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Abstract

Robotic soccer allows researchers to attempt to solve many challenges in the field of artificial intelligence.

One such challenge is collaboration with unknown teammates, without any sort of pre-coordination,

which is known as ad hoc teamwork. Advances in ad hoc teamwork enable collaboration in multi-agent

systems to be more robust and versatile compared to traditional coordination mechanisms, as it addresses

situations such as collaboration with agents developed by different people, with legacy agents that cannot

be modified and even with humans. Some current work in the literature attempts to address this challenge

by reusing experience with past teammates to adapt to new ones, for example by acting using previously

learned policies. This thesis extends the state-of-the-art approach in order to also deal with unknown

teammates that might be significantly different from past teammates, while still leveraging what was

previously learned. To achieve this, a current unidentified team is detected either as being a known

team or unknown, by observing if the team’s behavior is consistently similar to the past behavior of a

known team. If it is detected as unknown, the agent selects the previously learned policy whose team

it considers to be most similar to the unknown team, which is then improved online, as a source for

parameter sharing transfer learning.
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Resumo

O futebol robótico permite a investigadores tentar resolver muitos desafios no campo da inteligência

artificial. Um desses desafios é a colaboração com colegas de equipa desconhecidos, sem qualquer

tipo de pré-coordenação, o que é conhecido por ad hoc teamwork. Avanços em ad hoc teamwork

possibilitam que a colaboração em sistemas multi-agente seja mais robusta e versátil em comparação

a mecanismos de coordenação tradicionais, pois aborda situações como colaboração entre agentes

desenvolvidos por pessoas diferentes, com agentes descontinuados que já não podem ser alterados

e mesmo com humanos. Algum do atual trabalho na literatura tenta resolver este desafio reutilizando

experiência com colegas de equipa antigos para se adaptar a colegas atuais, por exemplo usando

polı́ticas previamente aprendidas para agir. Esta dissertação estende a abordagem estado-da-arte

de modo a também lidar com colegas desconhecidos que podem ser significativamente diferentes de

colegas antigos, aproveitando o que foi previamente aprendido. Para o fazer, uma equipa atual não

identificada é detetada como sendo uma equipa conhecida ou desconhecida, observando se o seu

comportamento é consistentemente semelhante ao comportamento passado de uma equipa conhecida.

Se for detetada como desconhecida, o agente seleciona a polı́tica previamente aprendida cuja equipa

considera ser mais semelhante à equipa desconhecida, que é então melhorada online, como uma fonte

para parameter sharing transfer learning.

Palavras Chave

Agentes autónomos e sistemas multi-agente; Aprendizagem por reforço; Coordenação ad hoc; In-

teligência artificial.
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1.1 Motivation

As autonomous agents increase in number, robotic or virtual, more situations arise where multiple agents

need to cooperate as a team in order to achieve their objectives. However, it is not always possible

to know in advance the teammates which an agent will end up with. As such, it is desirable to have a

dynamic and versatile mechanism for collaboration that does not rely on pre-coordination.

One such situation in the human world is pick-up soccer, where players, that do not belong to a fixed

team, gather to play a match. Players often play with others whom they had limited or no contact, so

they need to quickly observe each other’s capabilities and adapt. This situation could also happen in

robotic soccer. Robotic soccer teams usually have communication and coordination mechanisms, but we

can consider a challenge where multiple independent robots are gathered to play a soccer match with

random teammates, lacking common mechanisms, e.g. the RoboCup drop-in challenge [1]. Advances

in such a challenge could be relevant for other domains, such as rescue robots from different sources

that need to work together during a catastrophe, which is a prominent example in the literature [2]. Such

advances could also be useful for having robust systems where agents can collaborate with older and

limited agents that cannot be modified, or even collaborate with humans.

These situations are framed within the problem of ad hoc teamwork [2], where agents need to

cooperate with unknown teammates without relying on previously developed mechanisms for coordination

or communication. These agents, often called ad hoc agents, must be able to quickly find an adequate

strategy to act efficiently. Unlike multiagent learning, ad hoc agents are developed independently from

their teammates.

Some of the current work in the literature [3] attempts to address the ad hoc teamwork problem by

leveraging prior knowledge about past teammates. However, new teammates may be arbitrarily different

from past ones; thus, using previously learned behavior may be ineffective. We believe that the ad hoc

teamwork approach is still useful in this situation, as it allows to reuse knowledge about the dynamics of

the environment and teammates, enabling to learn to coordinate faster than just a pure reinforcement

learning [4] approach.

1.2 Problem

This thesis addresses a research problem where an ad hoc agent may encounter unidentified teammates

which may be known or unknown, when performing a task. The task involves playing a game of Half

Field Offense (HFO) [5], described in Section 2.4. In this environment, one team of agents attempts to

score a goal and another defends. The possible teams are: AUT MasterMinds, Base, Cyrus, Gliders,

HELIOS and YuShan. These teams are those used in [3], with one missing exception (Axiom) as there

were technical difficulties in successfully executing it. The ad hoc agent joins an unidentified teammate

3



belonging to one of those teams in the offense and both play against two defensive HELIOS players, one

of which is a goalkeeper.

1.3 Contributions

The contributions of this thesis are the following:

1. Two methods for identifying known teams: one based on comparing predictions of the next state

according to historical data of each of the known teams to the real next state (similar to the

presented in [3], but using a model based on a Multi-Layer Perceptron (MLP)); and a second based

on discriminating each team directly also according to historical data.

2. An extension to the methods of identifying known teams to also detect unknown teams, where the

agent observes if the unidentified team is consistently identified as being the same known team

across multiple observations – if not, then the team probably is unknown;

3. The use of parameter sharing transfer learning techniques in order to adapt a policy learned from

one team to a different one, online. As far as we are aware, this is a novel use of transfer learning

within the field of ad hoc teamwork.

1.4 Document Overview

This document is organized as follows. Background knowledge, about relevant algorithms for the solution

and the environment, is presented in Chapter 2. Existing work related to the problem of this thesis is

described in Chapter 3. The solution is presented in Chapter 4. The obtained results are presented in

Chapter 5. Finally, Chapter 6 contains a brief summary of this thesis and presents its limitations and

possibilities for future work.

4
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This section presents background knowledge required for the solution developed in this thesis: in

Section 2.1 are presented Markov Decision Processes (MDPs), a formalization of sequential decision

making problems, such as the problem of this thesis; Section 2.2 presents neural networks, which are a

widely used method for mapping inputs to outputs; and Section 2.3 presents the Deep Q-Network (DQN)

algorithm, which uses neural networks to solve MDPs. Additionally, Section 2.4 presents the environment

which is used throughout this thesis.

2.1 Markov Decision Processes

In a Markov Decision Process (MDP) [4], an agent interacts with an environment in a sequence of discrete

time steps, making sequential decisions (Figure 2.1). At each time step, the agent receives a state from

the environment and acts based on it. In the next time step, the environment reacts to the agent’s previous

action, which receives a reward (or cost) and a new state. An MDP is thus comprised of a state space S,

which is the set of all possible states; an action space A(s), which is the set of all possible actions for any

given state s; environment’s dynamics P (s′|s, a), which govern the transition to a new state s′ given a

state s and an action a; and a reward function r(s, a), which provides a reward given a state s and an

action a. States must verify the Markov property: a new state must only depend on the state and action

in the previous time step.

Action

Agent

RewardState

Environment

Figure 2.1: The interaction between an agent and the environment in an MDP.

The objective when solving an MDP is to maximize the cumulative rewards (or minimize the cumulative

costs) that the agent receives during its interaction with the environment. Some states may be terminal.

When the agent reaches a terminal state, its interaction with the environment ends, ending an episode,

and the agent starts over in the next time step, which is completely independent. However, when solving

an MDP it is usually assumed that the agent interacts with the environment forever. This would result in a

non-converging infinite sum of rewards, which would not allow to solve it. To make this sum converge to a

finite value, a discount factor γ is used, with 0 < γ < 1. This parameter makes the reward r at time step

t+ k to be valued as rγk when the agent is at time step t. A larger γ makes the agent give more value to

distant rewards.
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Solving an MDP consists in determining a policy (a function that, given a state, gives the probability of

selecting each action) that attempts to maximize the cumulative reward. This often involves calculating or

estimating the discounted sum of rewards (value) for a given state or state-action pair. The policy is then

given by selecting the action(s) that maximize(s) the expected value, which assumes the agent follows

this policy in subsequent time steps. The value of a state s under policy π is given by (2.1) [4], where Eπ
denotes the expected reward if the agent follows policy π. The value of a state-action pair 〈s, a〉 under

policy π, known as the Q-value, is given by (2.2) [4].

Vπ(s) = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣St = s

]
,∀s ∈ S (2.1)

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣∣St = s,At = a

]
(2.2)

If the environment’s dynamics and reward function are known, dynamic programming algorithms

such as value iteration and policy iteration [4] can be used to solve the MDP. If they are unknown, as in

the problem of this thesis, reinforcement learning [4] methods can be used instead. One approach is

to model the environment’s dynamics and reward function using transition samples (with the state, the

agent’s action, the reward and the next state – 〈st, at, rt, st+1〉) collected while the agent interacts with the

environment. These models can then be used with a dynamic programming algorithm, interleaving model

updates with it. Another approach is to estimate the Q-values given a state, using collected samples,

which is known as model-free reinforcement learning.

Q-learning [6] is a model-free reinforcement learning algorithm that uses the update rule in (2.3) in

order to learn Qπ(s, a), where 0 < α ≤ 1 is the learning rate. If every state-action pair is visited infinitely,

Q-learning converges to Q∗(s, a), resulting in the optimal policy π∗, which is better or equal than all other

policies (Q∗ denotes the Q-values of π∗). The policy used to collect the samples may be different from its

target policy π∗, so Q-learning is classified as an off-policy method. In order to visit every state-action

pair, it is necessary to also explore new pairs instead of always following (exploiting) the policy learned so

far. ε-greedy is an exploration strategy where the agent explores a random action with a probability of ε

and exploits the policy (selects the action with the highest Q-value) with a probability of (1− ε).

Qπ(st, at)← Qπ(st, at) + α

[
r(st, at) + γ max

a′∈A(st+1)
Qπ(st+1, a

′)−Qπ(st, at)
]

(2.3)

2.2 Neural Networks

Supervised learning [7] is a branch of machine learning where a model learns to map inputs to outputs,

given labeled samples. Neural networks are models that accomplish this by passing data through a graph
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of interconnected nodes, called units. Each unit has multiple inputs (real numbers) and a single output.

To obtain the output, it calculates the weighted sum of its inputs and usually applies a function, called

activation function. The feed-forward neural network (also known as multi-layer perceptron) is the most

common type of neural network, where the units are organized in successive layers that are processed in

sequence. The first layer, known as input layer, simply passes the inputs to the second layer. The last

layer is known as the output layer and the layers in between are known as hidden layers. Fully connected

layers are layers where every unit’s inputs are all of the outputs of the previous layer. Other types of layers

exist, such as convolutional layers, which use a regularized structure to exploit features in data organized

dimensionally (e.g. image-based data). Figure 2.2 presents an example of a feed-forward neural network.

Figure 2.2: A feed-forward neural network consisting of fully-connected layers. From left to right: the input layer
has three units that simply pass their inputs forward, the first hidden layer has four units, the second
hidden layer has three units and the output layer has two units.

Training a neural network involves iteratively optimizing a metric, given by a loss function which

quantifies the difference or error rate between a ground truth Y and a prediction Ŷ . Typical loss functions

include the binary cross-entropy (2.4) for classification tasks and the Mean Squared Error (MSE) (2.5) for

regression tasks.

H(Y, Ŷ ) = − 1

n

n∑
i=1

[
Yilog(Ŷi) + (1− Yi)log(1− Ŷi)

]
(2.4) MSE(Y, Ŷ ) =

1

n

n∑
i=1

(Yi − Ŷi)
2

(2.5)

The backpropagation [8] algorithm is usually used to obtain the gradient of the loss function for every

weight, starting with the output layer and going backwards. These gradients can then be used in an

optimization algorithm such as Stochastic Gradient Descent (SGD) and variants such as Adam [9] to

update the weights of the network. These algorithms usually operate in batches of samples instead of the

whole dataset at once. One important parameter of these optimization algorithms is the learning rate,

which adjusts the magnitude of the weights’ update in one training step. If it is too small the network will

learn slowly, while if it is too large the training will be unstable and the network will not converge to a

solution.

The activation function allows the network to model non-linearities. Some common activation functions

include the logistic function (also known as sigmoid) (2.6), the hyperbolic tangent (2.7), the Rectified

Linear Unit (ReLU) (2.8) and softmax (2.9) for multi-class classification output layers (this activation
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operates on multiple units at once instead of a single one). The ReLU is one of the most widely used

activations for hidden layers.

f(x) =
1

1 + e−x
(2.6) f(x) =

ex − e−x

ex + e−x
(2.7)

f(x) = max(0, x) (2.8) f(xi) =
exi∑
j e
xj

(2.9)

The weights of the network need to be carefully initialized in order for the network to learn optimally.

A naive method is to use random weights, but some methods have been devised for specific types of

activation functions: Glorot [10] initialization for layers using activations such as logistic and hyperbolic

tangent and He [11] initialization for layers using ReLU and derivatives.

Neural networks trained for one dataset can be adapted to a different dataset via transfer learning

techniques. A common technique is to share the parameters of a source network with a target network [12],

which often involves freezing the shallower layers1 (not allowing their weights to be updated). The network

is then fine-tuned on the new dataset, progressively unfreezing the layers. For this technique the inputs

must be compatible between the datasets, but the output layer may be replaced with a new one.

2.3 Deep Q-Networks

MDPs often have such large or infinite state spaces that using algorithms such as Q-learning becomes

impractical, being necessary to use function approximation [4] methods, which attempt to construct

an approximate function (such as Q(s, a)) from limited examples. One such method is the Deep Q-

Network (DQN) [13], which employs neural networks in order to perform Q-learning. It is suitable for

problems where there are only discrete actions (without parameters). DQN was studied in a video game

setting where the input (state) is an image, so it first uses convolutional layers to extract features. They

are then followed by a fully connected layer consisting of 512 ReLU and a fully connected linear layer for

the output (Q-values for each possible action).

Essentially, given a transition sample 〈st, at, rt, st+1〉 collected in time step t, it updates the network

targeting the values given by (2.10), using the loss in (2.11), where Q(s, a) is the predicted value for the

state-action pair 〈s, a〉 by the online network Q and L is a loss function such as the MSE (for now assume

Q̂ = Q). However, this would have difficulty converging due to training instability. To address this, the

authors make use of several mechanisms.

yt =

{
rt if last time step of episode
rt + γmaxa′∈A(st+1) Q̂(st+1, a

′) otherwise
(2.10)

losst = L(yt, Q(st, at)) (2.11)
1Layers that are close to the input layer.
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The first mechanism is the experience replay memory (or buffer). At each time step, the agent stores

the observed transition in memory, instead of training right away with it. When training (done every certain

number of time steps), it draws a randomly sampled batch from the replay memory and updates the

network. This allows for greater data efficiency (using each transition more than once); allows to reduce

the correlation between samples decreasing the variance of the updates; and allows to stop prejudicial

feedback loops where one action could influence the following transitions to always favor the same action.

In order to further stabilize DQN, a second network Q̂, called the target network, is used to obtain

the targets in (2.10). This network is periodically synchronized with the online network Q. Without it, the

authors state DQN is more susceptible to oscillations and divergence.

Finally, the authors clip the errors in the loss to [−1, 1]. They use the squared error for errors between

[−1, 1] and the absolute error for errors outside it. It increases the training stability as outliers have a

limited impact. The Huber loss [14] (2.12) with δ = 1 can be used for this purpose.

L(y, ŷ) =

{
1
2 (y − ŷ)

2 if |y − ŷ| ≤ δ
δ|y − ŷ| − 1

2δ
2 otherwise

(2.12)

Several extensions attempting to enhance DQN’s performance have been proposed. Double DQN [15]

adapts Double Q-learning [16], a technique to prevent overestimating the Q-value in Q-learning, to DQN.

It modifies the targets (2.10) to use the action that has the highest value according to the online network,

but with the value of the target network (2.13). Prioritized experience replay [17] modifies replay in order

to replay more frequently transitions that are deemed more important according to the last temporal-

difference error (|y − ŷ|). Dueling networks [18] is a modification to the DQN network architecture where

the fully connected layers split in two separate streams, where one estimates the value (V ) of the state

and another the advantage (A) (2.14) of each action relatively to the value of the state. These streams

are then merged using (2.15). The authors state this allows for a better evaluation when there are many

actions with similar values. Rainbow [19] combines these and other improvements (multi-step learning,

distributional reinforcement learning [20] and noisy networks [21]) to achieve the state-of-the-art DQN.

Lanctot et al. [22] present how to handle illegal actions (that the agent cannot perform given a state) in

Q-learning, by forcing the probability of illegal actions to be zero when acting and ignoring them when

determining maxa′∈A(st+1) during the update. This can be extended to DQN.

yt =

{
rt if last time step of episode
rt + γQ̂(st+1, argmaxa′∈A(st+1)Q(st+1, a

′)) otherwise
(2.13)

A(st, at) = Q(st, at)− V (st) (2.14)
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Q(st, at) = V (st) +A(st, at)−
1

|A|
∑
a′∈A

A(st, a
′) (2.15)

2.4 Half Field Offense

RoboCup [23] is a soccer competition played by autonomous agents that has several leagues. It has

several environments for researchers to empirically test and validate ideas, such as algorithms and agent

architectures. While it is best known for its robotic leagues, it also provides simulated ones, namely the

2D subleague of the RoboCup Simulation League.

To provide a more tractable problem, Stone et al. proposed a subtask of the 2D Simulation League

called Keepaway [24]. In this task, one team attempts to keep the ball from the other team, which attempts

to take it, within a small region. This task is episodic – the episodes end if the taking team takes the

ball or if it leaves the region. In addition to the smaller state space than the full league, it also has less

sub-objectives, making it more suitable for directly comparing methods.

In order to test the scalability of algorithms that have good performance in Keepaway to more complex

environments, without going directly to the full league, Kalyanakrishnan et al. proposed the Half Field

Offense (HFO) [5]. Similarly to Keepaway, which it extends, HFO is also a subtask of the 2D Simulation

League. In this task, one offense team attempts to score a goal, while a defense team attempts to prevent

it. It is played within one half of the soccer field and it is an episodic task – the episodes end if the offense

scores a goal or if the ball gets captured by the defense or leaves the playing area. HFO can be viewed

as problem for both the offense and the defense, but the authors only focus on the former.

Hausknecht et al. [25] released an open source2 implementation of the HFO. Previous work on the

HFO (such as Kalyanakrishnan et al. [5]) did not release source code, making it inaccessible for many

potential users. It is built on top of the RoboCup 2D simulation platform and it is the environment used

throughout this thesis. The authors proposed a primary evaluation metric, Goal Percentage, which is

defined as the percentage of trials with a goal scored. They also proposed a secondary one, Time to

Goal (TTG), which is defined as the number of time steps required to score a goal, for the trials that end

with one scored. This release allows to develop a partial team and already includes two teams that can

be used for automated teammates: HELIOS (specifically the 2013 release [26]) and HELIOS Base [27]

(also known as Agent2D). An instant of a match in this HFO implementation can be observed in Figure

2.3.

This HFO release provides access to both low (Figure 2.4) and high-level (Figure 2.5) state spaces.

The low-level state space is an egocentric viewpoint based on HELIOS’ world model. It contains features

related to the agent such as its position and orientation, as well as other features pertaining to the ball

2https://github.com/LARG/HFO
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Figure 2.3: A match of HFO played by two offensive players (in yellow) against two defensive players (including a
goalkeeper in purple).

and other agents. For a 2 VS 2 match, it has 86 features. The high-level state space is a more compact

representation and may allow the agent to generalize easier. For a 2 VS 2 match, it has 24 features.

When using a DQN with this environment, it should only have fully-connected layers, as the state is not

based on raw data such as an image. Agents cannot directly observe each others’ actions, as there are

no such features in any of the state spaces.

The actions are also provided in different levels of abstraction: low, medium and high. There are

four low-level actions (dash, turn, tackle and kick) and they are parameterized by power and angle.

The medium-level actions (kick to, move to, dribble to and intercept) are still parameterized (by

coordinates and speed). The high-level actions (move, shoot, pass, dribble, catch, reduce angle to

goal, defend goal, go to ball and mark player) are discrete and thus suitable for an algorithm such

as DQN (pass and mark player are parameterized but by a discrete argument identifying a player). They

are composed by low level actions, parameterized following Agent2D’s strategy. According to the release’s

manual, the applicable high level actions for the offense team are shoot, pass and dribble when the

agent has the ball; and move, go to ball and reorient when it does not.
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0: Self Pos Valid
1: Self Vel Valid
2-3: Self Vel Ang
4: Self Vel Mag
5-6: Self Ang
7: Stamina
8: Frozen
9: Colliding with ball
10: Colliding with player
11: Colliding with post
12: Kickable
13-15: Goal Center
16-18: Goal Post Top
19-21: Goal Post Bot
22-24: Penalty Box Center
25-27: Penalty Box Top
28-30: Penalty Box Bot
31-33: Center Field
34-36: Corner Top Left
37-39: Corner Top Right
40-42: Corner Bot Right
43-45: Corner Bot Left
46: OOB Left Dist
47: OOB Right Dist
48: OOB Top Dist
49: OOB Bot Dist
50: Ball Pos Valid
51-52: Ball Angle
53: Ball Dist
54: Ball Vel Valid
55: Ball Vel Mag
56-57: Ball Vel Ang
8T: Teammate Features
8O: Opponent Features
T: Teammate Uniform Nums
O: Opponent Uniform Nums
+1: Last Action Success Possible

Figure 2.4: Low level HFO state feature set according
to its manual (T: number of teammates; O:
number of opponents).

0: X position
1: Y position
2: Orientation
3: Ball X
4: Ball Y
5: Able to Kick
6: Goal Center Proximity
7: Goal Center Angle
8: Goal Opening Angle
9: Proximity to Opponent
T: Teammate’s Goal Opening Angle
T: Proximity from Teammate i to Opponent
T: Pass Opening Angle
3T: X, Y, and Uniform Number of Teammates
3O: X, Y, and Uniform Number of Opponents
+1 Last Action Success Possible
+1 Stamina

Figure 2.5: High level HFO state feature set according
to its manual (T: number of teammates; O:
number of opponents).
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This chapter presents related work in the area of ad hoc teamwork. The predecessor of the ad hoc

teamwork problem is presented in Subsection 3.1. Subsection 3.2 presents the work that established

this problem. Subsection 3.3 describes in detail the ad hoc teamwork approach that is the base for the

solution of this thesis. Subsection 3.4 presents other approaches in the literature, along with a justification

of why they are not directly appropriate for the problem of this thesis. Subsection 3.5 presents work

focusing on sample efficiency (that is, learning effectively with fewer samples), an important issue when

trying to learn a policy as quickly as possible, such as this thesis when adapting a policy online.

3.1 Impromptu Teams

Bowling and McCracken [28] introduced the problem of coordination in impromptu teams (or pickup

teams), where a team of agents (unknown to each other) must coordinate without any pre-established

coordination, such as strategies or explicit communication protocols. These agents may be developed

independently from each other, by different developers, and may have different capabilities.

In their work, the authors focused on the sub-problem of a single agent, called the pickup player,

joining an unknown but already established team, called the core team. The core team is unaware that

the pickup player is different, so they assign a role to it and act as if it was a regular team member. They

explored this sub-problem in the context of the (simulated) RoboCup Small Size League, where each

team has five players. Given a playbook (a library of team plans) for the pickup player, its task consists in

selecting a play and determining its role in it (each role corresponds to a sequence of actions). The core

team may have a different playbook or none at all.

To address play selection, the authors proposed two approaches: one predictive and another adaptive.

The adaptive approach is based on increasing the probability of selecting plays which had good results

for the pickup team. The predictive approach is based on estimating a score of how well the teammates

match the roles of a play, for each play, by observing them. The pickup player then executes the play with

the highest score. They also use these same approaches for role selection.

The authors also proposed three baselines. The first baseline has an unresponsive pickup player

that does not move, on which the core team relies (e.g. by passing the ball). The second baseline has

no pickup player, so the team is only composed by the core team (missing a player). Since there is no

pickup player to falsely rely on, it is not as detrimental as the first baseline. The third baseline provides an

upper-bound and corresponds to the full original team.

Both approaches had similar results, being close to the full team baseline, and generally had better

results than the non-upper-bound baselines. The baseline with the immobile and unresponsive pickup

player performed the worst. The baseline with the absent pickup player performed well in five player

games, only performing worse with less players.
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As their work relies on handcrafted playbooks, this presents an important limitation, which makes it

unsuitable for more complex problems such as the setting of this thesis. However, their formulation of

impromptu teams remains relevant.

Dias et al. [29] studied this problem in the context of human-robot pickup teams. They focused

on teams formed by humans and heterogeneous robots in a treasure hunt domain. However, they

relaxed one restriction of this problem: they use a pre-established protocol for communication. In their

setting, there are tasks which correspond to multiple plays that must be performed. As in [28], each

play has multiple roles, each composed by multiple actions. Tasks are selected via auctions in a market

(each agent, including the humans, has an interface to the market), and the same happens for role

assignment. The presence of a pre-established and explicit communication protocol increases the

possible mechanisms for coordination. However, that is not the case in most settings where impromptu

teams/ad hoc teamwork is relevant, such as the setting of this thesis. Additionally, the reliance on such

communication protocols negates the versatility that ad hoc teamwork solutions attempt to offer.

3.2 Ad Hoc Teamwork

Stone and Kraus [30] reintroduced the fundamentally same problem as the concept of ad hoc teamwork

(in the context of autonomous agents), being the designation that was adopted in later work. While this is

a concept about teamwork, it is only regarding the behavior of a single agent.

In their work, the authors studied the ad hoc teamwork problem in a cooperative multi-armed bandit [4]

setting, where there is a teacher agent and a learner agent. The teacher is an ad hoc agent that knows

the payoff distributions of each arm, while the learner is a legacy agent that does not (additionally, it

cannot pull the arm with the highest expected payoff). The dilemma of the ad hoc agent is then to decide

if it should pull the arm with the highest expected payoff or to pull an arm with a smaller expected payoff,

while increasing the learner’s information and enabling a possibly higher total payoff. The authors present

several theoretical results for this setting, as well as an algorithm based on dynamic programming. Their

work is limited to the multi-armed bandit setting, so it is not directly applicable to more complex settings,

such as this thesis.

In [2], Stone et al. expanded the concept of ad hoc teamwork in several directions. They consider an

ad hoc agent to be competent if it belongs to a subset of all available agents such that subset is able to

obtain or surpass a minimal performance criterion for all tasks in the domain. They also proposed an

evaluation procedure to compare two ad hoc agents.

In the same work, the authors identify three challenges that are necessary to address in order to

create an effective ad hoc agent: to find all the situations that it must handle; to determine appropriate

behavior for each situation; and to be able to detect the current type of situation. The authors also present
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three dimensions that characterize ad hoc teamwork situations: teammate characteristics (such as their

abilities and behavior), team characteristics (such as the composition of the team and inter-observability)

and task characteristics (such as the objective and the number of time steps per episode). They state

that by limiting the ad hoc problem along these dimensions, it can be made more accessible for studying.

3.3 PLASTIC

Barrett et al. [3], based on Barrett’s PhD thesis [31], presents an approach to ad hoc teamwork where the

ad hoc agent reuses experience with previous teammates when encountering new ones. For this purpose,

they proposed a general-purpose algorithm called Planning and Learning to Adapt Swiftly to Teammates

to Improve Cooperation (PLASTIC). This algorithm assumes that there are similarities between past

teammates and new ones (while this may not always be true, the authors consider that often there are

some). Given enough time, PLASTIC enables the ad hoc agent (but not necessarily the team) to act

optimally if its past experience correctly predicts the new teammates and their behavior is fixed.

The authors focus on a limited version of the ad hoc teamwork problem where they make the following

assumptions:

• the ad hoc agent has previous experience with past teammates;

• all agents in the team share a common objective;

• there are no explicit communication protocols;

• the teammates do not learn and their behavior does not change.

PLASTIC is fundamentally based on:

• acquiring knowledge of past teammates either by learning about them or receiving hand-coded

knowledge;

• forming beliefs about the current teammates (about which acquired knowledge best fits them);

• using those beliefs and the knowledge of past teammates for planning;

• updating the beliefs by observing the current teammates’ behavior.

This general-purpose algorithm has two realizations, PLASTIC-Model and PLASTIC-Policy. As

suggested by their names, PLASTIC-Model is a model-based approach that learns models of past

teammates (offline, via supervised learning [7] methods), while PLASTIC-Policy is a model-free approach

that learns policies to cooperate with past teams. PLASTIC-Model then selects the models that best

predict the current teammates for planning, while PLASTIC-Policy similarly selects the policy that best

reflects the current team for acting.

The authors argue that PLASTIC-Policy is more adequate for complex problems with large state

spaces, as it can use function approximation techniques - they state that it is more effective in HFO as
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planning in PLASTIC-Model needs many samples and has problems with inaccuracies in the environment

modeling. As such, the solution of this thesis is based on PLASTIC-Policy – it extends it to also consider

the possibility of an unknown team and to use a special policy improved online for that case. However,

they state that PLASTIC-Model, by being able to use a model for each teammate (instead of each team),

would be more appropriate for heterogeneous teams (as PLASTIC-Policy selects a policy that best

reflects the entire team, not considering individual teammates). Additionally, they also suggest it would

be better suited for teams that change behavior (not explored in their work).

3.3.1 PLASTIC-Policy

PLASTIC-Policy (Algorithm 3.1) directly collects samples from the environment and uses them to learn

a policy for a team, using existing reinforcement learning algorithms. The authors suggest using Fitted

Q Iteration (FQI) [32] for learning the policies. This thesis uses DQN to learn the policies as it is more

efficient than FQI.

PLASTIC-Policy uses the Polynomial Weights Algorithm (PWA) [33] (3.1) to update the belief of each

known team given the current team’s behavior in the observed transition. The loss for PWA is given by

1 minus the probability of the observed behavior, for each team. However, it is not possible to directly

obtain this probability, as it is not given by the policies. To address this, the authors use instead a model

to estimate it, in particular via a nearest neighbor based approach. For each state s and its next state s′

that the agent observes, it finds the past sample 〈ŝ, â, r̂, ŝ′〉 whose state ŝ is most similar to s and then

uses the difference between s′ and ŝ′ to estimate a probability. In contrast, this thesis uses models based

on neural networks to estimate this probability without searching all of the stored previous samples at

each inference. This possibly also allows for better models.

belief ← belief · (1− η · loss)∑
belief · (1− η · loss)

, η ≤ 0.5 (3.1)

3.3.2 Application of PLASTIC-Policy to HFO

The authors used 7 different teams in their HFO experiments. In order to help the agent generalize and

learn faster, they used high level states and actions. They focused on the offense of HFO, using a reward

of 1000 for when the offense scored and -1000 otherwise, with an additional discount of -1 for each time

step (equation 3.2). For each type of teammate, the ad hoc agent trained for 100,000 episodes.

r(s, a) =


1000 if the offense team scores a goal
−1000 if the defense team scores a goal
−1 otherwise

(3.2)
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Algorithm 3.1: The PLASTIC-Policy algorithm as presented in Barrett et al. [3].

The authors tested PLASTIC-Policy in two variations of the HFO task: a limited version with 2 attackers

versus 2 defenders, including a goalkeeper; and a full version with 4 attackers versus 5 defenders. This

thesis only focuses on the limited task. They averaged their results over 1,000 trials, with each trial

having multiple episodes (matches). They measured their performance according to the fraction of

trials where the offense team scored a goal in the same episode (analogous to the Goal Percentage

metric in Hausknecht et al. [25]). They used three baselines: as an upper-bound, the agent knowing the
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correct policy for the team; as a lower-bound, randomly selecting a policy; and in order to compare to a

single-agent approach, a combined policy based on all past experience. Besides testing PLASTIC-Policy

as described previously, the authors also tested a variation that uses a multi-armed bandit approach for

policy selection, which improves its estimates over each episode (instead of each time step).

The results were similar for both the limited and full variations of the task. Knowing the correct policy

yielded the best results and selecting randomly the worst. More importantly, knowing the correct policy

had a significant increase in the fraction of goals scored when compared to the combined policy, showing

that an ad hoc teamwork approach performs better than a single-agent one. The bandit approach

converged slowly to the correct policy, needing about 10,000 episodes to do so for the limited variation. It

only reached a similar performance to the combined policy baseline at about 1,750 episodes. In contrast,

PLASTIC-Policy achieved results near the correct policy almost instantaneously. This is due to the fact

that PLASTIC-Policy can better estimate the policies’ probabilities and can update them more frequently.

Even if the correct policy does not have a very high probability of matching the team, it quickly can

become the policy with the highest probability.

3.4 Other Ad Hoc Teamwork Approaches

Stone et al. [34] studied the problem of an ad hoc agent leading a best-response agent, which adapts to

the ad hoc agent’s behavior and has no means of communication, to act in such a way that maximizes

the joint utility of both agents in a game theoretic setting. The best-response agent selects its best action

depending on which action it believes the ad hoc agent will choose. Its belief is based on some amount

of the last past actions of the ad hoc agent (hence, the best-response agent is a bounded-memory

agent). The ad hoc agent thus has to lead the best-response agent to the best joint action, incurring short

term losses. The authors propose an algorithm that uses a dynamic programming approach for finding

sequences of actions that minimize these losses. This algorithm has polynomial complexity in time, and it

is also polynomial in memory if the best-response agent only looks at the last action of the ad hoc agent,

but exponential if it looks at more than one action. To mitigate this issue, the authors proposed some

alterations to their algorithm, but it remained a significant limitation. They also addressed the situation

where the teammate may not be deterministic, proposing further alterations. The setting of their work

(leading a best-response agent) does not fit this thesis.

Agmon and Stone [35] further extended the work by Stone et al. [34] for multiple teammates. The

authors state that in settings with multiple teammates it may not be possible to lead them to the optimal

joint action, only to a reachable joint action or cycle that provides the maximum payoff between those that

are reachable. They use a graph-based approach where they find the best reachable cycle of joint actions

and then the shortest path to reach it. Their algorithm also has polynomial complexity if the teammates
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only look at the last past action of the ad hoc agent. Additionally, they prove that this problem is NP-hard

if the teammates look at more than one past action, even if it is just one teammate. They also extend

their approach to address leading a team of multiple teammates by a team of multiple ad hoc agents and

leading when the ad hoc agent is uncertain about the behaviors of the teammates. Similarly to [34], the

setting of their work does not fit this thesis.

Chakraborty and Stone [36] studied the problem of cooperating with a single Markovian ad hoc

teammate in a game theoretic setting. A Markovian agent’s policy verifies the Markov property: it is based

on features such that their values in a certain time step only depend on their values and the joint action

in the previous time step. These features are discrete and computed based on the joint play history. A

memory-bounded teammate, such as in [35], is a specific case of this teammate. To this end, the authors

proposed an algorithm called Learning to Cooperate with a Markovian teammate. The authors assume

that the Markovian teammate’s policy’s features belong to a set of possible features known to the ad hoc

agent. They also assume that the set of possible features is ordered and that the teammate only uses the

first K features, with the ad hoc agent not knowing K but knowing an upper-bound. As the ad hoc agent

does not know K, it keeps a model of its teammate’s policy for every possible K value, updating them

and selecting the one which better predicts the teammate every T time steps (any model which uses

more features than K should be able to predict the teammate’s behavior, so they focus on the one that

can do so with the smallest K). This approach is not appropriate for this thesis as these assumptions do

not hold.

Albrecht and Ramamoorthy [37] worked on an approach where they model the ad hoc teamwork

problem as a stochastic Bayesian game, allowing to tackle this problem formally. They assume that the

ad hoc agent knows the possible types its teammates may be (which are pre-defined by the user). To

calculate the probability of a teammate belonging to a type, they proposed an algorithm called Harsanyi-

Bellman Ad Hoc Coordination. The probability distributions for each agent are then used for planning.

They also extended this approach to address the case where there are types with changing behavior

and to learn completely new types. Their work introduces the level-based foraging domain, used for

evaluating ad hoc teamwork approaches, which is a grid-based world where players need to collaborate

in order to eat food. The authors later [38] performed more theoretical analysis, namely analyzing the

convergence properties. This approach relies on expert-provided types, which is not feasible in this thesis.

Learned or generated types were not explored and as such may be unsuitable.

Albrecht and Stone [39] studied a version of the ad hoc teamwork problem where the ad hoc agent

models each teammate individually, by matching it to a known type of agent. Their work is novel in

the sense that it explores the possibility of parameterized types (with bounded continuous parameters).

They proposed a method which estimates the relative probabilities of each type and then estimates their

parameters as the agent acquires more observations of the teammates. They successfully reduced the
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computational costs by managing to only update the parameter estimates of a single type per time step,

which had similar results to updating all of them. This approach is not appropriate for this thesis as

modeling each teammate individually is hard to scale to more complex tasks such as HFO (they tested

their approach in the foraging domain [37]). The same authors later performed an extensive survey [40]

on existing ad hoc teamwork methods. In particular, they categorized methods in several categories,

such as type-based reasoning (which includes [39] and PLASTIC-Model) and group modelling (which

includes PLASTIC-Policy).

Ravula et al. [41] explored the situation where the behavior of teammates may change, which is

assumed to not happen in most of the previous work. They use a Change Point Detection (CPD) approach

to detect sudden changes in the behavior (each teammate is modeled individually). They expanded the

method by Albrecht and Stone [39], by adding a CPD step where the agent stops considering previous

observations if a change is detected. In order to perform the CPD, they proposed an algorithm based on

a Convolutional Neural Network (CNN) [7], as they found existing CPD algorithms to be unsuitable for

this task. Being based on [39], this approach is also unsuitable for this thesis.

Wu et al. [42] proposed an online learning algorithm called Online Planning for Ad Hoc Agent Teams

(OPAT). OPAT is based on estimating the utility of each action via Monte Carlo Tree Search (MCTS) [43],

where smaller virtual games are solved using teammate actions estimated from the past interaction

history (if there is no history, it simulates that the other agents act rationally). In their work, the authors

simplify the problem of ad hoc teamwork with some assumptions, namely that the state is fully observable

and that the ad hoc agent can observe the joint actions. Furthermore, the ad hoc agent knows the

possible actions the teammates may take. They successfully experimented with their algorithm with two

types of agents, one that follows a pre-defined sequence of actions and another that plays optimally

according to its beliefs. OPAT is unsuitable for this thesis due to these observability assumptions.

Melo and Sardinha [44] focused on the sub-problem of task identification, where the ad hoc agent is

not aware of the objective nor the rewards. In their work, the authors propose that an ad hoc teamwork

problem is subdivided in three steps: task identification, teammate identification and planning. They

argue that most existing approaches ignore task identification, assuming it is given, so their contributions

focus on it. In their setting, the ad hoc agent attempts to identify the task (from a set of possible ones) by

observing its teammates’ behavior. As such, the rewards are modeled by the agent and not observed

directly in the environment. The authors propose two approaches: one based on online learning and

another based on decision theory. Their work is not suitable for this thesis as the rewards are known.
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3.5 Sample efficiency

This section presents some approaches addressing sample efficiency (learning effectively with fewer

samples), which is relevant in the context of this thesis for improving a policy online, especially regarding

the performance of the policy during the first time steps.

Hester and Stone [45] introduced TEXPLORE, a model-based method for real time reinforcement

learning. It is able to learn with few samples, in continuous state spaces and is computationally efficient.

In addition, it can handle unknown sensor and actuator delays, which is especially relevant for robotics. It

uses decision trees in the form of random forests to model the MDP using the collected samples so far.

Considering a state s, its next state s′, an action a and a reward r, this is a supervised learning problem

with 〈s, a〉 as the input and s′ − s and r as the outputs. It uses those random forests to attempt to explore

the state-action pairs that seem to be more likely to receive a reward. Given the model of the MDP, it

uses Upper Confidence Bounds applied to Trees (UCT) [46] (an MCTS method) with some modifications

to plan, which can return its results at any time and as such is suitable for real time control. One of the

empirical tests they performed was a task where an autonomous vehicle had to adjust its velocity, whose

reward was based on the difference between the current and the desired velocities. As shown in Barrett

et al. [3], learning a policy instead of modeling the environment seems to be a better approach for HFO.

Nagabandi et al. [47] proposed a hybrid approach, where they initially use a model-based method

which is then used to initialize a model-free method. Their approach is based on the reasoning that a

model-based approach is more sample efficient and thus is more suitable when there are few samples,

but a model-free approach is able to obtain better policies and thus higher rewards at the expense of

more samples. In the model-based method, they learn a model for the difference between future states

and their previous states, which is then used together with a reward function for evaluating the possible

state-action pairs the agent may choose. In the model-free method, they start by learning a policy via a

neural network, using collected trajectories following the model-based method. Afterwards, they optimize

this initial policy via Trust Region Policy Optimization [48] as more samples are observed. They tested

their approach in a physics simulator, where agents had to learn how to walk. Similarly to Hester and

Stone [45], learning a policy directly seems to be a better approach for HFO. However, this approach

could be studied further for future work.

Yang Yu [49] presented several aspects of sample efficiency in reinforcement learning that are

challenging. The first aspect is limitations in the exploration strategies used by agents, which often tend

to rely on finding new trajectories by introducing noise in the actions (action space noise). The author

presented better alternatives such as parameter space noise, where noise is introduced in the parameters

of the policy, and curiosity-driven exploration, where the agent is encouraged to visit unknown states.

Another aspect is environment modeling, where model-based methods were presented as being more

sample efficient than model-free, but harder to use in more complex environments. As such, approaches
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that combine model-based methods with model-free were suggested, where an inaccurate model of

the environment is used to generate augmented features for the model-free method. The author also

studied different transfer reinforcement learning approaches, each adequate for a subset of reinforcement

learning problems. It was noted that there is no general strategy for transfer reinforcement learning.

Finn et al. [50], one of these approaches, presented a meta-learning approach to create a model that

can adapt to new learning tasks with few samples, which could be used for future work. This thesis,

however, uses parameter sharing transfer learning [12] (in terms of supervised learning), in order to

reuse previous knowledge in existing policies. Finally, the author also mentions several optimization and

abstraction techniques. Dynamic environments and large action spaces are also identified as challenges

for reinforcement learning.

Barrett et al. presented TwoStageTransfer [51], a transfer learning algorithm that weights multiple

data sources via cross-validation (e.g. one for each team in the library of known teams in the setting of

this thesis). This thesis focuses on parameter sharing transfer learning instead of experience transfer,

so this approach was not explored. Lazaric et al. [52] also presented a method for experience transfer,

first based on the similarity between source tasks and the target task, and then on the similarity between

source instances (samples) and target instances. It was also not explored in this thesis for the same

reason.
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The problem (Section 1.2) is addressed with an architecture (Figure 4.1) based on Barrett’s PLASTIC-

Policy [3], comprised of a training and an execution phase. In the training phase, the agent builds a library

of policies, with one policy for each of the known teams. The agent can collect and train on as much

experience as needed. In the execution phase, the agent needs to identify the current team either as

one of the known teams or as an unknown team. If the team is known, the agent will ideally use the

policy previously trained with it, else it will use a policy that is improved online. A team is considered to be

unknown if the agent has determined it is not one of the teams it knows. It is considered unidentified if

the agent has not yet determined if it is one of the known teams or unknown.

Ad hoc agent

Used by

Policies
SelectsPolicy selection

Ad hoc agent's action
Action selection

State and reward

Environment

Teammates'
actions

Team

Agent

Agent

...

Previously
learned

Learned
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team?
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Belief

Joint action

Figure 4.1: Overview of the architecture (execution phase), inspired by PLASTIC-Policy [3].

4.1 Policies for known teams

Policies for known teams are learned in the training phase using DQNs. It is appropriate for this problem

as it approximates Q-values for discrete actions. This section describes how the policies are modeled

and how the hyper-parameters are adjusted through a non-extensive search.

This adjustment is performed using an HELIOS teammate as a representative. This teammate was

selected as it is one of those with the fastest execution times. While potentially biased, this simplification

is performed in order to reduce the number of policies needed to be learned for this purpose. In the case

of subjectively similar results, the value closest to the initial hyper-parameters (according to literature) is

chosen.
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4.1.1 State and action spaces

The HFO environment provides both low level and high level state feature sets. Both feature sets are

experimented. As usual when employing DQN, the most current states are concatenated for its input. The

4 most recent states will be used, as often used in the literature (e.g. Mnih et al. [13]). This concatenation

may allow the agent to extract more complex features, such as more insights in the behavior of other

agents.

The high level action set provided by the HFO environment is used, as the lower level action sets are

parameterized by continuous values and thus unsuitable for DQN. When it does not have the ball, the

agent can move (according to team Base’s [27] strategy), go to the ball and reorient (the agent stops and

recovers stamina). When it has the ball, it can dribble, shoot and pass it. To model these conditions for

the actions, the DQN algorithm is modified according to Lanctot et al. [22] such that the DQN does not

consider illegal actions, by forcing the probability of illegal actions to be zero when acting and ignoring

them when determining maxa′∈A(st+1) during the update.

4.1.2 Reward function

The reward function (4.1) is used. It positively rewards the agent when the offense team scores a goal

and is neutral otherwise. There is no reward shaping, so the agent will not learn behavior that exploits the

reward function in unintended ways. Barrett’s [3] reward function (3.2) presented some issues in terms of

the agent attempting to play too defensively until the maximum time step limit, even if scaled to [−1, 1].

r(s, a) =

{
1 if the offense team scores a goal
0 otherwise

(4.1)

4.1.3 Initial hyper-parameters

The hyper-parameters/modeling from Table 4.1 are used as a starting point. They are based on the work

by Mnih et al. [13], with some adjustments to the target network update frequency and final exploration

rate by Hasselt et al. [15] which are also used in later extensions of DQN. The optimizer is also changed

to Adam, as used in Hessel et al. [19].

4.1.4 Hyper-parameter and modeling adjustment

Some of the hyper-parameters and modeling approaches from Table 4.1 are adjusted through a non

extensive search. The results are presented in Section 5.2.

1. Using the low level feature set, the first hyper-parameter to be adjusted is the train frequency. A

higher train frequency (that is, lower number of time steps between each training) may allow to train
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Hyper-parameter/modeling Value Reference/explanation
DQN extensions None Mnih et al. [13]
Hidden layers (fully connected) One layer with 512 hidden

units with ReLU activation
Mnih et al.

Minibatch size 32 samples Mnih et al.
Replay memory size 1 million samples Mnih et al.
Agent history length 4 states Mnih et al.
Target network update frequency 7500 updates Hasselt et al. [15] (30000 frames)
Discount factor 0.99 Mnih et al.
Action repeat None HFO is sensible to each individ-

ual action.
Update frequency 4 time steps Mnih et al.
Optimizer Adam Hessel et al. [19]
Learning rate 0.0000625 Hessel et al.
Initial exploration (ε-greedy) 1 Mnih et al.
Final exploration 0.01 Hasselt et al., Hessel et al.
Final exploration time step 1 million time steps Mnih et al.
Replay start size 50,000 samples Mnih et al.

Table 4.1: Initial hyper-parameters based on literature. Refer to Mnih et al. [13] for a detailed description.

the policies in less wall clock time, which would be saved during the other hyper-parameter/modeling

searches. A train frequency of 1 is compared to the train frequency of 4 from Table 4.1.

2. The low level feature set is compared to the high level feature set, to determine which modeling

approach provides better performance.

3. A deeper topology of the Q-network is experimented, consisting of two hidden layers of 256 and

64 ReLU respectively. This topology is not extensively fine-tuned. It may ease transfer learning in

Section 4.3 by not updating the weights of the first or even both layers.

4. Some extensions to the DQN algorithm are evaluated, in terms of modeling: Double DQN [15] and

Dueling DQN [18]. All fully connected layers are doubled for the Dueling DQN. However, neither of

these extensions showed to be beneficial in this problem in Section 5.2.

4.1.5 Policy training and effectiveness

Policies are trained for every known team and each trained policy is then evaluated with all known teams

(Section 1.2). Ideally, for each agent the best policy should be the one that was trained with it. With such

result, it will be beneficial to identify the team the agent is playing with, in order to select the most optimal

policy.
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4.2 Policy selection

PLASTIC-Policy needs to identify the team in order to select the policy to be used during the execution

phase. This is performed using belief losses that are calculated for each observed transition, which are

then used to update the belief. The following subsections present how these beliefs are calculated.

4.2.1 Identifying known teammates

PLASTIC-Policy’s approach involves scanning known transitions for each team in order to find the past

transition whose initial state is most similar to the initial state of the observed transition. Then it uses the

difference between the next state of the known transition and the observed new state as a loss. This

scanning procedure may have a significant impact in execution performance, so this thesis focuses on

creating models for the belief loss during the training phase, which are then used in the execution phase.

The samples contained in the DQN replay buffers are used to create these models.

4.2.1.A Predicting the next state

One alternative is to predict the next state, which includes changes dependent on the team. For each

known team, an MLP is trained (hyper-parameters in Table 4.2): given an observation consisting of 4

concatenated states and an action (one-hot encoded), the output is the difference between the new state

s′ and the previous state s (s′ − s is predicted instead of s′ since, as pointed out in [45], the relative

transitions may be similar for many state-action pairs). This is an adaptation of the method employed in

PLASTIC-Policy, where an MLP is used to obtain s′ instead of scanning past transitions directly.

During execution, for each known team:

1. The difference is predicted and added to the previous state;

2. The resulting predicted new state is clipped to the maximum and minimum values of the features;

3. A loss is measured between the real new state and the predicted one using the Huber loss.

This loss vector is then normalized.

4.2.1.B Discriminating teams

Another alternative is to discriminate between the known teams. This is modeled as a multi-class

classification problem. An MLP is trained (hyper-parameters in Table 4.3), where the inputs correspond

to the previous 4 concatenated states, an action (one-hot encoded) and the new state. The outputs

are one-hot encoded vector representations of the known teams, where the first position denotes the

transition was drawn from the first team’s replay buffer and so on. The training data is naturally balanced,
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Hyper-parameter Value
Hidden layers (fully connected) Four layers with 256, 192, 128 and 96 units respectively with

ReLU activation and He initialization
Output layer Linear (no activation) with the size of the used state feature set,

using uniform He initialization
Loss Huber
Optimizer Adam
Learning rate 10−2 for 750 iterations, 10−3 for 150 iterations, 10−4 for 75 it-

erations and 10−5 for 25 iterations, for a total of 1000 training
iterations

Batch size 214 (adjusted for training speed)
Regularization L1 and L2 of 10−6

Table 4.2: Hyper-parameters for the predictive approach (not extensively adjusted).

Hyper-parameter Value
Hidden layers (fully connected) Four layers with 256, 128, 64, 32, 16 and 8 units respectively with

ReLU activation and He initialization
Output layer Softmax activation with as many outputs as there are known

teams, using uniform Glorot initialization
Loss Categorical cross-entropy
Optimizer Adam
Learning rate 10−2 for 350 iterations, 10−3 for 75 iterations, 10−4 for 50 iterations

and 10−5 for 25 iterations, for a total of 500 training iterations
Batch size 214 (adjusted for training speed)
Regularization L1 and L2 of 10−6

Table 4.3: Hyper-parameters for the discriminative approach (not extensively adjusted).

as each team’s policy has an associated replay buffer of equal size. The output of this MLP can then be

used to obtain a loss vector as follows: loss vector = 1− output vector.

4.2.1.C Advantages and disadvantages of each alternative

The alternative based on discriminating teammate behavior is an easier problem and as such should

result in a better loss. However, every time a new team is added to the library, it needs to be retrained.

For development and testing purposes of this thesis, it means one MLP needs to be trained for each set

of possible known teams that are explored. The alternative based on predicting teammate behavior is

more versatile, being able to just add a new MLP for a new team. However, it is slower, as multiple MLPs

need to be inferred during execution. The discriminative approach is shown as having better results in

Section 5.4.

4.2.2 Belief updating

To update the agent’s belief during execution, algorithms such as the Polynomial Weights Algorithm

(PWA) [33] (4.2) (used in Barrett’s work) or the update rule used in Exponentially Weighted Forecasters

33



(EWFs) [53] (4.3) can be used. Higher values of η make the belief converge more quickly. EWF seemed to

initially have better results than PWA in Section 5.4. A Bayesian update is not used for the discriminative

approach (which gives probabilities) since, as pointed out in [3], a single update may set a belief to zero.

belief ← belief · (1− η · loss)∑
belief · (1− η · loss)

, η ≤ 0.5 (4.2)
belief ← belief · e−η·loss∑

belief · e−η·loss
, η > 0 (4.3)

4.2.3 Belief loss for unknown teams

It is not feasible to train the described MLP’s during execution with samples acquired from the current

team, as they are unlabeled data. As such, the belief loss for an unknown team must be obtained by

other means.

Considering that the vector of belief losses for known teams sums to 1, if there is a team whose loss

for the observed transition is smaller than 0.5 (in other words, more than half of the probability) then the

agent probably is playing with that team. Otherwise, if there is no such team, then the agent probably

is playing with an unknown team. As such, a simple heuristic approach is to use 0.5 as the loss for the

unknown team: if there is a team where the model is confident across multiple transitions it should be

identified, otherwise the agent should recognize the team as unknown. These results are smoothed

across multiple transitions by the algorithms used for the belief update.

If the vector of losses of known teams summed to another value, the loss for an unknown team would

thus be half of that value. This approach needs at least two known teams: with only one known team it

would always have a loss of zero.

4.3 Policy for an unknown team

This section presents our approach to learning a policy for unknown teams via transfer learning. In face

of an unknown team, the agent can start by acting with a policy learned within its library. Such policy will

probably be better than acting randomly or starting to learn a new policy from scratch. One heuristic is to

use the policy whose team the agent considers to be most similar to the unknown team. To do that, the

agent can keep a second belief vector where the loss of an unknown team is not considered (to avoid

numerical issues in the main belief, such as individual beliefs possibly being zero). It can then act with

the policy whose team has the highest value in that second belief vector. This is equivalent to ignoring

the possibility of an unknown team.

Assuming the agent has better performance while playing with a teammate using a policy trained for it

than a policy trained for another teammate, this strategy will produce non-optimal behavior. However,

training a policy from scratch is also not desirable, as it would produce worse performance for an extended
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period of time. Ideally the agent would leverage its past training while improving by observing the team’s

behavior.

4.3.1 Adapting a selected pre-trained policy

One approach is to select a pre-trained policy and adapt it to the unknown team, using it as a source for

parameter sharing transfer learning [12]. This selection can be done by using the second belief vector

and selecting the team whose belief is highest after a certain amount of time steps (e.g. 1000). This

policy is then used dynamically like the remaining.

However, training this policy online may result in some instability as the outputs of the network might

change abruptly with just a few updates. As such, the following possible improvements to this transfer

learning approach are also tested, in order to possibly improve the stability:

1. Use larger batch sizes, which may result in more similar gradients between updates;

2. Freeze the weights of the first hidden layer of the DQN, resulting in less weights to update; this is

usual practice when employing parameter sharing transfer learning [12];

3. Reduce the learning rate, resulting in smaller updates;

4. Use samples from the selected known team, possibly avoiding overfitting in the initial replay buffer.

In order to perform exploration to learn more about the unknown teammate, the agent acts with

the same 0.01 ε-greedy exploration presented in Table 4.1 when using this policy for acting, during

PLASTIC-Policy’s execution.
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This Chapter presents results that were used to validate the solution described in Chapter 4. Section

5.1 presents how these results are evaluated. Section 5.2 presents results for the hyper-parameter and

modeling adjustment described in Section 4.1. Section 5.3 presents the results of policies trained for all

possible teams. Section 5.4 presents results for the policy selection mechanisms presented in Section

4.2. Section 5.5 presents results for adapting a policy to an unknown team, presented in Section 4.3.

5.1 Evaluation procedure

This section presents the tasks and metrics used to evaluate the solution.

5.1.1 Task

The main task consists in repeatedly playing HFO episodes, where an ad hoc agent plays with a teammate

belonging to one of the six possible teams (Section 1.2) in the offensive against two defensive HELIOS

players, including a goalkeeper. This task varies in the teammate’s team and in the ad hoc agent’s

behavior:

1. For training a policy where the ad hoc agent knows the teammate, it plays for up to 400 thousand

episodes and creates a policy using the observed transitions (10 runs).

2. For testing the policy selection mechanisms, scenarios involving different subsets known teammates

are evaluated (these subsets are: all teams known; an example with three known teams; an example

with five known teams) (100 runs).

3. For testing the policy improved online for an unknown team, the agent is forced to treat the

unidentified team as unknown and to adapt from a pre-determined policy (10 runs). The resulting

policy is evaluated over 50 thousand episodes.

To obtain the policies that are used in further sections after the policy hyper-parameter and modeling

adjustment (Section 5.2), for each team the policy that scores the highest among the last 5 evaluations of

each run is selected1. Each run uses a random seed.

5.1.2 Metrics

The fraction of episodes ending in goal is used to evaluate the performance of policies. It is equivalent to

the goal percentage metric in Hausknecht et al. [25]. In order to evaluate our approach during the training

phase, the agent is tested every 5000 episodes with the policy learned until that point (that is, with static

1Due to time constraints, the policies were selected only among the first 4 runs.
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DQN weights and no exploration) during 500 episodes. Each policy is trained for 10 independent runs

(ideally more runs would have been performed).

The fraction of trials where the correct team has maximum belief (among all teams in the belief vector)

is used for evaluating the policy selection. It is evaluated over the first 1000 to 10,000 time steps after

meeting an unidentified teammate. This evaluation is performed for 100 trials.

The online policy improvement also uses the fraction of episodes ending in goal as a metric. It is

evaluated without exploration every 1000 episodes, for 1000 episodes with static DQN weights. Each

experiment is performed for 10 independent runs.

The plots used to present the results also show 95% confidence intervals, obtained using the bootstrap

method [54] with 1000 resamplings2.

5.2 Policy hyper-parameter and modeling adjustment

In this section, the learning of policies for known teams is adjusted according to Section 4.1. An HELIOS

teammate is used as a representative to adjust hyper-parameters and the modeling.

Increasing the train frequency from every 4 time steps (Figure 5.1) to every time step (Figure 5.2) (less

time steps between updates results in more frequent training) has no negative impact in the performance,

but allows to train a policy in a smaller amount of episodes (400 thousand for the former and 200 thousand

for the later). This also may result in some wall clock time savings, depending on the number of episodes

used (e.g. around 33 hours instead of 36-38 for each run of Figure 5.2 and Figure 5.1, respectively).
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Figure 5.1: Train frequency of 4 time steps (low level
state feature set; 512 ReLU).
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Figure 5.2: Train frequency of 1 time step (low level
state feature set; 512 ReLU).

The high level HFO state feature set (Figure 5.3) has significantly lower performance than the low level

set (Figure 5.2). This may be caused by insufficient or inadequate features for DQN. One hypothesis is

2As there are few runs, the results for a run are not averaged first – this results in smaller plotted errors than expected.
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the angles: in the low level feature set they are encoded as a sinus-cosinus pair, avoiding discontinuities,

while in the high level feature set they are a single scalar.

The deeper topology with two hidden layers of 256 and 64 ReLU respectively (Figure 5.4) had

improved results over a single layer of 512 ReLU (Figure 5.2) – the latter reached a performance of 0.4 to

0.45 starting at around episode 100 thousand, while the former barely went over 0.4. In general, deeper

networks allow to learn a representation that is composed by simpler representations [55], which may

present an advantage.
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Figure 5.3: High level feature set (train frequency of 1
time step; 512 ReLU).
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Figure 5.4: Hidden layers with 256 and 64 ReLU (low
level state feature set; train frequency of 1
time step).

Regarding extensions to the original DQN [13], neither Double DQN [15] (Figure 5.5), Dueling

DQN [18] (Figure 5.6) nor their combination (Figure 5.7) improved the performance in this environment.

For instance, compare the performance at around 60 episodes (with a fraction of episodes ending in

goal of around 0.3 or lower) to Figure 5.4 (around 0.4). Therefore, these extensions are not used in the

following sections.

In summary, relatively to Table 4.1 are used: two fully connected hidden layers of 256 and 64 ReLU

respectively; and an update frequency of 1 time step.

5.3 Learning and evaluating policies

Team Base and Gliders reached an average fraction of episodes ending in goal of around 0.3 to 0.4

using the adjusted hyper-parameters and modeling, AUT MasterMinds, Cyrus and HELIOS a fraction of

around 0.4 to 0.5 and YuShan around 0.5. The respective plots can be observed in Appendix A.1.

The policy that is used for each team in the following sections was selected among the last 5

evaluations of each of the first 4 runs, as described in Subsection 5.1.1. Each policy was then compared
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Figure 5.5: Double Q-learning (low level state feature
set; train frequency of 1 time step; 256 and
64 ReLU).
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Figure 5.6: Dueling networks (low level state feature
set; train frequency of 1 time step; 256 and
64 ReLU).
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Figure 5.7: Double Q-learning and dueling networks
(low level state feature set; train frequency
of 1 time step; 256 and 64 ReLU).

against all teams for 1000 episodes for each combination. The results are present in Table 5.1. As can

be observed, the most effective policy for each teammate is often the policy it was trained with, with the

exception of HELIOS. This result may suggest that some teams do not allow to explore certain plays as

effectively as others.

5.4 Evaluating the policy selection within the ad hoc agent

This section presents the results of the policy selection mechanisms described in Section 4.2.
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Policy (the team it was trained with)
AUT MasterMinds Base Cyrus Gliders HELIOS YuShan

AUT MasterMinds 0.481 0.334 0.359 0.375 0.408 0.330
Base 0.336 0.392 0.367 0.363 0.298 0.389
Cyrus 0.451 0.403 0.481 0.395 0.432 0.432
Gliders 0.351 0.380 0.375 0.391 0.365 0.390
HELIOS 0.467 0.411 0.375 0.411 0.456 0.356

Team

YuShan 0.343 0.399 0.384 0.402 0.361 0.530

Table 5.1: Policy effectiveness (given by fraction of episodes ending in goal) when playing with all possible teams.
The most effective policy for a given team is highlighted in bold. Each combination played for 1000
episodes.

5.4.1 Only known teams

Once again, an HELIOS teammate is used as a representative to adjust the belief updating, between PWA

and EWF (Subsection 4.2.2). For this purpose, the discriminative approach (Subsubsection 4.2.1.B) is

used, as it is more computationally efficient. The results with PWA can be observed in Figure 5.8. The

results with the update rule used in EWFs can be observed in Figure 5.9 for η = 1 and Figure 5.10 for

η = 10. The update rule used in EWFs with η = 1 seemed to perform the best up to the first 300 time

steps, while PWA seemed to have slightly better results up to 700 time steps. As the first time steps are

of higher concern in ad hoc teamwork, the EWF with η = 1 approach was chosen.
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Figure 5.8: Discriminative approach, using PWA with
η = 0.5.
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Figure 5.9: Discriminative approach, using EWF with
η = 1.

The loss approach is then decided between the predictive approach (Subsubsection 4.2.1.A – Figure

5.11) and discriminative approach (Subsubsection 4.2.1.B – Figure 5.9), again using HELIOS as a

representative. As can be observed, the discriminative approach identifies the correct team significantly

faster (the predictive approach is plotted for 10 thousand time steps). This may be due to it being easier
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Figure 5.10: Discriminative approach, using EWF with
η = 10.
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Figure 5.11: Predictive approach, using EWF with η =
1.

to learn compared to the predictive approach.

For the remaining teams, by around 400 time steps the agent correctly identified the team at least

for 90% of the trials, using the update rule used in EWFs with η = 1 and the discriminative approach

(Appendix A.2).

5.4.2 Considering the possibility of an unknown team

Considering an example of three known teams (the first three by alphabetical order - AUT MasterMinds,

Base and Cyrus) and three unknown teams (Gliders, HELIOS and YuShan – identifiable as ”unknown”),

the agent can correctly identify all teams (tested for all six possible teams individually) for the majority

of trials after 1000 time steps, except for Gliders, which it misidentifies as Base (Figure 5.12). One

possibility is that the discriminative model used for the belief loss failed to create strict enough boundaries,

such that most Gliders transitions fall within the boundaries of Base in the model and are classified as

such. The agent correctly identified every known team at least for 90% of the trials by around 200 time

steps, but the unknown teams it correctly identified were for only around 50% to 65% of the trials by

around 1000 time steps (remaining plots in Appendix A.3).

Considering another example where five teams are known (all except for Gliders), there is an increase

in identification performance for unknown teams (Figure 5.13). The agent correctly identified every team

for 80% to 90% of the trials by around 500 time steps (remaining plots in Appendix A.4). Compared to

three known teams, the agent believes a known team is unknown for more steps in the beginning (Figure

5.14 for three known teams and Figure 5.15 for five known teams). This may be due to having more

possible teams, so the model gives more varied predictions, causing it to take longer to converge to a
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known team and having a greater bias for the unknown possibility. The results for the remaining known

teams are similar to Figure 5.15.
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Figure 5.12: Three known teams (team Gliders).
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Figure 5.13: Five known teams (team Gliders).
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Figure 5.14: Three known teams (team AUT

MasterMinds).
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Figure 5.15: Five known teams (team AUT

MasterMinds).

5.5 Policy for an unknown team

In this section are presented the results of the approach for adapting a policy to an unknown team,

based on parameter sharing transfer learning [12]. A case where the agent is playing with a YuShan

teammate and only knows AUT MasterMinds is used for illustrative purposes (this is the case with the
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biggest possible growth according to Table 5.1). Adapting a pre-trained policy often results in achieving

better performance faster (Figure 5.16) when compared to training a new policy from scratch (Figure

5.17), particularly in the initial episodes.
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Figure 5.16: Adapting a policy from AUT MasterMinds

to YuShan.
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Figure 5.17: Training a policy for YuShan from scratch.

Some training instability can be observed when performing straightforward parameter sharing transfer

learning (Figure 5.18 illustrates a particularly bad run of Figure 5.16). The following possible improvements

to this approach are thus tested using the same YuShan case:

1. Using a larger batch size of 256 instead of 32. However, in order to compensate for the added

computational cost and possibly reduce overfitting, the DQN updates are only performed every 4

time steps. Figure 5.19 presents a seemingly more steady growth than Figure 5.16, particularly

in the first 20 thousand episodes, with only a small performance decrease (possibly related to the

more infrequent updates).

2. Freezing the weights of first hidden layer of the DQN prevented the agent from improving (Fig-

ure 5.20). This may be related to the particular DQN topology that was used. The layer was kept

frozen for the entire duration of the runs.

3. Reducing the learning rate to a fourth (0.0000625/4) resulted in smaller updates and thus a slower

improvement (Figure 5.21), while still displaying some instability.

4. Initially using samples from the source policy did not help (Figure 5.22).

As such, we conclude that only using a larger batch size may present an advantage in this scenario. Some

additional scenarios involving different teams (using the larger batch size) are present in Appendix A.5.

44



0 5 10 15 20 25 30 35 40 45 50
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 5.18: Adapting a policy from AUT MasterMinds

to YuShan: a single run illustrating training
instability.
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Figure 5.19: Adapting a policy from AUT MasterMinds

to YuShan: batch size of 256 and training
frequency of 4 time steps (Figure 5.16
repeated in blue).
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Figure 5.20: Adapting a policy from AUT MasterMinds

to YuShan: freezing the weights of the first
hidden layer of the DQN (Figure 5.16 re-
peated in blue).

0 5 10 15 20 25 30 35 40 45 50
Episode (thousands)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s e

nd
in

g 
in

 g
oa

l

Figure 5.21: Adapting a policy from AUT MasterMinds

to YuShan: reducing the learning rate
to 0.0000625/4 (Figure 5.16 repeated in
blue).
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Figure 5.22: Adapting a policy from AUT MasterMinds

to YuShan: using the replay buffer of the
source policy as a starting point (Figure
5.16 repeated in blue).
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This thesis aimed to address the problem of ad hoc teamwork when teammates may be unknown

(never used for training). It was explored in the context of a two versus two match of HFO, where the

ad hoc agent plays in the offense along with a teammate. For this purpose, an architecture based on

PLASTIC-Policy [3] was developed. In this architecture, policies are learned for known teams via DQNs

and added to a library of policies. A policy is then selected during execution with an unidentified team via

a belief. Compared to PLASTIC-Policy, this architecture uses DQN instead of FQI for learning the policies,

uses different mechanisms for identifying teammates (based on MLPs), extends these mechanisms to

also identify if the team is unknown and adapts a policy from a known team to an unknown one.

To obtain a belief loss for a transition, two approaches were proposed: one based on predicting the

next state (which depends on the team) and another based on directly discriminating its behavior among

the known teams. These approaches are based on building a model using the transitions stored in the

replay buffers of the DQNs. The discriminative approach proved to perform better, possibly for being

easier to learn. However, it needs to be retrained every time a new team is added to the library. These

belief losses are then combined across multiple transitions using an algorithm such as the update rule

used in EWFs [53].

However, the original PLASTIC-Policy is unable to identify whether the unidentified team is in the

library of known teams or not. To obtain the belief loss of a team being unknown these approaches

cannot be used, as the transitions currently being observed are unlabeled (the agent does not know

if they belong to previously encountered team or an unknown one). A simple approach based on an

heuristic artificial belief was introduced, where the belief loss of the team being unknown is half of the

sum of the known teams’ belief losses: if a team has less than half of the total loss/more than half of the

probability then the model is confident in it; otherwise, if all teams have less than half of the probability,

then the model is not confident in any of them and the team probably is unknown. However, this approach

is flawed since as more teams are introduced, there is less probability of the model identifying the same

team consistently across multiple transitions, creating a bias for unknown.

If the ad hoc agent identifies a team as unknown, it then switches to a special policy improved online.

As learning a new policy from scratch would be impractical in this setting, the ad hoc agent uses an

existing policy as a source for parameter sharing transfer learning [12]. This source can be selected as the

known team the agent considers to be most similar to the unknown team according to its belief (however,

in Subsection 5.5 were chosen combinations of teams that allowed to observe the performance growth

more easily). Several possible improvements were also tested, where increasing the batch size resulted

in a more steady growth but in slightly reduced performance (possibly related to the more infrequent

training that was used to compensate for the additional computational cost).
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6.1 Limitations and future work

The first main limitation of this work is the simplistic unknown team detection. While it appears to work

with some success in our experiments, its robustness has to be thoroughly tested. When there are many

known teams it is expected that the model will have more varied predictions across multiple transitions,

biasing the agent for the team being unknown. Future work on this area could involve applying more

robust and well-studied techniques, namely in the field of anomaly detection [56]. Another possibility

could be approaches based on the entropy of the transitions’ belief losses.

The second main limitation of this work is the online policy adaptation. While the policy can remain

reasonably stable, there was no meaningful observed improvement in the first moments (e.g. the first

1000 episodes), which are of greater importance in this setting. Future work in this area could involve

studying some of the work mentioned in Yang Yu [49], namely using better exploration techniques [57]

[21], using model-based methods for augmented DQN features [58] [59] and exploring meta-learning

approaches [50].

50



Bibliography

[1] P. MacAlpine, K. Genter, S. Barrett, and P. Stone, “The robocup 2013 drop-in player challenges:

Experiments in ad hoc teamwork,” in 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2014, pp. 382–387.

[2] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein, “Ad hoc autonomous agent teams:

Collaboration without pre-coordination,” in Proceedings of the Twenty-Fourth Conference on Artificial

Intelligence, July 2010.

[3] S. Barrett, A. Rosenfeld, S. Kraus, and P. Stone, “Making friends on the fly: Cooperating with new

teammates,” Artificial Intelligence, October 2016.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., ser.

Adaptive Computation and Machine Learning series. USA: MIT Press, 2018. [Online]. Available:

http://incompleteideas.net/book/the-book-2nd.html

[5] S. Kalyanakrishnan, Y. Liu, and P. Stone, “Half field offense in RoboCup soccer: A multiagent

reinforcement learning case study,” in RoboCup-2006: Robot Soccer World Cup X, ser. Lecture

Notes in Artificial Intelligence, G. Lakemeyer, E. Sklar, D. Sorenti, and T. Takahashi, Eds. Berlin:

Springer Verlag, 2007, vol. 4434, pp. 72–85.

[6] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College, Cambridge,

UK, May 1989. [Online]. Available: http://www.cs.rhul.ac.uk/∼chrisw/new thesis.pdf

[7] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).

Berlin, Heidelberg: Springer-Verlag, 2006.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating

errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[10] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”

ser. Proceedings of Machine Learning Research, Y. W. Teh and M. Titterington, Eds., vol. 9. Chia

51

http://incompleteideas.net/book/the-book-2nd.html
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf


Laguna Resort, Sardinia, Italy: JMLR Workshop and Conference Proceedings, 13–15 May 2010, pp.

249–256. [Online]. Available: http://proceedings.mlr.press/v9/glorot10a.html

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification,” 2015.

[12] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on

transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2021.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:

http://dx.doi.org/10.1038/nature14236

[14] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Statist., vol. 35, no. 1, pp.

73–101, 03 1964. [Online]. Available: https://doi.org/10.1214/aoms/1177703732

[15] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” 2015.

[16] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing Systems 23, J. D.

Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds. Curran Associates, Inc.,

2010, pp. 2613–2621. [Online]. Available: http://papers.nips.cc/paper/3964-double-q-learning.pdf

[17] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” 2015.

[18] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling network

architectures for deep reinforcement learning,” 2015.

[19] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,

M. Azar, and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” 2017.

[20] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on reinforcement learning,”

2017.

[21] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D. Hassabis,

O. Pietquin, C. Blundell, and S. Legg, “Noisy networks for exploration,” 2019.

[22] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat, S. Srinivasan, F. Timbers,
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[46] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Proceedings of the 17th

European Conference on Machine Learning, ser. ECML’06. Berlin, Heidelberg: Springer-Verlag,

2006, pp. 282–293. [Online]. Available: http://dx.doi.org/10.1007/11871842 29

[47] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics for model-based

deep reinforcement learning with model-free fine-tuning,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), May 2018, pp. 7559–7566.

[48] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”

in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille, France: PMLR, 07–09 Jul

2015, pp. 1889–1897. [Online]. Available: http://proceedings.mlr.press/v37/schulman15.html

[49] Y. Yu, “Towards sample efficient reinforcement learning,” in Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. International Joint

Conferences on Artificial Intelligence Organization, 7 2018, pp. 5739–5743. [Online]. Available:

https://doi.org/10.24963/ijcai.2018/820

[50] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep

networks,” in Proceedings of the 34th International Conference on Machine Learning, ser.

Proceedings of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. International

Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1126–1135. [Online]. Available:

http://proceedings.mlr.press/v70/finn17a.html

[51] S. Barrett, P. Stone, S. Kraus, and A. Rosenfeld, “Teamwork with limited knowledge of teammates,”

in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 2013.

[52] A. Lazaric, M. Restelli, and A. Bonarini, “Transfer of samples in batch reinforcement learning,” in

Proceedings of the 25th International Conference on Machine Learning, ser. ICML ’08. New

York, NY, USA: Association for Computing Machinery, 2008, p. 544–551. [Online]. Available:

https://doi.org/10.1145/1390156.1390225

[53] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge University Press,

2006.

[54] B. Efron, “Bootstrap methods: Another look at the jackknife,” Ann. Statist., vol. 7, no. 1, pp. 1–26, 01

1979. [Online]. Available: https://doi.org/10.1214/aos/1176344552

[55] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.

deeplearningbook.org.

55

http://dx.doi.org/10.1007/11871842_29
http://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.24963/ijcai.2018/820
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1145/1390156.1390225
https://doi.org/10.1214/aos/1176344552
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[56] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv., vol. 41,

no. 3, Jul. 2009. [Online]. Available: https://doi.org/10.1145/1541880.1541882

[57] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel, and

M. Andrychowicz, “Parameter space noise for exploration,” 2018.

[58] V. Pong*, S. Gu*, M. Dalal, and S. Levine, “Temporal difference models: Model-free deep RL for

model-based control,” in International Conference on Learning Representations, 2018.

[59] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende,

A. Puigdomènech Badia, O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia,

D. Hassabis, D. Silver, and D. Wierstra, “Imagination-augmented agents for deep reinforcement

learning,” in Advances in Neural Information Processing Systems, I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,

vol. 30. Curran Associates, Inc., 2017, pp. 5690–5701. [Online]. Available: https:

//proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf

56

https://doi.org/10.1145/1541880.1541882
https://proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9e82757e9a1c12cb710ad680db11f6f1-Paper.pdf


A
Extended Results

Contents

A.1 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Policy selection when all teams are known . . . . . . . . . . . . . . . . . . . . . . . . 60

A.3 Policy selection with three known teams . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.4 Policy selection with five known teams . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.5 Additional online policy adaptation experiments . . . . . . . . . . . . . . . . . . . . . 64

57



58



A.1 Policies

Figures A.1 to A.6 present the fraction of episodes ending in goal for every team, tested every 5000

training episodes for 500 episodes without exploration and without changing the DQN weights.
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Figure A.1: Policy training for AUT MasterMinds.
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Figure A.2: Policy training for Base.
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Figure A.3: Policy training for Cyrus.
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Figure A.4: Policy training for Gliders.
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Figure A.5: Policy training for HELIOS.
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Figure A.6: Policy training for YuShan.

A.2 Policy selection when all teams are known

Figures A.7 to A.12 present the fraction of trials with maximum belief (where the agent identifies the team

as the one that has maximum belief) for all teams, when all teams are known. The update rule used in

EWFs with η = 1 and the discriminative approach are used.
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Figure A.7: Policy selection for AUT MasterMinds.
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Figure A.8: Policy selection for Base.

60



0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
gliders

helios
yushan

Figure A.9: Policy selection for Cyrus.
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Figure A.10: Policy selection for Gliders.
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Figure A.11: Policy selection for HELIOS.
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Figure A.12: Policy selection for YuShan.

A.3 Policy selection with three known teams

Figures A.13 to A.18 present the fraction of trials with maximum belief (where the agent identifies the

team as the one that has maximum belief) for all teams, where AUT MasterMinds, Base and Cyrus are

known and Gliders, HELIOS and YuShan are unknown. The update rule used in EWFs with η = 1 and

the discriminative approach are used.
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Figure A.13: Policy selection for AUT MasterMinds

(known) with three known teams.

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
unknown

Figure A.14: Policy selection for Base (known) with
three known teams.
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Figure A.15: Policy selection for Cyrus (known) with
three known teams.
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Figure A.16: Policy selection for Gliders (unknown;
misidentified as Base) with three known
teams.
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Figure A.17: Policy selection for HELIOS (unknown)
with three known teams.
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Figure A.18: Policy selection for YuShan (unknown)
with three known teams.

A.4 Policy selection with five known teams

Figures A.19 to A.24 present the fraction of trials with maximum belief (where the agent identifies the

team as the one that has maximum belief) for all teams, where AUT MasterMinds, Base, Cyrus, HELIOS

and YuShan are known and Gliders is unknown. The update rule used in EWFs with η = 1 and the

discriminative approach are used.

0 100 200 300 400 500 600 700 800 900 1000
Time step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n 

of
 tr

ia
ls 

wi
th

 m
ax

im
um

 b
el

ie
f

autmasterminds
base

cyrus
helios

yushan
unknown

Figure A.19: Policy selection for AUT MasterMinds

(known) with five known teams.
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Figure A.20: Policy selection for Base (known) with five
known teams.
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Figure A.21: Policy selection for Cyrus (known) with
five known teams.
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Figure A.22: Policy selection for Gliders (unknown)
with five known teams.
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Figure A.23: Policy selection for HELIOS (known) with
five known teams.
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Figure A.24: Policy selection for YuShan (known) with
five known teams.

A.5 Additional online policy adaptation experiments

Figures A.25 to A.28 present the fraction of episodes ending in goal when the agent adapts a policy from

one teammate to a different teammate. The results can be compared to Table 5.1.
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Figure A.25: Adapting a policy from Base to HELIOS:
batch size of 256 and training frequency
of 4 time steps.
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Figure A.26: Adapting a policy from Gliders to Cyrus:
batch size of 256 and training frequency
of 4 time steps.
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Figure A.27: Adapting a policy from YuShan to AUT

MasterMinds: batch size of 256 and train-
ing frequency of 4 time steps.
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Figure A.28: Adapting a policy from YuShan to HELIOS:
batch size of 256 and training frequency
of 4 time steps.
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