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Abstract—This work explores two different approaches to
tackle prosody training in the context of Computer Assisted
Language Learning. This would be applied to an exercise
where the user listens to a recording containing an utterance
made by a native speaker and repeats that utterance, which
is evaluated in terms of pitch and duration. The task will
be complementing or replacing a reference utterance pre-
recorded by native speaker with an utterance in the voice
of the learner. The first approach consists on manipulating the
user’s speech, by correcting the pitch and duration markers
through speech analysis. The second approach uses a Voice
Conversion method to convert the native speaker’s utterances
to the voice of the leaner. Both approaches are implemented
and preliminary results and evaluations are provided.

1. Introduction

English can be seen as the lingua franca of the world
- it is a global language that strongly dominates all areas
of international communication. The number of English
speakers may be as high as 2300 million [1], from which the
majority of its speakers are non-native. Due to the necessity
to accommodate the raising number of learners, learning
English has become immensely diversified. The introduction
of Computer Assisted Language Learning (CALL) systems
provides a cheaper, simpler and more versatile way to learn,
because they can be used anywhere at any time and the
experience may be tailored to an individual user.

In order to master a language, it is important to master
both the individual phonetic segments (vowels and conso-
nants) as well as the properties of syllables and larger units
of speech, the supra-segmental aspects of speech. These are
known as prosody, and mastering it should part of the focus
of CALL systems should be prosody training.

Prosody training through CALL systems can be done
both with visual and audio feedback. But since repetition is
a key factor on language learning, listening to an utterance
from a native professional speaker, would provide the stu-
dent with a reference to follow. And if the student would
listen to himself/herself uttering that same sentence with the
correct stress, it would potentially eliminate any distracting
factor related with the difference between the student and
the native speaker’s voices, and improve the student’s focus
on the real aspects that he/she needs to improve.

The main objective of this thesis is to explore two
methods that could provide the student with a reference
audio with a voice close to the student’s own voice. It
is assumed that the student already masters the segmental
aspects of the English language. The first approach will
consist of manipulating the audio of the user’s attempt on
this exercise, correcting the pitch and duration of the phones
uttered, and playing it back to the user. This will be made
using a Vocoder-based system and it is intended to be used
without any pre-training and to be available to the user since
the first attempt of the first exercise.

The second approach is intended to replace the native-
speaker’s utterance by the same sentence with the target
prosodic contours, but in the user’s own voice. It requires
gathering data (audio files) from previous exercises from the
user to fine-tune a pre-trained Voice Conversion model. This
model is then used to generate the reference when the user
loads the exercise, in his/her own voice, without requiring
any attempt on that exercise. It makes use of state of the
art Voice Conversion technology and requires relatively high
computational power and long training times.

ELSA Speak. This work was developed in cooperation with
ELSA Speak, which is an English learning APP. Its exercises
consist of asking the users to read a word or sentence,
which is recorded by the device and sent to its servers to
be analysed according to targets are defined according to
the Western American English accent. It returns real-time
feedback on their pronunciation mistakes, with over 95%
accuracy. The user may also chose to listen to this word or
sentence uttered by a native English speaker.

2. Related Work

2.1. Speech Synthesis

Speech synthesis is defined as the artificial production
of human speech. In order to do this, first it is necessary to
analyse and decompose the speech signal into parts. These
parts can then be manipulated and later synthesized back
into speech that is different from the original. This is the
backbone of the modern Text-to-Speech (TTS) systems.

2.1.1. Parametric Speech Synthesis. These models focus
only on how human-like the output sounds, without mak-
ing deeper claims that the model is a true model of the

1



human speech production. Human speech is produced as
the result of individual parts of the human body, such as
the tongue, the lips, the vocal folds and the shape of the
vocal tract, combined together, which implies that speech is
composed by a number of processes running concurrently.
To model this, the components need to be separated to
some degree and controlled separately. The current models
of these parametric vocoders encode speech into the three
following components, according to a given time frame:

• Spectral Envelope - Contains the formants origi-
nated by the shape of the vocal tract . Perceived as
the overall timbre.

• Fundamental Frequency - Rate of vibration of the
vocal foals. Perceived as the pitch.

• Non periodic Energy - Associated with the frica-
tives.

Usually, these components are expressed in numbers,
and vectors of numbers, taken at fixed intervals of time.
Once it is in this form, the data can be manipulated for pur-
poses such as Voice Transformation (VT), or used together
with the text they represent to train TTS systems. These
representations can then be used by a waveform generator
to output artificially generated speech.

2.1.2. Neural Vocoders. Since the introduction of
WaveNET [2], neural vocoders have gradually became
the most common vocoding method to generate waveform
audio, achieving increased audio quality of generated
speech. These systems are data driven and they do not
assume any mathematical model, which appears to be
a solution to some inherent problems of the parametric
vocoders. One downside is that these models require big
amounts of data and take very long to be trained. This
makes it difficult to create a universal system that is able
to generate any voice even though some attempts already
achieve good results, like WaveGlow [3] and Universal
Vocoder [4] Also, fine-tuning the algorithm every time the
speaker changes is very time-consuming and the inferences
usually take long to run, making them not suitable for
real-time applications.

2.2. Voice Conversion overview

Voice Conversion (VC) is the study that deals with the
conversion of the perceived speaker identity, while retaining
the linguistic content.

Analysis and
Feature Extraction

Analysis and
Feature Extraction

Training

Mapping and
Transformation Synthesis

Conversion
Model

Source Speech

Target Speech

Source Speech Converted Speech

Training Phase

Conversion Phase

Figure 1. Overview of the flow of a typical Voice Conversion system,
divided intro the training and conversion phases

There is a wide range of algorithms designed to perform
a VC task, which have different requirements and different
purposes. But there are a set of steps that are common to
the majority of these algorithms and produce a simplified
pipeline that can be seen on the figure 1.

2.2.1. Analysis and Feature Extraction. - Estimation of
the parameters that represent the acoustic features of speech,
as mentioned in the previous chapter. This is applied to
the audio files containing both the source’s and the target’s
speech.

2.2.2. Training. - Receives the features extracted from both
the source and target speakers and attempts to represent
the relation between similar features of both. Outputs a
conversion model, or a mapping function, with the perceived
correspondences between each set of features.

2.2.3. Mapping and Transformation. - Performs a process
similar to the one on the training phase to map the features
of the source speaker into the representations from the
conversion model, and performs the transformation of these
features using the mapping function. Outputs the converted
features.

2.2.4. Synthesis. - Receives the converted features and
attempts to reconstruct the waveform audio containing the
text originally uttered by the source speaker but with the
voice of the target speaker.

3. Pitch Transplant

3.1. Overview

The first approach that was adopted to provide the
student with an utterance in his/her own voice is named
Pitch Transplant, and the name comes from the way the
output is generated. In broad terms, it is built by fusing
the user specific features with the scaled and aligned pitch
contour of the audio from the reference. It is aligned through
a Dynamic Time Warping (DTW) algorithm with specific
restrictions so that the produced utterance is close to the
target, but doesn’t contain significant distortion. This allows
the introduction of the gradual reference [5] that will change
at each iteration, as alternative to a voice conversion algo-
rithm which will produce a single static target, no matter
how the user utters the sentence.

It receives two audio files as input, one from the user
and another from the reference, and outputs a single audio
file containing the re-synthesized audio of the user with the
corrections on pitch and duration contours. All audio files
are in wav format, single-channel, sampled at 16KHz and
with 16bits per sample

ELSA’s server will return the alignment at the phone
level of both the reference utterance and the user’s utterance.
This exercise is expected to only be available to users that
already have a good level of English, in terms of phonetics,
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Figure 2. Outline of the Pitch Transplant Algorithm. The thicker lines
represent data from both the reference’s and the user’s utterance.

and consists of uttering a sentence that is shown in the
screen.

The outline of the Pitch Transplant algorithm is pre-
sented on image 2. The code of the Pitch Transplant algo-
rithm was all written in Python. The original implementation
of the WORLD algorithm is written in C++, so a Python
Wrapper was used [6].

3.2. WORLD

   Aperiodicity

   Spectral Envelope

   Fundamental Frequency (F0)

Harvest
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D4C

Synthesis

Waveform Output

Figure 3. Overview of WORLD, including the methods for estimation of
the 3 speech components, Fundamental Frequency, Spectral Envelope and
Aperiodicity. Adapted from [7].

WORLD [7] [8] is a vocoder-based high-quality speech
synthesis system that allows the easy manipulation of speech
and meets the requirements of high sound quality and real-
time processing. The version used in this work is the latest,
which was used as part of the baseline model of 2020’s
Voice Conversion Challenge [9].

WORLD can be divided into 2 main stages: feature
extraction and synthesis. Feature extraction is carried out by
three modules that run in sequence and extract three speech
parameters. These are:

• Harvest [10] extracts the Fundamental Frequency
(F0).

• Cheaptrick [11] extracts the spectral envelope.
• D4C extracts the aperiodicity [8].

The synthesis stage performs the inverse process, joining
the 3 speech components to produce a waveform signal
containing speech.

3.3. DTW

To preform the temporal alignment, the DTW algorithm
was chosen. This algorithm is fast and computationally
cheap, so it fits the requirements for the Pitch Transplant.
This implementation of the DTW uses Euclidean Distance.
Then, the optimum alignment will correspond to the path
in this cost matrix that minimizes the cumulative distances
and obeys to a set of restrictions. These restrictions mini-
mize distortion, reduce computational power and ensure the
usability of the results. These are:

Endpoint Constaints. specify that the alignment must start
in the first frame pair and finish in the last.

Monotonicity Conditions. do not allow for the warping
path to have a negative slope.

Global Path Constraints. restrict the region in the matrix
where the the distances are calculated and consequentially,
the optimal path is searched. This implementation uses a
simple Sakoe-Chiba band with the width of either 15 or
31 samples, which is chosen according to the difference be-
tween the length of the segments for each phone. In case this
difference is smaller than 10 samples, the smallest window
is used and the biggest window is chosen otherwise. For
the rare cases where there is a difference between segments
bigger than 31 samples, the window size is changed to 1.1
times the difference between segments.

Local Path Constraints. specify the allowed jumps between
each 2 adjacent elements on the path. It is recommended
[12] that the selection of the local continuity constraints
should be based on heuristics and observations that result
from an experimental process. The allowed steps are repre-
sented on figure 4.

• 0: D(i, j)
• 1: D(i+ 1, j) (max of 3 successive steps)
• 2: D(i− 1, j) (max of 1 successive step)
• 3: D(i, j + 1) (max of 3 successive steps)
• 4: D(i, j − 1) (max of 1 successive step)

The DTW returns a variable wrap path. This variable
contains 2 arrays with the indexes corresponding to one
of the utterances, reference or user. The correspondence
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1: D(i+1,j)

3: D(i,j+1)0: D(i,j)

2: D(i-1,j)

4: D(i,j-1)

Figure 4. Local continuity constraints. The five step patterns selected.

between the ith frame from the speech patterns X and Y can
be obtained by: X(wrap pathX(i))⇔ Y (wrap pathY (i))

Figure 5 shows the warping path that resulted from
the application of Pitch Transplant, and it also contains
markings for the beginning and end of each phone. The
resulting F0 contours from the utterance synthesized after
these alignments are presented on figure 6. The F0 contour
from the user’s utterance is presented on the top, the one
from the reference’s utterance on the bottom and in the
middle is the F0 contour from the synthesized transplanted
utterance.

Figure 5. Warping path of an utterance from dataset DS3-5

Figure 6. F0 contour of an utterance from dataset DS3-5, the reference
utterance and the converted utterance (result of Pitch Transplant algorithm)

3.4. F0 Scaling

The utterances aligned with the DTW algorithm belong
to different speakers, so the F0 needs from the reference
needs to be scaled in order to be forced into the user’s
utterance.

The formula used to scale the F0 was adapted from [13]:

f0final =
f0user

f0ref
(f0aligned − f0ref ) + f0user

Where:
σuser s - Scaled standard deviation of user’s F0
σref - Standard deviation of reference’s F0
f0aligned - F0 contour from the reference aligned with

DTW. It is similar to the reference’s F0 but with some
dropped or repeated frames.

f0ref - Mean value of the reference’s F0
f0user - Mean value of the user’s F0

3.5. Signal-to-Noise Ratio (SNR) verification and
Feature Normalization

In order to guarantee that the output of the Pitch Trans-
plant does not contain a high level of noise, WADA SNR
[14] was introduced to estimate the SNR value. Only utter-
ances with SNR higher than 50 will be processed. It has
a python implementation [15] which made it simple to test
and integrate into the Pitch Transplant algorithm.

The DTW algorithm receives as input a stack made
of both the spectral envelope and the aperiodicity features.
But while the aperiodicity values range between 0.001 and
1, the range of the values of the spectral envelope differs
greatly in several orders of magnitude, from 10 to 10−18. In
order to stack these features, a min-max Normalization was
performed, separately on each of the features. It is important
to note that this normalization is used only to perform the
alignment. The original non-normalized features are kept
untouched to perform the synthesis once the time alignment
was determined.

3.6. Datasets

In order to test the performance of the algorithm, 3
datasets were created using audios from ELSA’s users. All
datasets are balanced in terms of gender (50% female and
50% male speakers), with an age that ranges between 18
and 50. The selected utterances have a good level of english
pronunciation, as evaluated by ELSA’s nativeness score. The
characteristics of each dataset are presented on table 1.

3.7. Evaluation

The evaluation methods proposed above take into ac-
count mainly the quality of the audio produced by the
algorithm and the improvement on the fluency, nativeness
and naturalness of the speech.

Pitch Transplant is performed exclusively using CPU and
all tests were done in a standard laptop (Intel Core i5-8250U
CPU MAX 3.4 GHz, and 8 GB RAM).

4



TABLE 1. CHARACTERISTICS OF THE DATASETS

Dataset Nr. of files Duration of audio (s)
DS1 30 165.2
DS2 20 120.56

DS3-1 10 97.31
DS3-2 10 73.06
DS3-3 10 80.86
DS3-4 10 112.91
DS3-5 10 73.33

3.7.1. AB test. The pair of samples on this test are the
original and the transplanted audio. Subjects were asked to
listen to both samples and chose which sounds more native,
fluent and natural. The neutral option was also given and the
sample order was mixed. The results may be found below.

Nativeness

Naturalness

Fluency

0% 25% 50% 75% 100%

Transplanted Original No preference

Figure 7. AB tests results

3.7.2. ABX test. The same pair of samples from the AB
test were used and a third audio sample (X) containing the
reference audio from ELSA’s speech artist was added. The
subjects were asked to choose from the first pair of samples
(A and B) which one was more similar to the reference
audio file in terms of intonation, tone, rhythm, and stress.
The results may be found in figure 8.

0.00%

20.00%

40.00%

60.00%

Transplanted Original No preference

Figure 8. ABX tests results

3.7.3. Mean Opinion Score (MOS). The subjects were
asked to rate the audio quality of each of the three samples
from 1 to 5. On the user’s side, all the samples were
either copy synthesized with WORLD, or the result of the
Pitch Transplant algorithm. To keep the test centered on the

quality of the algorithm, no original samples, without being
passed through WORLD, were included. On the reference
side, half of the samples were original and half were copy
synthesized with WORLD. The objective is to verify how
much WORLD reduces the quality of the samples. The
results are given in the table below, together with the 95%
confidence interval.

TABLE 2. MEAN OPINION SCORE TOGETHER WITH THE 95%
CONFIDENCE INTERVAL

Audio Sample MOS
User Transplanted Audio 2.83± 0.14

User Audio synthesized with WORLD 2.89± 0.14
Reference Audio synthesized with WORLD 4.39± 0.16

Reference Audio (original) 4.72± 0.14

3.8. Objective Testing

When performing a Prominence exercise on ELSA app,
a prominence marker is calculated for each word in the
sentence. These markers result from the evaluation of both
the duration and the pitch of each word and return either
”normal” or ”error” whether the submitted recording is close
enough to the reference or not. The proposed objective
evaluation method makes use of these markers to compute
a percentage of how many markers were correct before and
after the pitch transplant takes place, calculated with the
following formula:

avg marker score(%) =

∑
correct markers∑
total markers

× 100

This is made for all the utterances of each dataset,
resulting in the average marker score per dataset from DS3
that can be seen in 3.

TABLE 3. RESULTS OF MARKER SCORE TEST (PT - PITCH
TRANSPLANT)

Dataset Before PT (%) After PT (%)
DS3-1 79.23± 5.59 95.0± 2.35
DS3-2 87.01± 5.15 91.67± 6.00
DS3-3 86.12± 6.72 93.75± 3.65
DS3-4 88.89± 4.50 94.0± 2.19
DS3-5 88.63± 3.96 97.08± 2.01

Average 85.98 94.30

3.9. Yes/No question

At the end of the survey, the subjects were asked if they
would be comfortable listening to their own manipulated
(corrected) voice as a reference in a language learning
context. It was a yes or no question, but the indifference
option was also given.

4. Voice Converion Approach

This chapter explores an alternative approach to tackle
the problem of this thesis. Instead of manipulating a record-
ing from the user, the idea is to produce the user’s goal
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Figure 9. Responses to the question ”Would you be comfortable if, in
a language learning context, you would listen to your own manipulated
(corrected) voice as a reference?”

utterance in his/her own voice, by way of Voice Conversion
(VC), but keeping the prosodic patterns from the source. In
this context, the terms reference and user will be replaced
by source and target, respectively.

The main objective of this chapter is to generate dis-
cussion and to explore the potential of Voice Conversion
applied to language learning. No extensive research on all
the existing VC alternative methods was made and the
chosen algorithm was used with minimum tweaking. The
priority was the preparation of a dataset with high prosodic
variance, that could be used for the pre-train of a VC model
as well as verifying if the user’s data from the ELSA app
was usable for this purpose.

4.1. Algorithm

4.1.1. Requirements and restrictions. The chosen algo-
rithm to perform this task would need to fit into the re-
quirements below:

itemsep=0pt, parsep=0pt

• Small amount of target data - The option of
listening to the reference utterance in his/her own
voice should be available to the user early on, so
the algorithm should require a small amount of the
user’s audio files.

• Generate audio files fast - Even though the training
of the algorithm can be made offline, the generation
of the audio files should be done fast. Ideally, it
should happen during the loading of one exercise,
or when an entire module is downloaded. Generating
all the converted audio files beforehand and storing
them could also be an option, but it is not the current
goal.

• Keeping prosodic features - The algorithm should
allow for the maintenance of the prosodic patterns
of the source speaker.

The choice landed on a Non-Parallel Sequence-to-
Sequence Voice Conversion Algorithm with Disentangled
Linguistic and Speaker Representations, presented in [16].
The algorithm seemed to fit into the first two of the above

constraints. The inference process took under 5 seconds
per utterance (excluding the waveform generation) and the
fine-tune process could converge and achieve decent results
with under 200 audio files of the target speaker. As for the
third constraint, related with the prosodic features, it will
be determined by testing. The code for the Non-parallel
Seq2seq Voice Conversion algorithm is provided in the
authors github repository.

The algorithm is shipped with an implementation of a
Griffin-Lim Vocoder [17] as the waveform generator. To
obtain improved results, a pre-trained model of the Universal
Vocoder [4] will be used instead.

4.1.2. Preprocessing. The author provided a feature ex-
traction script, extract features.py, that extracts the mel-
spectrograms from the audio files. A peak amplitude nor-
malization and a digital filter to add pre-emphasis to the
utterances were added to the feature extraction script. It was
added so that the Universal Vocoder pre-trained model could
be used, which preforms this pre-emphasis to the input files
used on training.

One script, preprocess.py, was created to walk through
the dataset directory and generate the files containing the
train, validation and test lists. To prevent out of memory
errors, all the utterances longer than 7.5 seconds were not
added to these lists, as per recommendation of the author.

4.1.3. Architecture. The system performs sequence-to-
sequence (seq2seq) voice conversion using non-parallel
training data. The process can be broadly divided into two
distinct phases, training and conversion. Since the model
was used with minimal tweaking, with a black-box ap-
proach, the description of the algorithm will not be done in
detail. The training phase is responsible for the estimation of
the model’s parameters and it is done in two stages, the pre-
training stage, which uses a multi-speaker dataset, and the
fine-tuning stage performed on a specific pair of speakers.
The conversion phase receives the acoustic features of the
source audio file and converts them to the target using the
parameters estimated in the training phase. The converted
audio file can then be synthesized by a waveform generator.

Figure 10. Structure of the Non-parallel Seq2seq Voice Conversion algo-
rithm. Taken from [16]

The model is composed by five main components.
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Text Encoder Et. Transforms the text inputs T into lin-
guistic embeddings Ht.

Recognition Encoder Eτ . Receives the acoustic feature
sequence A and predicts the phoneme sequence T , aligning
the acoustic and phoneme sequences automatically. Since
one phoneme usually corresponds to tens of acoustic frames,
the encoding is a compression process. Its output Hτ has the
same length as the phoneme sequence T regardless of the
speaking rate of speakers, and resides in the same linguistic
space as Ht, containing only linguistic information.

Speaker Encoder ES . Embeds the acoustic feature se-
quence A into a speaker embedding vector hS which can
discriminate speaker identities and should contain only
speaker-related information. It is only employed at pre-
training, whereas at fine-tuning stage a trainable speaker
embedding is introduced for each speaker, initialized by hS .

Auxiliary classifier CS . Employed to predict the speaker
identity from the linguistic representation Hτ of the audio
input. It is introduced for adversarial training in order to
eliminate remaining speaker information within linguistic
representation Hτ . Each element of its output P̂S is the
predicted probability distribution among speakers.

Seq2seq decoder Da. Recovers acoustic features from
the combination of speaker embeddings hS and linguistic
embeddings, Hτ or Ht, either of each fed into the decoder
at each training step. It can be viewed as a decompressing
process, in which the linguistic contents are transformed
back in acoustic features Â , conditioned on the speaker
identity information.

A learning rate decay was added to the pre-train script,
which was already included in the fine-tune script. In the
initial tests, the model kept collapsing, and the results were
only noise and silence, so this portion of code was copied
from the fine-tune scripts. After this change, the algorithm
managed to train successfully.

4.1.4. Waveform Generation. The Universal Vocoder [4] is
a WaveRNN-based neural vocoder developed to overcome
the over-fitting that other neural vocoders are prone to. It
can be used with speakers unseen in training, making it
ideal to test in a black-box approach. The authors provide
a pre-trained model, making audio generation an easy and
seamless process. The pre-train is made with audio files
sampled at 16KHz, which is the same sampling frequency
used on the VC algorithm.

4.2. Datasets

In order to pre-train and fine-tune the model, it was
needed to collect speech data. The datasets used in this task
are presented below. The prosodic value is a very subjective
assessment based on the textual content and listening of a
small subset of the audio files.

TABLE 4. TABLE CONTAINING THE SUMMARY OF THE MAIN
CHARACTERISTICS OF EACH DATASET. .

Sampling Length of Prosodic
Dataset Freq. & audio value

Bit Depth min
VCTK 48KHz/16bit 1640 Low

ARCTIC-rms 16KHz/16bit 66 Medium
ARCTIC-slt 16KHz/16bit 57 Medium

ELSA-REF(∗) 16KHz/16bit 183 High
LibriTTS 24KHz/16bit 12372 Medium

ELSA-USR1(∗) 16KHz/16bit 2 High
ELSA-USR2(∗) 16KHz/16bit 1 High
ELSA-USR3(∗) 16KHz/16bit 10 High

L2-ARCTIC-NCC 44.1KHz/16bit 70 Medium
L2-ARCTIC-HQTV 44.1KHz/16bit 69 Medium

(∗) Non public datasets constructed or adapted for the purpose of this
work using protected data from ELSA Corp.

Out of the datasets on table 4, VCTK, ARCTIC-
rms, ARCTIC-slt, LibriTTS, L2-ARCTIC-NCC and L2-
ARCTIC-HQTV are publicly availible datasets, recorded
quiet environments. The remaining datasets were built with
audio files from ELSA’s speech artist and ELSA’s users.
Three different detasets were generated with users’ audios
in order to test different conditions for training, namely the
size of the dataset, the fluency of the speakers and the audio
quality of the recordings.

ELSA-REF. This dataset was named ELSA-REF because
it is composed exclusively by the audio references from
ELSA’s exercises, recorded by a female speaker. The quality
of the audio files is still high and close to studio quality.
The sentences of 3 words or less were removed because
the existence of many short sentences in the dataset could
introduce bias in the Voice Conversion algorithm when used
in training.

ELSA-USR1. 13 Audio files from ELSA’s assessment test,
with a score of 37% of nativeness. The speaker is male
and his L1 is Vietnamese. The audios have noticeable back-
ground noise and the pronunciation is poor. The audio files
needed to be broken into smaller files, due to restrictions of
the algorithm, resulting in 23 audio files with a total of 130
seconds of speech.

ELSA-SR2. 13 Audio files from ELSA’s assessment test,
with a score of 97% of nativeness. The speaker is female,
her L1 is American English. The audio files have very low
noise and the pronunciation is excellent. The total duration
of this subset is 67 seconds.

ELSA-USR3. 170 Audio files from ELSA’s exercises. The
speaker is male, his L1 is Vietnamese and the pronuncia-
tion is poor. The audio files have very different recording
conditions. There are three factors that are noticeable in this
user’s audio files, which can be heard across the majority of
ELSA’s users: the noise levels vary from barely noticeable to
very high, including some audio files where the wind noise
is higher than the user’s own voice; some audio files contain
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highly distorted voice, most likely from speaking too close
to the headphones microphone; some of the audio files seem
to be spoken by a different user (also male). These factors
and the problems they lead to will be commented on section
4.3, together with the results from this training.

4.3. Tests

All the tests were performed in a remote AWS EC2
instance, made available by ELSA Corp. This instance had a
NVidia Tesla K80 GPU, with 11Gb of memory and CUDA
version 11.0.

4.3.1. Pre-Training and fine-tuning with VCTK and
ELSA-REF. The first test followed all the recommendations
of the authors of the VC model, both in terms of datasets and
parameters. The objective was to verify the that the code was
stable and the model was training properly. The model was
pre-trained with VCTK dataset and fine-tuned with speaker
p360 from VCTK and ELSA-REF dataset. The results of the
Voice Conversion task were as expected. However, almsot
none of the prosodic features from the source speaker were
kept. The resulting audio file had all the prosodic traits from
the target speaker, thus it was not usable for a context of
prosody training.

The VCTK dataset contains utterances mainly from a
newspaper, which are predominantly declarative and plain.
One interesting thought is that the lack of prosodic variance
of this dataset, with which the pre-training and fine-tuning
was done, may be responsible for a bias on the algorithm
towards generating equally neutral utterances. To test this,
a next test was made with different datasets.

4.3.2. Pre-training with LibriTTS. On this test, a new
model was pre-trained with a different dataset. The dataset
used to pre-train the model on this test is LibriTTS aug-
mented with ELSA-REF files. Similarly to the initial pre-
training, all the sentences longer than 7.5 seconds will be
removed. Due to the higher number of utterances on the
dataset, the pre-training took longer, totaling 105h of clock
time and reaching 95k iterations, in the 41st epoch.

4.3.3. Fine-tuning with ELSA-REF and ELSA-USR1.
This was the first test done with audio from real users,
using one of the datasets created for this purpose. The
characteristics of the dataset, containing a very reduced
number of utterances, with very poor English pronunciation
and low recording quality, make this test an extreme case.
The model quickly collapsed and it was not possible to get
any useful result from it.

4.3.4. Fine-tuning with ELSA-REF and ELSA-USR2.
The model did not collapse, and it trained for 10 hours,
reaching over 12k iterations after 50 epochs. The major-
ity of the generated audio files had fluent and intelligible
speech, but the perceived speaker identity didn’t change,
with exception of small portions (words or sometimes only
individual phones) that sounded similar to the target speaker.

This means that overall, the model failed to perform the
voice conversion task, and produced utterances with high
pitch fluctuations and with no usability on the context of
prosody training.

This test seems to indicate that the dataset of utter-
ances from the assessment test is not enough to generate
a meaningful training and validation set. But this time, even
though it achieved poor results, the model did not collapse
during training and it was possible to generate intelligible
utterances.

4.3.5. Fine-tuning with ELSA-REF and ELSA-USR3.
The algorithm ran for 37h, reaching 17k iterations after 50
epochs. After generating the audio files, it was clear that
the model had trouble converging. The audio files were very
long, with over 20 seconds, and had only silence and noise
similar to speech with the target’s voice, but without uttering
any word. This noise seemed like specific phones, mostly
vowels, elongated and repeated without any meaningful
order. It is now clear that the audio quality has a very high
influence on the outcome, higher than expected initially, and
may indicate that using the available audio files from real
users to train the model will not give any usable result for
speakers with these characteristics.

4.3.6. Fine-tuning with ELSA-REF and L2-ARCTIC-
NCC. This attempt was done with 100 audio files from
L2-ARCTIC-NCC, resulting in 6 minutes of speech. The
algorithm reached the 50 epochs at 16400 iterations after
running for slightly under 12h, with the alignment graphics
indicating that it converged. The converted speech was
intelligible but it was not natural. The converted voice had
some resemblance with the target speaker, but with an added
creakiness that made it sound unnatural. It seems that the
model did not have enough data to achieve total convergence
and a good result.

This experiment also allowed us to verify the behaviour
of the method in the presence of target speakers with
poor English speaking skills, which includes not only poor
prosody but also mispronunciation errors, namely substi-
tutions, deletions, and additions. The audio files generated
through this VC model contained barely any of these mis-
pronunciation errors.

4.3.7. Fine-tuning with ELSA-REF and L2-ARCTIC-
HQTV. This fine-tuning was made with ELSA-REF and
150 audios from L2-ARCTIC-HQTV, resulting in 9 minutes
of speech. The training ran for 10 hours, reaching 16800
iterations.

The converted voice is very similar to the target and the
speech is very natural, even though the fine-tuning was made
with under 10 minute of speech from the source speaker.
The source’s prosody is clearly audible in the converted
utterance, but it is not equal, as expected. The variance is
much higher than in the previous test done on with VCTK
dataset and also higher than the utterances from the target
speaker.
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The algorithm mostly retains the pronunciation, and even
the accent, of the source speaker. There are some phones
that hint a slight mispronunciation from the target speaker,
more specifically deletions, but this mostly appears to be
cases where the phones are too short rather than not present.
This is a very interesting application for English learning
exercises, such as the ones found on ELSA Speak mobile
app. It may allow the speaker to hear himself/herself with
an almost native pronunciation, either as a reference for the
exercise, or as a motivational feature.

With the results obtained in this test, it is possible to
move on to the evaluation of the algorithm.

4.4. Evaluation

A survey was set up including some of the audios
generated in the last test preformed with the VC algorithm.
The survey was responded by 40 different subjects.

4.4.1. MOS. Three scores are calculated and presented in
the table below. These 3 scores correspond to three dif-
ferent questions. The first two questions were made after
presenting the subjects with three audio samples. A - Sample
from ELSA-REF; B - Sample from L2-ARCTIC-HQTV; C
- Converted sample. The third question was made to the
subjects after presenting them with 3 different converted
utterances.

itemsep=0pt, parsep=0pt

1) Would you say that sample C imitates the duration
and intonation pattern of sample A?

2) On a scale of 1 to 5, would you say that sample C
retains the voice of sample B?

3) How native do these samples sound when compared
to an American English Native Speaker?

TABLE 5. MEAN OPINION SCORE AND 95% CONFIDENCE INTERVAL
OF THE RESPONSES TO 3 EVALUATIONS OF THE CONVERTED AUDIO

ACCORDING TO 3 DIFFERENT METRICS

Metric MOS
Retention of prosody patterns from source 3.31± 0.15

Voice similarity to target speaker 3.46± 0.16
Nativeness, comparing to American English Accent 3.45± 0.25

4.5. AB test

The subjects were presented with 3 pairs of audio
samples. Each pair contained one sample taken from L2-
ARCTIC-HQTV dataset and one converted sample. They
were instructed to listen to each pair and chose which
utterance had better English pronunciation.

4.6. Yes/No questions

Two extra questions were made on this survey. The first
question was made in relation to the same audio files that

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Converted Original No preference

Figure 11. AB tests results for evaluating pronunciation

were used in the 3rd MOS. The second question was general
and did not involve any audio sample. The questions were

1) Would you consider that these samples have enough
sound quality to be used as a reference in an
English language learning exercise?

2) Would you be comfortable if, in a language learning
context, you would listen to your voice saying a
sentence you never said before?

35%

0.00%

0.20%

0.40%

0.60%

Question 1 Question 2

Yes No Indifferent

Figure 12. Answers to the yes or no questions presented to the subjects on
the online survey

5. Conclusions

The objective of this thesis was to perform an ex-
ploratory study of the application of two different techniques
to prosody training. It was done in the context of the
exercises available in the ELSA Speak app.

The first approach, named Pitch Transplant, presents
real-time results since the first use, but it is fairly limited.
But since the output is generated by manipulating the input
audio, it will maintain its pronunciation mistakes and audio
quality. Also, there is a limitation to how much the audio
can be manipulated without losing the speech naturalness,
allowing only for small tweaks.
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The second approach uses a more current technology and
still has huge potential to improve. It is a computationally
heavy process, requires lengthy pre-training and does not
cope well with noisy recording environments. Also, the
algorithm requires further development in order to apply
it in real-time. Nevertheless, it not only produces more
natural speech, but once the model is trained, it may convert
virtually any sentence without any further input from the
user.

On another note, the surveys that were handed out
to evaluate both methods contained extra questions. The
answers to these questions revealed that the majority of the
subjects were comfortable in having their voices manipu-
lated and used in a language learning context. This encour-
ages further the application of such systems in English learn-
ing apps such as ELSA Speak, or even as complementary
work for English language courses.

5.1. Future Work

5.1.1. Pitch Transplant. Pitch Transplant manipulates the
user’s audio, so it is prone to the audio quality of the input
audio. Reducing noise would definitely improve results,
which today can be done with systems such as Krisp,
developed by NVidea.

In order to evaluate the impact of the gradual reference,
it is necessary to use it in a language learning context,
which would require continuous testing for several months.
Due to time limitations this evaluation could not made.
But changing the implementation and allowing for remote
testing could allow for this test to be performed, which
would be an interesting work in the future.

5.1.2. Voice Conversion. In all tests where the model was
fine-tuned with audio files from real users, it either collapsed
or failed to converge, most likely due to the low quality of
the users’ audio files. Using an SNR estimator, such as [14],
it would be possible to select the audio files with less noise
and run the fine-tune with them. Applying a noise reduction
system, such as Krisp, could also allow for the application
of this model to the user’s audios.

During the INTERSPEECH 2020 conference, new VC
methods were proposed that could possibly produce better
results than the chosen algorithm [18]. One paper [19]
focuses its work in developing a technique to transfer the
source speaking style in a non parallel voice conversion task
. Its performance is better than two baseline models, one of
which is the selected model in this work.

It would also be interesting to productize this model
and apply it in a real environment where the progress of
the students could be monitored. The study would consist
of having a group A doing prosody training with the ref-
erence sentences in their own converted voices, and group
B practicing with the native speaker’s audio. After a period
of time, the progress of each group of students would be
analyzed and compared.
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