in the video and
the calibration information from the stereo cameras.
Given this, the observations’ computation process
for this dataset was the following, for each video:

1. Extraction of the left and right camera’s recti-
fied images for each frame;

2. Calculation of the disparity map for these im-
ages, using the Semi-Global Block Matching al-
gorithm [10] and the values of depth, using the
disparity-to-depth matrix provided;

3. Computation of the distance and speed fea-
tures for each frame of the greeting sequence;

4. Correction of some inconsistent values by a me-
dian filter and interpolation and ensuring a cor-
rect interval between observations;

5. Analysis and labeling of the remaining 3 fea-
tures, using adequate scales.

For the second dataset, the job was easier, as we
were already given the 3D position of both greeters
at each frame. The computation of gaze direction
was also possible, due to having head orientation
values. Thus, after computing distance and speed
similarly to the previous dataset, we used the sec-
ond gaze detector described earlier and computed
this observation feature. Following this, we made
some corrections to inconsistent gaze values and la-
beled the smile and movements features, as in the
AVDIAR Dataset. In Table 1 we summarize the
two approaches for the observations’ extraction.

With the processes above described, we managed
to extract 33 complete greeting sequences with their
observations, separated by 0.2 seconds. From this
33, we decided around 75% would serve for the
model’s training and the other 25% would belong
to a test set, where each observation was labeled
with the seeming greeting phase of the respective
moment. Firstly, the sequences were manually split,
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AVDIAR UoL

Format of available data 2D 3D
2D-3D conversion YES NO
Distance/Speed extraction Using 3D position Using 3D position
Filter to ensure 0.2 seconds Median Average
Outlier interpolation YES NO
Gaze extraction Labeling Using head orientation
Smile/movements extraction Labeling Labeling

Table 1: Comparison of the observations’ extraction approaches for the 2 Datasets

choosing 25 sequences (∼ 75.8%) that were long and
contained most of the phases, providing more infor-
mation for the model. These were the input for the
EM algorithm, together with the desired number
of states (6). The algorithm was set to stop when
it considered convergence (log-likelihood lower than
0.01) or divergence (iteration number higher than
100) had been achieved, returning the matrices for
our HMM: the transition probabilities (A), the ini-
tial state probabilities (π), the mean values (M),
and the covariances (C) for the observations. The
first three are found below for further analysis.

A =


0.608 0.144 0 0.030 0.218 0

0 0.625 0.075 0 0.300 0
0 0 0.400 0.198 0.402 0

0.066 0 0 0.631 0.303 0
0 0.051 0 0 0.673 0.277
0 0 0 0 0 1


π =

[
0.929 0 0 0.071 0 0

]

M =


2068 99 1.47 1.33 0 0 0
1617 142 0.80 1.89 1 0 0
1635 256 1.26 1.40 0 0 1
2771 1896 0.97 1.77 0 0 0
1569 389 0.68 1.73 0 0 0
1083 131 0.57 1.91 0 1 0


As the EM algorithm is unsupervised, its output

represents a model with six states clustered accord-
ing to the information provided, and not necessar-
ily the six phases we wish. Therefore, the matrices
above were previously organized so that each gen-
erated state is connected to its most similar phase,
in the following order: IA, DS, HD, APP, FA, CS.

This HMM, onward mentioned as the Trained
Model, has a few differences comparing to Kendon’s
greeting description. Firstly, almost every distance
and speed mean value was shorter than expected,
arguably due to the two models being based on
highly different environments: an outdoors, large,
and crowded party, and an indoors, small room
generally with two people. This also provoked a
scarcity of the Approach phases, since smaller dis-
tances resulted in people starting the approach al-
ready preparing for the salutation (Final Approach

phase). Despite these limitations and a few other
small details, the Data-Driven Model still estimated
six states very similar to Kendon’s description of the
six original phases.

3.4. Vizzy

Vizzy [18] is a humanoid-like robot developed by
the Institute for Systems and Robotics (ISR) for
assistive robotics, whose appearance can be seen in
Figure 3. Vizzy was already part of multiple initia-
tives, which have implemented several skills on it,
including reaching and grasping for simple shape
objects, 3D face detection (position and orienta-
tion), localization and autonomous navigation in a
known map, arm gestures as a handshake, waving,
arm stretching, pick objects and drop objects, head
control for a 3D fixation point (gaze) and speaking.

Figure 3: Left: Vizzy waving; Right: Vizzy’s size
comparing with a 1,75 m person

3.5. Model testing and results

After a brief comparison with Kendon’s notes, we
used the test set, with sequences extracted from the
greeting videos, to compute two testing metrics for
the model. These were the accuracy of the model,
i.e., the percentage of state labels it can predict,
comparing to the previous manual labeling; and the
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confusion matrix, to provide a superior comprehen-
sion of the errors.

For the accuracy, two prediction algorithms were
used: the Viterbi algorithm [6] and the forward al-
gorithm [11]. The main difference between these
two predictive algorithms is that, while the forward
algorithm receives a sequence of observations and
calculates, iteratively, the probability of each state
for each index on the sequence, the Viterbi algo-
rithm computes directly the most probable state
path that corresponds to the sequence of observa-
tions. This difference makes the forward most capa-
ble to predict the states in real-time situations, as
we will not obtain entire sequences but, instead, one
observation at a time. The Trained Model’s accu-
racy results are in Table 2. As a means of compari-
son of these results, we manually created an HMM,
Kendon Model, entirely based on Kendon’s greeting
notes, and whose results are in the bottom row of
the Table referred to.

Forward Algorithm Viterbi Algorithm

Data-Driven Model 0.839 0.893
Kendon Model 0.785 0.774

Table 2: Accuracy of the two models on the test set

The model achieved an accuracy over 83% with
both predictive algorithms, which was higher than
both Kendon Model’s results, arguably due to the
mentioned differences between the environments.
The Viterbi algorithm was the most successful in
the Trained Model case, which was expected, given
that the sequences provided were complete.

Table 3 contains the second analyzed metric, the
confusion matrix. Here, we could confirm the Ap-
proach and Final Approach limitation, with 50%
of the errors coming from confounding these two
states. However, the IA, DS, and HD were not prop-
erly tested, since the smaller amount of these states
required their presence on the testing set. Figures
4 and 5 also provide us the two sequences with the
most incorrectly predicted labels, confirming that
errors did not escalate easily, neither were mostly
present in one sequence.

IA DS HD APP FA CS Real Total

IA 1 0 0 0 0 0 1
DS 0 0 0 2 0 0 2
HD 0 0 0 0 0 0 0
APP 1 0 0 8 3 0 12
FA 2 0 0 2 47 0 51
CS 0 0 0 0 0 27 27

Predicted Total 4 0 0 12 50 27 93

Table 3: Confusion Matrix of the chosen model on
the test set, using the Viterbi algorithm

To evaluate the robustness of the model, we later
created 15 train-test splits and calculated the accu-

Figure 4: Instance of a sequence predicted with the
Viterbi algorithm

Figure 5: Instance of a sequence predicted with the
Viterbi algorithm

racy values, given that each case generated an HMM
and had different test sequences. The results can be
found (mean +/- standard deviation format) in Ta-
ble 4, with the comparison of the Kendon Model on
the same test set.

The average values of accuracy were slightly lower
than with the Data-Driven Model, as expected. As
the size of the training set is small, randomly choos-
ing the sequences resulted in some cases where the
training missed important information to identify
the six desired states. However, this also created a
high standard deviation for the accuracy, opposing
to the Kendon Model, since there is no training.
With a higher quantity of greeting data, we pre-
dict the model would stabilize similarly to the first
trained model, providing a smaller standard devi-
ation and an average accuracy that should exceed
the Kendon Model.

Forward Algorithm Viterbi Algorithm

Data-Driven Model 0.780 +/- 0.132 0.801 +/- 0.115
Kendon Model 0.810 +/- 0.058 0.823 +/- 0.051

Table 4: Accuracy of the two models on 15 different
train and test sets

Finally, we implemented a few complementary
tests using real-time observation sequences, in a
simulator built for Vizzy using Rviz [12] and Gazebo
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[14] as visualization and execution tools for the two
middlewares used with Vizzy: Yet Another Robot
Platform (YARP) [16] and Robot Operating Sys-
tem (ROS) [27]. Several types of greeting situa-
tions were simulated, using Vizzy in simulation, and
a model of a fake person, whose face information
could be extracted.

In each experiment, the model received obser-
vation features from the person and predicted the
most probable state every time stamp, using the for-
ward algorithm. Here, the gaze and smile features
were kept constant at regular values for simplicity.
In Table 5) there is a small description about the
six situations experimented, which led to an average
accuracy of 91.8 %.

Description Accuracy

Normal greeting with every state 0.957
Greeting without DS and HD 0.889
Greeting with a DS only close to person 1
Greeting starting at short distance 1
Smiling greeting (smile=2.5) 1
Gazing greeting (gaze=0.4) 0.733

Global Accuracy 0.918

Table 5: Accuracy of the model on different se-
quences

4. Greeting Model using Behavior Trees
4.1. Overview

After many validations of our Hidden Markov
Model’s capacity to correctly predict states in real
greeting sequences, we implemented the robot’s re-
action to each one of these states. With the usage
of Behavior Trees (BTs), we created a Control Ar-
chitecture for our system, that could read the pre-
dicted state, published in a specific ROS topic by
the HMM, and command the robot to perform the
respective sequence of movements, given a specific
prediction.

4.2. Behavior Trees

Behavior Trees (BTs) [4] are a Control Architec-
ture, whose function is to structure the switching
between different tasks (represented as nodes) in
an autonomous agent, such as a robot. We chose
BTs to control our robot’s reaction model, firstly,
because of the reactiveness they provide. A BT al-
lows good handling of unexpected changes and er-
rors by being able to check every condition and roll
back to a previous task of the sequence, quickly and
efficiently. Secondly, their modularity allows the
components to be developed and tested separately,
which was highly beneficial in our system, as we
could create a BT containing six smaller sub-trees,
one for each state.

The global structure of the BT that was devel-
oped contained, as can be seen in Figure 6, a node
subscribing the state being predicted and a block
containing a switch function, running one sub-tree,
according to the prediction. The reactiveness of
BTs permits an almost constant checking on the
predicted state and immediate change of sub-tree,
if necessary. The checking rate was chosen to be 10
times/second, to ensure that every change of state
(updated 5 times/second) had a reaction on the BT.

Figure 6: Global Behavior Tree of the system

Initiation of Approach. As a response to the
usual first phase of a greeting sequence, the robot
performs two actions described by Kendon: frontal
orientation at the target person, following by direct
looking. This orientation changing is computed by
four steps: i) identifying target face’s position and
robot position in world referential r = (rx, ry, rz);
ii) changing the face position to the world referen-
tial, p = (px, py, pz); iii) calculating the goal ori-
entation using equation 8, by considering only the
rotation around the Z-axis (λ), and where the func-
tion atan2 is the 2-argument arctangent; iv) rotat-
ing robot to the target orientation, keeping its po-
sition.

λ = atan2(y = py − ry, x = px − rx) (8)

After it, the robot moves its head in the direction
of a point that corresponds to the target’s face in
the robot coordinate frame.

Distance Salutation. Reacting to this phase,
Vizzy was set to produce a waving movement with
its right arm and ensure a direct looking at the per-
son, as it could have faded due to another phase.
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Head Dip. As it detects this phase, the robot re-
acts accordingly, by performing a similar movement
that consists of setting a head orientation lower
than the target’s face.

Approach. As soon as the person starts its ap-
proach movement and the HMM predicts the APP
state, the robot starts two parallel branches of the
BT that run in parallel. On one side, Vizzy re-
ceives and executes approach plans according to the
person’s position, by the following method: i) ob-
taining person’s position and orientation through
OpenFace; ii) converting the obtained values to the
world referential; iii) calculating the goal position
as the point at a specified distance from the person
(1 meter in our case); iv) calculating the goal orien-
tation as the opposite of the person’s, to prepare for
a frontal interaction; v) moving the robot the goal
position and orientation; vi) Steps i) to vi) are re-
peated at the BT’s rate, ensuring that any change
in the person’s position is noted and updates the
approach plan.

On the other branch, the non-direct gaze identi-
fied by Kendon in this phase is provided by looking
at a position lower than the target’s face.

Final Approach. When the greeter starts to pre-
pare for its interaction with the robot, the HMM
should start to predict the FA phase. As the reac-
tion, Vizzy continues using the same approaching
logic as in the previous phase, however, it changes
its gaze display to look directly at the target.

Close Salutation. To replicate the usual final
phase of the greeting, the robot was programmed to
display a handshake movement with its right arm,
while combining it with a direct gaze and a ver-
bal greeting: ”Muito prazer”, which translates to
”Pleasure to meet you!”.

4.3. System Testing

Our final experiments consisted of testing the phase
prediction model combined with the reactions from
the Behavior Trees.

For this, we set a situation similar to the previous
experiments, using the Vizzy simulator. The differ-
ence was that the state would be continuously pub-
lished in a ROS topic that would activate the Be-
havior Tree and trigger the robot to move, accord-
ing to the phase predicted by the HMM. The greet-
ing sequence tested started with the robot turning
to the person, by detecting the Initiation of Ap-
proach and passed through the six states, finishing
with a Close Salutation. Three different parts of
the sequence are present in Figure 7 to 9.

Figure 7: Simulation: Initial positions

Figure 8: Simulation: Approaching movements

5. Conclusions and Future Work
To build a Hidden Markov Model trained with real
data that could represent Kendon’s greeting model
in a manner that no other project had accom-
plished was, undoubtedly, a major challenge in this
work. Considering the low quantity and question-
able quality of the sequences found, to manage to
train a model that could identify six states particu-
larly similar to the ones Kendon had described was
a significant achievement. Our HMM also returned
positive results when experimented on a test set,
predicting 89.3% and 83.9% of the state labels with
the Viterbi and the forward algorithm, respectively;
an average accuracy of 78% and 80.1% using sev-
eral combinations of train and test sets; and almost
92% while testing in the simulator with different
situations.

When testing Vizzy reacting to the state predic-
tion of the HMM, the implementation using Behav-
ior Trees also responded as predicted. All states
could be correctly displayed in our simulator and
the time gaps for the reactions were not too long,
allowing natural greeting sequences.

For the future, it might be interesting to discover

8



Figure 9: Simulation: Close Salutation

how the model would adapt to having more training
information from greetings, preferably from more
than one experiment environment. Certain features
could have also enhanced the quality of the robot’s
greeting and were not implemented, such as a smil-
ing display, a few subtle arms and body movements,
or other salutations, since people can expect to be
greeted differently. Another valuable extension to
this work would be an adaptation to group greet-
ing, by changing the HMM for continuous greetings,
ensuring it does not repeat any target.
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Jüttner. Peripheral vision and pattern recogni-
tion: A review. Journal of Vision, 11(5):13–13,
12 2011. ISSN 1534-7362. doi: 10.1167/11.5.13.
URL https://doi.org/10.1167/11.5.13.

10


