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Abstract—Ball tracking has been a problem with extensive
study done, but the accuracy of such trackers still gets affected
by errors and there is a lack of uncertainty characterization in
the observation models utilized.

In this thesis, we aim to develop an algorithm that provides
3D ball locations, with the corresponding noise characterization,
from 2D segmented blobs. These outputs are crucial to cope
with distance varying characteristics of the noise associated
and can serve as an input into tracking algorithms to increase
their robustness. This approach uses the known color and ball
size information and through image segmentation its able to
generate an estimation of its 3D location in space. Furthermore,
two methods based on the Monte Carlo method or Unscented
Transform, are used to estimate the 3D noise characteristics
which can then be used as an input in a tracker to increase
its accuracy.

The proposed method is compared to a method whose noise
covariance is optimal for the trajectory but fixed, showing a
decrease on the error up to 76% in some trajectories.

Index Terms—Projection, Covariance, Noise characterization,
RANSAC

I. INTRODUCTION

Ball tracking is a tool important in many industries. These
industries are, for the most part, related to sports, such as
football [Ren et al., 2004], basketball [Chakraborty, 2013],
volleyball [Chen et al., 2012] and golf [Woodward and Del-
mas, 2005], where computer vision has overcame traditional
methods (mostly manual), because statistical data is displayed
in a much faster pace.

This work proposes a method for the detection of a ball with
known size and color from a single camera with characteriza-
tion of the uncertainty of its position. This is accomplished by
analysing each frame of the corresponding video to segment
the possible locations of the ball with a color based method,
followed by an ellipse fitting procedure and a monocular 3D
reconstruction algorithm. Then noise in the 2D image plane
is propagated to the 3D world for the uncertainty characteri-
zation. The characterization of uncertainty is essential to cope
with the distance varying characteristics of the noise and serves
as input to tracking algorithms.

A. Outline

This paper starts by describing the state of the art ball
tracking in II. Then, the proposed approach is described in
III and its implementation in IV. Finally, the results obtained
are presented in V and the conclusion highlighted in VI.

II. STATE OF THE ART

This section provides a brief analysis on work that has
already been developed in ball tracking. The papers can be
separated into two categories, 2D and 3D tracking, where the
latter will be more closely followed in our work.

A. 2D Tracking

[Chakraborty, 2013] proposed a physics-based algorithm to
track balls in basketball videos. It consisted in a background
subtraction and frame differencing methods in order to apply
segmentation to moving objects. Finally, the trajectories were
analysed separately in the x and y axis, with their lengths
and prediction errors used to assess the performance of the
method.

[Olufs et al., 2007] proposed a robust object tracking
method using a sparse shape-based object model. It consisted
in an algorithm that was divided into two segments, one with
short term memory and other with long term memory. Firstly,
an object model was created where the contour of the object
was determined, then an image segmentation process was done
with the help of histograms and their likelihood calculation
with the Bhattacharyya metric. Secondly, a short term memory
detect objects moving through subsequent frames and the long
term memory helps finding objects lost through occlusions by
giving feedback to the short memory segment.

[Chen et al., 2007] proposed a physics based algorithm to
track balls in volleyball games. The segmentation was done by
analysing the positive variations of intensity throughout frames
and the candidates were filtered based on ball size, shape and
fullness.

[Setiawardhana et al., 2017] proposed a ball tracking
method for soccer robots. It consisted in applying image
segmentation through thresholds in the space color Hue-
Saturation-Value (HSV) and then clearing noise with mor-
phological operators. Furthermore, the center of the ball was
then fed to a back propagation neural network, and the result
consisted in the output goal area and the ball area position.

Regarding two dimensional tracking, the 3D position of the
object is never obtained due to the lack of depth, which is a
crucial parameter to track objects in the real world.

B. 3D Tracking

Tracking in 3D world represents a bigger challenge. Either
the camera used has a depth sensor that is able to indicate how
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further the object is or depth must be estimated by some other
means. We categorize the existing methods in two classes,
Direct and Indirect.

1) Direct Methods: The direct methods consist in spreading
hypothesis in the 3D world. A reference model of the ball can
then be used to project the hypothesis in the image and check
if the image information is coherent with that projection. This
will indicate how likely that hypothesis is representing the true
position of the ball.

An example of a direct method is presented in [Taiana
et al., 2008] that proposed a 3D tracking based on particle
filters. The camera used was omnidirectional, therefore the
projection model used was different from the one used in
normal cameras. The Unified Project Model (UPM) was the
one applied. The algorithm used to track the ball was a particle
filter that consisted in three parts, (i) the prediction where
the particles are spread regarding a motion model, (ii) the
update where each particle is given a probability based on
the Bhattacharyya similarity metric and (iii) the resampling
where the particles with highest weight are replicated and the
remaining are discarded.

[Hou et al., 2017] proposed a method to 3D ball tracking
with CPU-GPU acceleration. It consisted on a particle filter
algorithm, where the several steps required to obtain a 3D
position of the ball were separated and then reorganised, so
that the process could be speed up, with the help of multi-
command queue and stepped parallelism iteration.

[Wang et al., 2016] presented a method to track tennis
balls. It consisted in a particle filter, with weighted particles,
then reconstructed to 2D to display accurate tracking. The
main contribution consisted in a noise characterization, which
consisted in two parts, general and abrupt noise, and were clas-
sified according to the motion prejudgment result. The abrupt
changes in the ball velocity were divided and characterized.
A different model was used for each situation to characterize
the noise.

2) Indirect Methods: The indirect methods correspond to
finding the position of the ball in the image plane, and then
reconstructing its position to 3D by “inverting” the projection
model.

[Ren et al., 2004] presented a method to track a ball
using multiple cameras. It relied on kalman-based tracking
and image differencing through a per-pixel Gaussian Model
to detect, track and distinguish the moving objects from the
background.

[Chen et al., 2012] studied ball tracking applied to vol-
leyball games. With a calibrated camera the ball candidates
were detected in each frame by using constraints such as
size, shape and compactness, correlating each candidate over
frames. Then, the possible trajectories in 2D were discovered
by analyzing parabolas in the Y axis and lines in the X axis.
From those possibilities a point based system was applied and
the 3D positions and velocities were discovered.

[Gomez-Gonzalez et al., 2019] presented a system to track
ping pong balls. It divided itself into two subsystems, one
that returned the ball position in pixel space from each image,
and the other produced an output of a single 3D ball position

from the ball positions in pixel space obtained from multiple
cameras.

[Lippiello and Ruggiero, 2012] presented a method for 3D
monocular robot ball catching. The image processing consisted
in a segmentation using Hue-Saturation-Intensity (HSI) color
space and histograms to identify the blobs in each image.
Next, 2D information was collected and elaborated in order
to get a first prediction of the ball trajectory through a rough
linear estimation. This prediction was used as starting point
for a more precise trajectory refinement through a nonlinear
estimator.

The majority of the works mentioned don’t characterize
the noise. The only exception is the one proposed by [Wang
et al., 2016] where the noise characterization is specific to
tennis balls, requires the use of multiple cameras and if severe
occlusion occurs the tracking of the position of the ball hardly
recovers. The scope of this work complies in addressing this
problem, providing through the indirect method described
above, a solution that increases the efficiency and accuracy
of the tracker taken into consideration.

III. METHODOLOGIES

A. Background Theory

In order to relate a digital image to the 3D world and
reconstruct an object’s position, the connection between 3D
points (X,Y, Z) and pixel coordinates (x, y) must be known.
This is possible through the pinhole camera model, valid for
perspective cameras (1) where the matrix K, which is the
camera intrinsic matrix [Spong et al., 2006].

Z

xy
1

 = K

XY
Z

 (1)

K =

ax 0 u0
0 ay v0
0 0 1

 (2)

Considering an object of radius R and positioned in the
origin of the reference frame, any point on its surface can be
represented in the projective space by the quadratic form

MTQ0M = 0 (3)

where

M =


X
Y
Z
1

 , Q0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −R2

 . (4)

Implementing a homogeneous coordinate transformation to
the sphere Q0 to an arbitrary location t = [txtytz]

T as
Q = TQ0 T we get the representation of any point on the
sphere surface at a location t. Therefore, applying perspective
projection on the points of the sphere’s surface, the projected
figure in the image plane is represented by an ellipse Ak [Cross
and Zisserman, 1998]

A∗k ∼ PQ∗PT . (5)
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where P is the camera 3x4 projection matrix, A∗k = adj(Ak),
Q∗ = adj(Q), adj represents the classical adjoint, which is
the transpose of its cofactor matrix, and ∼ denotes equality
through a scale factor. We are interested in the ellipse Ak and
a general form for it is

A′x2 + 2B′xy + C ′y2 + 2f0(D′x+ E′y) + f20F
′ = 0 (6)

The variable f0 is a constant for adjusting the scale in-
creasing accuracy and reducing the loss of significant digits
[Kanatani et al., 2016]. Defining two 6D vectors as

ξ =


x2

2xy
y2

2f0x
2f0y
f20

 , θ =


A′

B′

C ′

D′

E′

F ′

 (7)

it is possible to represent Equation (6) as (ξ, θ) = 0, where
(ξ, θ) represents the inner product of ξ and θ.

It also necessary to take into account the properties of image
noise for accurate fitting. Hence, supposing that x and y are
disturbed from their true values x′, y′ by 4x and 4y as in

x = x′ +4x, y = y′ +4y. (8)

Replacing this in ξ seen in Equation (7) and assuming that
4x and 4y are random variables subjected to an independent
Gaussian distribution with mean 0 and standard deviation σ
we obtain the covariance matrix of ξ as

V0[ξ] = 4
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 (9)

B. Pipeline

The proposed method starts by identifying where the ball
is located on the image using an observation model based on
color histograms to perform color segmentation in each frame.
Then, an ellipse is fitted to the segmented regions in the image
so a conic can be obtained from the image plane. Successively,
the ellipse is reconstructed into the 3D world. We are left
with a 3D measurement from a non linear transformation,
therefore noise is spread on the 2D measurement in order to
characterize the uncertainty from this process. Two methods
are presented, one based on Monte Carlo and another on the
Unscented Transform, where both require noisy 2D samples.
Furthermore, these samples are all reconstructed into the 3D
world and the covariance is obtained from them. Finally, this
serves as an input into a tracker in order to test the validity
and performance of this approach.

C. Image Segmentation

One of the main challenges with image segmentation is
dealing with motion blur. This phenomenon occurs due to
relatively high speed of the object being tracked in respect
to the camera frame rate. Using color has been proved to be
a method that is able to overcome this hurdle [Olufs et al.,
2007] and [AlBasiouny et al., 2015], therefore the first step
taken into account is to create a reference image as in Figure
1 that consists in several pictures of the cropped ball meant
to be tracked.

Fig. 1: Example of reference image

This image is then converted from the default format Red-
Green-Blue to Hue-Saturation-Intensity and reference his-
tograms are created for each parameter. To create the color
histograms, the color values were divided into bins: 12 to
hue and saturation and 4 for the intensity. After acquiring
the histograms, the same process is applied to each frame of
the video being analysed. The frames are separated into hue,
saturation and intensity, then these segments are divided into
bins just like the reference image was, so that it is possible
to identify blobs which resemble the ball that is going to be
tracked. A probability is assigned to each pixel by multiplying
the probabilities of the bins in which that pixel maps into the
reference histograms.

D. Otsu Method

After obtaining the image with the probabilities associated
with each pixel, image binarization must be applied. This is
done recurring to the Otsu’s method. This algorithm focuses
on finding the best threshold that minimizes the intra-class
variance defined as a weighted sum of variances of two classes,
being the classes object or background [Otsu, 1979]. It is
represented by σ2

w = w0(t)σ2
0(t) + w1(t)σ2

1(t) where w0

and w1 represent each class probability, σ2
0 and σ2

1 are the
variances of each class and they are separated by a threshold
t.

E. Morphological operators

After applying the method mentioned in III-D, corrections to
the binary images must be made in order fill holes in possible
ball candidates and remove noise from the background that
was above the threshold. The most common binary image
operations are called morphological operators. To perform
such operations, a structuring element must be convolved with
the image. For our problem we chose, as a structuring element,
a disk since the objective is to track balls. The morphological
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operation used was opening, which consists in a erosion
followed by a dilate.

After applying the morphological operators we are then left
with binary images as the one represented in Figure 2.

Fig. 2: Performing an opening in a binary image

F. Contour Extraction

It is now necessary to fit an ellipse to the blobs that survived
the image segmentation and morphological operations. In
order to do this it is necessary to locate the pixels with value
”1” that are connected where the Moore Neighbor method is
applied. The Moore Neighborhood tracing consists in selecting
a starting pixel in the most bottom left pixel, then going up the
column and left to right, moving along a clockwise direction.
Every time a pixel with value one is found, the algorithm
backtracks, goes around that specific pixel and repeats this
process until the first pixel with value ”1” is reached again.

G. Ellipse Fitting

The contour of the noisy data is now available, therefore
the ellipse fit can be applied in order to describe as best as
possible a ball in the 2D image.

The most simple method consists in using the Least Squares.
The first step is to convert each point in the contour (xa, ya)
into ξa from (7) and calculate the matrix M represented below,
where N is the total number of points selected from the
contour.

M =
1

N

N∑
a=1

ξaξ
T
a (10)

Next, the eigenvalue problem in (11) must be solved

Mθ = λθ (11)

and the eigenvector θ for the smallest eigenvalue λ is the best
ellipse. This approach is characterized by easy computation
and the result can be obtained immediately, but it is usually
accompanied by poor performance because it does not take
into account the possibility of outliers.

H. RANSAC

The method of random sampling consists of sampling
random points on the contour and in fitting an ellipse many
times in order to find the best one. One of these methods is
RANSAC, which is a method that is robust to the existence of
outliers. Outliers are points that don’t belong to the ellipse
that fits the blob pretended, either by belonging to of other

object boundaries or dispersion of the edge pixels due to image
processing inaccuracy. The points inside the ellipse taken into
consideration are named inliers. This algorithm, by being able
to deal with a considerable amount of outliers, is said to be
robust and focuses on using a small and feasible initial data
set, enlarging it with consistent data when possible.

The first step in applying the RANSAC algorithm, when
applied to ellipse fitting, is to select five points from the
contour obtained in the previous section. There are selected
five points because that is the minimum amount of points
needed to describe a unique conic section. Next, the matrix
M is computed using the vectors from the five randomly
chosen points (12) and the unit eigenvector with the smallest
eigenvalue associated is stored as a candidate for the ellipse
parameters θ.

M =

5∑
a=1

ξaξ
T
a (12)

The next step classifies the ellipse as being the best one
based on measuring the distance from the edge points from
the ellipse that was generated. Geometric fitting refers to
minimizing the sum of squares of the distance of observed
points to the ellipse and is given by

S =
1

N

N∑
a=1

(
(xa − xa)2 + (ya − ya)2

)
= d2a. (13)

The observed (xa, ya) is a point from the blob’s edge and
(xa, ya) is the closest point from the ellipse to the previous
one. When the observed point is close to the ellipse the
geometric distance can be approximated by (14) [Kanatani
et al., 2016], where V0[ξ] is the covariance matrix in (9).

d2 = (xa − xa)2 + (ya − ya)2 ≈ (ξ, θ)2

(θ, V0[ξ]θ)
(14)

This distance, also known as Sampson distance, is then sub-
mitted to a certain threshold for an admissible deviation from
the fitted ellipse, which in this work was chosen empirically to
be one pixel. The number of points from the edge that respect
this threshold are then stored and the ellipse with the highest
number is considered the one that fits the blob the best.

It is computationally infeasible to test every possible sam-
ple. Therefore, a number of samples N is chosen to ensure
that a probability p that one sample has no outliers is 0.99
[Hartley and Zisserman, 2003]. This number is chosen through
equation (15) where s represents the size of the samples and
ε the proportion of outliers.

N = log(1− p)/log(1− (1− ε)s) (15)

Since the proportion of outliers is unknown the worst case
estimate must be assumed, meaning a high proportion of
outliers must be chosen. Therefore, needing sets of five points
(s = 5) and a proportion of outliers of about 45% chosen, we
get sets of N = 100 samples to be used in this work. The best
ellipse will be the one with the highest number of inliers and
consequently the one selected.
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Fig. 3: Representation of RANSAC iterations

I. 3D Reconstruction

The next step consists in applying the non linear transfor-
mation from the 2D to the 3D world. The method which is
going to be used is monocular reconstruction, which takes
advantage of the apriori knowledge of the ball size and the
intrinsic camera parameters to obtain a ball location from the
ellipse fitted.

Noting that the matrices Q (quadric representation of the
ball) and Ak (conic representation of an ellipse in 2D) are
symmetric, their adjoint matrices coincide with their inverses
[Hartley and Zisserman, 2003, Chapter 2.2.3]. Therefore, the
projection referred in (5) can be written as

A−1k ∼ PQ
−1PT (16)

With the assumptions that the camera and world coordinate
frame coincide, P = K[I3 03] with K being an invertible
matrix from (2), the projection in (16) can be rewritten as1− x2/R2 −xy/R2 −xz/R2

−xy/R2 1− y2/R2 −yz/R2

−xz/R2 −yz/R2 1− z/R2

 ∼ K−1A−1k K−T

(17)
Computing the eigenvalues from the left hand side matrix, it is
obtained λ1 = 1,λ2 = 1 and λ3 = 1− ||t||

2

R2 . The two unitary
eigenvalues imply that the right hand side matrix has also two
equal eigenvalues but not unitary because the equality is only
up to a scale factor. The next step consists on finding the
scale that makes both sides equal and it only has to impose
that the equal eigenvalues of the right hand side are scaled
to become unitary, which can be done by sorting the three
eigenvalues and selecting the middle one. Therefore, defining
H as the normalized conic, H = K−1A−1k K−T , it is possible
to remove the scale ambiguity by computing the median of
the eigenvalues. Note that I3− ttT /R2 is Q−1 represented by
the left hand side in 17.

I3 − ttT /R2 = H/median(eig(H)). (18)

Next, from (18) we get ttT /R2 = I3 −H/median(eig(H))
and our objective is to find the location t. If we define H2 =
I3 −H/median(eig(H)) we get

ttT /R2 = H2. (19)

From (19) its possible to define v = t/R and see that the
relation vvT = H2 is true. We are interested in the diagonal
that represents the vector v, consequently we get to the relation
given by (20) where s1, s2 and s3 represent the signs of the
components v, extracted from H2 as s1 = sign(H2(1, 3)),
s2 = sign(H2(2, 3)) and s3 = 1 because the z axis is pointing
forward [Greggio. et al., 2011]. Note that sign() returns +1,0
or −1 for positive, null or negative arguments respectively.

v =

s1√H2(1,1)

s2
√
H2(2,2)

s3
√
H2(3,3)

 (20)

Finally, given the ball radius R, the location of the ball in 3D
is a scaling of the component v given by t = vR.

J. Noise propagation

A good fit of an ellipse is obtained after the method
discussed in section III-H, but there is still some uncertainty
due to noise in the process. This uncertainly will be reflected
in the reconstruction of the ball in 3D. Therefore, we develop
a method to propagate the uncertainty from the 2D image to
the 3D world. Our goal is to estimate the probability density
of the position of the ball in 3D, to be used in probabilistic 3D
tracking methods (e.g. Kalman Filter (KF) or Particle Filter).

The first method applied is Monte Carlo (MC) estimation.
The underlying concept relies on using randomness to solve
a problem, which in this case is the characterization of the
uncertainty associated with a 2D to 3D reconstruction. This
method consists in selecting an input variable, which in this
case consists in the parameters of affine transformation of
the ellipse fitted to the blob that affect the corresponding
(A′, B′, C ′, D′, E′, F ′) parameters. Next, inputs are generated
randomly from the probabilistic distribution of that variable.
In this work we consider a independent Gaussian distribution
with mean 0 and a standard deviation σ for the parameters of
affine transformations of the ellipse. The inputs would then
be put through the 3D reconstruction and the results would be
aggregated in the 3D world

Another way to achieve a similar result with the method
described previously is through the Unscented Transform
(UT). This method relies in approximating a probability dis-
tribution using carefully selected test points. These test points
denominated sigma points, are propagated through the same
non linear transformation and allow the estimation of the mean
and covariance.

A set of 2n+ 1 sigma points, where n is the dimension of
the random variable to be propagated, are generated and each
one is represented by Si = {Xi,Wi} in which Xi are points
coordinates given by (21) and Wi are weights given by (22),
where P x is the covariance of the variable.

X0 = x̄

Xi = x̄+ (
√

(n+ λ)P x)i i = 1, ..., n

Xi = x̄− (
√

(n+ λ)P x)i i = 1 + n, ..., 2n

(21)
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W
(m)
0 = λ/(n+ λ)

W
(c)
0 = λ/(n+ λ) + (1− α2 + β)

W
(m)
i = 1/(2(n+ λ)) i = 1, ..., 2n

W
(c)
i = 1/(2(n+ λ)) i = 1, ..., 2n

(22)

In the previous equations λ is chosen as λ = α2(n + κ) − n
[Wan and Van Der Merwe, 2000]. The κ is a parameter that
scales the sigma points towards or away from the mean x̄ and
can be any value as long it respects the condition (n+κ 6= 0)
[Julier et al., 2000], therefore it is set to 20 so that there are no
negative weights in the calculation of the mean and covariance
which are proven to be susceptible to a variety of numerical
errors. The parameter α determines the spread of the sigma
points around x̄ and it is set to 0.5 so that we can have well
spread sigma points in order to be able to properly estimate
the covariance from the non linear transformation. Finally, β
is a weighting term used to incorporate prior knowledge of
the distribution, being set to 2 for an optimal Gaussian prior.
Each sigma points are then propagated through the non linear
function, which in our case is the monocular reconstruction
g(),

γi = g(Xi) i = 0, ..., 2nx (23)

such that the mean and covariance can be given by

ȳ =

2n∑
i=0

W
(m)
i γi

P γ =

2n∑
i=0

W
(c)
i (γi − ȳ)(γi − ȳ)T

(24)

where γi are the sigma vectors propagated through the non
linear function and ȳ is the weighted mean.

K. Tracking

Finally, we are left with estimates of the 3D ball position
and respective covariances, We apply the measurements and
time dependent covariance matrix into a tracker and the one
selected for this work was the Kalman Filter.

The KF uses a system dynamic model, known controls
inputs of that system and multiple measurements in order to
form an estimate that can not be measured directly. Noisy
sensor data, approximations in the equations that characterize
the system evolution and external factors, like occlusions or
collisions, limit how well it is possible to determine the
next state. It produces an estimate of the state based on a
weighed average between the system previous predicted state
and the current measurement. The weights are calculated from
the covariance, which in this work comes from the noise
propagation through the non linear transformation from 2D
to 3D.

IV. IMPLEMENTATION

This section will focus on explaining on how the approaches
considered in section III were applied. It will also also mention
how the experimental setup was designed and implemented,
in order to test algorithm before applying it to real scenarios.

A. Noise Propagation

The propagation of noise is a necessary tool in order to prop-
agate uncertainty from 2D to 3D. We apply 2D Gaussian noise
to the parameters of an affine transformation of the ellipse was
the one selected. The four transformations that were taken into
consideration were translation, rotation, scaling and shear. The
order of transformations matters, because the result might vary
if the same geometric transformations are applied in different
order. Therefore, the order selected was (i) translation, which
corresponds to moving every point of the ellipse the same
direction and distance, (ii) scaling where an enlargement or
shrinking about the center of the ellipse occurs based on a
scalar, (iii) rotation, where the ellipse is rotated around its
center and finally (iv) shear, where the shape of the ellipse is
slanted in a specific coordinate.

The matrix representation of these transformations are

(25)

B. Simulation

In order to validate the algorithm, ground truth trajectories
from a simulator were made. These trajectories were composed
of a sequence of images showing the different states of the
ball. These frames were created by a simulator which was
developed by [Pereira, 2020] and implemented in C++ with
the aid of the functionalities of the the library openCV . This
simulator took into consideration the equation of a sphere
and its projection in the image plane. Through this method,
it colored only the pixels that corresponded correctly to the
projection of a ball moving in the world frame. The simulator
also had a projection of a plane in order to simulate scenarios
with ball collisions.

V. RESULTS

In order to validate the algorithm a particular set of tests
were performed. First the trajectories provided by the sim-
ulator were analyzed in order to obtain the measurement
and the error between the estimates and the ground truth
positions. This was done also with the real scenarios to prove
its performance in the real world. After obtaining the mea-
surements of the ball location, noise was then spread around
the correspondent 2D estimation of those measurements and
the correspondent covariance matrices were obtained from the
methods described earlier. Both of these parameters, measure-
ments and covariance matrices, served as input to track the
ball along the frames of the videos used. In the tracking
environment the covariances were compared with a fixed
covariance, that was selected based on the Monte Carlo, which
was though to be optimal. This was also done in simulated and
real scenarios to see the disparities provoked by this change.
The metric to evaluated and compare the results was the Mean
Squared Error (MSE). The real experiments were executed
with two different balls: a red ball with 30mm radius and a
green ball with 35.85mm radius.
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A. Simulator

The 3D measurements of the simulated trajectories had as in-
trinsic camera parameters K = [500 0 320; 0 500 240; 0 0 1].
Their respective errors associated with each coordinate are in
Figures 4 and 5 and their global representation is in Table I.
The inversion of the y axis is for visual representation.

(a) x real and estimated position (b) y real and estimated position

(c) z real and estimated position (d) x error

(e) y error (f) z error

Fig. 4: 3D Reconstruction measurement errors of the red ball
throughout the frames in the first simulated trajectory

On the first trajectory the errors associated with x and y are
pretty similar. This does not happen in the second trajectory,
because there is a greater variation in the x coordinate compar-
ing to the y coordinate regarding the optic center. This leads
to an increase in error as expected, because the further away
from the optic center the ball is, the worst its representation
by the ellipse is.

TABLE I: 3D Reconstruction MSE for the simulated trajectories

MSE x [mm]2 y [mm]2 z [mm]2

Fig 4 379,3 466,8 11295,1
Fig 5 615,12 76,1 14111,7

B. Real Scenarios

Two situations were analyzed in the real scenarios. First
with a red ball to be as close as possible with the scenarios
simulated in the previous section. Next, with a green ball to see
if there would be any significant changes in using a ball with
a different color. The Ground Truth for the real trajectories
was estimated manually, therefore the

(a) x real and estimated position (b) y real and estimated position

(c) z real and estimated position (d) x error

(e) y error (f) z error

Fig. 5: 3D Reconstruction measurement errors of the red ball
throughout the frames in the second simulated trajectory

The intrinsic camera parameters used for the real scenarios
were

Kf =

497, 01 0 372, 588
0 496, 392 231, 468
0 0 1

 Kp =

647, 099 0 375.745
0 649.231 233.407
0 0 1

 (26)

for the red ball regarding the free fall and pendulum trajectory
respectively. For the green ball they were

Kf =

475.316 0 357.815
0 478.232 223.064
0 0 1

 Kp =

501.698 0 373.208
0 502.41 246.066
0 0 1

 (27)

for the free fall and pendulum trajectories.
1) Red Ball: In the following Figure 6 and 7 the trajectories

corresponding to the free fall and pendulum in the real scenario
for the red ball are represented and their global errors in Table
II.

On the previous figures it is possible to see how the error is
correlated with depth z. It is also possible to conclude that the
spikes in the error y are due to the collisions of the ball with
the floor, which leads to a deformation and consequently to a
not so accurate representation of the ball through an ellipse.

The variation that can be seen in the position error in first 10
frames is due to the partial occlusion of the ball from a hand.
It is possible to see the same effect that was obtained in the
simulation, the closest to the optical center the less the error.
This happens because the furthest the ball is from the optical
center the less the optical rays pass through it, resulting in
an increased distance between them and in a more elongated
ellipse. The frames where the ball was furthest from the center
where the 20th, 40th and 60th, where the highest error appears
in the x coordinate.
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(a) x real and estimated position (b) y real and estimated position

(c) z real and estimated position (d) x error

(e) y error (f) z error

Fig. 6: 3D Reconstruction measurement errors of the red ball
throughout the frames throughout the free fall trajectory

TABLE II: 3D Reconstruction MSE for the real scenarios of the red
ball trajectories

MSE x [mm]2 y [mm]2 z [mm]2

Fig 6 39,7 1706,5 18045,8
Fig 7 961,6 29,7 49323,1

2) Green Ball: The green ball trajectories were used mainly
to see the differences in measurements provoked by changing
the color, where in Figures 8 and 9 the trajectories are
represented and in Table III the global error is demonstrated.

The green ball, on the free fall trajectory, presents similar
results to the red ball with the only difference being the incre-
ment of the MSE (Mean Squared Error) in the x coordinate,
because the ball tends to move away from the center of the
coordinate system.

It is possible to see that the results with the green ball are
worse than with the red ball. This is due to the fact that the
green ball had less of a contrast with the background than the
red ball as in Figure 10.

Consequently, this leads to a slightly worse segmentation,
particularly in the binarization segment where the blob of the
ball is deformed due to the presence of green in the floor. This
faulty segmentation reflects itself on the estimation error, as
in Table III, increasing it comparing to the red ball.

C. Tracking

In this section we apply the obtained measurements and
corresponding estimated measurement error covariances to

(a) x real and estimated position (b) y real and estimated position

(c) z real and estimated position (d) x error

(e) y error (f) z error

Fig. 7: 3D Reconstruction measurements of the red ball throughout
the frames throughout the pendulum trajectory

(a) x real and estimated position (b) y real and estimated position

(c) z real and estimated position (d) x error

(e) y error (f) z error

Fig. 8: 3D Reconstruction measurement error of the green ball
throughout the frames in the free fall trajectory
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(a) x real and estimated position (b) y real and estimated position

(c) z real and estimated position (d) x error

(e) y error (f) z error

Fig. 9: 3D Reconstruction measurement errors of the green ball
throughout the frames in the pendulum trajectory

(a) Frame of the video of the green
ball

(b) Frame from the video of the
red ball

Fig. 10: Difference between the contrast of the red and green ball
from the background

TABLE III: 3D Reconstrucion MSE for the real scenarios of the
green ball trajectories

MSE x [mm]2 y [mm]2 z [mm]2

Fig 8 442,5 12521,2 27420,9
Fig 9 545.429 552.277 36079.059

perform the 3D tracking of the object. In order to properly
estimate the MSE, from the tracking trajectories without the
measurements bias interfering with the random noise, the aver-
age error was extracted and subtracted to the bias estimations.
The process noise used in the KF for the realization of these
tests was Qk = diag(1000, 1000, 50000, 10, 10, 10).

Regarding the simulated trajectories of the red ball, it is
possible to see a decrease in the MSE in Table IV when using
the covariances obtained from the methods that propagated
error from the 2D image into the 3D world. On the trajectory
of Fig 5 the most significant values are an increase of 4% and

a decrease of 6%, for the MC and UT respectively, in the x
coordinate comparing with the fixed covariance, which was
selected based on the covariance matrix provided in the first
frame through the Monte Carlo method, which was though to
be optimal. For the trajectory of Fig 4 in the y coordinate,
there is a decrease in the MSE of ≈ 16% and ≈ 11% for the
MC and UT respectively, representing one of the most affected
coordinates on a free fall trajectory.

Regarding the real trajectories of the red ball, the most
significant results are the x coordinate in the pendulum and
y coordinate in the free fall trajectories as in Table V,
because these are the variables that vary the most from the
optical center and are more relevant to analyze in the tracking
environment. On the first trajectory there is a decrease of
≈ 65% and ≈ 62% for the MC and UT methods and on
the second one there is a decrease of ≈ 76% and ≈ 71% for
the MC and UT respectively when compared with the results
from the fixed covariance.

Regarding the green ball the most significant results are the
x for the pendulum trajectory, which has a decrease in the
MSE of ≈ 57% and ≈ 54% for the MC and UT respectively.
Concerning the free fall it is possible to observe a decrease of
≈ 75% and ≈ 90% for x coordinate and ≈ 72% and ≈ 69%
for the y coordinate.

It is possible to see that the use of a covariance matrix
obtained from the uncertainty characterization methods display
generally better results than a fixed one in the x and y
coordinates. It is also possible to see that these methods
perform worse on the z coordinate, especially on the free
fall trajectories. This coordinate was the hardest to obtain the
ground truth information from the image data, therefore these
results present the lowest credibility of them all.

TABLE IV: Tracking MSE values for the red ball simulated se-
quences

Fig 5 Fig 4
Fixed MC UT Fixed MC UT

x [mm2] 499,71 523,59 473,05 278,62 285,73 288,36
y [mm2] 53,15 53,72 52,39 274,54 230,5 245,91
z [mm2] 3987,93 3857,52 3812,85 901,63 965,93 1090,4

Total [mm2] 11366,55 12318,69 12639,43 13010,19 14399,77 15400,98

TABLE V: Tracking MSE values for the red ball real sequences

Free Fall Pendulum
Fixed MC UT Fixed MC UT

x [mm2] 2476,6 882,43 944,72 39,38 22,69 27,97
y [mm2] 47,42 45,17 43,93 15975,1 3668,7 4432,38
z [mm2] 10026,75 8758.58 8206,11 10205,98 15048,73 15588,38

Total [mm2] 14565,58 11175,84 12217,46 54802,53 21292,05 22520,41

TABLE VI: Tracking MSE values for the green ball real sequences

Free Fall Pendulum
Fixed MC UT Fixed MC UT

x [mm2] 383,15 84,48 34,51 3605,8 1572,4 1690,77
y [mm2] 5203,82 1467,91 1658,8 123,7 176,7 202,54
z [mm2] 2261,2 3595,8 7103,3 5285,8 5482,5 6656,7

Total [mm2] 22564,17 4439,42 4664,88 7260,03 5714,05 5569,19

VI. CONCLUSIONS

The work described in this thesis presents a method that
is able to provide an estimation of the location of the ball
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and also a covariance from the uncertainty characterization.
The algorithm focuses on extracting the blob, that corresponds
to the ball, recurring to image segmentation from frames of
a video and morphological operators to smooth the image
data. Then, it fits an ellipse to the blob so that a 3D position
can be estimated through the use of monocular reconstruction
by using the ball radius and the intrinsic camera parameters.
Finally, the uncertainty behind this non linear transformation
was characterized using two methods, which were Monte
Carlo and Unscented Transform. These measurements and
covariances served then as an input to a Kalman Filter together
with a fixed covariance to serve as a reference.

From the results it was possible to conclude that the inputs
from the methods utilized were able to decrease the MSE.
The results from the simulated trajectories were quite similar
because due to the better image segmentation, comparing the
real scenarios, the measurements were already close to the
the ground truth which resulted in almost no improvement
using covariances from the methods proposed. It was in the
real scenarios, where the uncertainty increased, due to more
noise in image and not so optimal image segmentation that is
possible to see the improvements in using the characterization
of the uncertainty. The covariance presented by the Monte
Carlo method showed the best results, on average on all co-
ordinates, as it was expected. The results from the Unscented
Transform also decreased the MSE and were more than enough
in describing the non linear transformation for the x and y
coordinate. Although it presented a higher error for the z
coordinate, it still consisted on an approach that focused on
saving computation power on the cost of less accuracy, which
was more than enough for the result pretended.
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