
A graph algorithm library based on compact data structures

Joana Modesto Hrotkó
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Abstract

We address the problem of representing dynamic graphs using k2-trees. The k2-tree data structure is

one of the succinct data structures proposed for representing static graphs, and binary relations in gen-

eral. It relies on compact representations of static bit vectors. By adding dynamism to the static compact

data structures, we can also represent dynamic graphs. However, this approach suffers from a well

known bottleneck in compressed dynamic indexing, the problem of maintaining a changing collection so

that we can query the data structure efficiently. In this work we present a k2-tree based implementation

which follows instead the ideas by Munro to circumvent this bottleneck. We refactored and extended

the work of Coimbra by building a C++ library. The library includes efficient edge and neighbourhood

iterators, as well as some illustrative algorithms. We also included a study on the add operation first

proposed by Munro. Our experimental results show that our implementation is competitive in practice.

Keywords

Compact Representations; Dynamic Graphs; k2-tree; Graph Library; Web Graphs

iii





Resumo

Abordamos o problema de representação de grafos dinâmicos usando k2-trees. A estrutura de dados

k2-tree é uma das estruturas de dados sucintas propostas para representar grafos estáticos e relações

binárias em geral. Baseia-se em representações compactas de vetores de bits estáticos. Ao adi-

cionar dinamismo às estruturas de dados compactas estáticas, também podemos representar grafos

dinâmicos. No entanto, esta abordagem sofre de um problema bem conhecido da indexação dinâmica

compactada, isto é o problema de manter uma coleção em mudança de modo a que possamos consul-

tar a estrutura de dados de forma eficiente. Neste trabalho, apresentamos uma implementação baseada

na k2-tree que segue, em vez disso, as ideias de Munro para contornar esta questão. Refatorizámos e

extendemos o trabalho de Coimbra construindo uma biblioteca em C++. Esta biblioteca inclui iteradores

de arestas, nós e de vizinhança eficientes, bem como alguns algoritmos ilustrativos. Também incluı́mos

um estudo sobre a operação de adição proposta inicialmente por Munro. Os nossos resultados experi-

mentais mostram que nossa implementação é competitiva na prática.
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1.1 Motivation

Graphs are a natural way of modeling connections in the World Wide Web and social networks [4]. In

this case, each web page corresponds to a graph node and each link corresponds to a graph edge.

Such a directed graph is called a web graph. In social networks, the population’s behavior and attributes

are typically represented by social network graphs. Analyzing the structure and data of the graph en-

ables the in-depth mining of network characteristics. The operations over the graph include forward

querying, finding the predecessors of a node and checking the presence of a link. Among them, forward

querying is one of the most widely used graph operations. It can be used to determine the connection

between two pages or two people, filter out all the pages linked by a specific page, determine a person’s

communication range, etc.

A graph is most commonly represented with an adjacency matrix or list. For small scale graph data,

these two approaches can provide efficient querying. However, with the rapid development of the Inter-

net and the extreme growth of the World Wide Web’s scale, graphs are generating at an unprecedented

pace and are accumulating a large amount of data. How to analyze and use these data has become a

key opportunity and an extreme challenge for many fields. To satisfy the efficient operation of some ba-

sic algorithms and operations on large-scale graph data, in recent years, many scholars have designed

many data structures with good performance for the compression storage of graphs and proposed algo-

rithms to extend operations on these graphs. However, interesting Web graphs are very large and their

classical representations do not fit into the main memory of typical computers, whereas the required

graph algorithms perform inefficiently on secondary memory. Compressed graph representations dras-

tically reduce their space requirements while allowing their efficient navigation in compressed form.

Web graphs, where nodes are Web pages and relations are hyperlinks, can be seen as a binary

relation between two (usually equal) sets of Web pages A and B. In this context, basic binary relation

operations are translated into queries to find the direct or reverse neighbors of a node. Consider a

binary relation between two sets A and B, defined as a subset R ⊆ A×B. Typical operations of interest

in a binary relation are: determine whether a pair (a, b) is in R, find all the elements b ∈ B such that

(a, b) ∈ R, given a ∈ A, and vice versa. More sophisticated ones aim, for example, at retrieving all pairs

(a, b) ∈ R where a ∈ [a1, a2] and b ∈ [b1, b2].

1.2 The Problem

There are two natural ways to represent binary relations: a binary adjacency matrix or an adjacency

list. On large binary relations, reducing space while retaining functionality is crucial in order to operate

efficiently in main memory. Therefore, simple representations such as plain adjacency matrices are

usually unfeasible in these datasets.
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A topic that is strongly related to the problem of managing large volumes of data is compression,

which seeks a way of representing data using less space. Most compression algorithms require de-

compressing all of the data from the beginning before we can access any element of the data structure.

Therefore, compression generally serves as a space-saving archival method, although it is not useful for

managing more data in main memory.

Compact data structures aim precisely at this challenge. According to Navarro et. al. [5] a compact

data structure maintains the data, and the desired data structures over it, in a form that not only uses less

space, but is also able to access and query the data in the compact form, that is, without decompressing

it. Thus, a compact data structure allows us to fit and efficiently query, navigate and manipulate much

larger datasets in main memory unlike if we used the data directly from its plain form and classical data

structures on top.

WebGraph [2] is a state-of-the-art framework that takes advantage of Web Graph properties in order

to compress the data. Moreover, Brisaboa et. al. [6] introduced a compact data structure called k2-tree.

It was initially proposed for the compression of Web graphs, where it was shown to be very competitive.

However, just like the other compressed representations of graphs and binary relations, including the

WebGraph, k2-trees are essentially static. This discourages their use in cases where the binary relation

changes due to the insertion or deletion of edges.

1.3 Contributions

We propose an easy to use, tested and extendable Application Programming Interface (API) of the dy-

namic k2-tree based on the implementation of Static Dynamic k2-tree (SDK) [7]. Moreover, we have

extended the Succinct Data Structure Library (SDSL) library [8] with the implementation of union opera-

tion and also edge, node and neighbour iterators for the k2-tree data structure. Since we are proposing

a graph library, we additionally propose the implementation of some well-known algorithms as an ex-

tension of the SDK library. This work also resulted in a paper submitted for publication in the journal of

Information and Computation.

1.4 Organization of the Document

In this document we start by formalizing graph definition that will be used throughout the whole document

in Chapter 2. Moreover, we will overview some simple graph representations such as the adjacency ma-

trix and the adjacency list and also compressed representations which include the Compressed Sparse

Row/Column. We continue this chapter by introducing the current state-of-art compact data structures,

namely the Web graph, the main protagonist of this work – the k2-tree and the dynamic k2-tree. Then we
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proceed to Chapter 3 where we will review the architecture of popular graph APIs. In Chapter 4 the so-

lution for this work will be explained in detail. We are going to address the implementation specifics, the

library overall structure and we also present the extended features. Next, in Chapter 5 we will evaluate

our implementation against the SDK’s by evaluating the overall performance regarding time and space.

Not only will we compare but also assess the extended functionalities. We finish this work with Chap-

ter 6, where we will give our final remarks and sum the whole work while also pointing out its limitations

and future work.
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This chapter covers all the theoretical concepts applied in our work. We will start by giving a formal

definition of a graph followed by its most common representations: the adjacency list and the adjacency

matrix. Next, we will address compact structures starting with the Compressed Sparse Row and Column

as an introduction to compressed graph representations and also cover the Web graph as an optimized

compacted structure for binary relations in graphs. Thereafter, both the static and dynamic k2-trees

structure will be addressed, being the core data representation tackled in this work. By the end of this

chapter, a general and final discussion covering all data structures is going to be presented.

2.1 Graph Definition

A graph is a structure consisting of a set of vertices V = {v1, v2, ...} and a set of edges E = {e1, e2, ...},

where each edge connects two vertices which are are not necessarily distinct, so we have E ⊆ V × V .

This data structure can be denoted as G = (V,E) [9]. To avoid notational ambiguities, we shall always

assume that V ∩ E = ∅ .

The number of vertices of a graph G is the graph’s order, written |G|, while the number of edges

is denoted by ||G||. Graphs are finite or infinite according to their order. The empty graph (∅, ∅) can

be denoted as ∅. An edge is written as (v, w) where v and w are two vertices v, w ∈ V . A vertex v is

incident with an edge e if v ∈ e; then e is an edge at v. The two vertices incident with an edge are its

end vertices or ends. The set of all edges in E at a vertex v is denoted by E(v). Two vertices v, w of G

are adjacent or neighbours if (v, w) is an edge of G. Two edges that e1 6= e2 are adjacent if they have an

end in common. If all the vertices of G are pairwise adjacent, then G is complete. More formally, a set

of vertices or of edges is independent (or stable) if no two of its elements are adjacent.

There are different types of graphs with different properties. A directed graph (or digraph) is a pair

of (V,E) of disjoint sets of vertices and edges together with two maps: init: E → V and ter: E → V .

These assign to every edge e an initial vertex init(e) and a terminal vertex ter(e). The edge e is said to be

directed from init(e) to ter(e). Note that a directed graph may have several edges between the same two

vertices v, w. Such edges are called multiple edges; if they have the same direction, they are parallel. If

init(e)=ter(e), the edge e is called a loop. A directed graph D is an orientation of an (undirected) graph

G which arises from an undirected graph simply by directing every edge from one of its ends to the

other. In undirected graphs self-loop representations are forbidden, and so every edge consists of two

distinct vertices. In undirected graphs the adjacency relation is symmetric while in directed graphs, the

adjacency relation is not necessarily symmetric.

A graph can be defined as dense or sparse. Graphs with a number of edges roughly quadratic in

their number of vertices are usually called dense and sparse otherwise. Depending on the type of the

graph we can calculate how dense it is. For undirected graphs its density is given by 2|E|
|V |(|V |−1) while for
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directed graphs is |E|
|V |(|V |−1) .

Finally we have the definition of weighted graphs. With each edge e of G let there be associated a

real number w(e), called its weight where w is a function defined as w : E → R. Then G, together with

these weights on its edges, is called a weighted graph [10].

2.2 Graph Representations

In this section we will discuss the two most common ways to represent a graph G = (V,E) as an

adjacency matrices or as adjacency lists. Either way applies to both directed and undirected graphs.

We introduce a simple graph in Figure 2.1 which will be represented in different data structures

throughout this chapter.

0

1

2
4

5

6 7

Figure 2.1: A simple directed graph.

2.2.1 Adjacency Matrix

An adjacency matrix representation of a graph is preferred when representing a dense graph where |E|

is close to V 2 or when we need to be able to query quickly whether there is an edge connecting two

given vertices [11].

In this representation, we assume that the vertices are numbered 1, 2, ..., |V | in some arbitrary man-

ner. Then the adjacency matrix M representation of G consists of a |V | × |V | matrix of Boolean values,

with the entry in row v and column w defined to be 1 if there is an edge connecting vertices v and w in

the graph, and to be 0 otherwise [12]. The time to retrieve an edge in this representation is O(1) and

memory usage is O(|V |2).

This is the case for a directed graph or a digraph. However, for a undirected graph, each edge is

actually represented by two entries: the edge (v, w) is represented by the value 1 in both M [v][w] and

M [w][v]. In this type of representation, generally we assume the number of vertices is known when the

graph is initialized.
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Additionally, for weighted graphs with edge-weight function f , we can simply store the weight f(u, v)

of the edge (u, v) ∈ E as the entry in row u and column v of the adjacency matrix M . If an edge does

not exist, we can store a NIL value as its corresponding matrix entry, though for many problems it is

convenient to use a value such as 0 or∞.

Taking the example graph from Figure 2.1, its adjacency matrix representation would be the following:

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Figure 2.2: Adjacency Matrix for the graph in Figure 2.1

As we can see for this graph, we have a highly sparse matrix since most of the matrix’s entries are 0.

2.2.2 Adjacency List

The standard representation for sparse graphs (where |E| is much smaller than |V |2) is the adjacency

list representation. In this graph representation we keep track of all the vertices connected to each vertex

on a linked list [12].

A graph G consists of an array Adj of size |V |, that is one entry for each vertex in V . For each

u, vi ∈ V , the adjacency list Adj[u] contains all the vertices vi such that the edge (u, vi) ∈ E. We are

able to represent both directed and undirected graphs with an adjacency list. In a directed graph, the

sum of the lengths of all the adjacency lists is |E|, since an edge of the form (u, v), is represented by

having v appear in Adj[u]. If G is undirected, the sum of the lengths of all the adjacency lists is 2|E|,

since if (u, v) is an undirected edge, then u appears in v’s adjacency list and vice versa. For both directed

and undirected graphs, the adjacency list representation has the desirable property that the amount of

memory it requires is Θ(V + E) [13].

We can readily adapt adjacency lists to represent weighted graphs. For example, let G be a weighted

graph with weight function f . We simply store the weight f(u, v) of the edge (u, v) ∈ E with vertex v

in u’s adjacency list. The adjacency list representation is quite robust since we can modify it to support

many other graph variants.

There are other ways to implement an adjacency list. Another possible implementation associates

each vertex in a graph with an array of adjacent vertices using a hash table. In this case, there is extra

memory usage for the hash table, however it allows to search an edge in O(1) instead of O(|Adj[u]|).
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Figure 2.3: Adjacency List for the example graph in Figure 2.1.

The adjacency list for the graph in Figure 2.1 is represented in Figure 2.3. Comparing with the previ-

ous adjacency matrix representation in Figure 2.2 it is clear that this representation is more appropriate

since the amount of memory used is much smaller than in the adjacency matrix.

2.3 Compressed and Compact Representations

In this section, we will address compressed and compact graph representations as an optimization for

storage of the previous data structures. Taking from the previous representations, we will go further with

more sophisticated data structures used to compress large graphs. First, we will present the compressed

sparse row and column data structure which are the only compressed (and not compact) structures

presented in this work. Thereafter, we proceed to the Web Graph data structure which uses more

complex adjacency lists based on blocks of successors nodes and some graph properties. Finally, we

end this section by presenting the k2-tree data structure which is part of this work.

For simplicity, from this section until the end of this work we will refer to |V | as n and |E| as m.

2.3.1 Compressed Sparse Row and Column

Compressed sparse row (CSR) and Compressed sparse column (CSC) are widely known and the most

used formats of sparse data structures. Mainly, they are used for write-once-read-many tasks. The Com-

pressed Row and Column Storage formats are the most general: they make absolutely no assumptions

about the sparsity structure of the matrix, and they don’t store any unnecessary elements. On the other

hand, they are not very efficient, needing an indirect addressing step for every single scalar operation in
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a matrix-vector product.

2.3.1.A Compressed Sparse Row

In a sparse matrix, most of the entries are zeros. There are several ways to store a general sparse

matrix. The CSR or Yale format [14] is commonly used to compress this kind of matrices.

The CSR represents a a × b matrix M by three linear arrays: val, colInd and rowPtr. The val

array contains all the non-zero entries in M in row major order. The colInd array contains the column

index in M of each element of val. Hence, its size will be the size of nnz, where nnz are the non-zero

values. Finally we have the rowPtr array with size a+ 1 which stores the cumulative number of non-zero

elements up to (not including) the ith row. This array is defined by the following recursive relation:

rowPtr[n] =

{
0 if n is 0

rowPtr[n− 1] + nnz in the n+ 1th row otherwise

For instance, to find the number of non-zero elements in row i, we perform rowPtr[i+ 1]− rowPtr[i].

However, this data structure is only memory efficient for matrices where the nnz are less than (a ×

(b−1)−1)/2. The direct array representation requires b2 memory, while the CSR requires 2× nnz+a+1.

From the matrix representation of the example we introduced in this chapter in Figure 2.2, we have

calculated its CSR representation presented in Figure 2.4.

Figure 2.4: Compressed Sparse Row for the example graph from the matrix in Figure 2.2

Notice how the val array is redundant in this case as all entries are always 1s for binary representa-

tions. If our example graph was weighted, the val array would not be redundant.

2.3.1.B Compressed Sparse Column

Analogous to CSR, the CSC representation where the values are indexed first by column with a column-

major order. The main difference to the previous representation is that the columns of M are stored

instead of the rows. In other words, the CSC format is the CSR format for MT .

The CSC format is specified by the arrays val, colPtr, rowInd, where rowInd stores the row indices

of each nnz, and colPtr stores the index of the elements in val which start a column of M .
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Figure 2.5: Compressed Sparse Column representation for the example graph from matrix in Figure 2.2.

Next, we will present the studied compact data structures.

2.3.2 Web Graph

The Web Graph is relative to a certain set of Uniform Resource Locator (URL)s. It is represented as

a directed graph where the URLs are nodes and edges represent the links from x to y whenever page

x contains a hyperlink towards page y [2]. Web graphs contain millions of nodes and although sparse,

representing it with an adjacency matrix would be way too big to fit in main memory, even on computers

with high resources. To overcome this difficulty, we can access the graph from external memory, which

however, requires designing special offline algorithms even for the most basic problems (e.g. computing

the shortest path). In order to solve this, the graph is never actually loaded into memory, but rather read

in a streaming fashion from external storage using a small amount of memory.

In order to compress and efficiently store a Web Graph, the empirical observations in the structure of

hyperlinks in a typical subset of the web are exploited. Two features of the Web Graph links are usually

quoted as locality and similarity. These were originally exploited by the Connectivity Server [15] and

LINK database [16]. The locality feature refers to most links contained in a page lead the user to some

other pages within the same host (”home”, ”next”). All these links share the same prefix, that is the index

of the source and target are close to each other when ordering them lexicographicaly. Additionally, the

similarity refers to the pages that occur close to each other (in lexicographic order) tend to have many

common successors; this is because many navigational links are the same within the same local cluster

of pages, and even non-navigational links are often copied from one page to another within the same

host.

2.3.2.A LINK Database

The latter approach, which can be referred to as Web Graph compression, can be traced back to the

LINK database [16]. This work presented techniques to compress the links in order to accommodate

larger graphs, where some of them presented around 6 billion edges. They based their work on the

Connectivity Server [15] which is a collection of three databases: the URL Database, the Host Database
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and the Link Database. The URL Database contains the relation of URL ids with their host names. The

Link Database maps a URL id to their sets of URL ids outlinks and inlinks. This database returns both

outlinks and the inlinks of the graph in an adjacency list.

In the LINK database work the authors noticed the locality and similarity features leading them to

conclude that URL-ids in the same adjacency list tend to be close together in the URL-id space. Thus,

they presented reference compression techniques, where they represented the graph as an adjacency

list. In this work they took advantage of the similarity of the successors list by specifying the successor

of the list of a node with a partial copy of a previous list and adding whatever remains. This is achieved

using a list of bits, one for each successor in the referenced list, which marks whether the successor

should be copied or not. This technique was introduced as the delta values where instead of storing the

absolute values of the URL-ids in each adjacency list they stored the differences between the neighbors

list, which are called the delta or gap values. Hence, they store much smaller values than the absolute

values.

Together, all these techniques reduce space requirements to under 6 bits per link.

2.3.2.B WebGraph

More recently, the LINK database [16] has led to the development in Java of the WebGraph framework [2]

which still provides some of the best practical compression-versus-speed trade-offs. Similar to the LINK

database, this work also exploits both locality and similarity features by using the same techniques as

previously mentioned.

This work introduces a new technique where instead of compressing directly based on the delta

technique, they first isolate subsequences corresponding to integer intervals whose length 1 is above a

certain threshold. Thus, each list of extra nodes will be compressed by using a list of integer intervals and

a list of residuals which are only compressed using differences. This technique is named the differential

compression, in which the differences between the neighbour lists are recorded by a sequence of copy

blocks, that is the sequence of neighbour nodes is preceded by a block count indicating the number of

blocks that will follow. This is possible because many of the neighbour lists have a considerable number

of common nodes among them.

The differential compression allows the WebGraph to compress as little as 3.08 bits per link.

2.3.3 k2tree

The k2-tree [6] is a very efficient compressed data structure that competes directly with the WebGraph

framework. The k2-tree is a novel Web graph representation based on a compact tree structure that

takes advantage of large empty areas of the adjacency matrix of the graph. It offers the least space
1The authors consider the length of an integer interval to be the number of integers it contains.
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usage at 1–3 bits per link. The k2-tree is a k2-ary tree where all nodes present k2 child nodes or no

children if they are a leaf node. In a graph with n nodes, the height of the k2-tree is h = blogk nc.

The k2-tree consists of two bit vectors2:

• T (tree) – stores all the bits of the k2-tree except those at depth h. The bits are placed following a

levelwise transversal: first the k2 binary values of the children of the root node, the values of the

second level, and so on [6].

• L (leaves) – stores the last level of the tree. It represents the values of (some) original cells of the

adjacency matrix.

The construction of this data structure starts from the adjacency matrix representation of a graph. It

is applied a MX-Quadtree strategy [18], where the matrix is divided into k2 submatrices of size n2/k2.

During this phase the recursion process stops when we reach submatrices with size k× k, representing

the last level of the tree. In this level, each entry of the matrix corresponds to a leaf node ordered by

a row major fashion and being stored in bit vector L. Regarding the middle levels, each cell represents

the presence or absence of children nodes. For a given an internal node of the tree, if all k2 child nodes

are 0s , then its value its value in T is 0. Otherwise, if it has at least one child node, its value is 1.

Therefore, each node contains 1 bit of data. Ideally, n is a power of k. If it is not, the matrix size is

extended with enough 0’s to the right and to the bottom, making the width n′ = kdlogk ne [19].

In order to build a k2-tree from the example graph in Figure 2.1, we would build it from the adjacency

matrix representation in Figure 2.2. Applying the MX-Quadtree strategy in Figure 2.6, we can build the

a conceptual tree as presented in Figure 2.7 which will be saved as two bitmaps T (tree) and L (leaves).

Figure 2.6: MX-Quadtree strategy applied in the matrix representation from Figure 2.2

2The Bit Vector or LOUDS representation [17] allows a representation of a tree based on an string of 1s and 0s. This data
structure has two main operations: the rank1(x) which returns the number of 1 bits to the left of, and including, position x in the
bit-string and select1(i) which given an index i, returns the position of the ith 1 bit in the bit-string.
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Figure 2.7: k2-tree representation of the graph in Figure 2.1

The bit vector T stores all the bits from all the internal nodes except the leaves. The first bits of this

array are the ones from the root following a breadth first order until the h − 1 level. Finally, L stores the

last level h of the tree. Therefore we have the following bit vector to represent our k2-tree:

T = 1001 1001 0100,

L = 1010 1000 0111,

T ||L = 1001 1001 0100 1010 1000 0111.

With the bit vectors representation, it is possible to perform queries directly from the compressed

representation. The representation T ||L permits fast navigation to get the ith child of a node x in the

tree, for any 0 < i < k2. Consider childi(x) where x is a position of T such that T [x] = 1. Then childi(x)

is at position rank1(T, x) × k2 + i of T ||L, where rank1(T, x) is the number of 1s in T [0, x]. In order to

carry out the operation childi(x) efficiently, we need to supoprt rank1(T, x) queries efficiently. The rank

operation can be carried out in constant time and fast in practice using sublinear space on top of the bit

sequence [20,21].

2.3.3.A Construction Space and Time

The authors from [19] present an alternative build of a k2-tree given different representations of a Web

Graph. According to them, a k2-tree can be built from an adjacency matrix with time O(n2(1/k) + 1/w),

where w is the length in bits of the computer word and takes O(s) space, where s = |T | + |L| bits.

Moreover, they also present the possibility to build a k2-tree from an adjacency list representation since

it is more realistic in real life problems. This method has a time complexity of O(n2/k2 + m + s/w) and

requires O(n) additional words for space.

From an adjacency matrix

Assume that our input is an n×n adjacency matrix. Construction of our tree is easily carried out bottom-
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up in linear time and optimal space (that is, using the same space as the final tree). Their procedure

builds the tree recursively. It consists of a depth-first traversal of the tree that outputs a bit array Tl for

each level l of the tree. If we are at the last level l = h, we read the k2 corresponding matrix cells. If all

are 0, we return 0 and we do not output any bit string, as none of those 0s will be explicitly represented;

otherwise we output the k2 bits and return 1. If we are not at the last level, we make the k2 recursive

calls for the children. If all return 0, we return 0, otherwise we output the k2 answers of the children and

return 1. The overall algorithm is described in Algorithm 2.1.

Algorithm 2.1: Build(n,l,p,q)
for i← 0...k − 1 do

for j ← 0...k − 1 do
if l = h then
C ← C||ap+i,q+1

else
C ← C||Build(n/k, l + 1, p+ i× (n/k), q + j × (n/k))

end if
end for

end for
if C = 0k

2

then
return 0

end if
TL ← Tl||C

The output for each call is stored separately for each level, so that the k2 bits that are output at each

level are appended to the corresponding bit array Tl. As we fill the values of each level left-to-right,

the final T is obtained by concatenating all levels but the last one, which is indeed L. Algorithm 2.1

shows the construction process. It is invoked as Build(n′ = kh, 1, 0, 0), where the first parameter n is

the (extended) submatrix width, the second, l, is the current level, the third, p, is the row offset of the

current submatrix, and the fourth, q, is its column offset. After running it we have T = T1||T2||...||Th−1||

and L = Th.

The total time is clearly linear in the number of cells in the matrix, O(n2). By accessing up to w con-

secutive (say, horizontal) bits of the matrix in one operation, the time can be reduced to O((n2/k2)k(1 +

k/w)) to scan the matrix plus O(n2/k2) for the recursive invocations, for a total complexity of

O(n2(1/k + 1/w)).

From an adjacency list

Representing the complete matrix for the construction process is not realistic on Web graphs, because

the matrix is too sparse. We use the adjacency lists representation of the matrix instead, that is, for each

Web page p we have the list of Web pages q such that p has a link pointing to q. By using the adjacency
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list we can still achieve the same time by setting up n cursors, one per row, so that each time we have to

access a apq we compare the current cursor of row p with value q. If they are equal, we know apq = 1 and

move the cursor to the next node of the list of row p. Otherwise we know apq = 0. This works because

all of our queries to each matrix row p are increasing in column value.

In this case we pay O(n2/k2) in recursive invocations to reach each leaf, plus O(t/w) to write down

bitmap T , plus O(1 + k2/w) to initialize each chunk of k2 bits in L, plus O(1) time to go over each entry

of the adjacency list and write the corresponding 1 in the chunk of L. This gives a total of

O(n2/k2 +m+ t/w + `(1/k2 + 1/w)) = O(n2/k2 +m+ s/w).

2.3.3.B Check individual Link

For most compressed graph representations, to determine if page p is linked to page q we have no choice

but to extract all the successors of p and check if q is in the set. However, in the k2-tree representation

we can answer such queries in O(logk n) time by descend to one child at each level of the tree, so

that we can determine if the cell apq of the adjacency matrix is 1 or 0. We start at the root node and

descending recursively to the child node that represents the submatrix containing the cell apq of the

adjacency matrix.

Recall that h = blogk nc is the height of the tree. Then the nodes at level l represent square subma-

trices of size kh−l, and these are divided into k2 submatrices of size kh−l−1. For instance, the root at

level l = 0 represents the whole square matrix of width kh = n′. Let us call pl the relative row position

of Web page p at level l, and ql the relative column position of Web page q at level l. Cell (pl, ql) at a

matrix of level l belongs to the submatrix at row bpl/kh−l−1c and column bql/kh−l−1c. This corresponds

to the child number k × bp/kh−l−1c + bq/kh−l−1c of the node that represents the matrix at level l. The

relative row position for Web page p in this child node is pl + 1 = pl mod kh−l−1. The relative column

position for Web page q is ql + 1 = ql mod kh−l−1. Hence, starting from the root node at level l = 0,

where p0 = p, q0 = q, at each level l we descend to child k × bp/kh−l−1c+ bq/kh−l−1c, if it is not a zero,

and compute the relative position of cell (p, q) in the submatrix. If we reach the last level and find a 1 at

cell (p, q), then there is a link, else there is not. The pseudo code looks much simpler in Algorithm 2.2.

The worst-case navigation time to check if a Web page p points to another Web page q is

O(logk n)

since a full traversal from the root node to a leaf node is required for any pair of connected Web pages.

Besides, the time can be even lower for nonexistent links.
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Algorithm 2.2: Check Link(n,p,q,z)

if z ≥ |T | then
return L[z − |T |]

else
if z = −1 or T [z] = 1 then
y ← rank(T, z)× k2
y ← y + bp/(n/k)c × k + bq/(n/k)c
Check Link(n/k, p mod (n/k), q mod (n/k), y)

else
return 0

end if
end if

2.3.3.C Successor and Predecessor

To find the successors or predecessors of a page p we need to locate which cells in row ap∗ (column a∗q)

of the adjacency matrix have a 1. Again, these are obtained by a top-down tree traversal, but instead

of choosing just one child node, as for single-link queries, the algorithm must choose k out of the k2

children of a node. As before, we describe the formula that maps global row numbers to the children

numbers at each level. Being pl the relative row position of interest at level l, row pl of the submatrix of

level l corresponds to children number k × bpl/kh−l−1c + j, for 0 ≤ j < k. Similarly, column q in level l

corresponds to children number j × k + bql/kh−l−1c, for 0 ≤ j < k. The pseudo code for both methods

can be found in Algorithm 2.3 and Algorithm 2.4.

Algorithm 2.3: Successors(n, p, q, z)

if z ≥ |T | then
if L[z − |T |] = 1 then

return q
end if

else
if z = −1 or T [z] = 1 then
y ← rank(T, z)× k2 + k × bp/(n/k)c
for j ← 0...k − 1 do
Successor(n/k, p mod (n/k), q + (n/k)× j, y + j)

end for
end if

end if

The navigation time to retrieve a list of successors or predecessors has no worst-case guarantees

better than kh = O(n), as a row p− 1 full of 1s followed by p full of 0s could force a Successors query on

p to go until the leaves across all the row, to return nothing. All in all, the time complexity for this method

is on average [6]

O(
√
m).
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Algorithm 2.4: Predecessors(n, p, q, z)

if z ≥ |T | then
if L[z − |T |] = 1 then

return q
end if

else
if z = −1 or T [z] = 1 then
y ← rank(T, z)× k2 + bq/(n/k)c
for j ← 0...k − 1 do
Successor(n/k, q mod (n/k), p+ (n/k)× j, y + j × k)

end for
end if

end if

2.4 Dynamic k2tree

The dynamic k2-tree introduces the insertion and deletion operations without having to decompress the

whole data [1]. In their work, they demonstrated that the gap between static and dynamic variants of the

indexing problem can be almost closed. The main idea behind the dynamic k2-tree is to keep the data

distributed among several static k2-trees structures also known as collections C = {E1, ...Er}. However,

E0 is represented through a dynamic and uncompressed adjacency list in order to achieve the optimal

amortized cost for each operation. Thus, we must control the number of edges in each set Ei.

The uncompressed container E0 can be implemented with an adjacency list and a hash table that

maps an edge to a position in the adjacency list. This way we can access an edge in O(1). Moreover,

the first set E0 contains at most m/ log2m edges according to [1].

In general, each Ei has mi/ log2−iεmi, for some constant ε > 0, where mi is the number of edges

in Ei. If we have that i = r then we have mr = m/ log2−rεm and mr ≤ m which implies that r ≤ 2/ε,

when m is at least 3. In [7] it was demonstrated we should use ε = 1/4 which gives us r = 8, so we will

have 7 static k2-trees to represent each Ei. Hence for each Ei the maximum number of edges follow a

geometric progression.

Regarding the space required to represent the data structure we must considerE0 and the collections

C. For E0 we have O(m0 log(m0)) to represent the adjacency list plus O(m0 log(m0)) bits for a coupled

hash table to answer the existence of edges in constant time, where m0 ≤ m/ log2m is the number

of edges in E0. Regarding the collections C, the required space for each set Ei, where 1 ≤ i ≤ r

is represented by a static k2-tree which requires k2mi(logk2(n2/mi + O(1))) bits [19], where mi ≤

m/ log2−iεm. Hence, overall the space required is [7]

O(m0 log(m0) +

r∑
i=1

k2mi(logk2(n2/mi) +O(1))) bits
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The operations supported by this data structure are insertions, deletions, listing neighbors of a node

and checking the existence of a link. The operations of listing the neighborhood and querying the

existence of a link are computed by querying firstly in the E0 and afterwards in the rest or all the Ei if

necessary. Thus the querying cost increases by a factor of O(1/ε) from the static version of the k2-tree.

The insertion and deletion operations are not as intuitive as these operations.

2.4.1 Insertions

As previously mentioned, we represent E0 as an adjacency list and C as a collection of k2-trees. The

insertion is carried out depending on the current size of E0. If m0 < |E0|, then we just add the new edge

(u, v) in the adjacency list and we are done. Otherwise, we first build a new k2-tree with all the edges in

E0 and then we need to find the container Ej 0 < j ≤ r such that
∑j

i=0mi ≤ mj , and rebuild Ej , which

is the sub-collection that can accommodate all edges from E0 until Ej . The rebuild of the data structure

is accomplished by performing successive unions. The pseudo code for the insertion operation is shown

in Algorithm 2.5.

Algorithm 2.5: Insert(u,v)
if |E0| < m0 then
E0.add edge(u, v)

else
summ ← 0
for 0 < i < r do
summ ← summ +mi

if summ ≥ mj then
break

end if
end for
treenew ← E0.to k2tree()
for 0 < j ≤ i do
treenew ← Union(treenew, Ej)
Ej .clear()

end for
Ei ← treenew

end if

So if m0 < |E0|, then the insertion takes constant time since we are relying on an adjacency list

coupled with a hash table to maintain adjacencies. Otherwise, we need to build a k2-tree from E0

which takes O(m0 logk n) time [19]. Afterwards, we need to find some Ej that has enough capacity

to accommodate the edges from E0 plus all the previous collections Ei, for 0 < i ≤ j. The pairwise

union of at most j k2-trees representing collections E0, ..., Ej−1 takes O(mj logk n) time, using only the

required space to store a k2-tree representing Ej . The amortized analysis of the insertion cost follows
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the argument presented by [1] for the general case with 0 < j ≤ r = b2/εc, giving a time complexity of:

O((1/ε) logk n logε n).

2.4.2 Deletions

Similarly to the Insertion operation, the deletion operation also takes into consideration both E0 and

the collection C. In the first case, if the edge exists in E0, then we remove it from the hash table.

Otherwise we need to find 0 < j ≤ r such that (u, v) ∈ Ej and, if there is such j, set the corresponding

bit to zero in Ej . During the deletion, we need to mark how many edges have been deleted in C until

m′ > n/ log(log n) edges were marked. Once we reach this value we need to rebuild C again. For easier

understanding we show the algorithm in Algorithm 2.6.

Algorithm 2.6: Delete(u,v)
if E0.contains edge(u, v) then
E0.delete edge(u, v)

else
total marked← 0
for 0 < i < r do

if Ei.contains edge(u, v) then
Ei.delete edge(u, v)
total marked← total marked+ Ei.marked edges()

end if
end for
if m′ > n/ log(log n) then
rebuild(C) {C = E1, ..., Er}

end if
end if

Deleting an edge in E0 takes constant time. Checking and deleting an edge in our collections takes

O(logk n), since checking if an edge exists in a given k2-tree takes O(logk n) [19], and we might have

to look in each collection Ei, with 0 < i ≤ r = d2/εe. Once an edge is found, marking it for deletion

takes constant time. However, in need of rebuilding after deleting m/ log log n edges costs in this case

is O(m logk n), since it has an amortized cost of O(logk n log(log n)) per deleted edge. Overall deleting

an edge has an amortized cost of [7]

O((1/ε+ log log n) logk n)
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2.5 Discussion

Graph Representation

Previously we have described the two most common ways to represent graphs in Section 2.2.1 and

Section 2.2.2. We have presented the adjacency matrix representation which provides constant access

time, although the space required in worst case is O(n2). Then we introduced the adjacency list which

is preferable for sparse graphs (m is much less than n2), however if m is close to n2, we would choose

the adjacency matrix, since in any case we should use Θ(n2) memory. Nonetheless, representing an

adjacency list with a coupled hash table can reduce the time for finding an edge to O(1) while not using

extra memory. In Table 2.1, is taken into account the worst-case costs all within constant factors for large

n and m [12].

Adjacency Matrix Adjacency List Adjacency List (Hash)
Space n2 n+m n+m
Build n2 n n
Insert edge 1 1 1
Remove edge 1 n 1
Check edge 1 n 1
List neighbors n n n

Table 2.1: Worst case time complexity for adjacency matrix and adjacency list.

In order to add a new vertex in the matrix representation the storage must be increased toO((n+1)2).

Besides, to achieve this we need to copy the whole matrix and therefore the complexity is O(n2). In the

list representation, if there are two pointers in the adjacency list, one that points to the head node and

the other one that points to the rear node, the insertion of a vertex can be done directly in O(1) time. All

in all, the adjacency matrix is a better representation for static and dense graphs while the adjacency list

provides a more feasible dynamic representation.

However, in our case, we are working with very large graphs. A Web Graph consists of millions of

nodes and trillions of edges requiring large computing machinery. Web Graphs pose many issues such

as storage, scalability and processing. Thus, these representations do not meet the requirements to

handle these kinds of graphs, especially memory wise. For instance, if we have a graph with 1 mil-

lion nodes and 10 million edges, the space required in the adjacency matrix representation would be

(106)2 × 4bytes = 3.63TB and for the adjacency list would be (106 + 107)× 4bytes = 4.19MB.

Compressed and Compact Representations

On large binary relations, reducing space while retaining functionality is crucial in order to operate effi-

ciently in main memory. Therefore, simple representations such as plain adjacency matrices are usually

unfeasible in these cases. In the case of the adjacency list, it can efficiently compress sparse binary

relations, however it usually lacks the ability to efficiently retrieve information on ranges of elements.
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Several different compressed and compact graph representations were presented in this chapter.

We started by presenting the CSR and CSC as the simplest data structure able to compress a graph

from an adjacency matrix. In our case we only intend to represent binary relations so the val component

becomes redundant since all its values would be 1. In this data structure a link is represented by 32 bits

per link. Moreover, this data structure can only be used to store a graph without allowing to query

directly over the data structure. In this data structure, this is only possible if the graph is uncompressed

from main memory. Consequently, the CSR and CSC are not considered compact data structures but

compressed data structures.

The limitations of simple data structures has led to different proposals for compressing general binary

relations, as well as specific ones such as Web graphs [2, 15, 16], k2-trees [6, 22] and dynamic k2-

trees [1].

In the LINK Database [16] and WebGraph [2], each node is a URL, and a directed arc from node x to

node y whenever there is a hyperlink in page x leading to page y. For this specific problem, these data

structures exploit the inner redundancy of the web when represented as an adjacency list. Unlike the

CSR and CSC, these compact data structures allow querying over the compressed data without having

to uncompress the graph. Furthermore, the work of WebGraph [2] exploits the storing data in blocks

which allows a better compression rate of 3.08 bits per link.

We also presented the k2-tree [6, 22] which was originally designed to represent Web Graphs. In

fact, the k2-tree data structure provides a compact representation of a graph. To reduce the space

requirements for sparse graphs, a hierarchical decomposition is used where a sub-division consisting

only of zeros is represented by a single 0 bit. Just like the WebGraph, it takes advantage of particular

characteristics of the Web Graphs such as the existence of large areas with a high density of ones or

zeros. Therefore it achieves a very small space between 1.3 and 3 bits per link. Thereafter, this data

structure also provides direct operations from the compressed form without having to uncompress the

whole graph from main memory. A sublinear number of extra bits are needed to enable constant-time

rank operations on the bitmaps [5, 20, 21], which allows the representation to test the existence of a

single edge in O(logk n) time and retrieve the successors/predecessors of a node in O(
√
m).

Finally, we presented the dynamic k2-tree [1] where the main idea is to represent a graph dynami-

cally while supporting edge insertions and deletions, as well as common operations over graphs. This is

achieved by using a collection of static edge sets C = {E0, ..., Er}. Each static edge set Ei is then rep-

resented using a static k2-tree, except E0 which is represented through a dynamic and uncompressed

adjacency list. In order to achieve the optimal amortized cost for each operation, we must control the

number of edges mi in each set Ei and the number r of such sets. Not only must we control the number

of edges in each Ei in C but also in E0 which must contain at most m/ log2 n elements. In general,

we require that mi is at most m/ log2−iε n, for some constant ε > 0. Moreover, we must also satisfy
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mr = m/ log2−rε n ≤ m. Notice how if ε is a constant, so is r. Hence, the maximum number of edges

per static set follows a geometric progression. The dynamic data structure supports additions and re-

movals with competitive performance. The amortized cost to insert an edge is O((1/ε) logk n logε n) and

for removing an edge is O((1/ε + log log n) logk n). Thanks to this structure, querying works just as in

k2-trees with the difference that we need to query all sets in the collection. Therefore, the querying cost

increases by a factor of O(1/ε).

The overall compression ratios of these four structures are summarized in Table 2.2. We do not yet

present the compression ratio of the dynamic k2-tree. Nonetheless, we will be discussing it in Chapter 5.

Data Structure bits per link

Compressed Row/Column 32
LINK Database 6
WebGraph 3.08
k2-tree 1− 3

Table 2.2: Compression ratio in bits per link for the Compact Data Structures presented in this Chapter.

The k2-tree and WebGraph data structures have the most efficient compression ratios of those pre-

sented in the table. In the current state of the art, these static data structures are the most efficient

compact structures offering a great compression ratio as well as allowing direct queries over the com-

pressed graph. The dynamic k2-tree, however, is the only data structure that provides the operations of

insertion and deletion in addition to the same queries that k2-tree offers with an extra factor of O(1/ε).

In the next chapters we will evaluate the average time and memory usage of the dynamic k2-tree and

in Chapter 6 we will compare our data structure with the ones in Table 2.2.
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In this chapter we will cover different approaches used to design graph APIs. This is a concept in

software that essentially refers to how multiple applications can interact with each other and obtain data

from one another. APIs operate on an agreement of inputs and outputs. So the main objective of this

chapter is to understand the most adequate methods that should be implemented for a graph API. To

attain this goal, we must take into consideration the data structures’ performance for different types of

queries demanded by the API’s implementation while maintaining the time and space requirements.

3.1 Libraries

Libraries is a well-defined interface by which the behavior is invoked. For instance, whomever wants

to write a higher-level program can use a library to make system calls instead of implementing those

system calls over and over again. In addition, the behavior is provided for reuse by multiple independent

programs. Libraries typically follow design patterns and have its code organized in such a way that there

is no need to re-implement the same behaviour.

Typically, libraries have their data concepts wrapped around Containers [23]. These are abstract

data types whose instances are collections of other objects. An important aspect of containers is that

they all have a unified interface for accessing and transversing the object structure. This common in-

terface is typically used by other methods or to implement more advanced algorithms. Thus the imple-

mentation of new algorithms is simplified since each method is implemented in each different type of

object, so the same algorithm can be substituted with a different kind of object container without having

to re-implement the same code.

Another important concept relative to libraries are the iterators. The Iterator [24] is an object that

enables to transverse an aggregated container, giving access to the data elements of a container. This

pattern decouples algorithms from containers without exposing its underlying representation. In C/C++

pointers themselves are iterators. Taking the example from the container vector, it declares the nested

types iterator and const iterator, that allows to iterate over its elements.

Algorithms provide a variety of functionalities over the Containers. Typically these are implemented

with the Visitor pattern [25]. Hence, the algorithm is separated from an object structure on which it

operates. A practical result of this separation is the ability to add new operations to existing object

structures without modifying the structures. Algorithms are templates, and are parameterized by the

type of iterator, so they are not restricted to a single type of container.
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3.2 Boost Graph Library

The Boost project [26] is a set of C++ libraries that have special emphasis on developing industrial-

strength, high performance software using modern programming languages and techniques, having into

special account generic programming. For this work we will focus on the Boost Graph Library (BGL)

since it is dedicated to generic graph programming providing many graph structures and algorithms.

Considering that it is a generic library it follows heavily the concepts used in the Standard Template

Library (STL), which is a C++ library of container classes, algorithms, and iterators.

3.2.1 Containers

The structure of BGL provides several graph interfaces which intend to represent essentially the adja-

cency list for sparse graphs and the adjacency matrix representation for dense graphs. These repre-

sentations are highly parameterized representations so that it can be optimized for different situations,

for instance if the graph is directed or undirected or to allow efficient access to just the out-edges or for

fast vertex insertion and removal at the cost of extra space overhead. For very large graphs that need

to be compacted, they represent them in a compressed sparse row. This class does not provide any

mutability, that is one cannot add or remove any vertexes or edges. The overall class hierarchy can be

seen in Figure 3.1.

Figure 3.1: Graph concepts of Boost Graph Lobrary

The graph abstraction consists of several different kinds of collections: the vertices and edges for the

graph and also the out-edges, in-edges and adjacent vertices for each vertex.

3.2.2 Iterators

In the BGL interface defines a function that returns a pair of iterator objects: the first iterator points to the

first object in the sequence and the second iterator points past the end of the sequence as a typical C++
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Iterators

Vertex transverses all vertices of the graph.
Edge transverses all edges of the graph.

Out-Edge

accesses all of the out-edges for a given vertex u. Its value type is an edge descriptor.
Each edge descriptor in this iterator range will have u as the source vertex and a vertex
adjacent to u as the target vertex (regardless of whether the graph is directed or undirected).

In-Edge is similar to the out-edge iterator, the difference relies in the in-edge access of a vertex u.
Adjacency provides access to the vertices adjacent to a given vertex.

Table 3.1: Iterators decription from Boost Graph Library.

iterator implementation. In fact, there are five kinds of graph iterators, one for each kind of collection,

presented in Table 3.1.

Iterators are used to access each of these collections. The reason for this is that the purpose of a

concept is to summarize the requirements for particular algorithms.

3.2.3 Interface and Algorithms

Typically, algorithms do not need every kind of graph operation, but only a small subset. Due to the high-

end use of the library, it is important to denote that during its implementation there were many graph

data structures that could not provide efficient implementations of all the operations, but instead provide

highly efficient implementations of the operations necessary for a particular algorithm.

The algorithms in BGL, several visitor concepts provide a mechanism for extending an algorithm

for customizing what is done at each step of the algorithm. Visitors allow the user to insert their own

operations at various steps within a graph algorithm. In BGL a wide range of types of algorithms are

implemented such as search (Breadth-First Search (BFS) and Depth-First Search (DFS)), shortest path

problems, minimum-spanning tree, connected components, minimum flow. Finally we show the most

relevant methods of the interface provided by this library in the following Table 3.2.

3.3 SNAP

Stanford Network Analysis Platform (SNAP) [27] is a general-purpose graph library implemented in C++

and Python that provides high-level operations for analysis and manipulation of large networks.

3.3.1 Containers

In this library, the implementation is centered in both graph and network containers. In fact, it provides

several types of graphs and networks, including directed and undirected graphs and multigraphs.

SNAP supports graphs and networks. Graphs describe topologies. That is nodes with unique integer

ids and directed/undirected/multiple edges between the nodes of the graph. Networks are graphs with
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VertexListGraph

vertices returns all vertices
vertex iterator returns a vertex iterator
EdgeListGraph

edges returns all edges in a graph
num edges returns the number of edges in a graph
edges iterator returns an edge iterator
source(edge) returns a vertex descriptor to u for the edge = (u, v)
target(edge) returns a vertex descriptor to v for the edge = (u, v)
IncidentGraph

out edges(vertex) returns all the out edges for vertex.
out edges iterator(vertex) returns an iterator for the out edges of vertex
out degree(vertex) returns the number of out edges for vertex
MutableGraph

add vertex adds a new vertex to the graph
remove vertex(vertex) removes the vertex

add edge(edge) adds the edge to the graph
remove edge(edge) removes the edge

remove edge(edge iterator) removes the edge that the iterator points to

Table 3.2: Boost Interface

data on nodes and/or edges of the network. Data types that reside on nodes and edges are simply

passed as template parameters which provides a very fast and convenient way to implement various

kinds of networks with rich data on nodes and edges. The graph containers are the following:

• TUNGraph - undirected graph

• TNGraph - directed graphs

• TNEGraph - directed multigraphs in which multiple edges can exist between a pair of nodes

• TBPGraph - bipartide graph

They also offer network containers:

• TNodeNet - directed graphs with node attributes

• TNodeEDatNet - directed graphs with node and edge attributes

• TNodeEdgeNet - directed multigraphs with node and edge attributes

• TNEANet - directed multigraphs with dynamic node and edge attributes

While designing SNAP data structures, it was required to be flexible and efficient during the manip-

ulation of graphs, which means that adding or deleting nodes and edges had to be reasonably fast and

not prohibitively expensive. This requirement is specially relevant for dynamic graphs, in which the graph

structure is not known in advance, that is nodes and edges are added and deleted over time. Moreover,
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high performance is mandatory in order to provide flexibility [27]. However, these two requirements are

opposed to each other implementation wise.

The flexibility requirement is achieved by using hash table-based representations, while speed is

achieved by using vector-based representations. As a result, SNAP graphs are represented by a hash

table of nodes where each node has one or two vectors of adjacent nodes. For undirected graphs,

adjacent nodes are represented using only one vector, while for directed graphs the nodes own two

adjacent vectors, one for outcoming nodes and another for the incoming nodes. For simple graphs,

edges are treated as a pair of nodes while in multigraphs edges have explicit ids so that two edges

between the same pair of nodes can be distinguished. For the last case, an additional hash table is

required to map edges ids to the source and destination nodes.

Figure 3.2: A diagram of graph data structures in SNAP. Node ids are stored in a hash table, and each node has
one or two associated vectors of neighboring node or edge ids.

Taking into account that most real-world networks are sparse, with node degrees significantly smaller

than the number of nodes. The benefits of maintaining sorted vectors significantly outweighs the over-

head of sorting. Thus, maintaining the sorted values in the adjacency vectors was a design approach in

order to allow fast access.

SNAP has proven to optimize memory usage for large graphs representation, even though it uses

more memory for storing nodes than some alternative representations. Moreover, it requires less mem-

ory for storing edges. This design choice was chosen since for a vast majority of relevant networks have

more edges than nodes.

3.3.2 Iterators

Many SNAP operations are based on node and edge iterators which allow for efficient implementation of

algorithms that work on networks regardless of their type (directed, undirected, graphs, networks) and

specific implementation. This library provides node and edge iterators.

They also provide a common interface among the iterators. The iteration starts with the method

Begin which gives the first element of the iteration, then the Next method which increments the iterator
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onto the next element and, finally, the End method which returns an integer or a string marking the

element past the-end element.

3.3.3 Interface and Algorithms

SNAP has many specific types of graph and network implementations, providing a wide variety of

classes. All graph classes have implemented the methods shown in Table 3.3.

Nodes
AddNode Adds a node
DelNode Deletes a node
IsNode Tests if a node exists
GetNodes Returns the number of nodes
Edges
AddEdge Adds an edge
DelEdge Deletes an edge
IsEdge Tests if an edge exists
GetEdges Returns the number of edges
Graph Methods
Clr Removes all nodes and edges
Empty Tests if the graph is empty
Dump Prints the graph in a human readable form
Save Saves a graph in a binary format to disk
Load Loads a graph in a binary format from disk
Node and Edge Iterators
BegNI Returns the start of a node iterator
EndNI Returns the end of a node iterator
GetNI Returns a node (iterator)
NI++ Moves the iterator to the next node
BegEI Returns the start of an edge iterator
EndEI Returns the end of an edge iterator
GetEI Returns a edge (iterator)
EI++ Moves the iterator to the edge node

Table 3.3: SNAP graph methods

Moreover, SNAP also offers a wide range of algorithm implementations such as BFS, DFS, shortest

paths, spanning trees, graph diameter, PageRank, core-periphery algorithms and much more.

3.4 igraph

We continue our research with igraph [28]. This library is heavily used in network analysis and other

scientific domains such as biomedical research. The core implementation is written in C but most people

use igraph through its high-level interfaces in R, Python and Mathematica.
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3.4.1 Containers

This library has the representation of both directed and undirected graphs. The igraph graphs are

multisets of ordered (if directed) or unordered (if undirected) labeled pairs of vertex ids, that is the

edges. They present the type of igraph t as their graph representation class. Moreover, they present

their own implementations for vectors, stacks and queues.

3.4.2 Iterators

igraph shares the same base concepts as Boost’s and STL iterators for nodes and edges as well as

visitors applied to different algorithms.

Unlike the previously presented libraries, the igraph provides selectors. The selectors refer a se-

quence of vertices or edges independently from the graph. A vertex selector is a way to specify the class

of vertices to be visited. Thereafter, it might specify that all vertices of a graph or all the neighbors of a

vertex can be visited.

3.4.3 Interface and Algorithms

A condensed interface can be shown in Table 3.4.

Graph Methods
igraph empty Creates an empty graph with some vertices and no edges.
igraph vcount The number of vertices in a graph.
igraph ecount The number of edges in a graph.
igraph edge Gives the head and tail vertices of an edge.
igraph neighbors Adjacent vertices to a vertex.
igraph incident Gives the incident edges of a vertex.
igraph degree This function calculates the in-, out- or total degree of vertices.
Adding and Deleting Vertices and Edges
igraph add edge Adds a single edge to a graph.
igraph add vertices Adds vertices to a graph.
igraph delete edges Removes edges from a graph.
igraph delete vertices Removes vertices (with all their edges) from the graph.

Table 3.4: General igraph interface.

Regarding the algorithms from igraph library, BFS, DFS and random walks are some of the algo-

rithms’ visitors implemented in this library.

3.5 WebGraph

WebGraph [2] is a framework to study web graphs written in Java, C++ and Python. This library provides

a simple way to manage very large graphs, exploiting modern compression techniques using a set of
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simple codes, called ζ codes, which are particularly suitable for storing web graphs (or, in general,

integers with a power-law distribution in a certain exponent range).

3.5.1 Containers and Interface

WebGraph provides several classes of graphs based on the ImmutableGraph abstract class. The authors

highlight the fact that two ImmutableGraphs may not fit into main memory. This static representation

of a graph demands that the subclasses of ImmutableGraphs implement certain methods presented in

Table 3.5.

ImmutableGraph

numArcs Returns the number of edges of the graph
numNodes Returns the number of nodes of the graph
load Creates a new ImmutableGraph by loading a graph file from disk to memory
loadMapped Creates a new ImmutableGraph by memory-mapping a graph file
loadOffline Creates a new ImmutableGraph by loading offline a graph file
store Stores the ImmutableGraph.
nodeIterator Returns a node iterator for scanning the graph sequentially from a given node.
outdegree Returns the number of successors of a given node
sucessors Returns a lazy iterator over the successors of a given node.

Table 3.5: ImmutableGraph methods in WebGraph.

Moreover, there is the Transform class that allows to manipulate the ImmutableGraph. Most methods

of this class receive an ImmutableGraph and return a new ImmutableGraph that represents the trans-

formation applied. The partial interface can be seen in Table 3.6. This class allows to compute filters,

permutations, maps and transposes of the ImmutableGraphs.

Transform

filterArcs Returns a graph with some arcs possibly stripped, according to the given filter.
map Remaps the graph nodes through a function specified via an array.
transpose Returns an immutable graph obtained by reversing all arcs in the graph.
union Returns the union of two ImmutableGraph.

Table 3.6: Transform partial interface.

3.5.2 Iterators

In the WebGraph library, lazy iterators for nodes and successors are provided. Nonetheless, this API

does not support any edge iterators.

Transversing the nodes of the graph can be done with NodeIterator which can start from the first

node or from a specific node, given its id. Moreover, the NodeIterator can also give the successors

and outdegree of the current node. Regarding the successors iterators of a node, this is done with a

LazyIntIterator, which an instance of this class represent a (skippable) iterator over the node integers.
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3.5.3 Algorithms

In WebGraph offers algorithms which take advantage of gap compression [16] and differential compres-

sion [2]. These algorithms are controlled by several parameters, which provide different tradeoffs be-

tween access speed and compression ratio. It is important to emphasize that these compression algo-

rithms allow accessing a compressed graph without actually decompressing it by using lazy techniques

that delay the decompression until it is actually necessary. In this library, they present the implementa-

tion of a parallel BFS and other categories of algorithms such as strongly connected components, hyper

ball and geometric centralities.

3.6 Discussion

In this chapter four different graph libraries’ APIs and architectures were presented. From this review,

we verify that all presented libraries offer a similar API for their different graph data structures. This does

not come as a surprise as in graph theory, graphs present an interface such as adding and removing

an edge, retrieving the successors, the incident nodes and getting the number of edges and nodes.

Besides, processing each of the items in a collection is a common operation among the presented

libraries. Thus, we consider to be a requirement to implement iterators in our work.

We propose the following interface for our library in Table 3.7

Functions

add edge(u,v) Adds the edge (u,v) to the graph
del edge(u,v) Removes the edge (u,v) to the graph
contains(u,v) Checks if the edge (u,v) exists in the graph
list neighborhood(u) Returns a list of the neighbors of node u

load(filename) Loads the graph from filename

serialize(filename) Serializes the graph in filename

Getters

get number nodes() Returns the number of vertices in the graph
get number edges() Returns the number of edges in the graph
Iterators

edge begin() Returns an iterator pointing to the first edge
node begin() Returns an iterator pointing to the first node of the graph.
neighborhood begin(u) Returns an iterator pointing to the first neighbor of u

Table 3.7: Proposed interface for our work.

The structure of the libraries SNAP, Boost, igraph follows the structure of the standard template

library since its design provides flexibility and extensibility. Through the template mechanism of C++,

containers are suited for objects of the most varied classes. Nonetheless, the WebGraph library also con-

tains a similar mechanism by implementing abstract classes such as ImmutableGraph and Transform.

This indicates that our library should also offer some level of abstraction.
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Moreover, all libraries present iterators to transverse over their graph data structures. The most

common iterators among the presented libraries were the node, edge and successors.

All libraries offered different kinds of algorithms. The most common algorithms were the search

algorithms BFS and DFS. Depending on the data structure or the kind of users of the libraries, different

families of algorithms were implemented among the different libraries. For instance, in WebGraph we had

more Web Graphs and compression related algorithms and in SNAP and Boost a more general purpose

algorithms. Needless to say, the latter two have the advantage of being more mature libraries providing

a wider choice of algorithms.

We would like to avoid our library providing the user a bad interface. If we look at some examples

of these libraries, we can agree that it is complex and difficult to understand how to use some of them,

specially in C/C++. As an example from igraph, let’s take a look at the signature of the BFS.

i n t i g raph b f s ( const i g r a p h t ∗graph ,
i g r a p h i n t e g e r t root , const i g r a p h v e c t o r t ∗ roots ,
ig raph ne imode t mode , i g r a p h b o o l t unreachable ,
const i g r a p h v e c t o r t ∗ r e s t r i c t e d ,
i g r a p h v e c t o r t ∗order , i g r a p h v e c t o r t ∗ rank ,
i g r a p h v e c t o r t ∗ f a the r ,
i g r a p h v e c t o r t ∗pred , i g r a p h v e c t o r t ∗succ ,
i g r a p h v e c t o r t ∗ d i s t , i g r a p h b f s h a n d l e r t ∗ ca l lback ,
vo id ∗ ex t ra ) ;

Even though this allows for more customized BFS searches, the signature is too complex. In this case,

perhaps it should be better to implement more specialized methods for different kinds of BFS searches,

just as it was implemented in SNAP.

We would like to end this chapter by mentioning the importance of documentation. The documenta-

tion should allow the user to easily navigate through the library methods and concepts.

This chapter concludes the research necessary for our work. We will now proceed to to describe our

solution.
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Let us explain our solution and implementation details. The main goal of this work was to build

a library based on the SDK library [7] while offering an API similar to previously studied graph libraries

[2,27–29]. In this chapter we will explain the structure of our code and how we implemented the extended

functionalities such as the iterators, algorithms and extended operations.

4.1 Implementation Process

We decided to implement our work in C++ since it supports object-oriented programming, a rich standard

library, automatic memory management mechanisms and all presented libraries had support for this lan-

guage, indicating it is widely used. However the standard C++ library does not offer a bit vector [17] and

k2-tree [6] implementations, so we used these data structures from the SDSL [8] 1, where the k2-tree

is implemented using the static bit vectors, just like in the SDK [7]. We decided to use this implemen-

tation because all its components were highly tested and documented facilitating the refactoring and

development.

The Google Test framework 2 as used in SDSL so we decided to also include it in our work since it

offers a modern framework for testing. The Boost library [29] was also included for the serialization and

load methods.

4.1.1 The API

The API was built having in mind an easy and familiar interface as well as considering the previous

presented libraries’ interfaces [2, 27–29] in Chapter 3. As previously seen, most APIs present similar

methods such as add edge, remove edge, neighbors, number nodes, number edges, edge iterator and

neighbour iterator. In our work we intended to have an intuitive interface in order to make the library

easy to use. Our API supports the operations presented in Table 4.1.

4.1.2 Code Structure

Our code can be found in https://github.com/joo95h/dynamic_k2tree. The code structure was in-

tended to be as analogous as possible to the theoretical dynamic k2-tree concepts while maintaining

performance. The main classes of the project are:

• DKTree – This is the class that represents a graph and follows the dynamic k2-tree data structure

[1]. This class has a Container0 which is an adjacency list coupled with a hash table. It has an

array of k2-tree pointers that represents the collection of containers C = {E1, ...Er}, where we

used r = 8. This class implements the methods presented in Table 4.1.
1https://github.com/simongog/sdsl-lite, 2014
2Google test: https://github.com/google/googletest, 2019
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Our API
get number edges() Returns the total number of edges in the graph

get number nodes() Returns the number of nodes that the graph supports, that is n.
add edge(x,y) Adds the edge e = (x, y) to the graph.

contains(x, y) Checks if the edge e = (x, y) exists in the graph

del edge(x, y) Deletes the edge e = (x, y) from the graph.

list neighbour(x) Lists the nodes that are adjacent to x.

serialize(ostream)
Serializes the graph in an ostream. It will create some auxiliary files to store
the k2-tree in the graph which by default are saved in the current directory.

load(istream)

Loads the graph from an istream. By default it will load the k2-trees from the
current directory. This directory should be the same where you decided to
serialize. It cleans these files by the end of the process. You can set the clean
flag to false in order to not delete the k2-tree serialized files.

Table 4.1: The methods offered by our work

• Container0 – This class represents the E0, that is, the adjacency list coupled with the hash table.

Regarding the Container0, it is composed of an EdgeHashTable, a vector of edges, elements, and a

map, adjacency map. The EdgeHashTable is a wrapper of an unordered map<Edge, uint>, where the

Edge class corresponds to an edge e = (u, v) and it maps an edge to a position in the elements vector.

The elements array also represents the adjacency list for node u. This is achieved by saving in elements

the node id and a pointer to the next (and previous) edge position. However this would not be enough,

since we need to know the beginning of the adjacency list of a node in constant time. The beginning

of the adjacency list for node u is marked in the adjacency map where for each node u is mapped the

position of the initial edge (u,j) in elements, where j ∈ R and is the first successor of u. In Figure 4.1

we illustrate the overall structure of Container0.

We can query if an edge e exists in Container0 by querying EdgeHashTable[e] in constant time. The

Container0 also supports listing the neighbors of a node u by first querying the adjacency map[u]=p

which will give us the first position p in elements, where the first neighbor of u exists, that is elements[p]=(u,j).

From the item in position p from elements we can navigate to the next position pointing to the next edge

where the following neighbor is. This data structure composition allows to retrieve the list of neighbors

from a node in linear time with the number of neighbors of a node. From the example in Figure 4.2 we

can easily visualize this process.

We insert a new edge (u, v) in Container0 by creating a new edge in the last position of elements, t.

Besides, we create a new entry in the EdgeHashTable with the new edge and its corresponding position

in elements, that is EdgeHashTable[(u,v)] = t. Finally, we insert the new position t in the head of
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Figure 4.1: Data structure of Container0

Figure 4.2: This example illustrates the operation to list the neighbors of node u=1 in Container0. In order to get the
first neighbor of node with id 1 first we will go to the adjacency map[1] = 0 where we get the position
p=0. So now we know that the first neighbor is in position 0 in elements. In this position we have the
Edge (1, 2), so we got our first neighbor 2 (1). The Edge will have a pointer next that points to the next
position which is p=5 in elements where the next (and in this case last) neighbor of 1 is (2). So the final
neighbor of 1 is 3 which gives us the final list of neighbors [2,3].
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the adjacency list of u, adjacency map[u] = t and we set the next and prev pointers accordingly. The

Container0 also has edge free vector that stores the valid positions in elements, since the deletion of

edges is done by marking the deleted edges. A position is no longer valid when we delete an edge from

elements, in this case we flag the position p of elements that have been deleted in the same position

in edge free. So when we want to delete the edge e we query EdgeHashTable[e]=p and then we can

finally flag edge free[p].

4.1.3 Iterators

As previously shown in Chapter 3, all the graph interfaces offered a way to iterate over the graph either by

its nodes, edges or neighbors of a particular node. In this work, the iterators were implemented following

the C++ iterator pattern, just like other C++ libraries [27–29]. In this design pattern, the iterator class has

a const pointer to the class they intend to iterate over, which in our case is a DKTree. The beginning of

the iteration starts with the method begin in the class we wish to iterate over, which will return the first

position of the iterator. Besides, we need to implement the method end that will mark the past-the-end

position of the iterator. Finally, it is necessary to override the increment operator (operator++), in order

to increment the iterator. By following this pattern, we can achieve the following iterator usage:

f o r ( auto i t = t ree . edge begin ( ) ; i t != t r ee . edge end ( ) ; ++ i t ) {
s td : : cout << ∗ i t << s td : : endl ;

}

4.1.3.A k2tree Iterators

To implement the iterator in DKTree, we first had to implement the k2-tree iterators, so that we can iterate

over the whole collection C. In order to do this, we also had to extend the k2-tree from SDSL to support

the node, edge and neighbor iterators.

Edge Iterator

Regarding the edge iterator was implemented using a depth-first search, keeping its current state

in a stack. We used a small extra memory factor equal to the value of the height of the tree, given by

h = blogk nc. It is important to stress that the edges returned by this iterator are unsorted.

One major difference between the k2-tree implementation from SDSL and SDK is that this data

structure in the SDSL is composed by two bit vectors T and L while in the SDK has one bit vector T ‖ L.

The transversal of the tree is done by levels. At each level we will need to access a position at T until

we reach the last level and we find the leaves’ position in L. To do this we will need to know in which

position x we are at the bit vectors T and L and in each level. In order to keep track of these positions,
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we saved the initial position of each level of T and L in a vector called pointerTL. This vector is defined

by the following function:

pointerTL(x) =


0 if x is 0 or h
k2 if x is 1

rank1(pointerTL(x− 1) + 1)× k2 otherwise

where 0 < n ≤ h and rank1 is the rank function of the bit vector in T. As we proceed in the iteration,

pointerTL will be used to keep track of the current level.

Each time we go one level deeper, we will save the current state in a stack that is composed by the

current level l, the current position x in T and L and the current entry of the matrix of that level given by

the row dp and column dq. We start to transverse the tree with the initial state of l = −1, x = −1, dp =

0, dq = 0. While transversing the tree we can meet one of the three following cases:

1. When l < h − 1, an internal node of the tree is being processed. If the current position of x in T

is 1 we need to search in all its k2 child nodes of the next level. In order to do so, we also need to

update the current position of the level l in pointerTL by incrementing it by k2. For each child node

we will push its state into the stack. At the last level, if an edge is found we return true otherwise

we remove the child’s node state from the stack and return false, propagating it onto the upper

level.

2. The second-to-last level l = h−1 is very similar to the previous one, however we update the current

position dp and dq in a different manner since x will be at the last level which will be a position in

the bit vector L. The details are shown in the pseudo-code bellow.

3. When l = h we are at the last level of the tree. If L[x] = 1 then we return true and update the edge

(dp, dq), else we return false.

When the edge iterator is incremented, we first remove the latest state from the stack until we find an

edge. Finally, we end the iteration if the state stack is empty. The overall algorithm is presented in

Algorithm 4.1.
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Algorithm 4.1: Edge iterator transverse(l, x, dp, dq, edge, stack)

if x = −1 or l < h− 1 and T [x] = 1 then
y ← pointerTL[l + 1]
pointerTL[l + 1]← pointerTL[l + 1] + k2

for 0 < i < k do
for 0 < j < k do
stack.push(dp, dq, y, i, j, l)
l← l + 1
x← y + k × i+ j
dp← dp+ kh−l × i
dq ← dq + kh−l × j
if Edge iterator transverse(l, x, dp, dq, edge, stack) then

return true
end if
stack.pop()

end for
end for

end if
if l = h− 1 and T [x] = 1 then
y ← pointerTL[l + 1]
pointerTL[l + 1]← pointerTL[l + 1] + k2

for 0 < i < k do
for 0 < j < k do
stack.push(dp, dq, y, i, j, l)
l← l + 1
x← y + k × i+ j
dp← dp+ i
dq ← dq + j
if Edge iterator transverse(l, x, dp, dq, edge, stack) then

return true
end if
stack.pop()

end for
end for

end if
if l = h and L[x] = 1 then
edge← (dp, dq)
return true

end if
return false
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Since the whole tree needs to be visited, the overall time complexity to iterate all edges in the graph

is O(|T |+ |L|) = O(m/ log(n2/m)).

Neighbor Iterator

The neighbor iterator for a node follows the same Algorithm 2.3 from the Successors from the k2-tree

presented in Section 2.3.3.C, although we followed an iterative approach of this method.

We keep a stack of states (st) which are composed of (n, row, column, level) representing the current

position and level in the tree during the iteration. The pseudo code for the neighbor iterator can be seen

in Algorithm 4.2 and Algorithm 4.3.

Algorithm 4.2: Begin neighbor(node)

N ← kh/k
m← k × bnode/Nc
size← kh

stack ← ∅
for 0 < j < k do
st← (n/k,mod(i, n), n× j, y + j)
stack.push(st)

end for
Neighbor iterator(stack)

Algorithm 4.3: Neighbor iterator(stack)

while !stack.empty() do
st← stack.pop()
if st.level ≥ T.size then

if L[st.level − T.size] then
result← st.column

end if
end if
if T [st.level] then
y ← T rank1(st.level + 1)k2 + kbst.row/st.nc
for 0 < j < k do
st new ← (st.n/k,mod(st.row, st.n), st.column+ s.n× j, y + j)
stack.push(st new)

end for
end if

end while

When iterating over the neighborhood of a node, we keep a stack with the current iteration. Two

possible cases ca happen while iterating: we can reach the last level of the tree, where we return the

current value of the column if the bit in L is set, otherwise we continue to the next state in the stack. The

other case, occurs when we are in middle of the tree. So if the bit is set in T, we add the next state to the

stack and continue the iteration. The overall time complexity for this method is O(
√
m) as the Successor

operation also follows this time complexity.
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4.1.3.B DKTree Iterators

The DKTree iterators are a composition of Container0 (E0) iterators and k2-tree iterators from k collections

(C). We start by iterating over Container0 until we reach the last edge. Next, we iterate over each k2-

tree. If no edges were found or if we reach the last edge, we return end(), which is the past-end position

of the iterator. There are three types of iterators:

• DKTreeEdgeIterator – The edge iterator. In Container0 we simply get the vector iterator from the

elements vector, where all the edges are saved.

• DKTreeNeighborIterator – The neighbor iterator. In Container0 we will iterate over the adjacency map

in the same fashion as previously explained in Section 4.1.2.

• DKTreeNodeIterator – The node iterator. This iterator simply iterates over 0 until n.

4.1.4 Containers

Similarly to the libraries presented, we added a level of abstraction to our library. We implemented the

interfaces Graph and GraphIterator. Graph is an interface for a graph which presents the same contract

as presented in Table 4.1 plus the iterators’ invoke methods namely node begin, node end, edge begin,

edge end, neighbor begin and neighbor end.

4.2 Extended functionality

In this section we will cover the extended functionality added to SDSL and SDK. Aside from the k2-

tree iterators, we also extended the SDSL with the union operation, since it is pivotal to be able to

implement the add edge and delete edge in the dynamic k2-tree. In addition, we had to implement the

delete method on the k2-tree so that we could delete an edge in C. We extended the functionality of

SDK regarding the algorithms implementation. As seen in Chapter 3, it is common for graph libraries

to offer some algorithm implementations. Since this is the case, in this section we will also cover the

implemented algorithms by our library.

Finally, we carried out a study on the add operation in order to improve its performance. At the end

of this section, we will present the different add operation versions implemented.

4.2.1 Union Operation in k2tree

For the insertion operation – in our API the add edge method – after the E0 reaches its maximum size,

we create a new k2-tree from it. In order to insert this new k2-tree in C, we first need to calculate in which
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container we should insert the incoming edges. Once we find the container Ej that can accommodate

all the edges from E0 until Ej , we perform the union operation pairwise among these the trees.

However, this operation was not implemented in SDSL so we added this functionality in the library.

Since k2-trees store binary relations we can perform the union operation among the entries of the

two k2-trees [30]. To do so, the algorithm tranverses the bit vectors T ‖ L in a breadth-first way. Moreover,

a queue Q is maintained to store the state of the tranversal search by storing the tuple 〈l, rA, rB〉, where

l is the current level of the k2-tree and rA and rB indicate whether the processed internal nodes from A

and B respectively have children or not. Additionally, we use two pointers pA and pB that will keep track

of the current position of the respective bit vectors. Note that at each iteration pA and pB will be typically

incremented asymmetrically as the algorithm proceeds. The union operation stops when there are no

more tuples to process in the Q and the final result of this operation will be stored in a bitmap BT that

will represent the final k2-tree.

The algorithm begins by inserting the tuple 〈0, 1, 1〉 in Q, meaning that we start at the root where

both trees A and B have children and pA = pB = 0. First, we remove the first state from Q and we will

analyse all the k2 children of the current level l. Depending on the values of rA and rB one out of four

cases might happen:

1. (rA = 1, rB = 1) – in both A and B internal node have children and the union operation is

performed between the A[pA] and B[pB ] and stored in the last position of BT . Furthermore, if

A[pA] ∪ B[pB ] = 1 and l < h then we insert the tuple 〈l + 1, A[pA], B[pB ]〉 to Q. Also, pA and pB

are incremented.

2. (rA = 0, rB = 0) – none of the internal nodes have children and a 0 is added at the end of BT

and neither pA and pB are incremented.

3. (rA = 1, rB = 0) ∨ (rA = 0, rB = 1) – only one of the k2-trees has an internal node. Suppose

that the node from A does not have children (rA = 0, rB = 1), in this case, the algorithm copies

the k2 bits from B pointed by pB adding the result to BT . Note that is possible since only pB is

incremented.

4.2.2 Delete Operation in k2tree

It might be odd to say that we have implemented a delete operation on a static data structure, but this

delete function in k2-tree is needed when deleting an edge in a k2-tree from C. Hence, it is natural for

this operation not to exist in the SDSL library. When deleting an edge in a k2-tree, we iterate over T and

L, as if we were checking for the existence of a link until we get a position in the lead bit vector L. If the

bit is set to 1 we flip the bit and increment the number of marked edges of the k2-tree.
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4.2.3 Algorithms

As previously analyzed in Chapter 3, all libraries support a wide range of useful algorithms for their

data structures. Accordingly, we intended for our API to support some basic search algorithms, namely

BFS and DFS and also algorithms specificly related to Web Graphs: counting triangles [31], clustering

coefficient [32] and pageRank [33].

In our implementation, we created a visitor class named Algorithm which implements functions that

manipulate over Graph.

4.2.3.A Breadth-First Search and Depth-First Search

The BFS and DFS are an important kernel used by many graph-processing applications. In many

of these emerging applications of BFS, such as analyzing social networks, the input graphs are low-

diameter and scale-free. Breadth-first search is an algorithm for searching graph data structures. It

starts at the tree root, or some arbitrary node of a graph, and explores all of the neighbor nodes at

the present depth prior to moving on to the nodes at the next depth level. The BFS uses the opposite

strategy of depth-first search, which instead explores the node branch as far as possible before being

forced to backtrack and expand other nodes [13].

Typically the time and memory complexity of both of these algorithms are O(n + m) and O(n).

Nonetheless, for our data structure visiting the neighbors takes O(
√
m), so it is expected in our final

results for the final time complexity of these algorithms to be O(n
√
m + m). In the next chapter we will

analyze these implementations.

4.2.3.B Counting triangles

There is much information to be gained by analyzing the large-scale data that is derived from social

networks [32]. The best-known example of a social network is the “friends” relation found on sites like

Facebook. Moreover, counting triangles inside a graph reveals the communities within a social-network.

It has been demonstrated that the age of a community is related to the density of triangles [31]. That

is, when a group has just formed, people pull in their like-minded friends, but the number of triangles is

relatively small. If A brings in friends B and C, it may well be that B and C do not know each other. As

the community matures, B and C may interact because of their membership in the community. Thus,

there is a good chance that at sometime the triangle A,B,C will be complete.

These are important applications for a social network which can be seen as a Web Graph. Therefore,

we decided to include this algorithm in our work.

We implemented two different algorithms to calculate the number of triangles in a graph.

• Counting Triangles with a Hash Table – This algorithm starts by computing the degree of each

50



node, taking a total of time of O(m). We create a hash table of edges H, with the pair of nodes

as its key in order to be able to query if an edge exists in constant time. Next, we create another

hash table with key equal to a single node. Given node v, we can retrieve the nodes adjacent to

v in time proportional to the number of those nodes. After preparing our data, we count a triangle

iff for each edge (x, v) there is a node u adjacent to v, such that x 6= v ∧ u 6= x ∧ H[(u, x)]. This

algorithm takes O(m
√
m) time and O(n+m) extra space.

• Counting Triangles with the Neighbor Iterator – This algorithm is very naive. In this case, we

iterate over each edge (u, v) then for each neighbor of v, w if there is some neighbor of w, e such

that there is an edge between (e, u). If there is, the number of triangles is incremented. This

algorithm takes O(
√
m logk(n) log(m)) time and O(1) extra space.

The purpose of these two different implementations is to evaluate the trade-offs between time and

memory usage regarding the methods of iterating over the edges. In the first method, the edges are

saved in a hash table being expected to consume more memory while taking less time. In the second

method where the edges are iterated using the neighbor iterator directly from the graph. In Chapter 5

we discuss the results among the algorithms.

4.2.3.C Clustering Coefficient

An important aspect of social networks is that they contain communities of entities that are connected

by many edges. These typically correspond to groups of friends at school or groups of researchers

interested in the same topic, for example. The clustering coefficient is considered as a way to identify

communities [32].

Since we already had the counting triangles methods, we can easily calculate the clustering coeffi-

cient of a graph. We used a similar naive implementation as in the triangle counting with the hash table

to measure this metric of a graph. Thus, it is expected for both time and space complexities to be the

same as the counting triangles with a hash table, that is O(
√
m).

4.2.3.D PageRank

Probably the most important analysis task on Web Graphs is related to measuring the importance of

Web pages, as it lies at the heart of successful search engines. For example, one of the most important

algorithms to find hubs and authorities on the Web, HITS [34], starts by selecting random pages and

finding the induced subgraphs, which are the pages that point to or are pointed from the selected pages.

Forward and backward navigation is also inherent to the definition of the well-known pageRank algorithm

[33, 35], as well as variants such as Truncated pageRank [36] (especially if one wishes to estimate

pageRank for isolated pages rather than for the whole graph [37]). Due to its relevance in the Web
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Graphs’ context, we also decided to add this algorithm to our library. Originally developed by Google

and the first algorithm used for their search engine, pageRank [33] establishes the relative importance

among web pages. This method computes a ranking for every web page based on the graph of the web.

Every page has some number of forward links (out-edges) and back links (in-edges). Generally, highly

linked pages are more important than pages with fewer links.

The overall time complexity for our data structure is O(n
√
m) since for each node we iterate over the

neighborhood while measuring the priority of the pages.

4.2.4 Improved performance on the addition of an edge

We decided to include in our work another implementation for the add operation suggested by Munro

in [1]. During the addition of a new edge, when the container E0 is full, it is needed to integrate the new

k2-tree from E0 with the other k2-tree containers by performing consecutive unions. This is the longest

operation required in the add operation. Nonetheless, this bottleneck can be mitigated. In fact, it does

not always occur when adding a new edge to the graph, however in some cases can take up much more

than than the average time of the operation.

We present two different approaches to tackle this issue. In the first alternative the union process is

delayed by dividing the union operation into smaller portions and the second where we use a background

thread that will be responsible for performing the bottleneck process.

4.2.4.A Munro Delayed Union

As discussed in [1], it is possible to mitigate this bottleneck. This can be achieved by delaying the union

operation while the E0 container is not yet complete. Instead of waiting for the completion of all the

necessary unions, this is mitigated by processing proportional iterations of the union operation while E0

is yet incomplete.

When adding a new edge Tn and E0 is full, we start by converting it into a k2-tree, Cj . Afterwards

we will need to perform the unions until the sub-collection that can accommodate the previous sub-

collections. First, a copy of Cj is created, Lj , which will be used for the union with Cj+1. Lj will allow for

other queries to remain consistent since Cj and Tn will be queried while the union process is unfinished.

This can be easier to visualize with Figure 4.3.

This version requires more space and takes more time than the add version originally implemented

in SDK. However, the spikes should no longer occur at the time of a new rebuild of the k2-tree collections

unlike the SDK version.

Nonetheless, this approach is complex to implement, so we also implemented a simpler version of

the union delay for comparison and testing purposes. In this second delay version we only delayed the

union operation (as a whole) to the next addition. It is important to note, that a copy of the k2-trees
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Figure 4.3: Suppose that Cj+1 is the first sub-collection that can accommodate both Cj and a new edge Tn. If Cj

must be rebuilt in the background, we ”rename” Cj to Lj and initialize another (initially empty) Cj . New
edge Tn is put into a separate collection Tempj+1 (a). A background process creates a new collection
Nj+1 that contains all documents from Lj , Cj+1 and Tempj+1 (b). When Nj+1 is finished, we discard
Cj+1, Lj and Tempj+1, and set Cj+1 = Nj+1. This procedure guarantees that Nj+1 is completed
before the new sub-collection Cj must be re-built again [1].

collections is no longer needed, since after the first union process, although is unfinished, the data

structure remains coherent with all the edges (including the new edge) present in the data structure.

Overall, it is expected for this version to take as much time and memory as the original add operation

version while reducing some of the time spikes.

4.2.4.B Background Thread

Additionally, a parallel version was implemented where a background thread processes all time-consuming

operations, that is the conversion from E0 and the new edge to a k2-tree and the unions operations.

There is an edge case however. At the time of adding a new edge, the previous rebuild of the data

structure might not be over. What do we do? Well, two different approaches were carried out.

In the first approach, the E0 is incremented and the edge is inserted in this container, delaying the

new union processing in the background. Hence, the thread in the background is triggered to process

the unions as soon as the prior union processing has finished. This method has the disadvantage of

having extra memory usage.

Due to the extra rebuilds of E0 we also implemented a second version of the parallel version, where

instead of inserting the edge in E0, the main thread waits for the previous rebuild to finish in order to

avoid the increase growth of E0.

In the next chapter we will present a deeper analysis and discussion about these two different ver-

sions of the add operation.
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In this chapter we will compare ou implementation of the add, delete, check link and list neighbor

operations with SDK’s. As we extended the implementation of SDSL of the union operation, we will

also compare with the SDK’s version. Besides, we will evaluate the performance of the implemented

iterators, that is the edge and neighbor iterators.

Our implementation was compared with other data structures implementations [38,39] in the submit-

ted paper that we have contributed.

We presented the dynamic k2-tree based on static bit vectors [17] with four different methods for

adding an edge to the graph while reducing the time peaks, one of them described in [1] and the rest

of them presented in the previous chapter. In the first method, in a single threaded process, the union

operations are broken down into smaller parts of the union cycle and distributed among process the

next |E0| number of add operations. The second threaded version of the delay is similar to this, however

the unions operations are delayed to the next add operation. Lastly, a third and fourth method were

presented where a parallel process is responsible for processing the union operations among the k2-

trees at the time of adding an edge. The difference between these two last methods is at the time of

performing the unions operations when the prior unions process has not finished yet. During this time,

the third method inserts the new edge in E0 while the fourth method waits until the background thread

finishes its work.

Finally, we will finish our evaluation with the graph algorithms implemented in this work, namely BFS,

DFS [13], two variants of triangle counting [31], cluster coefficient [32] and the pageRank [33].

5.1 Methodology and Datasets

The experiments were performed on a 8-core machine AMD Ryzen 7 2700X Eigh-Core Processor

@2.04GHz machine with 32K L1d cache, 64K L1i cache, 512K L2 cache, 8192K L3 cache and system

memory of 64GB RAM. All the operations except the add were evaluated from a previously serialized

dynamic k2-tree, that is the graph was loaded from secondary storage during the tests. Our implemen-

tation was compiled with g++ 7.5.0 and the SDK implementation was compiled with gcc 7.5.0 both

using the -O3 optimization flag.

We used both real and synthetic datasets. In Table 5.1 we identify the datasets and their properties.

For each dataset, we present its vertex and edge counts written as |V | and |E|, respectively, and bits per

edge after serialization. The sdk2tree1 corresponds to the SDK implementations and the sdslk2tree2

corresponds to our implementation with the k2-tree from SDSL3.

Real-world graphs were obtained from the Laboratory of Web Algorithmics 4 [2, 3]. The synthetic
1https://github.com/aplf/sdk2tree
2https://github.com/joo95h/dynamic k2tree
3https://github.com/joo95h/sdsl-lite
4http://law.di.unimi.it/datasets.php
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datasets were generated from the partial duplication model [40]. Although the abstraction of real net-

works captured by the partial duplication model, and other generalizations, is rather simple, the global

statistical properties of, for instance, biological networks and their topologies can be well represented by

this kind of model [41]. The generated random graphs [7] have a selection probability of p = 0.5, which

is within the range of interesting selection probabilities [40]. The number of edges for those graphs is

approximately 25 times the number of vertices.

Dataset |V |
(M)

|E|
(M)

sdk2tree

(bit/edge)
sdslk2tree

(bit/edge)
dm50K 0.05 1.11 21.26 25.01
dm100K 0.10 2.59 22.76 27.24
dm500K 0.50 11.98 27.97 32.25
dm1M 1.0 27.42 29.49 34.31
uk-2007-05 0.10 3.05 3.16 3.51
in-2004 1.38 16.92 3.14 3.56
uk-2014-host 4.77 50.83 9.58 11.02
indochina-2004 7.42 194.11 2.59 2.93
eu-2015-host 11.26 386.92 5.71 6.60

Table 5.1: Synthetic (dm) and real datasets’ information. The first four datasets were synthetically generated using a
duplication model. The last four datasets are real-world Web graphs made available by the Laboratory for
Web Algorithmics (LAW) [2,3] (uk-2007-05 is actually uk-2007-05-100000 in the LAW website). Bit/edge
ratio (post-serialization) is presented for each data structure.

The elapsed time was measured using the clock() function 5 and the peak of memory usage was

obtained with GNU time 6 by the maximum resident size. For all evaluated operations, we measured

the average time per individual operation where each time and memory resulted from the average of 5

individual executions.

For the union operation on SDSL we created and serialized a k2-tree and then performed the opera-

tion on itself. On the dynamic k2-tree evaluation, we considered four major operations: edge additions,

removals, querying/checking and vertex neighbouring listing. For all tests we considered k = 2 for the

static and dynamic k2-trees.

In the addition operation we compared among the five different versions – the first add implementa-

tion plus the four versions presented in Chapter 4 – in order to analyze time and memory costs among

the variations. Regarding removals, checking and vertex neighbouring listing, we have serialized each

dataset as the first step. We considered a sample of 50% of the edges for the operations of removals

and checking. Moreover, for the neighbouring listing we considered a sample of 50% of the vertices of

each dataset.

In Table 5.1 the compression ratio in bit per edge for both implementations is also shown. We denote

a big gap between both datasets; in the real Web Graphs datasets the compression ratio was much

5http://man7.org/linux/man-pages/man3/clock.3.html
6https://www.gnu.org/software/time/
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better than in the dmgen datasets. In the real datasets the edges are ordered since the websites usually

point to links within the same website, promoting, in our case, the diagonal of the matrix of the graph to

be filled. Thus, the k2-trees we will have less filled paths with 0s in T and L.

Let us analyze the cost of each operation over the different datasets.

5.2 Union operation

We begin the analysis with the k2-tree operation implemented in SDSL. In Figure 5.1 we show the

average time to perform the union operation between the same k2-tree for the synthetic (dmgen) and real

Web Graphs datasets.
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Figure 5.1: Average time taken to perform the union operation between the same k2-tree for synthetic (dmgen) and
real Web Graphs datasets.

For the synthetic and the Web Graphs datasets, the average time for both implementations was very

similar. However, there was some discrepancy regarding memory. The memory plot shows that the

implementation of the bit vectors in SDK is more space efficient.

In Figure 5.1, it is difficult to understand the differences between the two implementations regarding

the average time. Next, we present the time table used on the previous plot. From the collected data in

Table 5.2, we can see that our implementation is faster for smaller k2-trees than the SDK.
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Dataset sdk2tree sdslk2tree

dm50000 0.285130 0.260039
dm100000 0.703044 0.67462
dm500000 4.946079 5.05058
dm1000000 10.818093 11.1268
uk-2007-05 0.136336 0.144303
in-2004 0.755420 0.806749
uk-2014-host 7.117785 7.38885
indochina-2004 7.016849 8.24863
eu-2015-host 31.326306 35.4242

Table 5.2: Union evaluation time for Figure 5.1.

5.3 DKTree Operations

Now that we have analyzed the implemented operation in the k2-tree, we move on to the dynamic

version of the data structure. In this section we will evaluate and compare the list neighbourhoods,

check individual link, add and delete edge operations. Finally, we will evaluate both neighbour and edge

iterators. In the end of this chapter, the implemented algorithms for our library will be analyzed.

5.3.1 List Neighbourhoods Operation

In Figure 5.2 we are plotting against O(
√
m), the average-case bound on the cost of listing vertex

neighbourhoods for both implementations. In this evaluation, we measured the average time per listing

the neighborhoods operation of 50% of the number of vertices of the dataset.

The plots shows the SDSL version was faster than the SDK however it spent more memory. The

memory difference can be explained by the additional memory consumption of the k2-trees in SDSL, as

previously seen in Section 5.2. Regarding the time performance, the biggest difference between the two

versions is the k2-tree implementation, so we can conclude that the method to retrieve the neighbors

in SDSL is faster than in the SDK. Thereafter, a straight line is visible for both time and memory for

the synthetic datasets corroborating the correctness of the implementation. Nonetheless, this is not the

case for the Web Graph datasets, since they do not present a proportional growth of the tree, unlike in

synthetic datasets.

5.3.2 Check Individual Link Operation

In Figure 5.3 we are plotting against O(logk(n)), the average-case bound on the cost of check individual

link for both implementations. In this evaluation, we measured the average time per check operation of

50% of the number of edges of each dataset.

The plots show that both versions were very similar regarding time however once again the our

implementation memory peak was higher than in the SDK’s. For the indochina-2004 dataset we see
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Figure 5.2: List neighbors operation average time (right) and resident memory peak (left) for synthetic (dmgen) and
real Web Graph datasets.
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Figure 5.3: Check operation average time (right) and resident memory peak (left) for synthetic (dmgen) and real
Web Graph datasets.
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a reduction of time to perform the check operation. This can be explained due to the structure of the

k2-trees. In this case, the method takes less proportional time to reach the leaves level of the k2-trees.

This indicates that T has less paths with 0 internal nodes, reducing the number of backtracks during

the recursion. This is also evident in the memory plot, where we see a much straighter growth from

uk-2014-host to indochina-2004 datasets.

5.3.3 Add operation

We plotted the experimental results against the theoretical time and memory complexity. In this case,

the graphs were constructed directly from the datasets unlike the previous operations in which the graph

was loaded from memory. Recall that we defined ε = 0.25 ⇒ r = 8, implying in our collection C =

{E1, ..., E8}.
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Figure 5.4: Add operation average time (right) and resident memory peak (left) for synthetic (dmgen) and Web Graph
datasets.

In Figure 5.4 we show our experimental results regarding the add operation. We can see that we

had slightly different results for the synthetic and Web Graph datasets. For the synthetic dataset, our

implementation had better performance regarding time and worst regarding resident memory peak. On

another hand, in the Web Graphs datasets, the time difference between the two implementations was

very close, although the SDK implementation was faster. The reason behind this is that in C we have

smaller k2-trees in each sub-collection, giving a small advantage to our implementation during the union

time as previously seen in Table 5.2. However, for the Web Graphs datasets, the stored k2-trees in C
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have more edges turning the advantage to the SDK implementation.

Another interesting feature in the average time plots, is that the average time to add an edge in

the Web Graph datasets is less than in the synthetic datasets. In Table 5.1, we have seen that the

compression ratios between the two types of datasets relayed on the size of the bit vectors of the k2-

tree. Hence, the smaller the bit vectors used, the less time the union operation will take.

5.3.3.A Augmented Add Operation Versions

Additionally, four version were implemented for the add operation. In the following graphics we compare

time and resident peak memory usage. As previously mentioned, the Munro’s version was divided into

two versions during the development phase and we also have two alternative parallel versions. For

easier understanding we have the following:

• add edge – first implemented version.

• add edge delay – during the rebuild, each necessary (whole) union operation is delayed for the

next add operation.

• add edge munro – during the rebuild, the union operations are distributed in |E0| iterations, ac-

cording to Munro et. al. [1].

• add edge parallel – A background thread runs the union operations when rebuilding the data

structure and the main thread doesn’t wait for the background thread to finish.

• add edge wait – A background thread runs the union operations when rebuilding the data struc-

ture and the main thread waits until the background thread finishes the previous union pahse if

necessary.

In later computations, the add edge can take much longer to perform since it is necessary to rebuild

some of the k2-tree sub-collections.

In the following plot, we present the average time per adding a singular edge for the uk-2007-05

dataset. In Figure 5.5, we pretend to compare the differences in the highest spikes when adding an

edge to the graph among the different versions.

Analyzing the plot in Figure 5.5, for the add edge and add edge parallel wait some visible big and

medium spikes are visible. For the add edge delay, we have half of the size of the spikes comparing

with the two previous versions. For the add edge parallel we can see fewer and smaller spikes and

for the add edge munro there are the fewest spikes.

However, in Figure 5.5 is hard to understand what is happening for smaller time spans. In Figure 5.6

we can take a closer look to what is happening at the bottom of the previous plot.
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Figure 5.5: The time distribution when adding a new edge to uk-2007-05 dataset with 1 million nodes.
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Figure 5.6: Zoomed scale at the time distribution when adding a new edge to uk-2007-05 dataset with 1 million
nodes.
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In Figure 5.6 we can see more clearly what is happening for most edge additions. Both add edge

delay and add edge munro follow a linear behaviour as expected. In these single threaded versions, as

we add edges to the graph, the k2-trees in collection C keep growing in size, taking longer to perform

the union operations. However, add edge delay shows much more sparse points than the add edge

munro, since the time of the unions of add edge delay is not as well distributed as in add edge munro.

Regarding the parallel implementations, these show two very different behaviours. On the one hand,

the add edge parallel behaviour is mostly a horizontal line. This is expected, since the main thread

only inserts edges in E0 in constant time. However, due to not waiting for the background thread to finish

the rebuild of the structure, the E0 grows much more than in other versions. Thus, the time to build the

k2-tree fromE0 is greater. Consequently, bigger sub-collections are added to C, making the overall union

time greater. Regarding the add edge wait, this version grows the slowest from all implementations,

since it delegates the heavy work to the background thread and only waits when necessary, allowing

this implementation to have a upper bound. The visible long spikes still arise in this version due to the

longer rebuilds. However, for most iterations the addition of an edge takes less time.

All in all, add edge munro was the version with fewer spikes compared with all other versions and

the add edge wait was the fastest version for most additions although it still occasionally presents big

time spikes just as add edge. We have analyzed the time per adding an edge to the graph, however we

still have to discuss how the overall average time and memory consumption varies among the different

add operation versions.

We plotted the experimental results against the theoretical time and memory complexity. The follow-

ing plots used the same data as in Figure 5.4, Figure 5.5 and Figure 5.6. In Figure 5.7 we have the

average time of adding an edge in a graph among the four addition versions for both the synthetic and

Web graphs datasets.

In Figure 5.7 shows that all implementations followed a line corroborating our theoretical expecta-

tions.

The implementations’ behaviour deviates in each dataset. Nonetheless, the maximum resident peak

memory performance is similar in both datasets.

First we will analyze the add edge delay. As expected, this version took the same time and memory

comparing with the add edge, since the only difference between these two versions is the moment of

conclusion of the rebuild process, where in the add edge delay it is mitigated to the upcoming additions

instead of waiting for the overall rebuild to be concluded at once.

Next, we will be looking at the add edge munro version. This was one of the slowest versions, due to

the additional necessary copies to keep the data structure coherent at the time of the unions process. In

fact, the add edge wait and the add edge delay need to create a copy of the current state of C before

starting the rebuild process, however the add edge munro has no background thread to help to speed
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Figure 5.7: Average time (right) and resident peak memory (left) for the four different versions of the add operation
for the synthetic (dmgen) and Web Graph datasets.

up the overall process. This is noticeable in the memory plots, where the add edge munro and add edge

wait have very similar maximum resident peaks.

Regarding the add edge parallel version, it was the fastest version in the synthetic datasets and

the slowest in the real Web Graphs datasets. The increase of the size of E0 comes at a great cost

for more bigger graphs, in this case the Web Graphs. Moreover, this version had the highest memory

growth, consuming at one point three times more memory than the other versions.

Lastly, we are going to analyze the add edge wait. For the synthetic, this version took longer than

the original implementation add edge, meaning the main thread waited for the background thread to fin-

ish quite often. Recall Figure 5.4. Notice how the average time to add an edge in the synthetic datasets

is higher than in the Web Graph datasets. Another evidence that supports this is the compression ratios

in Table 5.1. Hence, the performance of this version will be better in the Web Graphs datasets as the

background thread won’t delay the main thread as much as in the synthetic datasets.

5.3.4 Deletion operation

For the delete operation evaluation we loaded the graph from memory just like in Section 5.3.1 and

Section 5.3.2. For each dataset we deleted 50% of the edges in the graphs.

In Figure 5.8 we have the average time to delete an edge per dataset and the resident peak memory

consumption.
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Figure 5.8: Delete operation average time (right) and resident memory peak (left) for synthetic (dmgen) and Web
Graph datasets.

Regarding the results, they show that the experimental time and memory performance is bounded by

the theoretical expectations. Moreover, our implementation took less time than the SDK implementation

while spending more memory for both synthetic and real Web Graph datasets, since our implementation

benefits from smaller k2-trees. This is expected, since the delete and add operation share a similar

overall algorithm in the sense of being necessary to rebuild the data structure at some point. As we

have previously seen in Figure 5.4, our version took less time than the SDK’s, so it would be expected

for this operation to also take less time for our implementation since the k2-trees become smaller.

5.4 Iterators

In this section we will analyse the time and memory results of the implemented iterators. The plots only

show the results for our implementation there are no means for comparison.

5.4.1 Edge Iterator

For the evaluation of the edge iterator, we loaded the graphs from memory and iterated over the whole

datasets.

In Figure 5.9, we have the comparison between the time and resident peak memory consumption

against the expected theoretical results. The collected data shows the implemented edge iterator meets
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Figure 5.9: Edge Iterator average time (right) and resident memory peak (left) for synthetic (dmgen) and Web Graph
datasets.

the theoretical bounds for time and memory. During the edge iteration, the whole k2-tree is visited. Thus,

for a smaller k2-tree, the edge iterator will take less time. For the Web Graphs datasets, specifically the

indochina-2004 dataset showed an unexpected small time to iterate over all its edges. This could be

explained by the smaller size of the tree, that is by the size of bit vectors T and L as we can corroborate

by checking Table 5.1.

5.4.2 Neighbor Iterator

The neighbor iterator was evaluated with the same dataset in Section 5.3.1 and we also plotted against

the our list neighborhood method for a richer comparison between the two implementations. The exper-

imental results in Figure 5.10 show a straight line for the synthetic datasets. However, there is a cost

for maintaining a stack with the current state of the navigation in the k2-tree. Nonetheless, the memory

usage was identical for both iterator and method implementations.

5.5 Algorithms

We implemented some well known graph algorithms, for which we compare consumed memory and

execution time against expected theoretical results. For each algorithm, we present figures for the

running time and for peak resident memory usage. Each figure shows results for the Web graph datasets
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Figure 5.10: Neighborhood Iterator and List Neighborhood method average time (right) and resident memory peak
(left) for synthetic (dmgen) and Web Graph datasets.

on the left and synthetic duplication model datasets on the right. We omit dataset indochina-2004 from

the graph algorithm tests because its topology does not allow for an adequate assessment of algorithms

expected efficiency.

5.5.1 Breadth First Search

In Figure 5.11 we show the behavior of BFS. For the running time, as we increase the dataset size, the

plotted curve is a straight line for the duplication model and an almost straight line for the Web graphs,

which shows the implementation follows the expected theoretical time of BFS given by O(n
√
m + m).

Note the
√
m due to the cost of listing of neighbourhoods. As expected, the peak memory while running

BFS is bounded by O(n+m).

5.5.2 Depth First Search

The results for DFS are shown in Figure 5.12. It has a behavior similar to Section 5.5.1 for both the Web

graphs and duplication model graphs, as expected.
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Figure 5.11: BFS operation average time (right) and resident memory peak (left) for synthetic (dmgen) and Web
Graph datasets.
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Figure 5.12: DFS operation average time (right) and resident memory peak (left) for synthetic (dmgen) and Web
Graph datasets.
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Figure 5.13: Clustering coefficient time (right) and memory peak usage (left) for the synthetic dataset.

5.5.3 Clustering Coefficient and Count Triangles with Hash table

For clustering coefficient and triangle counting algorithms, we present their running time and memory

usage results only for the duplication model graphs. We omit results on the Web graph datasets as they

are structurally different and thus performance measurements with these algorithms does not follow the

same behavior as we increase dataset size. Note that we used a classic algorithm for computing both

the clustering coefficient and counting triangles with an hash table.

We present the evaluation for the computation of the (global) clustering coefficient in Figure 5.13. On

the left side we have the execution time while on the right side we have the peak resident memory. The

theoretical and empirical complexities were in tune as we tested with bigger datasets.

This algorithm iterates over all edges (u, v) and, without loss of generality, it iterates over the neigh-

bourhood of u, checking if each neighbour w of u is such that edge (w, v) exists in the graph, where edge

existence is checked against a hash table with all edges. Neglecting heavy hitters, i.e. vertices with more

than
√
m, neighbours which are uncommon for large scale-free networks, the expected running time is

O(m
√
m).

5.5.4 Count Triangles Visiting Neighbors

Since we can answer queries on edge existence with proposed data structures in O(log2(n) log(m))

time, we implemented an algorithm for counting triangles using edge queries directly against the data

structure, and without relying on a hash table. Results are provided in Figure 5.14 and are within the ex-

pected theoretical bounds. Note that the expected running time becomes now O(m
√
m log2(n) log(m))

since we no longer can have edge queries in expected constant time. But now we need much less

memory since we do not need a hash table to track edges, with memory usage being essentially the

space required to the compact graph data structure.
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Figure 5.14: Counting triangles with neighborhood iterator time (right) and memory peak usage (left) for synthetic
datasets.

5.5.5 PageRank

The pageRank algorithm was plotted only with the duplication model graphs. We did not test with the

Web Graph datasets since the number of iterations to converge the algorithm is different due to the

different graph properties. In Figure 5.15 we show the computation for the pageRank algorithm with

our data structure. On the right side we have the execution time and on the left side we have the peak

resident memory. The theoretical and empirical memory complexity is in tune as we tested with bigger

datasets.
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Figure 5.15: PageRank time (right) and resident peak memory (left) for synthetic datasets.
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6.1 Conclusions

In this master thesis we started by introducing graph concepts followed by most common graph rep-

resentations. Afterwards, we discussed some of the classical compressed representations namely the

CSR and CSC [14]. Next, we introduced some state of the art compact graph representations, namely

the LINK Database [16,36], the WebGraph framework [2], the k2-tree [6] and dynamic k2-tree [1]. By the

end of Chapter 2 we compared the compression ratio of all the data structures.

Afterwards, in Chapter 3, we investigated the current state of the art of graph libraries [2,27–29] and

proposed our graph API in Table 3.7.

This work had two main goals: refactor the SDK library [7] and extend its functionality. We believe

both of this challenges were overcome with success. Here we provide a tested and refactored C++

version of the SDK library and also extended its functionality by implementing edge and neighborhood

iterators. To achieve this, we used the static bit vector and k2-tree from SDSL [8]. Nonetheless, the

union operation, edge and neighborhood iterators were lacking in this library, so implemented them too.

We started our experimental analysis with the union operation. In fact, we compare our implementa-

tion against the SDK’s. We have seen that our implementation was faster for k2-trees with less edges,

although it presented a faster growth. So overall the SDK union operation was faster and also presented

a smaller maximum resident memory peak for all datasets. Indeed, the higher memory occurred for all

studied operations due to our representation having a higher memory consumption in the k2-tree, as

seen during the study of the union operation.

Regarding the comparison between our implementation and the SDK’s, first we analysed the neigh-

bors list and check the presence of a link, where our implementation showed better time performance

and a higher memory usage. We also conducted a study for the add and delete operations. For the add

operation, our implementation showed better results for the synthetic datasets than the Web Graphs due

to our union operation being faster for k2-trees with smaller height and slower otherwise. Last but not

least, our implementation performed better for the delete operation for the same reason.

In addition, we conducted a study on the addition operation followed by Munro’s et al. [1] suggestion.

From this work, two implementations emerged: one that delays the full union operations to the next

addition operation and a more granulated version where all the unions cycle’s are split and distributed

among the next |E0| add operations. The results reveal that the first delay version heavily decreases

the amount of time spikes that occur at the time of adding an new edge. Regarding the second version

proposed by Munro [1], the time spikes are mostly gone. In fact, the Munro’s version takes slightly

more time and memory than the previous version since it is needed to create a copy of the k2-tree sub-

collections before the rebuild process, in order to keep the coherence of the data structure. It is important

to understand that this version was much more cumbersome to implement and one might question if the

end result is worth by comparing the final results, since the macro delay version decreased the time
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spikes while not hindering time and space performance.

Moreover, two parallel versions were implemented.

In the first version, at the time of rebuilding the k2-tree sub-collections when the E0 is full and the

previous rebuild is unfinished, inserts a new edge in E0, increasing its size in time. This parallel version

demonstrated to be very fast for the synthetic graphs (dmgen) while consuming three times more memory

than any other implementation. For the Web Graphs datasets, the need for rebuilding the E0 demon-

strated to be very costly for both in time and space, being out performed by all the other implementations

in this environment.

Thereafter, a second parallel implementation was also studied. This implementation waits when the

E0 is full while the previous rebuild is unfinished. The results for this version were highly linked with the

size of the bit vectors of the k2-trees, since for the synthetic datasets the wait periods were higher as the

unions in the background thread took longer to perform. In contrast, in the real Web Graph datasets the

bit vectors of the k2-trees were smaller and consequently the union operations took less time to perform

paving the way for this version to out perform all other versions in these datasets.

As our intention was to develop a graph library, we also implemented some well-known algorithms

for search, namely the BFS and the DFS and also some Web Graph related algorithms: the Clustering

Coefficient, two different counting triangles and finally the pageRank algorithm. The results show that

our algorithm implementations were correct, since all plots’ curves were linear. Moreover, we conducted

a small study over the Counting Triangles algorithms. We compared two different implementations; one

which used an edge table to query the existence of an edge in O(1) and another implementation where

we used the neighborhood iterator over the data structure. Although the neighborhood version is slower,

the collected data shows that the maximum amount of memory used in the hash implementation was

2.2GB while in the neighborhood version was 350MB.

Finally, as we promised at the end of Chapter 2, we would like to compare our compression ratios

in Table 5.1 with the presented state of the art compact data structures compression ratios in Table 2.2.

Taking into account the Web Graphs datasets, we conclude that ours and the SDK’s data structure are

highly competitive with the previously presented data structures while being the only implementations to

offer both dynamic behaviour and direct querying over the compressed graph.
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6.2 Limitations and Future Work

As all things in life, there is room for improvement in our work.

An additional method that could be added is the processing of the reverse neighborhoods for a node:

both the method and the iterator. This could be easily done since SDSL already offers this method for

a k2-tree. However, we would need to implement this operation for E0. To query the reverse neighbor

with in Container0 we would need to implement a similar data structure to adj map. Thus, the reverse

neighbor method implementation for our data structure would be very similar to the already implemented

list neighbor method.

Another interesting operation that could be implemented is the common neighbors between two

vertices since it is widely used in social graphs [42]. There are common intuitions about how social

graphs are generated, for example, it is common to talk informally about nearby nodes sharing a link.

There are also common heuristics for predicting whether two currently unlinked nodes in a graph should

be linked. This could be applied to suggest friends in an online social network or to recommend movies

or videos to users in a recommendation network.

In our work, we did not implement a very sophisticated node iterator. In our case, we simply it-

erate over 0, ..., |V |. We could improve this iterator by iterating over the vertices that exist in fact in the

graph. Moreover, most of the presented libraries [2,27–29] implemented a Node abstraction with several

attributes and proprieties such as the outdegree (number of neighbors), indegree (number of incident

nodes), id and the data held by the node.

Our data structure is well suited for parallelism. Since we have r k2-tree sub-collections the read op-

erations such as listing neighbors and checking if the graph contains an edge. Since they are read-only

operations these could be computed in parallel, likely improving the performance of these operations.

The purpose of any library is to be used. In our case, more general graph and Web Graph algorithms

could be introduced to the Algorithm class.

Finally, the dynamic structure implemented in this work with k2-trees, where its composition consists

in an uncompressed container E0 and a collection of the static data structures C, can be implemented

with other static data structures such as the WebGraph [2]. Thus, we could add dynamism to WebGraph

where C is composed several containers of WebGraphs instead of k2-trees.
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