
Hybrid System Combining Artificial Neural Networks and
Support Vector Machines for Trading the Forex Market

Intraday

Vasco Amorim do Amaral

Thesis to obtain the Master of Science Degree in

Eletrical and Computer Engineering

Supervisor(s): Prof. Rui Fuentecilla Maia Ferreira Neves

Examination Committee

Chairperson: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Supervisor: Prof. Rui Fuentecilla Maia Ferreira Neves

Member of the Committee: Prof. Aleksandar Ilic

January 2021

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

ii

Acknowledgments

It is the greatest pleasure of all to be writing this message. My time at Instituto Superior Técnico has

been beyond amazing, I could have never guessed I would have the opportunity to learn so much.

Not only the technical subjects, but specially everything that is required to actually perform a great job

whatever, whenever and wherever it is. At the institute I learned that behind every great job there must

be an even greater knowledge, I learned how to, independently, research for and gather that knowledge.

I improved a lot my capability of working as a team and make use of several points of view, and for all of

this I can only be grateful to everyone at Instituto Superior Técnico that either directly or indirectly made

it possible for me to have this amazing journey.

To my supervisor, Professor Rui Neves, I have to thank for giving me this amazing opportunity to join

great interests of mine in a single project, that was with no doubt the most interesting and rewarding

work I have developed so far.

To all my amazing friends that gave me the pleasure to share this journey with me, a big thank you,

it would never have been so fun without you guys. A special word to Mathilda, who supported me all the

way, being the most reliable friend I could have.

Lastly, but most importantly, to my sister, my mother and my father who gave me every opportunity

in life anyone could ever wish for, I could not be more grateful.

Thank you to everyone that made sure they were a part of this,

Sincerely,

Vasco Amorim do Amaral

iii

iv

Abstract

This thesis proposes an intradaily Forex trading system combining a Support Vector Machine capable of

identifying and classifying different types of markets, namely bullish, bearish and sideways and several

Artificial Neural Networks, one for each market type, capable of finding intradaily price patterns and

predict price movements from 12:00pm till 4:30pm. An incremental window moving average is applied

on a price transformation of logarithmic return rates, creating the transformed data that is fed to the

ANN as the features and target value, each sample representing a trading day. The SVM uses price

sequence windows, of approximately three months, as features. Several strategies are proposed based

on the forecasting done by the ANNs, in order to optimize the final performance of the trading system.

The strategies proposed focus on the trading rules to enter the market, and in which direction, long or

short, and also the level of confidence, which is represented in the trading size applied for each trade.

The training was done with data from 2004 until 2018 and tested for the year of 2019. The final optimized

system achieved a return on investment of 87.5% over the testing year and a maximum drawdown of

13%, largely overperforming the comparison methods of Buy & Hold and Sell & Hold.

Keywords: Artificial Neural Networks, Data Processing, Forex Market, Intraday Trading, Sup-

port Vector Machine

v

vi

Resumo

Esta tese propõe um sistema de negociação de Forex intra-diário composto por uma máquina de ve-

tores de suporte capaz de identificar e classificar diferentes tipos de mercado, nomeadamente bullish,

bearish e sideways e várias redes neuronais artificiais, uma para cada tipo de mercado, capazes de

encontrar padrões de preço intradiários e prever os movimentos do mesmo desde as 12:00 horas até

às 16:30. Uma média móvel de janela incremental é aplicada numa transformação de preço de taxas de

retorno logaritmicas, criando assim a transformação de dados que é fornecida à ANN como a entrada do

sistema e os valores a prever, cada amostra representa um dia. A SVM recorre a sequências de preço

em janelas de aproximadamente três meses, para usar como dados de entrada. Várias estratégias,

baseadas na previsão das redes neuronais, são propostas de modo a optimizar o desempenho final

do sistema de negociação. As estratégias propostas são focadas nas regras para entrar ou não no

mercado, e em que direção, comprar ou vender, e também no nı́vel de confiança para cada previsão,

representado pelo volume usado em cada transação. O treino foi feito com dados desde 2004 até 2018

e testado no ano de 2019. O sistema final optimizado alcançou um retorno no investimento de 87.5%

ao longo do ano de teste e um drawdown de 13%, resultados largamente melhores que os métodos de

comparação, Buy & Hold and Sell & Hold.

Palavras-chave: Máquina de Vetores de Suporte, Mercado Forex, Processamento de Da-

dos, Redes Neuronais Artificiais, Trading Intradiário

vii

viii

Contents

Acknowledgments . iii

Abstract . v

Resumo . vii

List of Tables . xiii

List of Figures . xv

List of Acronyms . xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Document Structure . 2

2 Background & State-of-the-Art 5

2.1 Financial Concepts . 5

2.1.1 Foreign Exchange Market . 5

2.1.2 Market Analysis . 6

2.1.3 Leverage . 8

2.2 Machine Learning Concepts . 8

2.2.1 Supervised and Unsupervised Learning . 8

2.2.2 Features, Samples and Labels . 9

2.2.3 Overfitting and Underfitting . 9

2.2.4 Generalization, Stability and Convergence . 9

2.3 Artificial Neural Networks . 10

2.3.1 Layers and Nodes . 10

2.3.2 Single Perceptron . 11

2.3.3 Activation Function . 11

2.3.4 Forward Propagation . 12

2.3.5 Backpropagation . 13

2.4 Support Vector Machines . 16

2.4.1 Support Vectors . 16

ix

2.4.2 Widest Street Approach . 17

2.4.3 Higher Dimensional Spaces and Kernels . 19

2.5 State-of-the-Art . 19

2.5.1 Research on Forex . 20

2.5.2 Research on Artificial Neural Networks applied to Financial Markets 21

2.5.3 Research on Support Vector Machines applied to Financial Markets 22

2.6 Chapter Conclusions . 23

3 Proposed Architecture 25

3.1 Overall Structure . 25

3.2 Data Preparation Layer . 27

3.2.1 Features for Classification . 28

3.2.2 Labels for Classification . 28

3.2.3 Features for Prediction . 28

3.3 Classification Layer . 32

3.3.1 Performance Metrics . 32

3.3.2 Hyperparameters . 33

3.3.3 Grid search Validation . 34

3.4 Prediction Layer . 35

3.4.1 Training and Validation . 35

3.4.2 Activation Function . 36

3.4.3 Loss Function and Performance Metrics . 36

3.4.4 Network’s Topology . 38

3.5 Strategy Layer . 40

3.5.1 Strategy A . 41

3.5.2 Strategy B . 42

3.5.3 Strategy C . 44

3.5.4 Strategy D . 45

3.5.5 Trading Size . 45

3.6 Chapter Conclusions . 46

4 System Evaluation 47

4.1 Evaluation Metrics . 47

4.1.1 Trade Accuracy . 47

4.1.2 Return on Investment . 48

4.1.3 Drawdown . 48

4.2 Case Studies . 48

4.2.1 1st Case Study - Prediction Time Window . 49

4.2.2 2nd Case Study - Market Classification . 52

4.2.3 3rd Case Study - Trading Strategy . 54

x

4.3 Chapter Conclusions . 56

5 Conclusion & Future Works 59

5.1 Conclusion . 59

5.2 Future Works . 60

Bibliography 61

xi

xii

List of Tables

2.1 Technical Indicator Types with Examples . 7

2.2 Technical Indicators Definition and Usage . 7

2.3 Activation Functions . 11

2.4 SVM different kernels . 19

2.5 Most relevant scientific works from State-of-the-Art . 24

3.1 Definition of different metrics . 32

3.2 Hyperparameters to be applied on grid search for SVM 34

3.3 Best parameters and results for the SVM . 34

3.4 Evaluation metrics for different ANN topologies . 38

3.5 Hyperparameters to be applied on grid search for ANN 39

3.6 Evaluation metrics for optimal topologies . 39

3.7 Threshold variation values for strategy D . 45

4.1 Evaluation metrics for different market hours strategy . 49

4.2 Classification of actual SVM versus ”hand-labeled” data 52

4.3 Evaluation metrics for single ANN versus SVM complete system 53

4.4 Evaluation metrics for strategies proposed . 55

xiii

xiv

List of Figures

2.1 Overfitting and Underfitting . 9

2.2 Structure of an Artificial Neural Network . 10

2.3 Structure of a single perceptron . 11

2.4 Behaviour of an Artificial Neural Network . 12

2.5 Influence of support vectors . 17

2.6 Behaviour of a Support Vector Machine . 17

3.1 System overall architecture . 26

3.2 Example of price sequence windows . 28

3.3 Example of market zones classification . 29

3.4 Price during the day of different EUR/USD samples . 30

3.5 Return rate transformation of different samples . 31

3.6 IWMA transformation of different samples . 31

3.7 Example of K-Fold Cross-Validation . 33

3.8 Comparison between RMSE and TSS as loss functions 37

3.9 Validation of chosen network against Monte Carlo simulation 40

3.10 Diagram of the strategy layer decision tree . 41

3.11 Relation between IWMA and Price for strategy A scnerario 42

3.12 Relation between IWMA and Price for strategy B scnerario 43

3.13 Relation between IWMA and Price for strategy C scnerario 44

4.1 Comparison of EUR/USD rates during both time ranges for 1st case study 50

4.2 ROI over time for different market hours strategy . 51

4.3 Average Traded Volume per hour . 52

4.4 ROI evolution for a single ANN and the hybrid SVM-ANNs system 53

4.5 ROI evolution for every strategy proposed . 55

xv

xvi

List of Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

B&H Buy and Hold

BB Bollinger Bands

EANN Evolutionary Artificial Neural Network

EMA Exponential Moving Average

EUR/GBP Currency Pair - Euro/Pound Sterling

EUR/USD Currency Pair - Euro/United States Dollar

FNN Fuzzy Neural Network

Forex/FX Foreign Exchange Market

GA Genetic Algorithm

GBP/USD Currency Pair - Pound Sterling/United States Dollar

IWMA Incremental Window Moving Average

LSTM Long short-term Memory

MACD Moving Average Convergence Divergence

MFI Money Flow Index

ML Machine Learning

MLP Multi-Layer Perceptron

MOO Multi-objective Optimization

OBV On-Balance Volume

ReLU Rectified Linear Units

RMSE Root Mean Squared Error

xvii

RNN Recurrent Neural Network

ROC Rate of Change

ROI Return on Investment

RSI Relative Strength Index

S&H Sell and Hold

SMA Simple Moving Average

SVM Support Vector Machine

TSS Total Sum of Squares

USD/JPY Currency Pair - United States Dollar/Japanese Yen

xviii

Chapter 1

Introduction

This first chapter explains the motivation behind this thesis and its main objectives, as well as the contri-

butions made by this study. Lastly, the structure of this document is given alongside a brief description

of each chapter’s content.

1.1 Motivation

The foreign exchange market is a global market to trade currencies, shared by governments, banks,

hedge funds and all kind of traders. It is, by far, the most traded market, as it’s volume goes up to 6

trillion dollars per day [1], and respects everyone that has some kind of money in the world. One does not

need to be in the financial sector to make use of this market. Either for working purposes, receiving the

salary in a different country, for international holidays purpose, to trade cash for the countries currency

or even to invest in stocks from a different country, one will need to trade its current money for a different

currency, and therefore access the Forex market. The only rule in any financial market is that if the

search is bigger than the offer the price will rise and vice-versa, so every time someone accesses a

market to trade in it, is actually influencing the course of it.

The other subject on this thesis is Artificial Intelligence, particularly Artificial Neural Networks, which

are algorithms that resemble a computational network inspired in biological neural systems, as Walczak

and Cerpa [2] said, these models simulate the electrical activity of the brain and nervous system. This

are very powerful tools, capable of recognizing and learning patterns from big amounts of data, that

a human being is simply not capable of, as we have limited memory and processing power, when

compared to a super computer.

So, in my opinion, it is rather amazing to be making use of computers that simulate the human brain,

in order to make predictions on a market shared and influenced by every single person and entity on this

planet.

1

1.2 Objectives

The main objective of this work is to implement a complex trading system for the Forex pair EUR/USD,

capable of forecasting price movements on a specific time horizon and intradaily trade the market in a

profitable way.

The system will be based on Artificial Intelligence. A Support Vector Machine will be trained to

identify different market conditions and an Artificial Neural Network will be trained, for each set of market

conditions, in order to identify price movement patterns and forecast these.

Data regarding the Forex pair EUR/USD from 2004 until 2018 will be used for this purpose and the

final system will be implemented as if it was built and validated before 2019, and tested during this year

on a real time simulation, so the results presented would actually be the ones obtained if one trusted the

system to invest its money in the beginning of 2019.

1.3 Contributions

Following are the main contributions presented by this work:

• A system combining ANNs and an SVM, empowered by a data pre-processing module and a final

strategy layer, capable of optimizing each other in order to obtain profit in the Forex market.

• The identification of the best time windows to trade the Forex pair EUR/USD, intradaily.

• A Support Vector Machine capable of identifying and classifying different types of markets, regard-

ing the behaviour of these.

• The implementation of three Artificial Neural Networks capable of finding intradaily patterns and

predict the price movement based on these patterns, until the time of the prediction, and the current

type of market.

1.4 Document Structure

This work is presented over five chapters, as described below:

1. Introduction - In this chapter the main motivations and goals of this work are described, along the

study’s main contributions.

2. Background & State-of-the-Art - In this chapter the fundamental concepts behind Forex and

Machine Learning, required to understand this work, are given. On a second moment, the research

done over existing solutions for relevant and similar problems is resumed and presented.

3. Proposed Architecture - In this chapter the overall system architecture is described, along all the

steps required for the implementation and validation of this.

2

4. System Evaluation - In this chapter the methodologies used to evaluate the system are described,

along with three study cases that focus on different features of this system. The results achieved

by the final system are described and commented

5. Conclusion & Future Works - In this chapter a final overview of the work presented is done,

alongside the conclusions taken about the results obtained. Future improvements that can be

done on this work are also suggested.

3

4

Chapter 2

Background & State-of-the-Art

This chapter presents fundamental concepts about financial markets, as well as artificial intelligence,

required to fully understand the topics later discussed. First, a description of the foreign exchange

market, commonly used terms, technical analysis and investing strategies is given. Followed by a review

of some machine learning algorithms and concepts, such as, ANNs and SVMs. Lastly, a review of the

state-of-the-art on academic studies, on relevant areas for this work, is presented.

2.1 Financial Concepts

2.1.1 Foreign Exchange Market

The foreign exchange market, commonly known as Forex, or FX, is a global market to trade currencies,

shared by governments, banks, hedge funds and all kind of traders. It is, by far, the most traded market,

as it’s volume goes up to 6 trillion dollars per day [1]. Unlike stock markets, which are based in a specific

place, therefore open and close everyday, the Forex market is distributed throughout several trading

centers, London, New York, Tokyo and Sydney, being the biggest ones. This makes it possible for the

market to work 24 hours a day from Monday until Friday.

Currencies are always traded in the form of a pair, called Cross Currency Pairs, as one always has

to sell one currency to buy another, so the rate of the pair is the cost of one currency in the form of the

other. Lets take EUR/USD as an example, if the rate is 1.1, this means it will cost 1 unit of the base

currency, in this case the Euro, to buy 1.1 units of the counter currency, the US Dollar.

The smallest amount by which a currency quote can change is called a pip, short for percentage in

point, it is usually equal to 0.0001, except for Japanese Yen related currency pairs, in which it is equal to

0.01.

There are two types of positions in the market, long and short. The first one corresponds to buying

the first currency, when it is believed that the quote of the pair is going to rise. A short position is the

opposite, in this case, one sells the base currency to buy the counter currency, when it is believed that

the market is going to fall.

5

It is important to note that the price to buy or sell the base currency, at a given point in time, is actually

different, this is the ask and bid price, respectively. This values vary by a few pips and this difference is

called spread, which in most cases is considered the cost of a transaction, assuming there are no other

fees. The spread also varies according to the liquidity of the market. The bigger it is, which means that a

bigger volume of the asset, in this case a currency, is being traded, the smaller the difference, between

the ask and bid price, will be.

2.1.2 Market Analysis

There are two possible ways to approach any kind of financial market, when it comes to research and

forecast future trends and price movements, fundamental analysis and technical analysis. The first one

is a method grounded on valuing a security or an asset by measuring its intrinsic value. Fundamental

analysis studies everything that can affect the market, from the overall economy and industry condi-

tions to the synergy between supply and demand, even political events can be taken into account by

a fundamental analyst. On the other hand, technical analysis’ core assumption is that any factor that

truly influences the market will be factored into the volume of transactions and the securities prices [3].

Grounded on this assumption, technical analysts only look at this two inputs, focusing on its history in

order to identify patterns and trends that suggest what will happen in the future. As Hirabayashi et al.

[3] stated, ”technical indexes are tools to expect and analyze the change of the price in the future, using

the change of pricing generated in the past”. The advocates of this approach defend that investors, as

a whole, tend toward patterned behaviors, so price action tends to repeat itself. ”Therefore, technical

analysis is a sound alternative to forecast short term forex market movements” [4].

Technical Indicators

Technical analysts have the need to obtain a different perspective, on price evolution, than what the

price and volume charts, solely, can give. In order to do that, over the years, several technical indicators

have been invented. A technical indicator consists of a formula applied to one or both of the 2 inputs

mentioned before. The result can, than, be plotted alongside the existing price and volume charts [5].

The goal is to capture the behavior and feeling of the investors, in order to determine trends, volatility or

if an asset is overbought or oversold.

There is no golden rule in the financial world, and technical indicators are no exception, all have their

flaws and fail from time to time. In order to mitigate the risk of trusting your money in a mathematical

transformation of price quotes, alone, technicians, generally, use a combination of technical indicators

[5, 6]. When the right set of conditions lines up, than they can enter the market with less risk, targeting

for bigger profits.

Indicators can be separated into groups according to what they try to measure - i.e., trend, momen-

tum, volatility or volume. In table 2.1 it is presented a brief description and some examples for each

one.

In table 2.2 is presented some of the most popular technical indicators, alongside its definition and

6

Table 2.1: Technical Indicator Types with Examples [7, 8]

Description Examples

Trend Measure the direction and intensity of a trend SMA, EMA, MACD, IWMA

Momentum Measure the speed at which the price
changes, instead of the actual price levels RSI, ROC, Stochastic Oscillator

Volatility
Measure the stability at which a price moves,
useful to identify direction changing move-
ments

BB

Volume
Based on transactions volume data, can help
confirm the strength of new trends or fake
movements

OBV, MFI

usage for trading strategies.

Table 2.2: Technical Indicators Definition and Usage [7, 8]

Indicator Formula Definition and Usage

SMA - Simple Moving Av-
erage

∑n
i=1X(i)

n

Average value of the security’s price X over a
period of time n. Aims to eliminate the noise
of random short-term fluctuations in price to
identify trends. Buy signals are generated
when the price rises above it’s moving aver-
age or a faster moving average (shorter pe-
riod) crosses above a slower one. Sell signals
are the opposite.

EMA - Exponential Mov-
ing Average

EMAt(n) = Xt ∗
2

n+ 1
+

EMAt−1(n) ∗ (1− 2
n+1)

Similar to the SMA, the difference of the EMA
is that it weights recent data points with more
significance, exponentially, therefore reacting
quicker to recent price changes. The use of
the EMA is based on the theory that new data
better reflects the current trend of a security’s
price. In order to use it, the same technical
rules of the SMA are applied.

IWMA - Incremental Win-
dow Moving Average

∑k
i=1X(i)

k
∀k = 2, 3, ..., n

Similar to the SMA, as it can be seen in for-
mula. Difference is that it is applied on a spe-
cific time window, where instead of counting
every last n values, starts at the beginning of
the window and each time step averages one
more value X.

RSI - Relative Strength
Index 100− 100

1 + Averagegain
Averageloss

As an oscillator, RSI computes a value from
0 to 100, indicating if an asset is overbought
(over 70) or oversold (below 30). It is known
as a momentum indicator that measures the
magnitude of recent price changes, typically
over the last 14 days.

ROC - Rate of Change Xt −Xt−n

Xt−n
∗ 100

As the name implies, it is a ratio that mea-
sures the speed of the price change over a
period of time n. It is great to identify mo-
mentum and trends, but also overbought or
oversold conditions, depending on how fast
the price of an asset is moving.

7

2.1.3 Leverage

Price variations in the market, specially in the foreign exchange market, are usually very small, not

crossing 1% during intraday trading [6]. In order to profit bigger amounts of money on small investments,

one will need to apply leverage on the said investment. Leverage is the use of borrowed capital for an

investment to amplify its returns, whether they are positive or negative.

In the Forex context, leverage is provided to the investors by their brokers, companies that are

specialized in financial trading [6]. The amount of leverage varies, usually, between 100:1 and 10:1,

according to each broker and the risk associated to the investment itself. A leverage of 100:1 means

that the investment is multiplied by 100, so if the investor gives 1,000e in advance, the investment will

be 100,000e.

As said before, leverage amplifies both profits and losses, making it a very risky tool which needs to

be used with caution. Let’s take the investment example given before, 1,000e with 100:1 leverage. At

this point the total amount invested is 100,000e, being that 99,000e are owed to the broker. In case

a valorization of 2% happens, the asset bought is now valued at 102,000e, so the investor now owns

3,000e, which represents a valorization of 200%, tripling the original investment. So instead of making

a 20e profit, without the use of leverage, the profit was 2,000e. The opposite scenario is also possible,

if the asset falls 2% and is now valued at 98,000e, not only the investor loses all his initial money, but

now owes 1,000e to the broker, instead of losing just 20e, which represents a loss of 200%. This

cannot happen on a ”normal” investment since an asset cannot be valued under 0, so the risk is never

greater than 100%. The way brokers found to mitigate the risk of investors losing more money than what

they can afford, is the requirement that they have a specific margin, a percentage of the total amount

of money invested, available in their account, also known as margin trading. This percentage varies

according to the current value of the security bought, and margin calls can be made by the broker itself,

in case it stops being respected - i.e., brokers can close negative positions when the investor is already

losing money that is borrowed.

2.2 Machine Learning Concepts

2.2.1 Supervised and Unsupervised Learning

Every machine learning algorithm, as the names indicates, needs to learn its job, before executing

it. There are two different methods for training an AI algorithm, called supervised and unsupervised

learning. The first, and the only one used throughout this work, is the most popular one, used mostly for

prediction and classification problems. Its definition is that the algorithm, during the training stage, has

access to the correct answers it is supposed to classify or predict. It usually uses them in a system of

try and error so that it gets closer to the optimal solution and ready to face real time problems where the

correct answer is not know yet. Unsupervised learning is mostly used to find patterns where the humans

cannot find them, or to group big amounts of data, referred to as clustering, in a meaningful way, the

difference is that this is done without having a ”correct answer” for the problem.

8

2.2.2 Features, Samples and Labels

The common thing about every single ML algorithm, both supervised and unsupervised, is that it works

on top of some kind of input data, that carries the necessary information for the algorithm to make

its prediction. Let’s take as an example, a system to correctly diagnose diseases in patients. This

system would be fed with different types of information, maybe the presence or absence of some specific

symptoms and other medical measurements, such as blood pressure, cholesterol and so on. Each input,

in this case each type of information about a patient, is called a feature and all the information regarding

a single patient, the value of each feature, is called a sample. Finally, for supervised learning problems,

the correct output to be predicted, in this example, the disease present in each patient, is called a label.

2.2.3 Overfitting and Underfitting

When training an algorithm with a limited amount of training data, there are two common issues, known

as overfitting and underfitting, a representation of both is shown in figure 2.1.

Figure 2.1: Overfitting and Underfitting

The first happens when the algorithm fits the training data so perfectly well that it cannot be gen-

eralized for the rest of the problem, so it will perform poorly in real time situations. The second is the

exact opposite, the algorithm generalizes the solution so much, so that the average error is low, that in

the end, it will also perform poorly, since no sample can be actually predicted with confidence. Usually

happens when there has not been enough training cycles yet.

2.2.4 Generalization, Stability and Convergence

When training a ML algorithm, there are three important concepts that are crucial to respect or achieve,

are they, generalization, stability and convergence.

Generalization is the ability of the algorithm to maintain a good performance when being fed with

out-of sample data, which is data that has never been seen before, during training.

Stability is the ability of the algorithm to work with a relatively satisfactory performance for similar

problems but different datasets. For example, an ANN that would be trained to predict earthquakes in

Iceland, would have a good stability if it could maintain a good performance simulating the same detec-

tion but in another place, without additional training, which logically would not be the optimal solution for

the new problem.

9

Convergence is the ability to shrink the error simultaneously for every input pattern being learned,

the perfect convergence happens when the errors for every sample are minimum and equal to each

other.

2.3 Artificial Neural Networks

Artificial Neural Networks are algorithms that resemble a computational network inspired in biological

neural systems, as Walczak and Cerpa [2] said, these models simulate the electrical activity of the

brain and nervous system. Each node, called perceptron, emulates a single neuron and works as a

processing unit. Several perceptrons arranged in layers and connected to each other form the network,

as shown in figure 2.2, this type of ANNs are usually known as Multilayer Perceptron networks (MLP).

Figure 2.2: Structure of an Artificial Neural Network

2.3.1 Layers and Nodes

The first layer of the network, called input layer, represents the features of the sampling data, having

one node per feature, which will serve as input for the next layer. As seen in figure 2.2, typically each

perceptron is connected to every node in the next layer, but some connections can be erased to avoid

overfitting. Every connection has its own weight associated, that will be multiplied by the signal entering

the connection and the next perceptron will sum every signal that receives to then produce an output for

the next layer. The weights associated to a connection simulate ”the strengthening of neural pathways

in the brain” [2] and the neural network learns by adjusting these, during the training process, to better

match the labeled samples at the last layer. This layer, known as output layer, can either be a single

neuron for numeric predictions, such as time series, or several nodes, each corresponding to a different

category, in a classification problem, where the output will be given as a probability of the sample be-

10

longing to the class represented by each node. It is also possible to use a network with multiple outputs

to predict different aspects. For example, having several medical symptoms and measures of a patient

as features, each node of the output layer would represent the presence of a different disease, where

unlike the last scenario it is possible to have more than one of the outputs activated.

2.3.2 Single Perceptron

In order to mathematically describe a MLP, let’s take a supervised learning example where the sampling

data is given as (x(i), y(i)). The vector x contains the features which will serve as input for the network

and y contains the labels for the training data, which is the goal of the network to predict and will be

used in the learning stage. For this, a ”complex non-linear form of hypotheses”, hW,b(x), will be defined

[9], with parameters W and b that will be fitted to the data during the learning process.

In figure 2.3 is represented one of the network’s processing units, a single perceptron. It takes as

input 3 features, represented by x1, x2, x3, plus an intercept term (+1), called a bias unit, so that the

output of a neuron doesn’t depend solely on its inputs but can have a term of its own. The output is

given by hW,b(x) = f(WTx) = f(
∑3

i=1Wixi + b), where f() is the activation function.

Figure 2.3: Structure of a single perceptron

2.3.3 Activation Function

There are several activation functions, the most commonly used are the Sigmoid, Hyperbolic Tangent

and Rectified Linear Unit (ReLU), as shown in table 2.3, with its respective ranges and derivatives. In

this study, the activation function used is the hyperbolic tangent, as it is later explained in SECTION 3.2,

and will be used on this chapter from now on.

Table 2.3: Activation Functions
Function Range Derivative

Sigmoid f(x) =
1

1 + e−x
[0; 1] f ′(x) = f(x)(1− f(x))

Hyperbolic Tangent f(x) = tanh(x) =
ex − e−x

ex + e−x
[−1; 1] f ′(x) = 1− (f(x))2

Rectified Linear Unit (ReLU) f(x) = max(0, x) [0; +∞] f ′(x) =

{
0 x ≤ 0

1 x > 0

11

2.3.4 Forward Propagation

Forward propagation, as the name says, is the step where the network takes the inputs and runs them

through its neurons until it gets an output. On an already trained network, doing real time predictions,

this is the only step that happens, since no parameter needs to be updated, so the network just makes

predictions based on how it was trained. During the training phase, forward propagation works exactly

the same, the difference is that a second step is than applied. This step is called backpropagation, is

how a MLP learns and it is later described in detail.

As shown in figure 2.3 a perceptron takes several inputs and produces an output, based on an

activation function. Forward propagation happens when every neuron in the network is producing its

output, which is being used as an input for the next layer, and so on, until the last output of the network

is produced. This dynamics are shown on a simple network in figure 2.4, alongside the notation used to

describe it mathematically.

Figure 2.4: Behaviour of an Artificial Neural Network

Each layer l is labeled as Ll, from L1 until Lnl , which is the output layer, sl is used to indicate the

number of neurons in layer l besides the intercept term. In this example nl = 3, so the network has

parameters (W, b) = (W (1), b(1),W (2), b(2)), with W (l)
ij being the weight of the connection between node

12

j in layer l and node i in layer l + 1. In this case, W (1) and W (2) belong to a 3X3 and 1X3 dimensional

space, respectively. Following the same notation, b(l)i is the bias of perceptron i in layer l + 1 and a(l)i is

the output of neuron i in layer l, also called activation, from the activation function which is the last step

performed by a processing unit. The forward propagation of this example can now be described by the

equations 2.1.

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1) (2.1a)

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2) (2.1b)

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3) (2.1c)

hW,b(x) = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1) (2.1d)

If this expressions can be written in vector notation, it is possible to arrange parameters in matrices

and use ”fast linear algebra routines to quickly perform calculations in the network” [9], which is an

important aspect of any ML algorithm. In order to do so, z(l)i will be used to represent the total weighted

sum, which the activation function of unit i receives - i.e., a(l)i = f(z
(l)
i), so z(l+1)

i =
∑n

j=1W
(l)
ij xj + b

(l)
i .

Following this notation, equations 2.1 can now be written like this:

z(2) = W (1)x+ b(1) (2.2a)

a(2) = f(z(2)) (2.2b)

z(3) = W (2)a(2) + b(2) (2.2c)

hW,b(x) = a(3) = f(z(3)) (2.2d)

Finally, as x represents the inputs of the network, which is the first layer of neurons, one can assume

that a(1) = x, so equations 2.2 can be written in a general form for any number of layers and neurons, to

describe forward propagation in a MLP network as follows in equations 2.3.

z(l+1) = W (l)a(l) + b(l) (2.3a)

a(l+1) = f(z(l+1)) (2.3b)

2.3.5 Backpropagation

Backpropagation is how a neural network learns, by adjusting the parametersW and b so that predictions

get closer to target values, or labels. After forward propagation, based on the network’s prediction along

13

with the sample’s label, which is the actual value the network should have guessed, it is possible to

go through the network’s connections backwards and adjust the weights, the goal is that the difference

between prediction and label becomes smaller every time backpropagation is applied.

For a given training set of m samples, or batch, given as (x(1), y(1), ..., (x(m), y(m)), it is possible to

apply a batch gradient descent, which aims at reducing the cost function, or error, of the entire batch at

once.

A batch is a group of any number of training samples, can either be composed of a single sample or

the entire training set, as well as any size in between. The bigger the batch the lower the computational

cost of the backpropagation algorithm, but can be prone to underfitting, as the network is being adjusted

to fit the entire training set at once.

There are several cost functions possible to apply, in this study the total sum of squares was chosen,

as it is later explained in chapter 3, and will be used on this chapter from now on. For a single sample

(x, y), or a batch of 1 element, a squared-error cost function is given by 2.4.

J(W, b;x, y) = ‖hW,b(x)− y‖2 (2.4)

For a batch of m samples, the overall cost function is given by J(W, b) as shown in equation 2.5.

J(W, b) =

[
m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji)2

=

[
m∑
i=1

(
‖hW,b(x

(i))− y(i)‖2
)]

+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji)2

(2.5)

The first term, it’s intuitive to understand that represents the total sum of squares. The second

term of the overall cost function is a regularization term that aims to prevent overfitting, by reducing the

magnitude of the weights. Knowing that the bigger the weights the bigger the cost function will be, these

will decay to zero if no other error were to be found. It is also known as weight decay term and it is not

applied to the bias units, b(l)i . Finally, the weight decay parameter λ, controls the relative importance

between the two terms.

Now that the network has an overall cost function defined as in 2.5, the goal is to minimize said cost

function, J(W, b) as a function of W and b. Each iteration of the gradient descent will update the weights

and bias terms as follows in equations 2.6. However, before the first iteration of the neural network’s

training, all the weights and bias terms need to be initialized randomly. The random factor is crucial, as

it is the only way to break symmetry - i.e., if all the network’s parameters were to be initialized with the

same values, than all would ”learn” the same function and change in the same way, the network would

never be able to train itself for non linear approaches.

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b)

(2.6)

14

The learning rate, α is the variable that controls the speed at which the network learns - i.e., how big

will the magnitude of the change in parameters W and b be, each time these are updated. The smaller

α is, the longer it will take to find the optimal solution, if it is too big, however, it can ”jump” between

solutions so far apart that it never finds better solutions. It is now understandable that in order to update

said weights, one only needs to compute the partial derivatives of the cost function J(W, b) which are

given by:

∂

∂W
(l)
ij

J(W, b) =

[
m∑
i=1

∂

∂W
(l)
ij

J(W, b, x(i), y(i)

]
+ λW

(l)
ij

∂

∂b
(l)
i

J(W, b) =

[
m∑
i=1

∂

∂b
(l)
i

J(W, b, x(i), y(i)

] (2.7)

As seen in equations 2.7, in order to compute the said partial derivatives regarding the cost function

J(W, b), first, the ones regarding the cost function of a single sample, J(W, b;x, y), need to be computed,

and that’s where the backpropagation algorithm will be useful. A step by step procedure on how to apply

it to compute partial derivatives and train a network for a batch of samples is now provided. For each

equation there are two different notations, the second represents a matrix-vectorial notation which is

crucial to perform fast computations as described before.

1st Step: For a training sample (x, y), apply forward propagation as in 2.3 in order to compute the

activation at the output of every neuron, as well as the output value of the hypothesis hW,b(x).

For every perceptron of the network, an ”error term” δ(l)i needs to be computed, this measures the

error relative to each neuron - i.e., how much was each node responsible for the error at the end of the

network. The error at the output node can be measured directly from the target value. For hidden units,

this term will be calculated from the error at the next layer that uses its activations as inputs.

2nd Step: For every perceptron i at the output layer Lnl compute the error term as follows:

δ
(nl)
i =

∂

∂z
(nl)
i

‖y − hW,b(x)‖2 = −2(yi − a(nl)i) · f ′(z(nl)i) (2.8a)

δ(nl) = −2(y − a(nl)) • f ′(z(nl)) (2.8b)

3rd Step: For every hidden layer l, from the last to the first, compute the error term as follows:

δ
(l)
i =

sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

 · f ′(z(l)i) (2.9a)

δ(l) =
(

(W (l))T δ(l+1)
)
• f ′(z(l)) (2.9b)

In the last two steps, f ′(z(l)i) needs to be computed, considering that f(z) is the hyperbolic tangent

function, than f ′(z(l)i) = 1− (a
(l)
i)2 and a(l)i is already known from the first step of forward propagation.

15

4th Step: Finally, the partial derivatives regarding a single sample can be computed as follows:

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i

∂

∂b
(l)
i

J(W, b;x, y) = δ
(l+1)
i

(2.10a)

OW (l)J(W, b;x, y) = δ(l+1)(a(l))T

Ob(l)J(W, b;x, y) = δ(l+1)
(2.10b)

Now that the partial derivatives for a single sample are computed, the procedure is the same for

every sample in that batch. While these are being computed, are being summed together and stored in

a matrix the same dimension as W (l) and b(l), represented by ∆W (l) and ∆b(l), in order to to compute

the partial derivatives of the total cost function as shown in equations 2.7.

5th Step: Finally, parameter W and b can be updated after a batch of training as follows:

W (l) = W (l) − α
[
∆W (l) + λW (l)

]
b(l) = b(l) − α

[
∆b(l)

] (2.11)

These steps will be repeated for every batch in the training set, called an epoch, and then for as

many epochs as one needs to reduce the cost function J(W, b) to the desired values.

2.4 Support Vector Machines

Support Vector Machines are supervised learning algorithms based on decision boundaries, developed

in the late 90s by Vladimir Vapnick [10]. It is currently, the most commonly used Machine Learning

algorithm for pattern classification [10], mostly because of its simplicity, when compared to other ML

algorithms, and applicability in a broad spectrum of classification problems, even when the training

samples are limited [11].

2.4.1 Support Vectors

The fundamental goal of an SVM is to find an hyperplane in an N-dimensional space that separates

the data points according to their classification, being N the number of features that define a sample,

so each one is represented by a single point. There will always be several hyperplanes that can do

the job - i.e., possible solutions, specially for problems with a small number of training samples. So the

best solution is the hyperplane that maximizes the distance between the support vectors of both classes

(for a binary classification problem), known as margin. Support vectors are the data points that are

closer to the decision boundary, being the ones used to compute the solution. Different support vectors

will generate different hyperplanes and therefore a solution with a different margin, as shown in figure

2.5. The bigger the margin, the bigger the confidence when classifying future samples using the trained

SVM, this approach is called ”Widest Street Approach”.

16

Figure 2.5: Influence of support vectors

2.4.2 Widest Street Approach

Let’s take a simple example on a 2 dimensional plane, so it’s easier to visualize. Each sample is clas-

sified between A and B based on 2 features, x1 and x2. The hyperplane is, in this case, a single line,

represented by γ, as shown in figure 2.6.

Figure 2.6: Behaviour of a Support Vector Machine

In order to define a decision rule based on the separating hyperplane, let’s start by assuming a vector

~w of any length, perpendicular to γ, and an unknown vector ~u, representing a new sample. Next step

is to classify the said vector, as belonging to the A or B side of the decision boundary. For this, vector

17

~u needs to be projected on vector ~w, as ~w · ~u, this internal product will give the distance of ~u in the

same direction as ~w and if it is bigger than a constant, C, then it means that it has passed the decision

boundary and will therefore be classified as a B sample. So it is valid to say that the decision rule for a

B sample is given by ~w · ~u + b ≥ 0, C = −b. The next step is now to decide which b and ~w to use, as

there are no constrain rules for it yet. With this in mind, Vapnick introduced two constraints, one for each

side of the boundary, ~w · ~xM + b ≥ 1 and ~w · ~xM + b ≤ −1, to describe B and A samples, respectively.

For ”Mathematical Convenience”, this two equations can be written as one, yi(~w · ~xl + b)− 1 ≥ 0, where

yi is 1 for B samples and −1 for A samples.

Given that, to define the hyperplane γ, one needs to calculate the widest distance between the

support vectors. From the constraint rules it is known that ~w · ~xM = 1 − b and ~w · ~xF = 1 + b, so

~w · (~xM − ~xF) = 2. Dividing the result by the length of ~w one gets the distance between samples as

given in 2.12.

~w

‖~w‖
· (~xM − ~xF) =

2

‖~w‖
(2.12)

Maximizing the distance function, it is possible to find the widest possible distance, so from 2.12

one can conclude that ‖~w‖ needs to be minimized. For ”mathematical convenience” for the next steps,
1
2‖~w‖

2 will be minimized instead. Lagrange multipliers will be used for this purpose as described in the

following steps.

1st Step: Find where L does not have derivatives:

L =
1

2
‖~w‖2 −

l∑
i=1

ai(yi(~w · ~xl + b)− 1) (2.13)

2nd Step: Compute derivatives of L:

∂L

∂w
= w −

l∑
i=1

aiyixi = 0 =⇒ w =

l∑
i=1

aiyixi (2.14)

∂L

∂b
=

l∑
i=1

aiyi = 0 (2.15)

3rd Step: Replace derivatives (2.14 and 2.15) in equation 2.13:

L =

l∑
i=1

ai −
1

2

l∑
i,j=1

aiajyiyj(xi · xj) (2.16)

From 2.16 one can conclude that the optimization of the decision boundary depends solely on pairs

of samples (xi, xj) and the decision rule is given by 2.17 and 2.18, for A and B samples, respectively.

l∑
i=1

aiyixi · ~x+ b ≤ 0 (2.17)

18

l∑
i=1

aiyixi · ~x+ b ≥ 0 (2.18)

2.4.3 Higher Dimensional Spaces and Kernels

From this example, it seems simple to separate samples with a straight line, even for higher dimensions

which can not be visualized. Looking at the equations 2.17 and 2.18 it is concludable that the classifica-

tion depends solely on the inner product of the sample vectors, so it is independent from the number of

dimensions the vectors have. The problem now is to classify samples which can not be separated by a

straight line. With that in mind and the fact that a SVM works in any dimensional space, Vapnick decided

to bring the samples to higher dimensional spaces until these can be separated by an hyperplane, which

would correspond to a straight line in a 2 dimensional space. In order to do so, a transformation φ(~x)

is applied to vector ~x which represents the sample. Now to maximize the distance between the support

vectors, one needs to compute the inner product φ(~xM) · φ(~xF). The next steps will be the same as

before, so in the end the classification depends solely on the inner product of an unknown vector in a

high dimensional space as a function of vectors in the original space [6], as represented in equation

2.19.

φ(~xl) · φ(~u) = K(xi, ~u) (2.19)

The transformation φ(~xl) · φ(~u) does not need to be known, as it is represented by a function K,

referred to as a kernel in Machine Learning, which in the end is the only thing needed to maximize the

distance between support vectors. The three most common kernels for support vector classification are

shown in table 2.4.

Table 2.4: SVM different kernels

Linear Kernel K(x, y) = xT y + c

Polynomial Kernel K(x, y) = (xT y + c)n, n is the kernel’s order
Radial Basis Function Kernel K(x, y) = e−

‖x−y‖
σ

The three kernels will be explored deeply, later in chapter 3.

2.5 State-of-the-Art

This section summarizes the extensive research done over the topics of Artificial Intelligence applied to

financial markets. Some of the solutions presented in the scientific community, so far, are presented,

as well as older models which would became an inspiration for the following works. This section is

divided between relevant works on the Forex market, systems built over Artificial Neural Networks and

the usage of Support Vector Machines in financial forecasting models. A table summarizing the most

relevant works is presented at the end of this section.

19

2.5.1 Research on Forex

The literature review on AI solutions applied to Forex, revealed that a technical approach is usually the

preferred choice, either analyzing price sequences or technical indicators. Fundamentals, which are

very useful for dealing with other financial markets, such as stocks, are usually left aside when dealing

with currency rates.

On a recent study from 2019, Chihab et al. [12] proposed a system to trade the Forex market in-

traweekly, based on a combination of some of the most common technical indicators. The system was

implemented combining a Probit Regression model and a Random Forest algorithm, and achieved a

ROI of 78% over 17 weeks, on the GBP/USD currency pair. A year before, Carapuço et al. [13] pro-

posed a model of reinforcement learning, based on a neural network that uses the Q-learning algorithm

to train three layers of ReLU neurons, this network trains itself over the testing period with past test data,

making it possible to always be in the market and up to date. The proposed system achieved a ROI of

114% from 2010 till 2017 in the EUR/USD market, making an average yearly ROI of 16.3%.

Ealier in 2007 Yao et al. [4] had suggested a different approach than the traditional forex trading.

Supported on the assumption that ”the key in Forex trading is to pick the right currency to trade at the

right time”, this study proposes a system capable of managing a Forex portfolio of different currencies,

instead of the usual trading systems based on single currency movements. The objective is achieved

by implementing a fuzzy neural network (FNN) capable of forecasting price movements over a range of

currencies. Yao et al. [4] claims that the ”experimental results on real world Forex market data show that

the proposed mechanism yields significantly higher profits against various popular benchmarks”.

The research done over this topic indicates that a lot of different ML algorithms can be used to make

accurate predictions on Forex time series, however, Petropoulos et al. [14] states that ”in real-world

trading settings, no single machine learning model can consistently outperform the alternatives” and

proposes a voting system, in 2017, that combines the predictions of several algorithms, namely SVMs,

random forests, ANNs and naive Bayes classifiers.

It is suggested on different studies that hybrid ML models combining different algorithms, usually

outperform single algorithm systems. The most common case is the use of an algorithm to optimize

the other, which is actually doing the forecasting. For example, Yu and Wang [15] proposed an online

learning algorithm in 2007, capable of optimizing the learning stage of a neural network, outperforming

the classical approaches of batch learning and the Levenberg-Marquard optimizer.

Later in 2012 Maknickiene and Maknickas [16] suggested an alternate version of a recurrent neural

network (RNN) based on a genetic algorithm (GA), which uses a Long short-term memory network

(LSTM), called EVOLINO. In order to use this model to trade the EUR/USD FX pair, Maknickiene and

Maknickas [16] creates a system that uses several of this networks and a Delfi method, which works as

a voting system depending on the individual outputs of each network, to ultimately generate the trading

signal.

Özorhan et al. [17] implemented an hybrid system in 2017, based on a SVM to predict the ”direction

and magnitude of movement of currency pairs in the foreign exchange market”. The SVM used several

technical indicators as features adapted for each trading day by a genetic algorithm. The results obtained

20

”suggest that using trend deterministic technical indicator signals mixed with raw data improves overall

performance and dynamically adapting the input data to each trading period results in increased profits”

[17].

2.5.2 Research on Artificial Neural Networks applied to Financial Markets

Artificial Neural Networks showed to be a widely used solution for forecasting time series in financial

markets, became very popular in the 90s when more studies on the area started to arise, usually out-

performing traditional trading strategies.

”Technical analysis is not designed to deal with non-uniform periodic, and discontinuous functions”,

such as forex prices time series, was claimed by Chan and Foo Kean Teong [18], and in 1995 they

proposed a model composed of a single neural network capable of optimizing new technical indicators in

order to open trades before the common, and widely used, technical indicators generate trading signals,

followed by most of the crowd. Later in 1997, Yao and Tan [19] reported ”empirical evidence that a neural

network model is applicable to the prediction of foreign exchange rates”. Their work consisted in the

use of technical indicators and price sequences as features for the model proposed, composed by five

neural networks, each forecasting a different major currency in relation to the USD. The study showed

that ”significant paper profits can be achieved for out-of-sample data with simple technical indicators”,

without an extensive training dataset.

As the evolution in the field of computational intelligence progressed, more complex solutions for the

financial area, regarding newly optimized Artificial Neural Networks, started to be study.

In 2009 Butler and Daniyal [20] attempt to predict the movement of the stock market using an evolu-

tionary artificial neural network (EANN). The results showed that the optimal solution was achieved by

updating the EANN’s weights through genetic operations, such as crossover and mutation, and that the

traditional backpropagation method tended to overfit the data. A second conclusion taken from this study

is that a training approach with multi-objective optimization (MOO) produces better results, represented

in a bigger return on investment (ROI), than a traditional single objective optimization. A MOO consists

of optimizing the neural network at each iteration, considering more metrics than just the prediction error

in the cost function, for example the final ROI or the accuracy.

Evans et al. [21], in 2013, proposed an intradaily trading system for 3 related FX pairs, EUR/USD,

GBP/USD and EUR/GBP, which trades the market that provides the bigger level of confidence, each

day, according to the other two, for example if the 3 forecasted movements are in accordance. The

forecasting is implemented by an Artificial Neural Network, which has its parameters and topology tuned

by a Genetic Algorithm, in order to achieve optimal performance. The optimal proposed model achieved

a prediction accuracy of 72.5% and an annualized net return of 23.3%. Furthermore, an important

statistical test, of this study, ”confirmed with a significance of more than 95% that the daily FX currency

rates time series are not randomly distributed”. Later in 2016 Galeshchuk [22] used a model based on

ANNs to predict exchange rates in 3 different markets, EUR/USD, GBP/USD and USD/JPY, comparing

the results and predictability of each. The results obtained suggested that EUR/USD was the most

21

predictable market in daily steps, with an average relative prediction error of 0.2%, while USD/JPY,

with a value of 0.3% for the same error in monthly steps, was the market to perform better under such

circumstances. Lastly, GBP/USD, with an average error of 1.9% was the best performance for quarterly

steps, with the USD/JPY performing at 3.5% relative error, showing a huge rise in unpredictability for

bigger time ranges.

Neural networks are still widely used nowadays, because of their great adaptability to the features

provided and also a low computational cost when compared to new ML algorithms that were invented

over the years. On a very recent study from 2020, Zafeiriou and Kalles [23] implement an intraday

forecasting system based on an ANN which is fed data at the tick of the currency pair EUR/USD.

This system ”aims to simulate the judgment and decision making of the human expert, responding in

a timely manner to changes in market conditions, thus facilitating the optimization of ultra-short-term

transactions” [23]. The neural network generates a ”trend forecasting signal” and positions are opened

in the market when a good opportunity arises, for example the price is shorter the the predicted trend.

The final system was tested for more than 2 million data points, corresponding to October of 2018 and

reached an accuracy of 78%.

2.5.3 Research on Support Vector Machines applied to Financial Markets

Support Vector Machines are also widely used in the financial time series prediction area, some prefer

it over ANNs for they reduced computational cost and easier understandability of what is happening

during the training stage. As Kyoung-jae Kim [24] claimed, ”SVMs are promising methods for the pre-

diction of financial time-series because they use a risk function consisting of the empirical error and a

regularized term which is derived from the structural risk minimization principle”. In 2003, he applied a

simple support vector machine to predict the stock market prices and compared the performance with a

backpropagation neural network and a case-based reasoning, achieving an accuracy of 57.8% against

54.7% and 51.9% by the NN and CBR, respectively.

”The SVM has been applied to the problem of bankruptcy prediction, and proved to be superior to

competing methods such as the neural network, the linear multiple discriminant approaches and logistic

regression” [25]. In 2007 Hua et al. [25] proposed a system combining support vector machines with a

logistic regression, in order to improve accuracy, capable of predicting financial distresses in companies,

based on fundamental data, showing promising results since it ”outperformed the conventional SVM”.

More recent studies keep proving the reliability of the SVM, both in forecasting, classification and

optimization of more complex ML systems.

”The trend of currency rates can be predicted with supporting from supervised machine learning in

the transaction systems such as support vector machine” [26]. In 2018 Thu and Xuan [26] achieved a

return on investment, trading the Forex pair EUR/USD over 2016, of 33.8% using a single SVM to predict

the direction of the market. A simple strategy was implemented to trade accordingly with the direction

forecasted. In the same year, Jubert de Almeida et al. [6] implemented an hybrid system between

a Support Vector Machine and a Genetic Algorithm. The second implements a classic approach of

22

optimizing trading rules based on different technical indicators, the first (SVM), however, presents a

unique approach of pre-classifying the type of market at the current moment and consequently using one

of three distinctly trained GAs, according to said type of market. The best proposed system achieved a

ROI, over a period slightly bigger than a year, of 83%.

2.6 Chapter Conclusions

This chapter is crucial to understand the solutions proposed on this work and the themes discussed. A

background on financial markets, particularly, the foreign exchange market, is given, as well as some

important Machine Learning concepts used throughout this thesis. Followed by a detailed description of

the theory behind Artificial Neural Networks and Support Vector Machines. The literature review included

some promising solutions for trading the Forex market based on ML algorithms, which will be used as a

starting point, in order to implement the proposed trading system. In table 2.5 the most relevant scientific

works from the State-of-the-Art are summarized.

23

Ta
bl

e
2.

5:
M

os
tr

el
ev

an
ts

ci
en

tifi
c

w
or

ks
fro

m
S

ta
te

-o
f-t

he
-A

rt
W

or
k

Ye
ar

M
L

A
pp

ro
ac

h
Fi

na
nc

ia
lM

ar
ke

t
E

va
lu

at
io

n
M

et
ho

d
Pe

rio
d

R
et

ur
n

[2
1]

20
13

A
N

N
op

tim
iz

ed
by

G
A

E
U

R
/U

S
D

,G
B

P
/U

S
D

,E
U

R
/G

B
P

A
cc

ur
ac

y
&

R
O

I
20

10
-2

01
2

72
.5

%
&

23
.3

%

[6
]

20
18

S
V

M
&

G
A

E
U

R
/U

S
D

R
O

I
20

15
-2

01
6

83
%

[1
3]

20
18

R
N

N
w

ith
Q

-le
ar

ni
ng

op
tim

iz
er

E
U

R
/U

S
D

R
O

I
20

10
-2

01
7

11
4%

[2
7]

20
03

S
V

M
S

to
ck

M
ar

ke
t

A
cc

ur
ac

y
19

89
-1

99
8

57
.8

%

[4
]

20
07

Fu
zz

y
N

eu
ra

lN
et

w
or

ks
S

ev
er

al
C

ur
re

nc
ie

s
A

cc
um

ul
at

ed
R

et
ur

n
20

04
-2

00
6

33
.9

5%

[2
6]

20
18

S
V

M
E

U
R

/U
S

D
R

O
I

20
16

33
.8

%

[1
2]

20
19

P
ro

bi
tR

eg
re

ss
io

n
&

R
an

do
m

Fo
re

st
G

B
P

/U
S

D
R

O
I

20
17

78
%

[2
3]

20
20

A
N

N
s

w
ith

Te
ch

ni
ca

lI
nd

ic
at

or
s

E
U

R
/U

S
D

(ti
ck

s)
A

cc
ur

ac
y

O
ct

20
18

78
.1

%

24

Chapter 3

Proposed Architecture

This chapter describes the final trading system proposed and all of its components, as well as how it

was implemented and the validations made at each step.

First, an overall description of the trading system functionability is given, as well as a detailed expla-

nation of each layer’s job and how do these interact with each other. Secondly, each layer is explored

deeply, in terms of the algorithms incorporated, the implementation steps and the required validations in

search of the optimal solutions.

The entire system is implemented and tested in Python [28], given the broad spectrum of ML and

data science libraries available.

3.1 Overall Structure

This work’s architecture is composed of four main layers. Each one of those has its own specific goal,

and functionability in order to accomplish it. These layers are connected to each other as shown in figure

3.1 and together form a complex system for trading, intradaily, the Forex pair EUR/USD, in a profitable

way.

This system works on a daily basis, it analyzes price data from midnight till noon, and makes a

prediction on a 4 and a half hour horizon - i.e., tries to predict, with a certain level of confidence, if the

price of this pair will rise or fall until 4:30pm. Based on that prediction, and the level of confidence, the

system will eventually take one of 3 decisions, either go long, short or skip that trade. If the decision is

one of the first two and decides to open a trade, it will also compute the volume of that trade, based on

the amount of money available to invest and the said level of confidence. As the prediction has a specific

time horizon, the trade will be closed at 4:30pm no matter the price, it is also important to note that the

volume traded is only possible with margin trading, which consists in the use of leverage. Another perk

of intraday trades is that no Swap needs to be payed, since it is charged overnight on open positions.

Following is a description of each layer’s function and how these interact with each other in order to

ultimately take said decision.

1. The Data Preparation Layer is responsible for preparing the data to feed as an input to every other

25

Figure 3.1: System overall architecture

layer. From the raw prices, ticked at the minute, of the FX pair EUR/USD, on one side arranges a

three month window of price sequences to feed the classification layer while on the other prepares

daily samples of a scaled transformation, explored deeply during implementation in section 3.2.3,

to feed the prediction and strategy layer, respectively, as seen in figure 3.1. All the raw data comes

from .csv files, covering prices at the minute from 2004 to 2019, downloaded from dukascopy.com.

2. The Classification Layer is based on Jubert de Almeida et al. [6] work and consists of a single

Support Vector Machine to accomplish its role in the system. The goal is to add a layer, before

the actual prediction, that has the ability to classify the market in three different groups, either a

bullish market, which has an upgoing trend, a sideways market or a bearish market, which has

a downgoing trend. For this, it will have access to a completely different timeframe than the next

26

layer, while the prediction layer is intradaily based - i.e., each sample only has information about

one specific day, this layer has access to time windows of three months. Any ML algorithm is

subject to overfitting, or underfitting logically, but Artificial Neural Networks, specifically, are very

prone to overfit a solution. The idea behind this classification layer, in order to mitigate this issue,

is based on the popular saying ”if you cannot beat them, join them”. If it is hard to avoid overfitting

without generalizing the problem too much, one can use it to its own advantage. With the data

clustered in three different groups, based on the type of market at the time, one can train three

different neural networks that will only see data belonging to a specific type of market, each, and

therefore be overfitted to that kind of data, which is not a problem as long as the classification

layer accomplishes its goal, accurately, during real time predictions. To summarize, data on the

last three months will be given to the SVM, which will classify it into one of three types and activate

one, and one only, of the neural networks on the next layer, accordingly.

3. The Prediction Layer is the core of this work, its goal is to predict price movements on a four

and a half hours horizon, fundamented in neural networks. It can be looked as if this is the main

layer and the others work for this one, each doing a different optimization, but if the prediction is

inaccurate, the entire system will fail. This layer will receive a sample per day, which consists of

a transformation of price sequences from midnight until noon, and output its prediction, on that

transformation, at 4:30pm. As it is a supervised learning system, it will also receive the accurate

value of this transformation at 4:30pm, during the training stage - i.e., the sample’s label. It is

composed of three, distinctly trained, Artificial Neural Networks activated one a time depending on

the type of market being traded at the moment, previously classified by the last layer. Its output

will be fed to the strategy layer, alongside the initial data transformation and other meaningful

variables, so that it can decide what to do at 12:00pm based on what it predicts will happen until

4:30pm.

4. The Strategy Layer, similarly to the data preparation one, has no machine learning behind. It is a

simple algorithm that joins the outputs from all other layers to ultimately take a decision between

skipping a trade or take a long or short position, and, for the last two, also the size, or volume, of

the said trade. Different strategies will be tried and placed against each other in the results chapter

4, in order to evaluate how these behave in different conditions and which one brings more profit.

All the different approaches, regarding the investment strategy, will be discussed in detail, later in

section 3.5.

3.2 Data Preparation Layer

The data preparation layer has to prepare the features to feed both the Support Vector Machine and

the Artificial Neural Networks in the classification and prediction layer, respectively. For this, it will make

use of .csv files, downloaded from dukascopy.com, containing the raw data of EUR/USD price values

per minute, from 2004 until 2019. All the data will be treated using a Python library named Pandas [29].

27

This library was build with efficiency as its main goal, it is a reliable and fast way to write, analyze and

manipulate big amounts of data, specially when comparing to python native tools, such as arrays and

lists.

3.2.1 Features for Classification

For the classification of the type of market, price sequences of approximately 3 months were used as

the features in the SVM. For this purpose, a matrix of n samples for 66 inputs was created. Each vector

has the information about the last 66 days, approximately 3 months, as one value per day, and for this

value, the price at 12:00pm was chosen, as it is the time that the next layer will do its prediction and

possibly enter the market. A reduced example of how this matrix would look like is shown in figure 3.2.

Figure 3.2: Example of price sequence windows

It is important to note that a sliding window is in use, consequently, for each new sample all the prices

will be one day sooner and a new price will be entered at the beginning of the vector, as can be seen, in

figure 3.2.

3.2.2 Labels for Classification

As explained in chapter 2, Support Vector Machines are supervised learning algorithms, so a label is

needed for the learning stage of the algorithm. This label, which is the output the SVM will be responsible

for producing, takes one of three values, represented by integers, the market is either bullish, sideways

or bearish. To create this label, the first step was to classify ”by hand” the market zones of the entire

data set, as shown in figure 3.3.

Once the market zones are classified, the label for each sample will be the classification correspond-

ing to the last day of the price window, which corresponds to the day the classification would actually be

taken in production - i.e., when the system is actually doing real time predictions.

3.2.3 Features for Prediction

For the prediction, a system of intradaily samples was chosen, with one sample corresponding to the

trading prices of a single day from midnight until noon, with the target value being that same price

28

Figure 3.3: Example of market zones classification

at 4:30pm. According to Evans et al. [21], Forex intraday price rates are noisy, chaotic and present

non-stationary behaviour, so to make a prediction on those there is the need to apply some kind of

transformation to deal with these issues.

The first issue that needs to be dealt with, is the sampling frequency used to represent an entire day.

On one side, high frequency samples means too much information, ”useless and sometimes disorient-

ing” [21], while low frequency might mean that crucial information to identify patterns can be missing.

In his book, Refenes [30] stated that a sampling period between 5 and 60 minutes is ideal for the forex

market depending on the currency pair. For this work a sampling period of 30 minutes was chosen,

which corresponds to a vector with a size of 25 features, to be fed as an input to the artificial neural

networks. However, this layer has to treat the data until 4:30pm, as this is the time corresponding to the

target value, used for training. Lastly, in order to mitigate the noise present in price variations during the

day, an average of 30 minute windows was taken for each point. An example of a few different samples,

after this smoothness transformation is applied, representing price variations during the day, is repre-

sented in figure 3.4. This prices correspond to the year 2019 of the forex pair EUR/USD and each line

represents a different day, as shown in the figure’s label.

The next step is to have a meaningful data representation for the ANNs, Vanstone and Finnie [31]

claimed that it is crucial that ANNs do not have visibility of the raw market prices, otherwise identical

patterns happening at different price zones will be treated as distinct ones, making the generalization

close to impossible. So this data needs to be scaled to a specific range where identical patterns will be

treated as so. Evans et al. [21] suggests an approach based on return rates between the current point

and the last one, accomplished by a log difference transformation as shown in equation 3.1, where Pt

represents the price at time t and Pt−1 the one before, at t− 1.

29

Figure 3.4: Price during the day of different EUR/USD samples

r = ln(
Pt

Pt−1
) (3.1)

In figure 3.5 this transformation is shown on the same examples used before in figure 3.4.

Now that the generalization issue has been resolved, a new one rises, which is convergence, as this

transformation makes each point depend solely on itself and the last one. In this conditions it is hard for

an ANN to make a prediction, as the data would be considered random. A possible way to overcome

said issue, is with the use of a technical indicator that takes all this return rates in consideration, which

actually represent price movements. For example, if one can average every return rate, this would

give information about how much the price moved, in average, during the day. As each sample starts

at midnight and has no information behind that point, a moving average with a window sized n is not

possible. The workaround is the use of the Incremental Window Moving Average, introduced in section

2.1.2. This indicator takes in consideration the entire window that is behind a certain point and for each

new point that window will grow, as can be seen in equation 3.2, which is ideal for the intradaily samples

used in this work.

y(i,j) =

∑k
l=1 x(l,j)

k
∀k = 2, 3, 4, ...n (3.2)

The outcome of the IWMA transformation is the actual data that will be fed to the prediction layer,

containing the input features needed for the ANNs and also the target value to be predicted. In figure

3.6 is shown this transformation on the same examples presented before in both figures 3.4 and 3.5.

30

Figure 3.5: Return rate transformation of different samples

Figure 3.6: Incremental window moving average transformation of different samples

31

3.3 Classification Layer

This layer’s function is very simple but crucial on the entire system functionability, its job is to classify

the current market as belonging to one of 3 types, bearish, bullish or sideways, relying on a single SVM.

This classification will be used on the next layer, the prediction one, as explained before, to decide which

neural network to use. It will also be useful for the strategy layer (strategy D) to adjust decision rules of

when to enter the market.

The implementation of this layer was done using the scikit-learn [32] framework, which ”assures

reliability in terms of computation and stability” [6]. It is a very simple and easy to use python library in-

corporating a wide range of functions and features to work with Support Vector Machines, including data

preprocessing and dimensionality reduction [32]. This framework not only facilitates the implementation

of the SVM in terms of coding, as the depth is very reduced when working with ”high-level” libraries, also

improves computational costs as every function is already optimized.

The input features chosen are 3 month price sequence windows and the labels were obtained by

classifying the market manually, all the steps for the data processing are explained in detail in section

3.2. This sections explains how this layer is implemented, how the best hyperparameters were searched

for and the results obtained.

3.3.1 Performance Metrics

Before deciding which parameters work best for the SVM, first the evaluation metrics need to be chosen.

For a multi-class classification problem, relying only on accuracy is not enough. The 3 metrics used are

accuracy, precision and recall. Before explaining each, the difference between true and false, positives

or negatives, needs to defined. A true positive is a sample correctly classified, while a false positive,

relatively to class ”X”, is a sample classified with the label ”X” when in fact belongs to another class.

A true negative, still relatively to class ”X”, is a sample that does not belong to it and therefore is not

classified as ”X”. Lastly, a false negative is a sample classified not belonging to class ”X” when it should

in fact be classified as ”X”. The three different metrics used and its’ definitions can be seen in table 3.1.

Table 3.1: Definition of different metrics [33]

Metrics Definition

Accuracy True Positives+True Negatives
Total Samples

Precision True Positives
True Positives+False Positives

Recall True Positives
True Positives+False Negatives

Accuracy represents the percentage of correctly classified samples on the total sample space. Pre-

cision represents the level of confidence of a classification for a given class, a high level of precision

doesn’t necessarily mean that samples belonging to the given class are being well classified, but it

means that when attributed to that given class there is a high probability of being correctly classified,

as there are only a few false positives. Recall is the opposite of precision, resembles how likely is a

32

sample to be rightly classified if it belongs to a given class, high values mean that samples belonging

to this class are being rightly classified, however for overfitted models the recall can be perfect but the

precision very bad, when all samples are being classified as belonging to a given class for example, so

the objective of a good performing system is to score high in all of three metrics.

Cross-Validation

A method of cross-validation, the K-fold validation, is also applied. The goal here is to make sure the

solution is not biased - i.e., overfitted to the data on which it was trained. This method is applied on

the training data to validate the chosen parameters and before the final evaluation on the out-of-sample

testing data, as described in figure 3.7.

Figure 3.7: Example of K-Fold Cross-Validation (K=3)

The K-fold strategy is exemplified in figure 3.7 for a K of 3, which corresponds to 3 different folders

and 3 iterations. The method is simple, it splits the available testing data in K folders of the same size,

and then for each iteration it will train the entire model with the data from every folder except one, which

will be used for testing. In the end, instead of a single accuracy value, this method will return K values,

one for each folder used as testing, the closer to each other they are, the more stable the system is

trained.

3.3.2 Hyperparameters

As described in section 2.4, the first hyperparameter to tune is the type of kernel used, with 3 options

available. The simplest one is the linear kernel, it is very fast to train, however is limited for problems

where data is linearly separable. Both the radial basis function and the polynomial kernel can approach

non linear problems, with the polynomial one being more versatile but taking much longer times during

training phase, specially for bigger dimensions - i.e., higher n values.

33

The C parameter is the one regarding the cost function, the higher it is, the bigger the influence of

each individual support vector, getting bigger penalizations for wrongly classified samples, which in the

limit is extremely dangerous regarding overfitting, specially for less representative training datasets.

Lastly, the Gamma parameter, non-existent for the linear kernel, controls the curvature of the deci-

sion boundary, with higher values meaning a higher curvature. Again, it depends on the data to find

the perfect values for this parameter, however, bigger values are usually prone to overfit as decision

boundaries will shrink around samples.

3.3.3 Grid search Validation

In order to evaluate the best parameters, according to the metrics described, a grid search algorithm

was applied. The grid search algorithm will train and test the SVM multiple times with every combination

of C and Gamma values for the 3 kernels, according to table 3.2. The best solutions will be evaluated

and ultimately one set of hyperparameters will be chosen.

Table 3.2: Hyperparameters to be applied on grid search for SVM

Kernel C Gamma

Linear [1; 10; 100; 1000] Non-Applicable

Polynomial, n=2,3,4 [1; 10; 100; 1000] [10−1; 10−2; 10−3]

RBF [1; 10; 100; 1000] [10−1; 10−2; 10−3; 10−4]

In addition to the metrics described (accuracy, recall and precision) a cross validation of 5-Fold is also

used to discard the possibility of overfitting for the best solutions found. The value 5 was chosen has it is

big enough to avoid biased solutions, and keeps the folders with a meaningful size for the training data

available. Below in table 3.3 the best parameters found for each kernel, as well as the corresponding

performances and cross validations, can be seen.

Table 3.3: Best parameters and results for the SVM

Parameters
Precision [%] Recall [%]

Accuracy Cross-Validation [%]
Average

Linear C = 1000
[81 ; 86 ; 60] [60 ; 89 ; 80]

82.35% [80.9, 49.5, 75.5, 63.1, 78.8]
76% 76%

Polynomial C = 100 [83 ; 89 ; 68] [73 ; 91 ; 78]
85.93% [87.8, 78.1, 84.3, 83.6, 86.3]

(n=3) Gamma = 0.01 80% 81%

RBF
C = 100 [99 ; 79 ; 83] [51 ; 100 ; 4]

80.97% [60.3, 49.1, 77.1, 70.4, 76.2]
Gamma = 0.01 87% 51%

34

This table provides the values for precision and recall per classification group, from left to right, being

the first the bearish markets, then sideways and then the bullish ones. Looking at table 3.3 it is obvious

that the best overall solution is the polynomial kernel, even though its computational time is considerably

higher, it is the most balanced solution. The linear solution appears to be overfitted just by looking at

the parameter C which takes the biggest value of all, 1000. Also has a 60% value both for precision

and recall, even though it is in different classification groups. The last ”red-flag” is a 49.5% value for

one of the 5-Fold cross validations, which is very distinct from all others, once again showing a biased

solution. The radial basis function kernel solution also presents signs of overfitting, again one of the

cross validation values is less than 50% which is very bad. It is also obvious from looking at precision

and recall values, as the precision for the bearish and bullish markets is slightly better, and then the

recall for the sideways markets is way bigger, it means that the system classifies most of the markets

as sideways, therefore having the perfect recall but not so good precision and vice-versa for the other

classes.

The solution chosen to apply on this layer is the polynomial one presented with a degree of 3, a C

value of 100 and a Gamma of 0.01, as all values of precision and recall look very stable. The accuracy

is also very good at almost 86% and the lowest cross validation value is at 78.1% with a maximum

deviation of 9.7%.

3.4 Prediction Layer

This layer is composed by three distinctly trained neural networks and its job is to predict intradaily price

movements on a four and a half hours horizon. The final system solution uses the previous layer to

classify the market type and then only the correspondent ANN is activated. Each ANN is trained with

the corresponding data - i.e., the bullish one will only be trained with samples classified as belonging

to a bullish market. The transformation being predicted is explained in section 3.2 and the output of

this layer, the prediction of said transformation at 4:30pm, is passed to the next layer to apply a trading

strategy. The implementation of this layer was done using the TensorFlow framework, which ”enables

fast prototyping, state-of-the-art research, and production” of ANN models [34].

Several tests and interpretations had to be made on this layer regarding the choice of hyperparam-

eters to train the ANN, its topology (hidden layers and nodes) and the performance metrics. For every

test presented below, to validate the decisions made, the result of an average of three distinct iterations

is presented, given the randomness factor of ANNs one test cannot supply enough confidence to make

assumptions on what works better.

3.4.1 Training and Validation

In order to train an ANN, there must be a stopping criteria, otherwise the network will train itself to eternity

until it is perfectly fitted to the training data, which, logically, would result in an overfitted network. There

are two possible approaches to define the stopping criteria, the simplest one, is to manually define

35

the number of epochs that the training stage will last, which is not the best approach as the optimal

solution can still be far from reached or the solution reached is already overfitted. The second approach,

used in this work, is to randomly separate part of the training samples to use as validation at each

epoch, and stop the training when the error on the validation set starts increasing, whereas the loss

on the training set is always decreasing, unless the learning rate is extremely high. The data samples

used in the validation set are not presented to the network in the training stage, therefore reducing the

size of training samples available. The training dataset is composed of 2340 samples, which represent

the EUR/USD price rates from 2010 till 2018, while the testing dataset is composed of 260 samples,

corresponding to the same price rates on the year of 2019. From the training set, 15% of the samples

are chosen randomly to be used as the validation set.

3.4.2 Activation Function

As the values of the IWMA, which represent both features and target values for the ANN, are in the range

[-1;1], as explained in section 3.2.3, the activation function chosen is the hyperbolic tangent, shown in

equation 3.3, one the of the most common activation functions for MLP networks and which range is the

same as the IWMA, [-1;1], as mentioned before in section 2.3.3.

tanh(x) =
ex − e−x

ex + e−x
(3.3)

3.4.3 Loss Function and Performance Metrics

The most common metric when referring to prediction neural networks is the Mean Squared Error, in

this work a variation of it was used, the Root Mean Squared Error (RMSE) as described in equation

3.4, where Yi corresponds to the target value of a sample i and Ŷi the correspondent prediction. This

function includes a square root to eliminate the fact that errors are squared, which happens to keep

errors always positive, so that one error does not ”eliminate” another.

RMSE =

√√√√ 1

n

n∑
i=1

(Ŷi − Yi)2 (3.4)

The RMSE is usually a fairly choice for using as the loss function of a neural network, the loss or cost

function’s job is explained in detail in section 2.3.5. For this work, however, a different loss function was

chosen, the Total Sum of Squares (TSS), which is defined in equation 3.5, even though the RMSE was

kept as a performance metric.

TSS =

n∑
i=1

(Ŷi − Yi)2 (3.5)

The choice for this loss function comes from the necessity to improve the convergence of the neural

network. It was noticed that the first loss function, RMSE, during the training stage per batches gener-

alizes the solution so much, in order to lower the mean error of the entire batch, that in the end, none

36

of the predictions are close enough to the target values. Instead fluctuate in a smaller range between

those. Only for very small learning rates does this function start to provide better solutions, at the cost

of a greatly increased computational cost. On the other hand, similar solutions can be achieved, with

acceptable values for the learning rate, using the TSS which will give more importance to each predic-

tion error individually. Both the phenomenons described can be seen in figures 3.8 for a similar network

topology and training parameters, where the only difference is the cost function.

(a) RMSE as loss function

(b) TSS as loss function

Figure 3.8: Comparison between RMSE and TSS as loss functions

Another performance metric used in the next evaluations is the accuracy, which at this point is consid-

ered to be the relation between prediction and target value in reference to the point at 12:00pm, instead

of the actual trade accuracy, as a trade strategy is not in place yet, and is represented in table 3.4 has

Accuracy*. This relation will be proven later, in the strategy implementation 3.5, to be one of the most

important things to predict accurately. A sample is considered rightly predicted, for this specific accuracy

computation, when it is in the same direction as the target value in relation to the initial value, at midday

- i.e., if both (target and prediction) are higher or both lower than the initial value, even if distant from

each other, than it is an accurate prediction. This will be proven not to be always true when comparing

37

the transformation to the actual price movement, so the total loss of the network is still very important to

keep the predictions and the target values as close as possible to each other.

3.4.4 Network’s Topology

One of the most important things in a neural network is its topology - i.e., the number of layers and

nodes per layer. The input and output layer is given by the problem itself, in this case, the input layer

has 25 neurons, the number of features, and the output layer has 1, the single prediction the network is

supposed to output. So the margin to optimize an ANN to a specific problem is in the hidden layers and

nodes. There is not a rule on how to build an ANN, any topology is valid as long as it suits the problem.

There are, however, a few guidelines that fit the majority of problems. For example, the number of

neurons on a given layer should be in between the number of nodes from the last and the following layer

[35], having more neurons than inputs would mean redundant neurons learning the same functions as

each other.

The computational time to train an ANN increases with the number of layers and perceptrons, also

having more nodes in the entire network increases the risk of overfitting the training dataset. So an

ANN, usually, will be grown in either depth or width until it fits the problem. Deep networks, meaning

a considerable amount of layers and less neurons per layer, can be better to find specific patterns on

complex problems, as they will shrink the solution by passing every sample through a lot of layers, so

the network can extract more features from the inputs provided, which comes at the expense of possibly

overfitting, depending on how large and representative is the training dataset. On the other hand, wide

networks, meaning less layers and more neurons per layer, can have a better generalization, since it

is possible to find more patterns on data, as there are more neurons on the final prediction and not a

shrinked solution.

In order to find the optimal solution, for the topology of this work’s ANNs, a series of tests were made

on different topology configurations, with more or less layers and neurons. After having a validation of

which kind of configuration has better performance, a test on a narrower range of similar topologies is

applied. On table 3.4 the results of the tests applied on different kinds of topologies can be analyzed.

Table 3.4: Evaluation metrics for different ANN topologies (Average of 3 tests per configuration)

Topology Total Loss (TSS) RMSE Accuracy*

[12] 4.024×10−9 4.742×10−5 62.1%

[20] 3.926×10−9 4.695×10−5 62.7%

[12 - 8] 4.17×10−9 4.904×10−5 56.2%

[20 - 16] 4.278×10−9 4.969×10−5 57.6%

[12 - 10 - 8 - 6] 4.223×10−9 4.86×10−5 58.6%

38

The tests provided the expected results, given the unpredictability and noise of the forex market it

was expected that wider networks would behave better. As stated, fewer layers prevent overfitting, and

even though the error metrics are not as different, the accuracy regarding the direction of the movement

on the IWMA proves that a single layer with more neurons is the better approach. The next search is

done on a narrower range of similar configurations, changing only the number of neurons. An additional

grid search, according to table 3.5, for each of the topologies was done, in order to discover the best

learning rate and batch size for the network to use. The results of this entire validation set for the best

parameters are provided in table 3.6.

Table 3.5: Hyperparameters to be applied on grid search for ANN

Batch Size [4; 8; 16; 32]

Learning Rate [10−3; 10−4; 10−5; 10−6]

Table 3.6: Evaluation metrics for optimal topologies (Average of 3 tests per configuration)

Topology Total Loss (TSS) RMSE Accuracy*

[18]
BS = 4

3.937×10−9 4.719×10−5 60.25%
LR = 10−5

[20]
BS = 8

3.926×10−9 4.695×10−5 62.7%
LR = 10−5

[22]
BS = 8

3.803×10−9 4.597×10−5 63.5%
LR = 10−5

[24]
BS = 4

4.362×10−9 5.025×10−5 57.44%
LR = 10−6

The network which performed better was the one with 22 perceptrons in one hidden layer, with an

accuracy of 63.5% (over IWMA direction as mentioned) and a RMSE of 4.596× 10−5. The best learning

rate was 10−5 and a batch size of 8 was used. This is the topology used during chapter 4 to evaluate

the results obtained by the final system. An example of the comparison between target values and

prediction, of this network, on a partial test range, is shown in figure 3.9, alongside a Monte Carlo

simulation with equal mean value and standard deviation to the target data, which clearly validates the

network against a random distributed sample.

To conclude this section, it is important to mention that only one generalized neural network with the

entire training dataset was submitted to this test, which is not the optimal solution regarding the final

system, as each network should be tuned to its optimal state, but it is required for the study cases to be

coherent, for example, if the SVM actually improves the system or is irrelevant.

39

(a) Target values and Prediction for optimal topology

(b) Target values and Monte Carlo simulation

Figure 3.9: Validation of chosen network against Monte Carlo simulation

3.5 Strategy Layer

This layer is responsible for ultimately find a way to make money in the forex market based on the

ANNs predictions of the IWMA transformation, on a 4 and a half hours horizon. For this purpose, a

detailed study on the relation between the IWMA and the actual price during the day was made, to

better comprehend the patterns and possibilities on what can happen to the price for a given prediction,

which is described later in this section.

For this purpose, 3 different strategies, regarding the logic behind the decision to make, are imple-

mented, and tested against each other in chapter 4, to evaluate the pros and cons of each. A fourth

strategy is also implemented and tested, this one focus on a dynamic trading size based on the logic

decisions of the third, and most complex, strategy. The decision tree of the strategy layer can be seen

in figure 3.10 and each strategy and the theory behind it is explained below in detail.

40

Figure 3.10: Diagram of the strategy layer decision tree

3.5.1 Strategy A

First of all, it is important to understand the meaning behind the transformation that is actually being

predicted. As explained in section 3.2, the final transformation, the IWMA on the return rate from one

price point to another, is an accumulated average of how much the price moved during the day. The

basic concept behind this prediction, which will be proved to not always be true, is that if this average is

bigger at 4:30pm than at 12:00pm, than the price had bigger moves up from 12:00pm to 4:30pm than

down, and is expected to be higher in the horizon predicted. The same happens in the other direction

and both these examples, the most common ones, can be seen in figures 3.11, where this relation

between the transformation being predicted and the actual price movement is evident.

From this assumption, strategy A was created as seen in figure 3.10, it is the simplest strategy of

all and consists of simply taking a long position, buying the first currency (EUR), when the prediction is

bigger than the IWMA at the moment, or taking a short position otherwise, buying the second currency

(USD), with no possibility of skipping the trade.

41

(a) IWMA example A

(b) Price example A

Figure 3.11: Relation between IWMA and Price for strategy A scnerario

3.5.2 Strategy B

The second pattern spotted on the data is that it is possible that the IWMA decreases but the price

increases anyway, the opposite is also valid. This cases were searched for and found to happen for

positive IWMA values when these are decreasing and the price increasing and negative for the opposite

case. Both this examples can be seen in figures 3.12, the explanation for this event is that the price

increases abruptly during the day, for example, making the IWMA on the return rates having high positive

values, and then from 12:00pm to 4:30pm, even though it keeps increasing, it slows the rate at which it

is doing so, making the new values for the return rate lower than the previous ones and, consequently,

the final IWMA lower. The opposite example is also shown, which works the same way.

From this new assumption, strategy B was created as seen in figure 3.10, from the confirmation

42

(a) IWMA example B

(b) Price example B

Figure 3.12: Relation between IWMA and Price for strategy B scnerario

strategy A makes, if the prediction is bigger than the current value or not, makes a new confirmation. If it

is in fact bigger, checks if this happens in the positive range of values, and only so will go long, otherwise

it will skip the trade, which was not a possibility for strategy A. Again, the opposite is also valid, if the

IWMA decreases, the short trade will only be activated on the negative range of values. This is the

safest pattern, where the price direction is guaranteed as long as the prediction is accurate, which is not

this layer’s function. When the IWMA predicted is bigger than the current value in the positive range,

it means that the price is rising from midnight until noon, and then until 4:30pm rises even more, this

pattern was found to be true for the entire dataset, even though it does not happen that often. So the

problem for strategy B is that it skips too many trades.

43

3.5.3 Strategy C

The third pattern found on data is that it is possible for the IWMA to increase in the negative range of

values and the price to increase as well, which is the opposite of what strategy B is based on. This

is frequent for price correction during the prediction horizon. For example, the price would decrease

abruptly during the day, making the IWMA have very high magnitude negative values, and then from

noon till 4:30pm would correct with a considerable move up, making the IWMA rise as well, while staying

in the negative range. The opposite remains valid, and both this examples can be seen in figures 3.13.

(a) IWMA example C

(b) Price example C

Figure 3.13: Relation between IWMA and Price for strategy C scnerario

From this final assumption, strategy C was created as can be seen in figure 3.10, in order to respect

the risks avoided by strategy B but at the same time benefit from trades as shown in figures 3.13. This

strategy consists of a new confirmation before skipping a trade that strategy B would skip, while a long

44

or short trade from strategy B happens the same way. This confirmation is based on how big is the

movement predicted in the IWMA, if it is bigger than 33% from the current value, either up or down, then

it is assumed as a big correction move and the trade is executed anyway, as it would if happening in the

”right” range of values. Otherwise, it is considered a ”strategy B case” and the trade is skipped.

3.5.4 Strategy D

A fourth strategy is also considered, which consists of adjusting the trading size dynamically, instead

of the trading rules as the other 3 strategies’ focus. This one, strategy D, has the same trading rules

as strategy C, with a slight variation, but instead of a fixed trading size, which depends solely on the

available balance in the other strategies, it will use a dynamic volume which depends on the magnitude

of the change of the IWMA, computed by strategy C. The goal behind it is to benefit on a larger scale

from safer trades, where the correction is expected to be big, and reduce the risk on trades closer to the

edge of possibly keeping the price in the same direction even when the IWMA is moving in the other. The

only variation from strategy C is the 33% value used as threshold, which in strategy D varies according

to the type of market classified by the SVM, as defined in table 3.7

Table 3.7: Threshold variation values for strategy D

Market Prediction Threshold

Bullish
Prediction > Now 20%

Prediction < Now 40%

Sideways
Prediction > Now 33%

Prediction < Now 33%

Bearish
Prediction > Now 40%

Prediction < Now 20%

3.5.5 Trading Size

The trading size used for the first 3 strategies depends exclusively on the current balance, and has a

proportion of 1 lot per 10,000e, which corresponds to a leverage of 10. The trading size for strategy

D has the same proportion between balance and lot and is then multiplied by 1.5 and the percentage

variation in the IWMA, as shown in equation 3.6, making it range from 0.5 lots to 2 lots per 10,000e, the

2 lots maximum is a limited imposed manually, which corresponds to a leverage of 5 till 20.

s =
|Prediction−Now|

|Now|
∗ 1.5, s ≤ 2

volume = s ∗ Balance
10, 000

(3.6)

45

While this leverage values might seem high, it has to be considered that this system is build to

have open positions in the market for 4 and half hours per day, which is a very small timeframe, so

big leverages need to be in use for this approach to be profitably worth it. Even though, a certain level

of conservatism is maintained as the maximum leverage used is 20 which is only 2/3 of the maximum

allowed leverage in Europe, which is 30 for the forex pair EUR/USD [36].

It is important to note that the considerations for this layer were made on the real data, and not the

prediction that comes from the ANN - i.e., this layer is optimized to work with an ANN that is doing a

perfect prediction. Otherwise, everytime the ANN got optimized there was the possibility that this layer

was counting on previous errors, and therefore the final system accuracy would get worse instead of

improving alongside the ANN improvements, for example, the inclusion of the classification layer and 3

different ANNs.

3.6 Chapter Conclusions

This chapter summarizes the practical work done behind the proposed trading system, all the technolo-

gies used and the libraries and frameworks to achieve it. From the data preparation layer, until the final

decision being taken at the strategy layer, which depends on the outputs of both the prediction and clas-

sifications layers, every single implementation is described in detail, as well as the validation tests taken

to make sure the optimal solution was being achieved.

46

Chapter 4

System Evaluation

This chapter presents all the tests to which the final trading system was subject too, as well as spe-

cific case studies in order to evaluate the best possible approach. Firstly the measures used, for the

purpose of evaluating the possible solutions, are described. On a second moment, three distinct case

studies, each focusing on different possible approaches for a specific area of the final trading system,

are described in detail, as well as the results obtained for each and the conclusions taken from the

experiments. Lastly, the final solution is compared to the classical approaches of B&H and S&H.

4.1 Evaluation Metrics

In order to evaluate the performance of the system on the several tests presented in this chapter, as

well as compare different possible implementations, as in the study cases analyzed below, rigorous

evaluation metrics are needed. Three different metrics were used to test the final system on this chapter,

the trade accuracy, return on investment and drawdown. In order to compare networks the ”Accuracy*

(IWMA)” is also provided.

4.1.1 Trade Accuracy

Different than the accuracy referred to in section 3.4.4, which was relative to the direction of the IWMA,

the trade accuracy simply measures how many trades were successful or not, as a percentage of the

entire testing range, as shown in equation 4.1.

Accuracy[%] =
Profitable Trades

Total Trades
× 100 (4.1)

This is a crucial measure to start with as it gives a general idea if the system is predicting price

movements correctly or not, when considerably above 50% randomness can be discarded. It is not

ideal, however, to compare different strategies and approaches, as it does not give an idea of how much

money is being made in the market, one could have a great trade accuracy but lose more money in the

few trades missed than all of the successful ones combined.

47

4.1.2 Return on Investment

The return on investment (ROI) is by far the most widely used metric in the financial markets, specially

when accessing an investment or financial product. In its core, is the actual measure of the investment

itself, returns a percentage that indicates how much was the profit or loss of said investment relatively to

itself, as shown in 4.2.

ROI[%] =
Return− Investment

Investment
× 100 (4.2)

This is the best metric to compare how well a given system performed in the market, as in the end,

one can know how much would his investment grow if applied on a system with a given ROI. This

measure, however, has no information about the risk of said investment, which is also a crucial thing for

any investor, as no one wants to have their assets at risk, or at least an unknown risk.

4.1.3 Drawdown

A popular metric to access the risk, or have an idea of how much was the risk to which the system was

exposed in the past, is the drawdown. This, measures the magnitude of the falls that happen in the

total balance, over the amount of time said investment is active, in this case, while the trading system is

running. The drawdown returns a percentage indicating how much the investment lost relatively to the

last peak, as shown in 4.3

Drawdown[%] =
Last Peak − Local Minimum

Last Peak
× 100 (4.3)

4.2 Case Studies

This section describes three different case studies regarding decisions made on distinct layers, for the

final trading system presented in this work. In each case study several options are analyzed and tested

against each other, in order to optimize the final system.

1. The first case study compares different time ranges regarding the prediction horizon used by the

trading system.

2. The second case study analyzes the inclusion of an SVM to classify the type of market and con-

sequently the use of 3 different ANNs by the trading system.

3. The last case study compares the different strategies implemented by the strategy layer, in addition

to the strategies of B&H and S&H, to evaluate the final performance of the system.

For the training of the ANNs, the data used is referent to the years of 2010 till 2018, while the training

of the SVM is done with data from 2004 till 2018. All the case studies are tested and simulated on the

year of 2019, which is never presented to the AI algorithms during the training stage. For every test

presented below, the result of an average of three distinct iterations is presented, given the randomness

48

factor of ANNs one test cannot supply enough confidence to make assumptions on what works better. It

is also important to note that the only commission taken into account by the trading system is the spread

for each trade, as swap and other commission do not apply. The spread considered is 2 pips per trade,

which is slightly higher than the average spread at the time the trade is entered (1.7 pips) [37].

4.2.1 1st Case Study - Prediction Time Window

The first case study compares two different time ranges for the prediction horizon which the trading

system uses. It is important to note that the system at this point is composed of a single ANN and the

strategy in place to calculate the ROI is the first and simplest strategy, presented in 3.5.1. The first time

range is of four and a half hours, from 12:00pm, time at which the system makes a prediction and opens

a trade, until 4:30pm, time of the prediction itself and at which the trade is closed. The second time

range is of six hours, from 1:30pm until 7:30pm. The price variations on the FX pair EUR/USD over the

year of 2019, between both this time ranges, can be seen in figure 4.1.

It is possible to see that the red line deviates more from the blue line in the second example, which

means the average price variation is bigger, as expected for a bigger time window. Both this values

and the performance of the ANN in both situations can be seen in table 4.1, alongside the results of the

simulation for both time ranges.

Table 4.1: Evaluation metrics for different market hours strategy (EUR/USD 2019)

Measures
Entry at 12:00pm Entry at 1:30pm
Close at 4:30pm Close at 7:30pm

ROI 27.5% -23.7%
Max Drawdown 20.6% 27.2%
Accuracy 54.6% 51.5%
Total Trades 260 260

Longs 87 80
Shorts 173 180

Max ROI 43.0% 0%
Min ROI -20.6% -33.7%

Accuracy* (IWMA) 63.5% 60.8%
Average Price Variation 17.6pips 19.7pips

Even though, in average, there is a smaller price variation between 12:00pm and 4:30pm (17.6 pips)

than between 1:30pm and 7:30pm (19.7 pips), which means less margin to make a profit, the system

showed to perform considerably better for the first case scenario, as can be seen in figure 4.2, with a

ROI of 27.5% when compared to a negative ROI of -23.7%. The trade accuracy is also slightly better,

54.6% compared to 51.5%, which is too close to 50%, explaining the negative ROI. However, the IWMA

accuracies of the networks are very similar, 63.5% and 60.8%, which indicates a good performance of

both, so the problem is not in the prediction of the IWMA transformation, but in the relation of this to the

49

(a) EUR/USD 2019 rates between 12:00pm and 4:30pm

(b) EUR/USD 2019 rates between 1:30pm and 7:30pm

Figure 4.1: Comparison of EUR/USD rates during both time ranges for 1st case study

actual price movement.

The fact that the relations, explored in detail in section 3.5, between IWMA and price movement are

not as coherent for the second time range, as for the first, has several reasons. The first, and most

logical, is the fact that the time window is bigger and, consequently, there is more time for unpredictable

variations. Beyond, the pattern explained for the second scenario (strategy B) 3.5.2, also happens more

often. There is more time for the price to keep growing steady, for example, but with a lower return rate

each timestep, and consequently the IWMA will be lower in the end, even though the price is bigger.

In addition to the size of the prediction horizon, the actual hours at which the trades are being opened

50

Figure 4.2: ROI over time for different market hours strategy (EUR/USD 2019)

and closed is also relevant. The EUR/USD market has the biggest trading volumes, usually, between

12pm and 4pm, as shown in figure 4.3, consequence of having both the European and American trading

sessions running during this time. With more active traders on the market, movements can be more

predictive and impulses bigger, corrections and unexpected movements usually happen after hours, as

there is less volume in the market, so the price is subject to a bigger volatility and the will of who is

actually in the market. A highest trading volume also means a narrower spread [21], which is the only

commission this trading system is subject too, so it is crucial that it assumes the minimum possible

value. Lastly, the daily exchange rate considered and used by most official sources, such as banks

and exchange offices, in Europe, is taken between 4:00pm and 4:30pm [38], which means that the ”big

players”, as banks and hedge funds are usually referred to, will be in the market making sure the price

is in the desired zone by this time, once again, making this the most predictive time window to trade at.

Two conclusions can be taken from this case study, the longer the time window for a market predic-

tion, the bigger the profit margin one can make, however, the unpredictability of the market rises and

so does the difficulty of solving the problem as suggested in this work. Secondly, the peak hours of the

market - i.e., the time range with the biggest trading volume, represented mostly by banks and hedge

funds from both Europe and the USA, presented to have the most predictable, and well defined, price

movements.

51

Figure 4.3: Average Traded Volume per hour (EUR/USD 2017-2019)

4.2.2 2nd Case Study - Market Classification

The second case study compares the performance of a single ANN to the full system with 3 ANNs,

distinctly trained and being activated according to the SVM classification of the type of market, either

bullish, bearish or sideways, as explained in detail in section 3.3.

The first step is to classify the testing data referent to year of 2019 with the previously trained and

validated SVM. This classification was done with an accuracy of 81.9% referent to the classification

done manually, as can be seen in table 4.2, alongside the number of accurate classifications per type of

market.

Table 4.2: Classification of actual SVM versus ”hand-labeled” data (EUR/USD 2019)

Measures Manual Labels
SVM Classification
Accurate Missed

Samples 260 260
Bearish 70 32 5

Sideways 190 181 42
Bullish 0 0 0

Accuracy - 81.9%

During the year of 2019, the forex pair EUR/USD was never considered to be in a bullish market,

which the SVM classified accurately, the missed classifications are mostly in the transition zones be-

tween sideways and bearish markets, which even when being labeled manually, are dubious to classify,

as there is not a written rule one can follow, as it happens with the ANN forecasting, which ultimately the

price either rose or felled during that day, and the prediction is either correct or wrong.

The next step is to use the respective ANN to forecast the price movement for each day, according

52

to the type of market classification for that day, given by the SVM. The results obtained for the complete

system, over the testing period, are shown in table 4.3 alongside the performance obtained by a single

ANN. At this point, only strategy A is being used and the evolution of the ROI for both this approaches

can be seen in figure 4.4.

Table 4.3: Evaluation metrics for single ANN versus SVM complete system (EUR/USD 2019)

Measures Single ANN SVM System

ROI 27.5% 31.4%
Max Drawdown 20.6% 20.2%
Accuracy 54.6% 53.8%
Total Trades 260 260

Longs 87 95
Shorts 173 165

Max ROI 43.0% 55.5%
Min ROI -20.6% -15.0%

Accuracy* (IWMA) 63.5% 61.9%

Figure 4.4: ROI evolution for a single ANN and the hybrid SVM-ANNs system (EUR/USD 2019)

Looking at the performance measures, it is clear that the SVM system outperformed the single ANN,

with a final ROI of 31.4% compared to 27.5%, it also peaked the ROI at 55.5%. The maximum draw-

downs are very similar, 20.2% for the complete system versus 20.6%, which indicates that this approach

53

is not yet mitigating the risk. It is interesting, however, that both the accuracies measured are better for

the single ANN system, this can be due to the fact that the SVM missed roughly 20% of the classifica-

tions. So for wrongly classified markets, an ANN trained with data belonging to a different type of market

is being used, proving that a generalized ANN performs better under all circumstances, and this system

depends on a correct classification previously done by the SVM.

Analyzing figure 4.4, it is possible to see that at the beginning the ROI for the complete system grows

much faster than the one of a single ANN, it is only after July that a fall happens for the SVM system and

not for the single ANN, bringing both ROIs much closer. This is where the wrong predictions of the SVM

are happening, harming the final system composed of 3 ANNs.

From this case study, can be concluded that the complete system using distinctly trained ANNs, for

each type of market, outperforms a single ANN, as long as the prediction done by the SVM is accurate. If

this fails, the ”overfitted” networks, can do more harm than good, so the next step is to apply the strategy

layer, in order to fully benefit from the classification done by the SVM, while avoiding the missed trades.

4.2.3 3rd Case Study - Trading Strategy

The third case study compares three different trading strategies regarding the decision logic behind the

direction of a trade to take in accordance to the prediction of the IWMA, plus a fourth strategy regarding

the size, or volume, of each trade. In addition to the strategies implemented by the system and described

in detail in section 3.5, the strategies B&H and S&H, for the same test period, are also implemented.

Buy & Hold and Sell & Hold

Buy & Hold and Sell & Hold are the two most classical approaches on a financial market, based on the

fundamental that markets follow trends and fluctuations are not predictable but a consequence of the

trading noise, this strategies simulate the returns of an investment as if one would buy the asset and

hold - i.e., keep the position open until the end of the testing period. In the specific case of the forex mar-

ket, the B&H strategy corresponds to keep a long position opened, while the S&H strategy represents

keeping a short position opened. For this case study, a leverage of 10 was used in both this strategies

as it is the leverage used by the trading system and the results would not be comparable otherwise.

The results obtained for each strategy during the year 2019 are presented in table 4.4 and a graphi-

cal representation on the evolution of the ROI for each strategy is shown in figure 4.5.

Strategy A is the simplest of all strategies, never skips a trade, totaling 260 trades over the entire

test period, making it the riskiest strategy of all, reflected in a maximum drawdown of 20.2% and a

minimum ROI of -15%. The final ROI obtained, 31.4%, was enough to beat the S&H strategy which only

obtained a ROI of 21.5%. However, the maximum drawdowns, 20.2% and 20.5%, are very close, which

supports the claim that strategy A is still too dependent on the market, not providing a better risk than a

fundamental analysis of staying short all year long. Looking at figure 4.5 is also possible to understand

that strategy A movements on balance are very inconsistent, similar to the S&H ones.

54

Table 4.4: Evaluation metrics for strategies proposed (EUR/USD 2019)

Measures
Strategy Strategy Strategy Strategy

B&H S&H
A B C D

ROI 31.4% 36.1% 73.4% 87.5% -21.5% 21.5%
Max Drawdown 20.2% 16.2% 11.9% 13.0% 56.3% 20.5%

Accuracy 53.8% 53.4% 57.4% 58.3% 0% 100%
Total Trades 260 73 176 156 1 1

Longs 95 3 18 17 1 0
Shorts 165 70 158 139 0 1

Max ROI 55.5% 53.4% 87.4% 108.1% 8.4% 52.8%
Min ROI -15.0% 0% 0% -2.6% -52.8% -8.4

Figure 4.5: ROI evolution for every strategy proposed (EUR/USD 2019)

Strategy B is the most conservative of all strategies, the one with less movements, corresponding to

a total of 73 trades. Being the safest strategy in terms of price movement confidence, it is expected to

present the smallest risk when taking a trade, which should be reflected on the drawdown, besides the

fact of never having a negative ROI. Even though, strategy B presented a bigger maximum drawdown,

16.2%, than strategies C and D, by looking at figure 4.5, it is possible to understand that this strategy has

the smoothest movements, and smallest falls. The bigger drawdown is a consequence of not availing the

55

big movements up as the other strategies, never regaining the balance lost on a series of missed trades,

so even though the drawdown is bigger, it happens over a larger period, making this the strategy with

the least abrupt movements on balance. This strategy obtains a final ROI of 36.1%, beating strategy A’s

31.4%, even with a slightly worse accuracy, 53.4% compared to 53.8%.

Strategy C is the most complete of the first three strategies, with a relatively high amount of trades

entered, 176, and an accuracy of 57.4%. It is the strategy with the smallest maximum drawdown at only

11.9% and a final ROI of 73.4%, largely superior to strategies A and B. Observing figure 4.5 one can

see the evolution of the ROI in strategy C, as expected, is less steady than strategy B, but does the

same job avoiding the falls of strategy A without losing as many opportunities as B. As the trading size

is directly related to the size of the current balance, the more the ROI grows, the bigger the impulses it

can make, on accurate trades, and consequently bigger falls.

Strategy D, as expected, follows the evolution of strategy C, since the trading rules are practically the

same. The objective was that this strategy would benefit greatlier from movements with a bigger level

of confidence, and have smaller falls on uncertain trades, which was accomplished by an accuracy of

58.3% and a final ROI of 87.5%. This pattern can also be seen in figure 4.5, as the falls and impulses

up happen at the same time, for both this strategies.

From this case study, can be concluded that strategy D outperforms all other strategies in every

aspect except for the maximum drawdown, 13%, slightly higher than strategy C. However, this draw-

downs happen at the same time and is a consequence of the event explained before, that the bigger the

balance, the bigger the falls, since the trading size depends on the current balance.

4.3 Chapter Conclusions

This chapter evaluated the several steps taken throughout this work in order to build the final intradaily

trading system. It presented 3 case studies, where different options were compared in order to see

which one fits better the final goal of the trading system, which ultimately is to maximize the ROI without

jeopardizing the risk management.

The first case study concluded that the best time to be in the EUR/USD forex market is from 12:00pm

till 4:30pm, where the trading volume is the highest and the price movements the most predictable ones.

The second case study showed that the approach of having 3 distinctly trained ANNs, one for each

type of market, clearly outperforms a single ANN, bringing much bigger profits, as long as the SVM is

doing an accurate prediction, otherwise the outcome will be worse than having a single ANN, which

logically has a better generalization for any type of market, since it was trained with the entire training

dataset.

Lastly, the third case study, confirmed that the most complete strategy of all is the fourth one pre-

sented, strategy D, which not only incorporates more complex trading rules, as strategy C, but also

makes use of the market classification and the level of confidence provided by the ANN, to adjust trad-

ing sizes dynamically. Making possible to avail bigger and more predictable movements and mitigate the

risk on more uncertain predictions.

56

An annualized ROI of 87.5%, achieved by the final trading system over the year of 2019, is the dream

on any investor, however, the use of leverage has to be taken in consideration, which not only brings

bigger profits, but also bigger risks. For example, a catastrophic event could happen during the time

window at which the trade is opened, making the market change directions completely and possible

even bringing a negative ROI from one day to another.

57

58

Chapter 5

Conclusion & Future Works

5.1 Conclusion

The final system presented by this work, combines a single SVM with three distinct ANNs, in order to

make intraday trades in the Forex market of the currency pair EUR/USD. The system was trained with

data referent to the years of 2004 till 2018 and tested for the year of 2019, providing a great yearly return

on investment of 87.5%.

The SVM receives price sequence windows, of approximately three months, to use as features, in

order to classify the different market types, bullish, bearish or sideways. Depending on the classification,

one of the ANNs, which was trained with the correspondent type of data, is activated, and performs an

intraday forecasting, at 12:00pm, for the price movement until 4:30pm. The strategy layer, based on the

prediction done by one of the ANNs, the type of market classified by the SVM and the current balance,

takes one of 3 options, either to enter a long trade, a short or skip that day, it also decides the size of

said trade for the first two options.

Support Vector Machines presented to be a reliable method for classification of financial time series,

as long as the labels, for the classification purposes required, are provided and consistent, making it

possible to define the patterns wanted to be identified and the SVM does the job of identifying it in new

data.

Artificial Neural Networks, as expected from the literature review, presented very good forecasting

results, as long as correctly optimized and trained with enough and relevant data. The use of different

ANNs for different types of market, reducing the generalization of the ANN itself and therefore slightly

overfitting the training data, showed to perform better than a single ANN in terms of forecasting the

price movements, as long as the correct network is being used, so if the classification is missed, the

probability of an unsuccessful forecast rises.

Lastly, the peak hours of the EUR/USD Forex market, from 12:00pm till 4:30pm - i.e., the time range

with the biggest trading volume, represented mostly by banks and hedge funds from both Europe and

the USA, presented to have the most predictable, and well defined, price movements.

Trading the currency pair EUR/USD intradaily, can bring huge profits when predictions are accurate

59

and leverage is applied, however, the use of leverage comes with an increased risk. It was not the case

during any of the tests applied on this system, but financial markets have proved over and over to be

very unpredictable environments, so one needs to be conscious that the possibility of unplanned events

during the time positions are open in the market, without any kind of control, can completely change the

course of the price movement and have a huge negative impact in the overall ROI, from a single trade,

especially when applying high leverages.

5.2 Future Works

Even though this work achieved considerably good results, there is always space for improvement.

When analyzing the case studies presented in section 4.2, some issues arise, which can be addressed

with a more robust and complete system. Possible improvements to this work should focus on a better

risk management and mitigation, as well as improving the performance of both the ML algorithms. The

following approaches should be considered:

• A secondary system to control market events and prices during the prediction horizon, when there

are open positions, would prevent catastrophic losses from happening and therefore mitigate the

risk the system is exposed to. Can be done with something as simple as the inclusion of stop

losses, or a more robust system with some ML algorithm to perform anomalies detection in the

patterns predicted.

• The ANNs would perform better if a genetic algorithm was used to control the hyperparameters

and topologies of the networks, instead of the manual tuning of parameters which was done on

this thesis. The SVM could also benefit from the inclusion of a GA to control not only the hyperpa-

rameters, but the size of the price sequences given as features.

• Instead of classifying three types of market, which had to be labeled manually in order to train

the SVM. It would be interesting to explore some kind of unsupervised learning algorithm, capable

of clustering different types of markets, according to the patterns found, which would for sure be

different than what the human eye can see. This way, more than 3 types of markets could be

explored and the system would be less reliable on the human side.

• Finally, AI should be introduced in the strategy layer in order to find optimal trading strategies,

improving profits and reducing the losses. For example, a GA could be used, using the outputs of

every other layer, and maybe even the inclusion of some technical indicators, to implement a more

robust trading strategy capable of maximizing the ROI and mitigating the risk.

60

Bibliography

[1] L. Ni, Y. Li, X. Wang, J. Zhang, J. Yu, and C. Qi. Forecasting of forex time series data based on

deep learning. Procedia Computer Science, 147:647 – 652, 2019.

[2] S. Walczak and N. Cerpa. Artificial neural networks. In R. A. Meyers, editor, Encyclopedia

of Physical Science and Technology (Third Edition), pages 631 – 645. Academic Press, New

York, third edition edition, 2003. URL http://www.sciencedirect.com/science/article/pii/

B0122274105008371.

[3] A. Hirabayashi, C. Aranha, and H. Iba. Optimization of the trading rule in foreign exchange using

genetic algorithm. pages 1529–1536, 2009.

[4] S. Yao, M. Pasquier, and C. Quek. A foreign exchange portfolio management mechanism based on

fuzzy neural networks. In 2007 IEEE Congress on Evolutionary Computation, pages 2576–2583,

2007.

[5] A. Gorgulho, R. Neves, and N. Horta. Applying a ga kernel on optimizing technical analysis rules for

stock picking and portfolio composition. Expert Systems with Applications, 38(11):14072 – 14085,

2011. URL http://www.sciencedirect.com/science/article/pii/S0957417411007433.

[6] B. Jubert de Almeida, R. Ferreira Neves, and N. Horta. Combining support vector machine with

genetic algorithms to optimize investments in forex markets with high leverage. Applied Soft

Computing, 64:596 – 613, 2018. URL http://www.sciencedirect.com/science/article/pii/

S1568494618300036.

[7] J. J. Murphy. Technical analysis of the financial markets: A comprehensive guide to trading methods

and applications. Penguin, 1999.

[8] S. B. Achelis. Technical Analysis from A to Z, 2nd Edition. McGraw-Hill, 2000.

[9] C. S. D. Stanford University. Multi-layer neural networks. URL http://ufldl.stanford.edu/

tutorial/supervised/MultiLayerNeuralNetworks/.

[10] S. K. Satapathy, S. Dehuri, A. K. Jagadev, and S. Mishra. Chapter 1 - introduction. In S. K.

Satapathy, S. Dehuri, A. K. Jagadev, and S. Mishra, editors, EEG Brain Signal Classification for

Epileptic Seizure Disorder Detection, pages 1 – 25. Academic Press, 2019. URL http://www.

sciencedirect.com/science/article/pii/B9780128174265000016.

61

http://www.sciencedirect.com/science/article/pii/B0122274105008371
http://www.sciencedirect.com/science/article/pii/B0122274105008371
http://www.sciencedirect.com/science/article/pii/S0957417411007433
http://www.sciencedirect.com/science/article/pii/S1568494618300036
http://www.sciencedirect.com/science/article/pii/S1568494618300036
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://www.sciencedirect.com/science/article/pii/B9780128174265000016
http://www.sciencedirect.com/science/article/pii/B9780128174265000016

[11] D. A. Pisner and D. M. Schnyer. Chapter 6 - support vector machine. In A. Mechelli and

S. Vieira, editors, Machine Learning, pages 101 – 121. Academic Press, 2020. URL http:

//www.sciencedirect.com/science/article/pii/B9780128157398000067.

[12] Y. Chihab, Z. Bousbaa, M. Chihab, O. Bencharef, and S. Ziti. Algo-trading strategy for intraweek

foreign exchange speculation based on random forest and probit regression. Applied Computational

Intelligence and Soft Computing, 2019, 2019.

[13] J. Carapuço, R. Neves, and N. Horta. Reinforcement learning applied to forex trading. Applied Soft

Computing, 73:783 – 794, 2018. URL http://www.sciencedirect.com/science/article/pii/

S1568494618305349.

[14] A. Petropoulos, S. P. Chatzis, V. Siakoulis, and N. Vlachogiannakis. A stacked generalization system

for automated forex portfolio trading. Expert Systems with Applications, 90:290 – 302, 2017. URL

http://www.sciencedirect.com/science/article/pii/S0957417417305493.

[15] L. Yu and S. Wang. An online learning algorithm with adaptive forgetting factors for feedforward

neural networks in financial time series forecasting. Nonlinear Dynamics and Systems Theory, 1,

03 2007.

[16] N. Maknickiene and A. Maknickas. Application of neural network for forecasting of exchange rates

and forex trading. 05 2012.

[17] M. O. Özorhan, İsmail Hakkı Toroslu, and O. T. Şehitoğlu. A strength-biased prediction model for

forecasting exchange rates using support vector machines and genetic algorithms. Soft Computing,

21:6653 – 6671, 2017.

[18] K. C. C. Chan and Foo Kean Teong. Enhancing technical analysis in the forex market using neural

networks. In Proceedings of ICNN’95 - International Conference on Neural Networks, volume 2,

pages 1023–1027 vol.2, 1995.

[19] J. Yao and C. L. Tan. A case study on using neural networks to perform technical forecasting of

forex. Neurocomputing, 34(1):79 – 98, 2000. URL http://www.sciencedirect.com/science/

article/pii/S0925231200003003.

[20] M. Butler and A. Daniyal. Multi-objective optimization with an evolutionary artificial neural network

for financial forecasting. pages 1451–1458, 07 2009.

[21] C. Evans, K. Pappas, and F. Xhafa. Utilizing artificial neural networks and genetic algorithms to build

an algo-trading model for intra-day foreign exchange speculation. Mathematical and Computer

Modelling, 58(5):1249 – 1266, 2013. URL http://www.sciencedirect.com/science/article/

pii/S0895717713000290.

[22] S. Galeshchuk.

62

http://www.sciencedirect.com/science/article/pii/B9780128157398000067
http://www.sciencedirect.com/science/article/pii/B9780128157398000067
http://www.sciencedirect.com/science/article/pii/S1568494618305349
http://www.sciencedirect.com/science/article/pii/S1568494618305349
http://www.sciencedirect.com/science/article/pii/S0957417417305493
http://www.sciencedirect.com/science/article/pii/S0925231200003003
http://www.sciencedirect.com/science/article/pii/S0925231200003003
http://www.sciencedirect.com/science/article/pii/S0895717713000290
http://www.sciencedirect.com/science/article/pii/S0895717713000290

[23] T. Zafeiriou and D. Kalles. Intraday ultra-short-term forecasting of foreign exchange rates using an

ensemble of neural networks based on conventional technical indicators. In 11th Hellenic Confer-

ence on Artificial Intelligence, page 224–231, New York, NY, USA, 2020. Association for Computing

Machinery.

[24] Kyoung-jae Kim. Financial time series forecasting using support vector machines. Neurocom-

puting, 55(1):307 – 319, 2003. URL http://www.sciencedirect.com/science/article/pii/

S0925231203003722.

[25] Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang. Predicting corporate financial distress based

on integration of support vector machine and logistic regression. Expert Systems with Appli-

cations, 33(2):434 – 440, 2007. URL http://www.sciencedirect.com/science/article/pii/

S095741740600159X.

[26] T. N. T. Thu and V. D. Xuan. Using support vector machine in forex predicting. In 2018 IEEE

International Conference on Innovative Research and Development (ICIRD), pages 1–5, 2018.

[27] K. jae Kim. Financial time series forecasting using support vector machines. Neurocom-

puting, 55(1):307 – 319, 2003. URL http://www.sciencedirect.com/science/article/pii/

S0925231203003722.

[28] Python. Python 3.9.1 documentation. URL https://docs.python.org/3/.

[29] Pandas. Pandas documentation. URL https://pandas.pydata.org/docs/index.html.

[30] A.-P. Refenes. Neural Networks in the Capital Markets. John Wiley Sons, Inc., 1994.

[31] B. Vanstone and G. Finnie. An empirical methodology for developing stockmarket trading systems

using artificial neural networks. Information Technology papers, 36, 2009.

[32] Scikit-Learn. Machine learning in python, . URL https://scikit-learn.org/stable/.

[33] Scikit-Learn. Precision-recall, . URL https://scikit-learn.org/stable/auto_examples/model_

selection/plot_precision_recall.html.

[34] TensorFlow. Tensorflow core. URL https://www.tensorflow.org/overview.

[35] I. Kaastra and M. Boyd. Designing a neural network for forecasting financial and economic time

series. Neurocomputing, 10(3):215 – 236, 1996. URL http://www.sciencedirect.com/science/

article/pii/0925231295000399.

[36] A. Saks. Finance feeds: European leverage restrictions: How

did it affect volumes so far? URL https://financefeeds.com/

european-leverage-restrictions-how-did-it-affect-volumes-so-far-we-investigate/.

[37] Teletrade. Negotiation conditions. URL https://www.teletrade.eu/pt/trade/condition-mt4/

forex.

[38] B. de Portugal. Exchange rates. URL https://www.bportugal.pt/en/taxas-cambio.

63

http://www.sciencedirect.com/science/article/pii/S0925231203003722
http://www.sciencedirect.com/science/article/pii/S0925231203003722
http://www.sciencedirect.com/science/article/pii/S095741740600159X
http://www.sciencedirect.com/science/article/pii/S095741740600159X
http://www.sciencedirect.com/science/article/pii/S0925231203003722
http://www.sciencedirect.com/science/article/pii/S0925231203003722
https://docs.python.org/3/
https://pandas.pydata.org/docs/index.html
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://www.tensorflow.org/overview
http://www.sciencedirect.com/science/article/pii/0925231295000399
http://www.sciencedirect.com/science/article/pii/0925231295000399
https://financefeeds.com/european-leverage-restrictions-how-did-it-affect-volumes-so-far-we-investigate/
https://financefeeds.com/european-leverage-restrictions-how-did-it-affect-volumes-so-far-we-investigate/
https://www.teletrade.eu/pt/trade/condition-mt4/forex
https://www.teletrade.eu/pt/trade/condition-mt4/forex
https://www.bportugal.pt/en/taxas-cambio

64

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Document Structure

	2 Background & State-of-the-Art
	2.1 Financial Concepts
	2.1.1 Foreign Exchange Market
	2.1.2 Market Analysis
	2.1.3 Leverage

	2.2 Machine Learning Concepts
	2.2.1 Supervised and Unsupervised Learning
	2.2.2 Features, Samples and Labels
	2.2.3 Overfitting and Underfitting
	2.2.4 Generalization, Stability and Convergence

	2.3 Artificial Neural Networks
	2.3.1 Layers and Nodes
	2.3.2 Single Perceptron
	2.3.3 Activation Function
	2.3.4 Forward Propagation
	2.3.5 Backpropagation

	2.4 Support Vector Machines
	2.4.1 Support Vectors
	2.4.2 Widest Street Approach
	2.4.3 Higher Dimensional Spaces and Kernels

	2.5 State-of-the-Art
	2.5.1 Research on Forex
	2.5.2 Research on Artificial Neural Networks applied to Financial Markets
	2.5.3 Research on Support Vector Machines applied to Financial Markets

	2.6 Chapter Conclusions

	3 Proposed Architecture
	3.1 Overall Structure
	3.2 Data Preparation Layer
	3.2.1 Features for Classification
	3.2.2 Labels for Classification
	3.2.3 Features for Prediction

	3.3 Classification Layer
	3.3.1 Performance Metrics
	3.3.2 Hyperparameters
	3.3.3 Grid search Validation

	3.4 Prediction Layer
	3.4.1 Training and Validation
	3.4.2 Activation Function
	3.4.3 Loss Function and Performance Metrics
	3.4.4 Network's Topology

	3.5 Strategy Layer
	3.5.1 Strategy A
	3.5.2 Strategy B
	3.5.3 Strategy C
	3.5.4 Strategy D
	3.5.5 Trading Size

	3.6 Chapter Conclusions

	4 System Evaluation
	4.1 Evaluation Metrics
	4.1.1 Trade Accuracy
	4.1.2 Return on Investment
	4.1.3 Drawdown

	4.2 Case Studies
	4.2.1 1st Case Study - Prediction Time Window
	4.2.2 2nd Case Study - Market Classification
	4.2.3 3rd Case Study - Trading Strategy

	4.3 Chapter Conclusions

	5 Conclusion & Future Works
	5.1 Conclusion
	5.2 Future Works

	Bibliography

