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Resumo

Muitos dos sistemas sociais, económicos e biológicos, presentes no nosso dia-a-dia, podem

ser modelados como redes complexas. O aumento da complexidade da nossa sociedade, como

consequência direta do progresso tecnológico e ciêntifico nas últimas decadas, tem levado a que

muitos destes sistemas se tenham tornado dependentes entre si. Assim, torna-se mais adequado

modelar estes sistemas usando redes complexas multi-camada, em vez de redes complexas de

uma só camada, de forma a facilitar a análise de como estes sistemas interagem entre eles. Uma

vez que é crucial garantir que estes sistemas funcionem corretamente, mesmo que sofram ataques

ou falhas aleatórias, é importante estudar as propreidades de robustez destas redes. Esta tese

adopta duas abordagens distintas para o estudo da robustez de redes multiplex com duas ca-

madas. A primeira abordagem analisa o impacto que diferentes distribuições de grau têm na

robustez destas redes. Os resultados obtidos indicam que as propriedades de robustez que as dis-

tribuições de grau manifestam em redes de uma só camada, estão igualmente presentes em redes

multiplex. Enquanto que redes com duas camadas scale-free são robustas contra falhas aleatórias

e frágeis contra ataques intencionais, redes com duas camadas exponênciais demonstram o com-

portamento oposto. Redes com uma camada scale-free e uma camada exponencial demonstram

robustez elevada contra ataques intencionais e falhas aleatórias, reduzindo as fragilidades que

cada uma das distribuições de grau exibem quanto estão isoladas. A segunda abordagem desta

tese, usando algoritmos de optimização, um método de religação e uma nova forma de medir ro-

bustez em redes multiplex, mostrou resultados promissores no aumento da robustez. Optimizar

a robustez de uma camada da rede, Rl, leva a um aumento da robustez global da rede multiplex,

Rd, até 17%, o que indica que a robustez de cada camada isolada tem impacto na robustez global

da rede. Contudo, a optimização da robustez global, Rd, não leva necessáriamente ao aumento

da robustez das camadas, podendo mesmo torná-las mais frágeis, podendo levar a uma redução

de até 10%. Optimização multi-objetivo mostrou ser eficáz, levando a uma melhoria de ambas

as medidas de robustez de até 52% para Rl e 24% para Rd, sugerindo que é possivel optimizar,

simultaneamente, a robustez das camadas individuais e de toda a rede multiplex.
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Abstract

Many relations and interdependences in social, economic and biological systems can be mod-

eled and studied as complex networks. As a consequence of technological and scientific progress

in recent decades, our society’s increased complexity has led many of these systems to become

interconnected. As such, it becomes more suitable to transition from single-layer networks to

multi-layer networks as a way to properly represent, analyze and study the different relationships

between these systems. Since these systems must work in environments where random failures

or hostile attacks may occur, it becomes of utmost importance to study the robustness of these

complex, multidimensional topologies. This dissertation presents two approaches to study the

robustness of multiplex networks with two layers. The first approach focuses on studying how

the combination of distinct degree distributions impact the robustness of multi-layer networks.

We show that the robustness properties associated with single-layer degree distributions also

manifest on multi-layer networks. In particular, while networks with two scale-free layers are

robust to random failures and fragile to targeted attacks, networks with two exponential layers

show the opposite behaviour. We further show that combining a layer with a scale-free degree

distribution, and another with a homogeneous degree distribution, whether it be an Erdös-Rényi

layer or a lattice layer, displays significantly improved robustness to both random failures and

targeted attacks, effectively reducing the fragilities observed when both layers have the same de-

gree distribution. In the second part of this thesis, we show that simple optimization algorithms

— combined with rewiring and a novel robustness measure adapted to multi-layer networks —

offer promising results on improving the robustness of these multidimensional structures. Op-

timizing the robustness of one layer, Rl, leads to improved robustness on the whole multi-layer

network, Rd, of up to 17%, suggesting that intrinsic robustness of one particular layer does im-

pact the robustness of an entire multi-layer network. However, when the optimization is guided

by Rd, although showing considerable improvements of up to 27% in this measure, it does not

improve the robustness of the rewired layer. In fact, it can effectively damage its robustness, in

some cases, up to 10%. Finally, multi-objective optimization showed to be effective, leading to

significant improvements on both robustness measures, with Rl improving up to 52% and Rd

up to 24%, suggesting that it is possible to optimize the robustness of the individual layers and

the whole multi-layer network, simultaneously.
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1 | Introduction

Many of the real-world systems that support our society have an intrinsic network-like

structure. Such systems include technical infrastructure, like electric power grids, water supply

networks and computer networks, as well as biological networks built within ourselves, like neural

networks and gene regulatory networks. A particular type of complex networks are multi-layer

networks. These networks are characterized for having multiple layers, each one representing

a different kind of relation between the nodes of the network. The nodes are instanced on all

layers, but interact differently within each layer. Most complex systems incorporate multiple

levels of interactions between its nodes. For example, transportation network of a country can

incorporate multiple types of transportation. A person travelling from point A to C, can do such

by using a type of transportation between A and B, and a different one between point B and

C. Representing this system through a single-layer network would make this analysis difficult,

requiring the use of metadata to differentiate links and nodes. By using multi-layer networks,

we can effectively isolate the different types of relationships and analyse the properties and

behaviour of each one, while still being able to study how they interact between each other and

the impact that each one has on the whole system.

From previous work done on single-layer networks [2, 32], it is known that particular degree

distributions offer better robustness in particular settings. While exponential distributions show

increased robustness to targeted attacks, they are fragile against random failures. Power-law

distributions, however, show the opposite behaviour, being robust against random failures, but

fragile against targeted attacks. Optimization techniques [13,14,17,23] have proven to be effective

in enhancing the robustness of single-layer networks. Algorithms, such as greedy and simulated

annealing, together with rewiring methods which ensure the degree distribution remains stable,

can greatly improve network robustness without causing major changes to the network topology.

Given the previously stated motivation and overall context, this thesis will focus on the

study of robustness on multiplex networks with two layers, also known as duplex, and no degree

correlation between layers. In multiplex networks, every layer is independent, meaning a node

does not need to function in every layer of the network. The first question this thesis aims to

answer is whether the robustness properties of exponential and power-law distributions carry

over to multiplex networks. More specifically, it would be interesting to learn if a network with

two exponential layers is robust against targeted attacks and fragile against random failures, if

a network with two power-law distributions is robust against random failures and fragile against

targeted attacks, and what happens when a multiplex network incorporates an exponential

layer and a power-law distribution. Another particular network configuration studied in this

3



thesis is the combination of a layer with a power-law distribution and a layer with a lattice.

A lattice is a network which has a grid-like structure and all nodes have a degree of 4, and

can provide interesting robustness properties due to its geometrical characteristics and single-

point distribution. Regarding optimization, the first question this thesis aims to answers is

if optimizing the robustness of only one layer leads to an improvement of robustness of the

whole multiplex network. Next, this thesis studies if optimizing the robustness of the multiplex

network, while rewiring one specific layer, also leads to improved robustness on that particular

layer. Lastly, this thesis studies if multi-objective optimization is effective on optimizing layer

robustness and multiplex robustness simultaneously.

The remainder of this paper is divided into four chapters. Chapter 2 presents some funda-

mental concepts regarding complex networks and robustness, as well as relevant work on network

robustness from two different points of view, intrinsic robustness of degree distributions and ac-

tive improvement of robustness of already existing networks employing optimization methods.

Chapter 3 describes the proposed methods used in this thesis, including calculating the size of

the largest connected component of a multiplex network, network dismantling algorithms and

optimization algorithms. Chapter 4 presents the relevant obtained results. Chapter 5 outlines

the findings of this thesis, as well as possible future work that could be developed to further

understand robustness on multiplex networks.
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2 | Fundamental Concepts and Re-

lated Work

This chapter describes some of the key concepts in regards to complex networks, network

robustness and optimization, as well as an overview of the articles and papers whose results and

findings are the groundwork for this thesis. In Section 2.1, the fundamental concepts are divided

in complex networks (Section 2.1.1), multi-layer networks (Section 2.1.2), network robustness

(Section 2.1.3) and optimization (Section 2.1.4). Afterwards, relevant literature regarding net-

work robustness and robustness optimization is presented in Section 2.2. This section is orga-

nized in the following order. Section 2.2.1 focuses on the importance degree distributions have

on network robustness, Section 2.2.2 highlights some optimization techniques used to actively

improve the robustness of specific networks and Section 2.2.3 addresses how robustness can be

measured in multiplex networks and highlights other robustness properties observed in multiplex

networks. To summarize the chapter, Section 2.2.4 presents an overview of the key concepts and

ideas from the related work.

2.1 Fundamental Concepts

2.1.1 Network robustness

Network robustness is the study of how complex networks behave under an hostile and error

prone environment. The more attacks and failures a network can endure without compromising

the system functionality, the more robust it is. There are several ways of measuring the robust-

ness of a network, with the two most relevant ones being the percolation threshold and the R

measurement [13]. The percolation threshold is the percentage of nodes/edges necessary to be

removed in order to cause the network to collapse, rendering it no longer functional. Figure 2.1

shows an Erdös-Rényi network collapse under a targeted attack. In this example, the critical

percolation threshold, fc, is ≈ 0.42, where the size of the largest connected component is ap-

proximately zero. The R measurement, shown in Figure 2.2 and further described in Section

2.2.2.1, quantifies the robustness of a network by analysing how the largest cluster of the network

behaves throughout every iteration of an attack.
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Figure 2.1: Network collapsing under a targeted attack. When 42% of nodes are removed, the
largest component of the network reaches 0.

R =
1

N

1∑
q=1/N

S(q),

Figure 2.2: Robustness measurement R. For every node removed from the network, the relative
size of the largest cluster, S(q), is summed.

2.1.2 Degree Distribution

The degree distribution of a network is the probability distribution of its node’s degrees.

The degree of a node is the number of connections that the node has to other nodes in the

network. Networks with different degree distributions have different levels of robustness against

targeted attacks and random failures. This thesis will mainly focus on two types of networks:

exponential and scale-Free. Exponential networks have a Poisson distribution, characterized by

a peak at the average degree and an exponentially decay for larger degrees. Scale-free networks

have a power-law distribution, characterized by a high number of nodes with very small degree,

and a very small number of nodes with very high degree. Additionally, this thesis also studies the

effects of using Lattices, a regular network with a single-point distribution, together with other

distributions, on multi-layer networks with two layers. Lattices are characterized by having a

grid-like structure where every node has a degree of 4.
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Figure 2.3: Degree distribution of an Erdös-Rényi net-
work. N = 5000 nodes, Avg. degree <k> = 2.6

Figure 2.4: Degree distribution of a Scale-Free network.
N = 5000 nodes, Avg. degree <k> = 2.6

Figure 2.5: Degree distribution of a lattice network. N = 5000 nodes, Avg. degree <k> = 4.0

2.1.3 Multi-layer Networks

Multi-layer networks differ from traditional complex networks by incorporating multiple

layers. Every node is instanced in every layer, but can connect differently within each of them,

allowing the modelling of different types of relations between nodes. When measuring the size

of the largest connected component of a multi-layer network, we can extend the definition of

giant connected component from single-layer complex networks. A node is considered to be

part of the giant connected component of a multi-layer network if it connects to the component

in at least one of its layers. This thesis focuses on a particular type of multi-layer networks
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Figure 2.6: Example of a multiplex network with two layers.

called multiplex, whose layers are independent amongst themselves. If a node suffers damage

in one layer, it remains functional on the remaining layers. The counterpart, not studied in

this thesis, is called interdependent networks. These networks have dependency links between

layers, making it so that a node in one layer can be dependent on other nodes in other layers.

Removing a node in one layer can lead to cascading failures throughout the whole network.

2.1.4 Optimization

2.1.4.1 Greedy

In optimization, a greedy algorithm is characterized by always choosing the best local option

in each step of the process. It is a simple, yet effective optimization algorithm, but has some

shortcomings, such as local maximums/minimums and, therefore, it cannot find the optimal

solution for many problems.

2.1.4.2 Simulated Annealing

The simulated annealing algorithm is a probabilistic optimization technique that mimics

the process of crystal growth. It’s main objective is to approximate the global optimal solution

of a given problem, which is an improvement over the greedy algorithm. To achieve this, the

algorithm accepts worse solutions in the early stages and, as the solution space is explored, the

probability of accepting worse solutions decreases. Figure 2.7 illustrates an optimization problem

where a greedy algorithm would get stuck at a local minimum but the simulated annealing would

not.
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Figure 2.7: Example of an optimization problem with local and global minimums.

2.2 Related Work

This section lists some papers and articles that are relevant to this thesis, either because

they present some groundwork to the subject studied, or because they approach similar problems

as this thesis.

2.2.1 Finding the most robust degree distributions

While some networks are robust to random failures, they are usually vulnerable to targeted

attacks. The same happens the other way around. The following papers focus on studying

which degree distributions provide the most robustness to different types of attacks and failures

and how networks can be built in a way that can incorporate robustness to random failures and

targeted attacks.

• Error and attack tolerance of complex networks

One of the first publications that approached robustness of complex networks was

a letter written by Réka Albert, Hawoong Jeong & Albert-László Barabási to the science

journal Nature in 2000 [2]. The publication begins by acknowledging that there is some

basic intrinsic resilience in complex networks that makes it possible for local failures to

not lead to the loss of global information-carrying ability of the network. This property

can be attributed to the existence of redundant wiring in the network, making it so

that if a node in the network fails, there will most likely be alternative paths that do

not need the failed node to transmit information to the rest of the network. However,

not every redundant system shares the same level of robustness, and there are network

configurations that make them more resilient to some types of failures than others. A

specific class of networks, called “scale-free”, show a high level of robustness against

random failures. This networks, characterized by a power-law degree distribution, owe

its robustness to its heterogeneity. Since this networks have a large amount of nodes
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with a low degree and a very small amount of nodes with a high degree (hub), the

chance of a random failure to hit a hub is very small. However, the fact that a small

amount of nodes hold such an important role in keeping the network connected makes

the network vulnerable to intentional and targeted attacks. On the other hand, there

exists a type of network that is weak to random failures but very robust to intentional

attacks, the exponential networks. These networks have a degree distribution that peaks

at the average degree and decays exponentially for larger degrees. Some examples of such

networks are the random graph model of Erdös and Rényi[3] and the small-world model

of Watts and Strogatz [4]. To prove these different levels of robustness, the researchers

focused on the random graph model of Erdös and Rényi and the scale free model. First,

they evaluated how the diameter of the networks changed when a small fraction of the

nodes f was removed. The results showed that when the nodes were removed randomly,

the network diameter for the scale free networks remained unchanged under an increasing

level of errors. Even when up to 5% of the nodes were removed, the communication

between the remaining nodes in the network was unaffected. As for the random networks,

the diameter increased monotonically with f. Thus, despite the redundant wiring, it

becomes increasingly difficult to maintain communication between the remaining nodes.

As for targeted attacks, the diameter of the scale-free networks increased rapidly with f,

doubling its original value if 5% of the nodes are removed. As for the random network,

the diameter increased at the same rate as when random failures were tested. From this

results, it is concluded that scale free networks are more resilient to random failures but

more vulnerable to targeted attacks and exponential networks are weak to random failures

but more robust to targeted attacks than scale free networks. To further understand the

impact of random failures and attacks, they decided to study the fragmentation process

that happens as nodes are removed form the network. When a certain amount of nodes

are removed from a network, small clusters of nodes start to detach from the main cluster.

The percentage of nodes that need to be removed from the network in order for the size

of the biggest cluster drastically decrease is called the percolation threshold, a definition

that has its origin in percolation theory[5]. The results showed that, under random

failures, the size of the largest cluster of a random network suddenly drops at f = 0.28,

while for scale-free networks, no threshold is observed and the network does not collapse,

further proving that scale free networks are robust to random failures. As for targeted

attacks, the threshold happens for f =0.18 for scale-free networks and f =0.28 for random

networks. Again, these results show that scale-free networks are weak to targeted attacks

and while random networks behave the same.

• Optimization of Robustness of Complex Networks

To further investigate what network topologies are more robust, G. Paul, T. Tanizawa,

S. Havlin and H. E. Stanley go into more detail on specific degree distributions in [6].

Their main objective is to find a network design that maximizes both robustness to

random failures and targeted attacks while maintaining a constant number of links.

This is important because adding new links to a network, while it may increase the
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robustness, it can also have a large cost in real world networks and it isn’t always a

practical solution, for example, in water and power supply networks. They begin by

defining an optimization metric for the robustness, based on the percolation threshold[5]

and formulate an objective function to maximize robustness to both random failures and

targeted attacks. In a first experiment, the researchers evaluate what is the exponent λ

that maximizes robustness for scale-free networks, concluding that λ = 2.5 has the best

total robustness, which is an interesting result since most real world networks with a

scale-free distribution also have λ ≈ 2.5 [7-9]. Then, they move to a more complex degree

distribution, formed by two power laws, the first one with an exponent α and the second

one with an exponent λ, while maintaining the same average degree, <k>. The point

at which the distribution changes is called the inflation point a. The researchers believe

that one of the power laws will contribute to robustness for random failures and the other

will contribute for robustness to targeted attacks. They conclude that: 1) for a given

λ, a and α can be fine tuned to maximize robustness and 2) This degree distribution is

more robust than a single power law distribution if λ is close to 1 and α is large enough.

They obtain similar results when changing the first power law with an exponential with

exponent β. As β increases, the optimization increases. Next, they study the case where

the degree distribution is formed by two Gaussian segments. The first Gaussian has its

center at κ1 and width ω1 and the second one has its center at κ2 and width ω2, with

κ2 > κ1. They observed that the robustness increased as κ2 increased and it reached the

highest values for small values of ω1. The results of the previous experiment motivated

them to study the case where the distribution is composed by two delta functions, which

are similar to Gaussian functions, except the integral is always 1. The results indicated

that the robustness increased when r, the fraction of nodes in the second delta function

to the total number of nodes, approaches zero, meaning that only one node should have

a high degree and all the other nodes should have the same degree. In conclusion, the

best degree distribution that maximizes robustness to both random failures and targeted

attacks seems to be one where nodes can only have 2 possible values, being that only

one node should have a large degree while all the other nodes should have the same low

degree. The single high degree node provides robustness to random failures, while the

small degree nodes provide robustness to targeted attacks.

• Robustness properties of single-point degree distributions

In [1], André X. C. N. Valente, Abhijit Sarkar and Howard A. Stone reach a conclusion

somewhat similar to the previous paper [6]. They theorize that a network with at most

three distinct node degrees can maximize robustness to both random failures and tar-

geted attacks. Starting with the expression for the percolation threshold for any degree

distribution,

fr = 1− 1
<k2>
<k> − 1

, (2.1)

, they derive another formula adapted to a two-peak distribution,

fr = 1− < k >

−kmkl+ < k > (km + kl − 1)
. (2.2)
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The theoretical analysis shows that these networks can have a larger percolation threshold

for random failures and for targeted attacks than some real-world scale free networks,

therefor more robust. They then move on to study if a three peak network, while minimiz-

ing the the average number of links, maximizes the two percolation thresholds separately,

and not as a combination of both, fa + fr. Once again using a theoretical analysis, it is

concluded that this network configuration does maximize fa and fr separately.

• Theoretical approach to robustness analysis

Yu Sun, Peiyang Yao, Dongdong Shui and Yun Zhong developed a framework to study

the impacts of structural parameters of a complex network on its robustness in [10]. With

previous works [11] showing that the degree distribution plays an important role in the

levels of robustness of a network, these researchers focus on finding what degree distri-

bution maximizes the upper limit of robustness of a network and finding relationships

between a given degree distribution and other structural parameters. The chosen measure

of robustness, based on [13-15], was defined as

RI = min
ati∈AT

R(ati), (2.3)

where ati represents the number i type of attack mode and R(ati) is the value of robustness

measurement shown in [12] with the attack mode ati.

The optimization procedure is based on the variable neighbourhood search algorithm [16],

and uses the commonly used rewiring method (selecting two random edges and switching

them) to create new networks, keeping the number of nodes and edges and the degree

distribution unaltered. The studied structural parameters were network efficiency, natural

connectivity, algebraic connectivity and average clustering coefficient. The studied distri-

butions were single-point distribution, Poisson distribution, exponential distribution and

power-law distribution.

Results showed that networks with a single point degree distribution were the least robust

and networks with a Poisson degree distribution were the most robust, for non-optimized

networks. After the optimization procedure, single point degree distribution showed the

most robustness, while the power law degree distribution had the lowest. As for the struc-

tural parameters, the results showed that network efficiency and algebraic connectivity

increases with robustness, while the average clustering coefficient and natural connectivity

decrease when the robustness is higher. Also, itâs noticeable that these changes in the

structural parameters is more evident when the degree distribution is more consistent.

2.2.2 Enhancing robustness of pre-existing networks

The previous papers were able to find some degree distributions that allow for high robust-

ness to random failures and targeted attacks. Even though this network configurations perform

incredibly well in hostile environments, its usefulness is limited. Because these networks have
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such a specific degree distribution, it’s difficult to find a domain that could be modeled using

these networks. Another option would be to modify the degree distribution of already existing

networks that have a more vulnerable degree distributions. The problem is that such reconfig-

uration can have large costs and the topology of network will be greatly changed, which can

make the network no longer functional for the required domain. The following papers focus on

optimizing network’s robustness while keeping the original degree distribution, using different

optimization algorithms and different robustness definitions to guide the optimization process.

• Optimizing network robustness using rewiring methods and a novel robustness

measure

In [13], Christian M. Schneider, André A. Moreira, José S. Andrade, Jr, Shlomo Havlinc,

and Hans J. Herrmanna propose a method to optimize robustness on already existing

networks. Instead of using the traditional measure of robustness, the critical fraction of

attacks at which the network completely collapses, also known as percolation threshold,

the researchers use a measure based on the Giant Connected Component (GCC) of the

network that quantifies the connectivity of a network,

R =
1

N

N∑
Q=1

s(Q), (2.4)

where N is the total number of nodes and s(Q) is the fraction of nodes in the largest

connected cluster after removing Q nodes. The bigger the GCC, the more robust the

network is. This measure for robustness has the advantage of taking into consideration

the situations where the network does not fully collapse but still suffers significant

damage. Also, instead of using the static approach to find the most connected nodes at

the beginning of the attack, the authors use a dynamical approach where the degree of

each node is recalculated after a node is removed. Although it is computationally more

expensive, it is a more realistic and effective strategy of attack. In order to keep the

increase of robustness as realistic as possible, they set the constraints that the number of

edges and the degree of each node must remain the same during the optimization.

The optimization method, based on the hill climbing algorithm, consists of the following

steps:

1) Pick two randomly selected edges from the network, (i, j) and (h, k),

2) Delete (i, j) and (h, k) from the network,

3) Add (i, h) and (k, j) to the network.

4) Calculate the robustness of the new network and keep the new network if it is more

robust.

5) Repeat 1 to 4 until no further substantial improvement is achieved.

Simulations were executed over two different real networks: European power grid and

global Internet at the level of service providers in Europe. The results showed significant

improvements of the robustness levels for both networks. Even though the robustness is

increased, the percolation threshold remained the same, further justifying the choice for
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the robustness measure. Also, the resulting networks have an “onion-like” structure, hav-

ing a core of nodes with a high degree, surrounded by rings of nodes with decreasing degree.

• “Enhancing network robustness against malicious attacks”

An Zeng and Weiping Liu go on to further expand on the idea of improving network

robustness against malicious attacks in [17]. While the previous paper [13] focuses on

improving a robustness function based on the nodes of the network, An Zeng and Weiping

Liu focus on the fact that failures and attacks can happens on the links and not neces-

sarily on the nodes, like a blocked highway or a dysfunctional power cable. They further

investigate if increasing robustness in regards to nodes also increases robustness in regards

to the edges, and propose an hybrid algorithm that can optimize both measures of robust-

ness.The measure of robustness in regards to the nodes is the same as (1), labeled Rn. As

for the robustness in regard to the links, Rl
1, it is very similar to (1), except it considers

the removed links instead of removed nodes,

Rl =
1

E

1∑
P=1/E

s(P ), (2.5)

where E is the number of edges in the network and s(P ) is the size of the largest connected

component after P links are removed. The optimization algorithm works as follows:

1) Pick two randomly selected edges from the network, (i, j) and (h, k),

2) Delete (i, j) and (h, k) from the network,

3) Add (i, h) and (k, j) to the network.

4) Calculate the robustness of the new network and keep the new network if it is more

robust, in terms of Rn and Rl .

5) Repeat 1 to 4 until no further substantial improvement is achieved.

The algorithm only differs when it comes to choosing if the new network is accepted. It

will only be accepted if the link swap improves both Rn and Rl, working as multi-objective

optimization.

A few different networks were used to test the algorithm: Barabási-Albert scale-free

networks, US air transportation system and an electrical power grid in part of western

Europe. A few interesting conclusions can be drawn from the results of the robustness

optimization method. First, it can be seen that improving the robustness in terms of Rn

does not improve robustness in terms of Rl,and vice-versa. In fact, it can be seen that in

some cases, while one of the measures improves, the other decreases. Secondly, when using

the hybrid algorithm that optimizes both Rn and Rl, there is always an improvement in

both measures. When testing the networks against targeted attacks to both nodes and

links, it can be seen that the networks that were improvised using the hybrid algorithm

can preserve the giant component more effectively than when the robustness measures

1In this context, Rl is used to define robustness when the attacks target the network links. In the rest of this
dissertation, Rl represents the robustness of a particular layer of a multiplex network.
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are improved alone.

• “A theoretical estimation for the optimal network robustness measure R

against malicious node attacks”

In [19], Liangliang Ma, Jing Liu, Boping Duan and Mingxing Zhou take a theoretical

approach to the optimization of robustness problem. While previous work consider that

the degree distribution of the network should remain static, the researchers on this paper

focus on optimizing the robustness of the degree distribution, allowing it to change during

the optimization process, having the number of nodes and edges remaining constant. The

chosen measure of robustness is (1), the fraction of nodes in the largest connected compo-

nent. The theoretical process to estimate the robustness can be divided in two parts: 1)

Effects of malicious attacks and 2) Estimation for the largest connected component.

1) Effects of malicious attacks

An intentional attack to a network is usually characterized by the sequential removal of

the node with highest degree. This causes the maximum degree of the network to decrease

as the attack continues. If K is the original highest degree of the network and K̃ is the

new highest degree, then we have K̃ ≤ K. The final formula for K̃ obtained with the

theoretical approach is

K̃ = max{k|N × P̃ (k) ≥ 1, ∀k}, (2.6)

and the formula for the average degree is

< k >=

k=K̃∑
k=1

kP̃ (k). (2.7)

2) Estimation for the largest connected component.

Based on the works of [20 - 22], the researchers develop a theoretical definition for the size

of the largest connected component,

S(Q) = 1−
∞∑
k=0

P (k)µk. (2.8)

To validate the previous formulations, a few experiments were conducted. The first ex-

periment focus on exploring which distribution of the largest connected component is

represented by theoretical results, the initial network or the optimized network. The fol-

lowing types of networks were taken into consideration: regular networks, Watts - Strogatz

networks, Erdös-Rényi networks, and Barabási â Albert networks, each network with 500

nodes. These networks were optimized using the method in [13].

The results show that the theoretical distribution of the largest connected cluster is close

to the optimized networks, proving the correctness of the theoretical results. Also, it shows

that regular networks are the most robust.

In the following experiment, the researchers focus on regular networks, as they are the most
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Figure 2.8: Adapted from [19]: comparison between the initial robustness values, the theoretical
values and the optimized values

robust according to the previous results, and develop an optimization method. During the

optimization process, only the number of edges and nodes is kept invariant, and the degree

distribution is optimized. The algorithm used is similar to [13], but the new edge operation

is as follows:

1) An edge and two nodes which are not connected are chosen at random.

2) The selected edge is broken down and the two selected nodes are connected.

The results show significant improvements in the levels of robustness, not only when com-

pared to the original network but also when comparing with previous works.

In the final experiment, the researchers analyze the degree distribution of networks varying

with the increment of N after optimization.

As can be seen from the obtained results by the researchers,in Figure 2.8, the degree of

most nodes in the networks obtained by the proposed method is close to the average

degree, which could lead to the conclusion that networks with nodes with similar degree

may be more robust against malicious attacks.

• A more complex rewiring method

In [14], V. H. P. Louzada, F. Daolio, H. J. Herrmann and M. Tomassini try to improve

the rewiring method used to improve network robustness. Previous work select randomly

chosen links from the network and swap them to see if it has any impact in the overall

robustness of the network. In this paper, a more complex rewiring method is proposed:

1) Select a node i randomly with at least two neighbors with degree larger than one.

16



2) Select the lowest degree neighbor of i, the node j, and its highest degree neighbor, the

node k.

3) Select randomly a neighbor m of node j and a neighbor n of node k.

4) Repeat steps 1-3 until all nodes concerned are different from each other.

5) Remove links ejm and ekn.

6) Create links ejk and emn.

Figure 2.9: Adapted from [14]: Visual representation of the smart rewiring method.

The main motivation for developing this method was to encourage the creation of alter-

native connections between parts of the network that would otherwise be split upon the

failure of a hub. The experiments conducted showed promising results. The new method

shows, in Figure 2.10, that it can improve robustness as much as previous work, but with

up to 20% less swaps than previous work, like in [13].

Another consequence of this new rewiring method is the increase of modularity of the

network, because it deliberately creates triangles of connections, reducing the importance

of the hubs, which are now connected to leaves (nodes with low degree), and their removal

does not have huge impact on global connectivity.

• Using multi-objective optimization with conflicting robustness measures

In [23], Mingxing Zhou and Jing Liu take a new approach on network robustness opti-

mization. They acknowledge the fact that there are many different types of attacks, and

a network that is robust to a specific attack may not be robust to others, and formulate

four different types of attacks: attack the nodes based on the highest degree (NAHDA),

attack the nodes based on the highest betweenness centrality (NAHBCA), attack the links

based on the highest degree(LAHDA) and attack the links based on the highest between-

ness centrality(LAHBCA). The authors create 4 measures of robustness based on the type

of attacks and Schneider’s robustness measure[13], RDn , RBCn , RDl , and RBCl , and use

Pearson’s correlation coefficient to analyse relationships between the different measures.

A positive correlation coefficient indicates that the two measures can be optimized to-

gether, therefore single-objective optimization would be appropriate. A negative correla-

tion coefficient indicates that the two measures cannot be optimized simultaneously using

single-objective optimization, and a multi-objective optimization algorithm would be more

appropriate. RDn and RBCl have the smallest Pearsonâs correlation coefficient, so the re-

17



Figure 2.10: Adapted from [14]: Results showing the considerable improvement with new
rewiring method against random rewiring.

Figure 2.11: Adapted from [23]: Pearson’s correlation coefficients of the different measures of
robustness.

searchers focus on optimizing these two using a two-phase multi-objective evolutionary

algorithm, labelled MOEA − RSFMMA, to try and find a network that can be robust

in terms of both measures. The first phase of the algorithm, labelled RDn -Sampling

Phase, generates numerous networks with both high and low RDn , all with the same de-

gree distribution(scale-free) and number of nodes and links. The second phase, labelled

RDn −RBCl - Optimization Phase, the multi-objective algorithm NSGA-II [24] is employed.

The obtained Pareto fronts are plotted in Figure 2.12.

The obtained networks were analysed in terms of some structural parameters. Results

showed that the average path length decreased with the optimization of RDn , but the

optimization of RBl C improves it. Also, assortativity of the networks improve with RDn
but fluctuate when RDn is low, while the opposite is observed for RBl C.

• Comparing different robustness measures
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Figure 2.12: Adapted form [23]: Pareto’s fronts.

In [25], Jing Liu , Mingxing Zhou, Shuai Wang and Penghui Liu compare different mea-

sures of robustness, analyze if they can properly evaluate the network robustness and if

optimizing a network regarding one of the measures also lead to an improvement of ro-

bustness according to the other measures. In total, 9 different robustness measures were

presented, some regarding node robustness and others edge robustness. 1. Edge connectiv-

ity, measures robustness as the number of edges that need to be removed form a network

in order to disconnect it

v(G) = min
s,t 6=s∈V

{vs−t(G)}. (2.9)

Node connectivity, follows the same principle as edge connectivity, except itâs based on

the number of nodes that need to be removed.

ω(G) = min
s,t 6=s∈V ∧est /∈E

{ωs−t(G)}. (2.10)

Percolation threshold, prc for random failures and ptc for targeted attacks, the critical num-

ber of nodes that need to be removed for the network to collapse into multiple smaller

networks. ptc differs from prc in the fact that it is calculated when, after simulating the

attack process, the network is left disconnected.

pc = 1− 1

κ0 − 1
. (2.11)

Introduced by [13], this measure considers the size of the largest component.

R =
1

N

N∑
Q=1

s(Q). (2.12)
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Similar to the previous one, but extended to consider attacks on edges

Rl =
1

M

M∑
P=1

s(P ). (2.13)

Introduced in [26], this measure on the communication efficiency of the network

IntE =
1

N

N∑
Q=1

E(Q). (2.14)

The algebraic connectivity, which reflects how well a network is connected

α(G) = λ2 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λN . (2.15)

The natural connectivity, which characterizes the redundancy of alternative routes in a

network

λ = ln

(
1

N

N∑
i=1

eλi

)
. (2.16)

The sensitivity of these 9 measures was analysed in both non-optimized and optimized

networks. The higher the sensitivity of a measure, the better it can detect changes on the

network, therefore it is a better measure of robustness. For the non-optimized networks,

random BA networks were generated and different operations of adding and removing

nodes were executed. The robustness was recalculated in each step, for every different

measure. For the optimization part, the hill climbing algorithm was used. During the

optimization process, ptc, R, Rl, IntE, α(G), and λ are used as the optimization objectives,

generating six different types optimized networks. For each type, the sensitivity of above

robustness measures is analysed. The results showed that v(G) and ω(G) canât properly

detect changes in the networks, while Rl and α(G) showed a good response to those

changes, in both the non-optimized and optimized networks. The other measures detected

those changes to some degree. Another experiment was conducted to test if improving the

robustness in terms of a measure also increases in terms of other measures. The results

showed that none of the generated networks were robust in terms of all measures. For

example, networks optimized for the objective function λ show very little robustness in

terms of v(G), ω(G) and α(G). This suggests that there are measures that have a negative

correlation, which indicate that multi-objective optimization may be useful to generate

networks that are robust in terms of multiple measures.

2.2.3 Multi-layer networks

Multi-layer networks are a specific type of complex networks that have multiple layers, each

layer representing a different kind of relation between the nodes of the network. The nodes

are the same on all layers, but interact differently within each layer. These networks are more

adequate to accurately model key complex systems of our world like transportation systems and

online social networks, and therefore it is relevant to study the mechanisms of robustness that

underline these networks. The following papers study some aspects of robustness in these type
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of networks.

• Network robustness of multiplex networks with degree correlation between

layers

In [27], Byungjoon Min, Su Do Yi, Kyu-Min Lee, and K.-I. Goh study the network ro-

bustness of multiplex networks with two layers (duplex), more specifically, the importance

of correlations between degrees of a node in different networks. The motivation for this

research was the fact that many real world multi-layer networks have degree correlation

between its layers. A good example of this is the transportation network, where each layer

represents a different kind of transportation. If a city in the highway layer has a high de-

gree, it will most likely also have a high degree for other transportation layers, like trains

or airports. Three types of correlation are taken into consideration: maximally-positive

(MP), maximally-negative (MN) and uncorrelated (UC) [31]. Maximally-positive means

that a node that is a hub in a layer, will also be a hub in the other layers. Maximally-

negative means a node that is a hub in a layer will be a low degree node in other layers.

The first measure studied was the biconnectivity. Two nodes that are connected through

two disjoint paths are said to be biconnected. If we attack one of this paths, the two

nodes remain connected through the alternative path, therefore it is seen as a property

that improves robustness. We can then define the greatest connected bicomponent as a

measurement of robustness of a network. The results showed that MP networks were able

to achieve a larger bicomponent for lower mean degrees, whereas MN networks have a

very small bicomponent for small mean degrees. MN also shows a percolation threshold

for a mean degree of z = 0.838, where the size of the bicomponent exponentially grows,

and stabilizes at the maximum value of 1 for z = 1.146, meaning that the whole network

becomes part of the giant bicomponent.

Next, the robustness of these duplex networks were studied against random failures and

targeted attacks, in terms of the percolation threshold. The results showed that MP net-

works are more resilient to random failures than MN and UC, having a delayed percolation

threshold in comparison with the competitors. This means we have to remove a larger

fraction of nodes in MP for the network to collapse. One explanation for the increased

robustness in MP networks is the skewness of the total degree distribution, while the MN

networks have an evenly distributed degree distribution. This explanation is in conformity

with the works of [2]. Another interesting result is that the effect of correlation becomes

less significant when the network is sparse. For targeted attacks, when the networks are

sparse, MP is more robust than UC. But for denser networks, MP is more vulnerable than

UC. For MN, the results were the complete opposite of MP. MN is more vulnerable if the

network is sparse and more robust if it is dense.

For interdependent duplex networks, similar experiments were conducted. Results showed

that MP networks are still more robust than MN for lower mean degrees, and is more robust

against random failures. As for targeted attacks, the networks exhibit more complex

behaviour. For sufficiently low density, MP is more robust than MN and UC. For an
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intermediate density, MN is the most robust and UC the least. For high density, MN is

the most robust, while MP is the most vulnerable.

An additional analysis for non-maximal correlation was made, with results showing that

there is still some impact on the robustness, although not as significant as maximum

correlation.

• Comparing different attack methods on multiplex networks

In this article [28], Da-wei Zhao, Lian-hai Wang, Yong-feng Zhi, Jun Zhang and Zhen

Wang study the robustness of multiplex networks under random and targeted attacks.

More specifically, they study layer node-based attacks. This means that when a node is

attacked, only the edges of the selected layer are removed, and not all the edges of that

node on all layers. For example, attacking a city on the train layer, will only disable the

train connections of that city, but airports, highways, etc remain unaffected. With the

goal of calculating the critical threshold of network collapse and the size of the giant

connected component when a fraction of layer nodes are removed, a theoretical method is

proposed, using the framework of generating function method [30]. When talking about

GCC in multi-layer networks, it is more correct to label it as mutually connected giant

component (MCGC). It is then defined as the largest component that remains after the

removal propagates back and forth in the different layers, meaning that a node must

connect to the giant connected component thorough at least one of the layers. All nodes

in the MCGC are labeled multiplex nodes, and a pair of multiplex nodes are connected

if there exists a connection between them in at least one layer. Four different formulas

were derived, for the critical threshold and MCGC, for random and targeted attacks.

The results obtained from the conducted experiments showed that the theoretical critical

threshold can accurately predict the impact of layer node-based attacks on the robustness

of multiplex networks and the theoretical prediction of the size of the MCGC also matches

the obtained results. This was observed for both the random attacks and the targeted

attacks. A final experiment was conducted to compare the used layer node-based attacks

with multiplex node-based attacks, which lead to an interesting conclusion. A multiplex

network is more vulnerable to layer node-based attacks than multiplex node-based attacks.

Meaning, if the attacker focuses on attacking a node on each layer separately, instead of

attacking the node on all layers simultaneously, the network will collapse at a faster rate.

The proposed explanation from the researchers was that when layer node-based attacks

is used, more multiplex nodes are subject to attack and lose more connections with other

multiplex nodes.
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• Topological impacts of robustness optimization in interdependent networks

From the previous works, we can infer that increasing inter-layer degree correlation on

multiplex networks is a good strategy to optimize robustness. In this paper [29], Ivan

Kryven and Ginestra Bianconi show that such an optimization procedure might cause

previously unforeseen consequences on interdependent multiplex networks. For instance,

they show that these networks may be decomposed during percolation by multiple discon-

tinuous phase transitions into sub-multiplexes that span across all layers. However, the

introduction of these phase transitions can be mitigated by reducing the total number of

layers. It was also shown that when modeling real world systems that have a multiplex

like structure with a large amount of layers, trying to use a smaller number of layers can

lead to a loss in the qualitative structure of the phase space.

2.2.4 Summary of Related Work

As we saw in this section, there is extensive research on the subject of network robustness.

The following bullet points summarize some of the key aspects of network robustness.

Single-layer networks

• Scale-free networks are resilient to random failures but weak to targeted attacks.

• Exponential networks are resilient to targeted attacks but weak to random failures.

• Networks with a degree distribution with two and three peaks (nodes can only have two

or three different degrees) show resilience to both random failures and targeted attacks.

• It is possible to improve robustness of a network by rewiring it, together with optimization

methods such as hill-climbing or simulated annealing.

• Structural parameters, such as network efficiency or clustering coefficient, are affected by

rewiring processes aimed at optimizing robustness.

• There are several metrics to measure network robustness, such as edge connectivity, node

connectivity, percolation threshold, size of GCC, communication efficiency, algebraic con-

nectivity and natural connectivity.

• Some of this metrics are more sensible to changes in the network than others. In an

optimization process, it is preferable that the function to optimize is sensitive to small

changes of the input.

• Multi-objective optimization has been successfully used to improve robustness in terms of

conflicting robustness metrics.
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Multi-layer networks

• Degree correlation between layers of a multiplex network can influence its robustness,

depending on the density of the network and if the network suffers random failures or

targeted attacks.

• Multiplex networks are more robust against multiplex node-based attacks than layer node-

based attacks.

• Metrics to measure robustness of multiplex networks include the size of the

MCGC(mutually connected giant component) or the size of the bi-component of the net-

work.

As seen in this short summary, there is extensive research on the subject network robustness,

with many distinct approaches to this problem. This dissertation tackles some problems that

haven’t been addressed as extensively, including:

1. Study the impact of degree distributions on the robustness of multiplex networks, including

the use of distinct degree distributions on a single multiplex network.

2. Study the relationship between layer robustness and global robustness of a multiplex net-

work.

3. Adapt and apply optimization methods done in single-layer networks, on multiplex net-

works, including adapting previous robustness measures to a multi-layer context.

4. Apply simple multi-objective methods on layer robustness and global robustness, on mul-

tiplex networks.
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3 | Methodology and Implementa-

tion

This chapter details the development decisions regarding the development and programming

section of this work, as well as the implementation details of the various algorithms used in each

development stage. Section 3.1 details the broader decisions regarding the implementation.

Section 3.2 describes the generation of the different network populations. Section 3.3 describes

the process of simulating the different types of attacks and failures targeting the networks.

Section 3.4 details the network optimization portion of this thesis and the algorithms used.

Finally, Section 3.5 offers a summary of this chapter.

3.1 General aspects

The majority of this thesis was developed using the programming language Python, version

3.6. A high level programming language, such as Python, simplifies working with complex

data structures and allows for a more flexible development process, not so focused on low level

programming details, such as memory management. If the complexity of the problem at hands

were to require a bigger necessity for memory efficiency or an overall faster computing speed,

then a lower level language would have been more appropriate, such as C or C++. Together

with Python, the PyCharm IDE was used. An IDE makes the programming environment easier

to manage and configure, turning the development process smoother. Multiple public Python

libraries were used, including NetworkX (creating and analysing network structures), NumPy

(array and numerical computation) and Matplotlib (data visualization). The Gephi tool was

also utilized to aid with the visualization and analysis of the used networks.

3.2 Network generation

The first development portion of this thesis was generating the network population. In total,

181 single-layer networks were created: 90 with an exponential distribution, 90 with a power-law

distribution and 1 with a lattice distribution. All networks have 5000 nodes, with an average

degree, <k>, of 2.6.
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3.2.1 Power-Law

The networks with a power-law distribution were generated by sampling sequences with

length n from a Pareto distribution. An element in that sample corresponds to the degree of

a node in the network. Then, the network is generated by adding n nodes to the network and

randomly assigning links in such a way that it follows the sample extracted from the power-law

distribution. To extract the 90 different power-law samples, the function powerlaw sequence

from NetworkX was utilized.

3.2.2 Exponential

Networks with an exponential distribution were generated using Erdös-Rényi model,

G(n,M), where n is the desired number of nodes that the network should have, and M is the

total number of links. This model variant works by generating all possible graphs with n nodes

and M links, and uniformly choosing a random one. NetworkX’s function gnm random graph

implements this same model and was used to generate the 90 different networks.

3.2.3 Lattice

The lattice network, which is has a grid-like structure where every nodes connects to 4

adjacent nodes, was created using NetworkX’s graph generator grid 2d graph. Since a 5000

nodes network makes for an asymmetrical grid, some links had to be added to make sure all

nodes have a degree of 4. Because all lattices would be identical, generating 1 network is

sufficient.

3.2.4 Duplex networks

The generated single-layer networks were then coupled in 4 different sets of multiplex net-

works with two lawyers (duplex): 30 with 2 exponential layers, 30 with two power-law layers,

30 with one exponential layer and one power-law layer and 30 with one power-law layer and one

with a lattice layer, totalling 120 duplex networks.

3.3 Measuring robustness of duplex networks

Robustness of single-layer networks is often measured by observing the behaviour of the

largest cluster of the network, GCC, throughout an attack or failure event. The robustness of

duplex networks was measured using an extended definition of the GCC, MCGC - mutually

connected giant component. It follows the principle that if we remove a node in a layer, it

may still be connected to the giant cluster through another layer, and therefore not isolated

from the rest of the nodes. The relative size of the MCGC is calculated by adding temporary

links between the equivalent nodes from the layers and performing a breadth-first search to find
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the GCC of this network. Algorithm 1 describes, in more depth, the developed algorithm to

calculate the MCGC size.

3.3.1 Random failures

To simulate node failures, caused by non-intentional behaviour, a layer is randomly selected,

as well as one of its nodes to be removed, together with its links. This process is repeated until

all nodes are removed. The pseudo-code is described in Algorithm 2.

3.3.2 Targeted attacks

3.3.2.1 Degree based attacks

Degree based attacks choose the node to attack in each iteration by ranking them by their

degree. The node degrees are recalculated after a node is removed. The pseudo-code is described

in Algorithm 3.

3.3.2.2 Betweenness based attacks

This attack ranks the nodes by the importance they have in connecting all other nodes of the

network. More specifically, this metric counts the number of shortest paths that pass through a

given node. The pseudo-code is described in Algorithm 4.

3.4 Optimization

The goal of the optimization section of this thesis is to study the impact that optimizing the

robustness of a particular layer in a duplex network has on the robustness of the whole duplex

network. This optimization method was first described in [13], and uses a rewiring mechanism

as way of generating new neighbours in each iteration. It works as follows:

• Choose two distinct and disjoint links from the network, (i,j) and (k,l)

• Swap the links, by creating two new links (i,l) and (k,j) and deleting (i,j) and (k,l)

This mechanism generates child networks with slight variations and preserves the original

degree distribution, minimizing structural and topological changes to the network that could

otherwise undermine its functionality. The metric used to measure the robustness is the R

measurement [13]. To measure the global robustness of the duplex networks, we extend the

definition of the R metric from single-layer networks to multi-layer. The original R measure

on single-layer networks works by sequentially removing the highest degree node of the network

and summing the relative size of the GCC after each removal. To extend this measure to duplex

networks, the GCC size is replaced by MCGC size, and the removed node is chosen between
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both layers. The node with highest degree is chosen between the two layers, and removed only

in the layer where it has the highest degree. To differentiate between both measures, the R

measure is relabeled as Rl when measuring robustness of single-layer networks and Rd when

measuring robustness of duplex networks. Algorithm 5 and Algorithm 6 show the pseudo-code

for both Rl and Rd calculation, respectively. This thesis also compares the efficacy between a

greedy approach, Algorithm 7, and simulated annealing, Algorithm 8.

The acceptance condition for this optimization algorithms changes accordingly to the fol-

lowing desired objects of study:

1. Optimize the robustness of one layer, Rl and study the impact on global robustness of the

duplex network, Rd.

2. Optimize the global robustness of the duplex network, Rd, and measure the impact on the

individual layers Rl.

3. Optimize both layer robustness and global robustness simultaneously (multi-objective).

For 1. and 2., the acceptance condition is based on Rl and Rd, respectively. For point 3), both

Rl and Rd are used simultaneously, and it requires an improvement in both measures in order

for the new network to be accepted.

3.5 Overview

This chapter described the technical work developed in this thesis. Section 3.1 described

the design choices that went into the development. Section 3.2 presented the methods used

to generate exponential networks, scale-free networks and lattice networks, to then be used as

layers of duplex networks. Section 3.3 presented the algorithms used to simulate failures and

attacks on duplex networks. Finally, section 3.4 presented the novel measure of robustness

adapted from single-layer networks to duplex networks and the two algorithms used, greedy and

simulated annealing.
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Algorithm 1: Calculation of MCGC relative size

function calculate mcgc(l1, l2);
Input : Network layers l1 and l2
Output: mcgc size
Initialization;
# Disjoint union of both layers into one single network,nt
# Nodes from layer l2 get relabeled from [1, n] to [n+1, 2n]
nt = union(l1, l2);
for i in range(n) do

# Add temporary links between equivalent nodes
add edge(i, i + n)

end
# Calculate mcgc as a standard gcc of the new network
gcc = list(max(connected components(nt), key=len))
for i in range(len(gcc)) do

# Relabel nodes to original id
if gcc[i] > n-1 then

gcc[i] = gcc[i] - n
end

end
# Remove duplicate nodes
gcc = list(set(gcc))
# Divide mcgc absolute size by n, the network size;
mcgc size = len(gcc) / n
return mcgc size

Algorithm 2: Random failures

function random failures(l1, l2);
Input : Network layers l1 and l2
Output: Array of MCGC values
Initialization;
mcgc array = []
while removed nodes < total nodes do

# choose random layer
layer = rd.choice([”l1”, ”l2”])
# choose random node from layer
node = rd.choice(layer.nodes)
layer.remove node(node) removed nodes += 1
# calculate mcgc size
mcgc array += [calculate mcgc(l1, l2)]

end
return mcgc array
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Algorithm 3: Degree based attack

function degree attack(l1, l2);
Input : Network layers l1 and l2
Output: Array of MCGC values
Initialization;
mcgc array = [];
while removed nodes < total nodes do

# Calculate node degrees in each layer and choose max;
max node l1 = max(l1.nodes, key=degree);
max nod l2 = max(l2.nodes, key=degree);
node = max(max node l1, max node l2);
if max node l1 > max node l2 then

l1.remove node(node);
else

l2.remove node(node);
end
removed nodes += 1;
# calculate mcgc size;
mcgc array += [calculate mcgc(l1, l2)];

end
return mcgc array

Algorithm 4: Betweenness centrality based attack

function betweenness centrality attack(l1, l2);
Input : Network layers l1 and l2
Output: Array of MCGC values
Initialization;
mcgc array = []
while removed nodes < total nodes do

# Calculate betweenness centrality of every node in each layer and choose max
max node l1 = max(l1.nodes, key=betweenness centrality)
max node l2 = max(l2.nodes, key=betweenness centrality)
node = max(max node l1, max node l2)
if max node l1 > max node l2 then

l1.remove node(node)
else

l2.remove node(node)
end
removed nodes += 1
# calculate mcgc size
mcgc array += [calculate mcgc(l1, l2)]

end
return mcgc array
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Algorithm 5: Calculation of Rl

function calculate R l(l1);
Input : Network layer l1
Output: Robustness value Rl for layer l1
Initialization;
gcc sizes = []
while removed nodes < total nodes do

# Choose node with highest degree
node = max(l1.nodes, key=degree)
# Remove node from network
l1.remove node(node)
removed nodes += 1
# Calculate GCC relative size
gcc = max(connected components(l1), key=len)
gcc sizes.append(len(gcc) / (n-1))

end
# Sum all gcc sizes and normalize by size of network, n
return sum(gccsizes)/n

Algorithm 6: Calculation of Rd

function calculate R d(l1, l2);
Input : Network layers l1 and l2
Output: Robustness value Rd for duplex network
Initialization;
mcgc sizes = []
while removed nodes < total nodes do

# Choose node with highest degree between both layers
max node l1 = max(l1.nodes, key=degree)
max node l2 = max(l2.nodes, key=degree)
node = max(max node l1, max node l2)
# Remove node from network
if max node l1 > max node l2 then

l1.remove node(node)
else

l2.remove node(node)
end
removed nodes += 1
# Calculate MCGC relative size
mcgc size += calculate mcgc(l1, l2)
mcgc sizes.append(mcgc size / (n-1))

end
# Sum all gcc sizes and normalize by size of network, n
return sum(gcc sizes)/n
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Algorithm 7: Greedy optimization algorithm

function greedy optimization(max iteration, l1, l2);
Input : Network layers l1 and l2
Output: Rewired network layers l1 and l2
Initialization;
r l = calculate r l(n, l1);
r d = calculate r d(n, l1, l2);
while iteration < max iteration do

# Choose two different edges to rewire;
edges = list(l1.edges());
e 1 = rd.choice(edges);
e 2 = rd.choice(edges);
# Create new edges;
n e 1 = (e 1[0], e 2[1]);
n e 2 = (e 2[0], e 1[1]);
# Add new edges and remove old edges;
l1.remove edges from([e 1, e 2]) ;
l1.add edges from([n e 1, n e 2]) ;
# Calculate new Rl value;
r l new = calculate r l(n, l1) ;
r d new = calculate r d(n, l1, l2) ;
# If new layer is more robust ;
if r l new > r l then

# Keep new layer and save robustness values;
rl = rlnew rd = rdnew else

# If not, undo changes to layer;
l1.remove edges from([n e 1, n e 2]);
l1.add edges from([e 1, e 2]);

end
iteration += 1 ;

end
return l1, l2
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Algorithm 8: Simulated annealing optimization algorithm

function simulated annealing optimization(max iteration, l1, l2);
Input : Network layers l1 and l2
Output: Rewired network layers l1 and l2
Initialization;
r l = calculate r l(n, l1);
r d = calculate r d(n, l1, l2);
temperature = 1;
while iteration < max iteration do

temperature = temperature * 0.999;
# Choose two different edges to rewire;
edges = list(l1.edges());
e 1 = rd.choice(edges);
e 2 = rd.choice(edges);
# Create new edges;
n e 1 = (e 1[0], e 2[1]);
n e 2 = (e 2[0], e 1[1]);
# Add new edges and remove old edges;
l1.remove edges from([e 1, e 2]) ;
l1.add edges from([n e 1, n e 2]) ;
# Calculate new Rl value;
r l new = calculate r l(n, l1) ;
r d new = calculate r d(n, l1, l2) ;
# If new layer is more robust ;
if r l new > r l or exp((r l new - r l) / temperature) ≥ random() then

# Keep new layer and save robustness values;
rl = rlnew rd = rdnew else

# If not, undo changes to layer;
l1.remove edges from([n e 1, n e 2]);
l1.add edges from([e 1, e 2]);

end
iteration += 1 ;

end
return l1, l2
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4 | Results

This chapter presents the results obtained from the generated networks and the methods

described in the previous chapter, Section 4.1 presents the results obtained when simulating

random failures and targeted attacks on single layer networks, serving as a control subject.

Next, on Section 4.2, the results for random failures and targeted attacks on duplex networks

are presented. Lastly, Section 4.3 presents the results of the optimization procedures done on

duplex networks, including single objective optimization on Rs and Rm separately (Section 4.3.1)

and a simple multi-objective procedure on both Rs and Rm measures (Section 4.3.2), using the

greedy algorithm the simulated annealing algorithm.

4.1 Single Layer networks

Previous results have shown that single-layer networks with an exponential degree distribu-

tion are robust against targeted attacks, whether it be degree based or betweenness centrality

based, and fragile against random failures, while networks with a power-law degree distribu-

tion are robust against random failures but fragile against targeted attacks. To simulate these

results, 30 Erdös-Rényi networks and 30 Scale-Free networks were generated using the meth-

ods described in Chapter 3. Figure 4.1 and Figure 4.2 show the behaviour of the Erdös-Rényi

network and the Scale-Free network, respectively, under random failures (red), degree attacks

(green) and betweenness centrality attacks (yellow). The results show a noticeable difference in

behaviour between the two networks. The scale free network is noticeably more robust against

random failures, showing a slow and delayed reduction of the size of its largest connected com-

ponent and requires ≈ 90% of its nodes to be removed for it to completely collapse. In contrast,

the largest connected component of the Erdös-Rényi network shows a much steeper drop of its

size. As for targeted attacks, scale-free networks collapse much easier than Erdös-Rényi network

do, with the largest connected component collapsing when only ≈ 5% of its nodes are removed.

Both types of attacks, degree based and betweenness centrality based, lead to similar behaviour,

with degree based attacks being slightly more destructive for both type of networks.

4.2 Distribution Combination

This section aims to ascertain whether the behaviour of single-layer networks carries over

when these layers are combined into duplex networks. For example, if an Erdös-Rényi network

35



Figure 4.1: Robustness of single-layer Erdös-
Rényi network. N = 5000, < k >= 2.6.

Figure 4.2: Robustness of single-layer scale-
free network. N = 5000, < k >= 2.6.

is more robust against targeted attacks, is this also true when two Erdös-Rényi networks are

combined into one duplex network? Also, what happens when a layer that is robust against

targeted attacks is coupled with a layer that is fragile to these attacks? Which distribution is

more impactful in the global robustness of the duplex network? In total, 4 different configu-

rations of duplex networks were created, by arranging single-layer networks in groups of two:

two Erdös-Rényi layers (ER-ER), one Erdös-Rényi layer with one scale-free layer (ER-SF), two

scale-free layers (SF-SF) and one lattice layer with one scale-free layer (L-SF). Every layer has

5000 nodes and an average degree of < k >= 2.6., except for the lattice layers that have an

average degree of < k >= 4.

4.2.1 ER-ER and SF-SF Networks

The ER-ER duplex network behaves similarly to single-layer Erdös-Rényi networks. As

shown in Figure 4.3, the robustness of ER-ER networks against targeted attacks is almost

identical as for the single-layer network in Figure 4.1, with the largest connected component

completely collapsing when 20% of the nodes are removed in a degree based attack (blue)

and 25% in a betweenness centrality attack(green). When suffering random failures (red), the

ER-ER network continues to be more fragile than the SF-SF network (Figure 4.4). The ER-

ER network shows a more delayed reduction of its largest component size when compared

to the single-layer Erdös-Rényi network, even though they both collapse at around the same

fraction of removed nodes. This delay could be explained by the general behaviour of multiplex

networks, seeing that when a node is removed from one layer, it may still be connected to the

connected component through the alternative layer, therefore causing the delayed reduction of

the connected component, particularly when the connected component is still significantly large.

The SF-SF duplex network also displays the behaviour observed in the single-layer Scale-
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Figure 4.3: Robustness of ER-ER duplex
networks under random failures and tar-
geted attacks. N = 5000, < k >= 2.6.

Figure 4.4: Robustness of SF-SF duplex
networks under random failures and tar-
geted attacks. N = 5000, < k >= 2.6.

Figure 4.5: Robustness of ER-SF duplex
networks under random failures and tar-
geted attacks. N = 5000, < k >= 2.6.

Figure 4.6: Robustness of SF-L duplex
networks under random failures and tar-
geted attacks. N = 5000, < k >= 2.6.
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Free network. It remains fragile against targeted attacks, requiring only 10% (degree attacks,

blue) and 15% (betweenness centrality attacks, green) of nodes to be removed to cause the

collapsing of the connected component. It also keeps the strong robustness against random

failures (red), requiring 90% of node removal to collapse the connected component. Once again,

the delayed reduction of the largest component size observed in the ER-ER networks, under

random failures, is present in SF-SF networks as well, which is particularly noticeable when the

largest component is larger than 70%.

Comparing ER-ER networks against SF-SF networks, the strengths and weaknesses observed

in single-layer networks manifest themselves in the duplex configurations. The SF-SF networks

are significantly more robust against random failures than ER-ER networks, but also significantly

more fragile against targeted attacks than ER-ER networks. Given these results, it possible to

conclude that, in fact, the robustness properties of ER and SF single-layer networks carry over to

duplex networks, and the degree distributions remain as the main contributors for the observed

robustness behaviour.

4.2.2 ER-SF Networks

The combination of an ER layer with a SF layer shows some interesting properties. Figure

4.5 shows that these ER-SF networks exhibit the robust behaviour that each of its layers provide

individually. They show high robustness to random failures (red), which are characteristic of

scale-free networks and, simultaneously, show high robustness to targeted attacks (blue and

green), which are characteristic of Erdös-Rényi networks. It shows the same high robustness to

targeted attacks as ER-ER networks do, as well as high robustness to random failures observed

in SF-SF networks. It can be concluded, then, that this configuration can take advantage of the

best characteristics of each layer and make a duplex network that showcases robustness against

both random failures and targeted attacks.

4.2.3 L-SF Networks

This combination of distributions, although similar to ER-SF, shows some slight differences

(Figure 4.6). The first aspect to notice is the improved robustness in both random failures

(red) and targeted attacks(blue and green) for smaller fractions of removed nodes. This can be

explained by the geometrical property of the lattice. By acting as a regular grid, it guarantees

that even if all nodes are removed from the scale-free layer, the largest connected component

will remain fully connected on the lattice layer. The most noticeable behaviour in this L-SF

configuration is the improved robustness when facing degree based attacks, when compared with

the ER-SF network. Again, the topological properties of the lattice explain this phenomenon.

Because all nodes in the lattice have a degree of 4 and in each iteration of the attack, the node

to be removed is only removed in the layer where it has the highest degree. Therefore, only

when all nodes with a degree above 4 are removed from the scale-free network, can the attack

algorithm start to remove nodes from the lattice layer. Until that point, the largest connected

component remains fully connected.
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4.3 Optimization of network robustness

4.3.1 Layer robustness optimization

As it has been shown in single-layer networks[13,14,17,19,23], it is possible to increase the

robustness of a network by using optimization methods, together with rewiring mechanisms.

This section aims to find if optimizing the robustness of a single layer, Rl leads to an increase

on the global robustness of a duplex network, Rd. Figures 4.7 to 4.12 are example samples

from the the results obtained from both greedy and simulated annealing on ER-ER, SF-SF and

ER-SF duplex networks. Table 4.1 summarizes the results, showing the obtained improvements

of robustness in percentage.

% ofchange =
new robustness− old robustness

old robustness
∗ 100. (4.1)

The results show that optimizing the robustness of one of the layers, Rl, of a duplex network

leads to an improvement in the global robustness Rd of the duplex network, in all the different

distribution configurations. The ER-SF duplex network shows the best results, with an average

Rd improvement of 8.75% with the greedy algorithm and 7.54% with the simulated annealing

algorithm. The best Rd improvement obtained from the whole population happened on an ER-

SF network when using simulated annealing, showing an improvement of 17.33% in the global

robustness of the duplex network. The results also show that the greedy algorithm is able to

achieve better results than the simulated annealing algorithm. A possible explanation for this

outcome could be that the early iterations of the simulated annealing algorithm, that allow for

worse states to be accepted, lead to network configurations that strongly decrease the robustness

of the network.

4.3.2 Global robustness optimization

The optimization procedure is now repeated, but using the Rd measure, the robustness of

the duplex network, as the optimization goal. The aim of this method is to find if guiding the

optimizing algorithm using a global robustness measure leads to an increase in the robustness

measure of the independent layers. Figures 4.13 to 4.18 are example samples from the results

obtained from both greedy and simulated annealing on ER-ER, SF-SF and ER-SF duplex net-

works. Table 4.2 shows that although the algorithms can successfully optimize Rd, up to 26.82%

improvement, Rl doesn’t necessarily go along with this improvements. In some cases, like the one

plotted in Figure 4.14, although Rd improves by 15.34%, Rl actually decreases by -4.6%. This

phenomenon was observed in all three different network configurations. However, there exist

cases where the optimization of Rd does lead to the increase of Rl, as seen in Figure 4.13%. The

average results are relatively low, for both greedy and simulated annealing. In some cases, like

for SF-SF and ER-ER networks, using simulated annealing, the average variation of robustness

is actually negative, as seen in Table 4.2. This results lead to the conclusion that optimizing

the robustness of a duplex network using a global robustness measure, doesn’t necessarily lead
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to an improvement of the robustness of its layers and can, in fact, make them more fragile.

4.3.3 Multi-objective optimization on layer and global robustness

The previous results seem to indicate that 1) Optimizing the robustness of one layer leads

to a consistent improvement in the robustness of the whole duplex network and 2) optimizing

the robustness of the whole duplex network does not necessarily improve the robustness of

the individual layers, and can make them more fragile. This section aims to find whether Rl

and Rd can be optimized simultaneously or if there is a conflict between them. The greedy

algorithm and simulated annealing algorithm from the two previous sections are modified in

order to only accept the new rewired network if both Rl and Rd have improved compared to

the previous network. Figures 4.19 to 4.24 show some examples for both algorithms and duplex

configurations. Table 4.3 showcases the obtained results, which show a positive increment of

both Rl and Rd for all different duplex networks and for the two algorithms. It seems, then,

that it is possible to simultaneously improve the global robustness of a duplex network and the

robustness of its layers.

4.4 Overview

This chapter presented the results obtained from the proposed methods in chapter 3 and

from the generated network population. After successfully replicating the literature results on

single-layer networks robustness [2,32], the results on duplex networks showed some interesting

behaviour. First, the proposed theory that the degree distributions of the individual layers im-

pact the duplex in similar ways, is true. While the ER-ER duplex network is robust to targeted

attacks and fragile to random failures, just like its ER layers, the SF-SF network is robust to

random failures and fragile against targeted attacks, just like its SF layers. The ER-SF network,

incorporating an Erdös-Rényi layer and a Scale-Free layer, shows improved robustness against

targeted attacks, when compared with SF-SF networks, and also shows improved robustness

against random failures, when compared with ER-ER networks. Therefore, it seems that ER-

SF networks inherit the strengths from both of its layers. The L-SF network, which incorporates

a lattice layer and a scale-Free layer, shows similar behavior as the ER-SF networks, with an

improved robustness for small-scale attacks and failures, which is attributed to the particular

single-point distribution of the Lattice Layer. The results from chapter 4.3 show that optimizing

the robustness of the individual layers, Rl, also leads to an improvement in the global robustness

of the duplex network, Rd, for the 3 different studied duplex configurations. However, when the

global robustness is optimized, it does not necessarily lead to an improvement of the robustness

of the individual layers, and can cause them to become more fragile. Multi-objective optimiza-

tion on Rl and Rd showed that it is possible to substantially and simultaneously improve the

robustness of the individual layers and the global duplex network.

40



Figure 4.7: Greedy optimization of layer robustness
on an ER-ER network.

Figure 4.8: Greedy optimization of layer robustness
on an SF-SF network.

Figure 4.9: Greedy optimization of layer ro-
bustness on an ER-SF network.

Figure 4.10: Simulated annealing optimiza-
tion of layer robustness on an ER-ER network.

Figure 4.11: Simulated annealing optimiza-
tion of layer robustness on an SF-SF network.

Figure 4.12: Simulated annealing optimiza-
tion of layer robustness on an ER-SF network.
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Figure 4.13: Greedy optimization of duplex robust-
ness on an ER-ER network.

Figure 4.14: Greedy optimization of duplex robust-
ness on an SF-SF network.

Figure 4.15: Greedy optimization of duplex
robustness on an ER-SF network.

Figure 4.16: Simulated annealing optimization of
duplex robustness on an ER-ER network.

Figure 4.17: Simulated annealing optimiza-
tion of duplex robustness on an SF-SF net-
work.

Figure 4.18: Simulated annealing optimiza-
tion of duplex robustness on an ER-SF net-
work.
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Figure 4.19: Greedy multi-objective optimization of
Rl and Rd on an ER-ER network.

Figure 4.20: Greedy multi-objective optimization of
Rl and Rd on an SF-SF network.

Figure 4.21: Greedy multi-objective optimiza-
tion of Rl and Rd on an ER-SF network.

Figure 4.22: Simulated annealing multi-objective
optimization of Rl and Rd on an ER-ER network.

Figure 4.23: Simulated annealing multi-
objective optimization of Rl and Rd on an SF-
SF network.

Figure 4.24: Simulated annealing multi-
objective optimization of Rl and Rd on an ER-
SF network.
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Greedy Simulated Annealing

Rl Rd Rl Rd

Best Avg Best Avg Best Avg Best Avg

ER-ER 109.01% 69.02% 16.82% 7.59% 104.72% 68.58% 14.58% 6.91%

SF-SF 92.12% 66.20% 16.15% 4.92% 89.58% 62.98% 13.46% 2.91%

ER-SF 104.05% 75.62% 13.41% 8.75% 105.69% 65.56% 17.33% 7.54%

Table 4.1: Robustness optimization guided by Rl.

Greedy Simulated Annealing

Rl Rd Rl Rd

Best Avg Best Avg Best Avg Best Avg

ER-ER 11.31% 4.26% 20.57% 13.90% 10.53% -0.96% 17.23% 13.99%

SF-SF 13.91% 0.21% 24.87% 13.66% 4.59% -2.33% 18.12% 12.54%

ER-SF 18.77% 5.98% 26.82% 18.13% 11.48% 3.45% 17.33% 20.24%

Table 4.2: Robustness optimization guided by Rd

Greedy Simulated Annealing

Rl Rd Rl Rd

Best Avg Best Avg Best Avg Best Avg

ER-ER 34.49% 27.52% 18.53% 13.87% 49.85% 31.07% 17.47% 12.84%

SF-SF 46.94% 31.91% 22.80% 15.03% 43.04% 29.83% 15.54% 11.08%

ER-SF 38.92% 29.05% 23.58% 17.61% 52.03% 29.45% 24.76% 15.25%

Table 4.3: Robustness optimization guided by Rl and Rd
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5 | Conclusion

This thesis focused on the study of robustness of multiplex networks. The main findings

were as follows:

• Duplex networks with two layers of the same degree distribution behave similarly as a

single-layer network with that same degree distribution. A duplex network with two power-

law distributions is robust against random failures and fragile against targeted attacks. A

duplex network with two exponential distributions is robust against targeted attacks and

fragile against random failures.

• A duplex network with one power-law layer and one exponential layer is more robust

against targeted attacks than a double power-law duplex network. It is more robust

against random failures than a double exponential duplex network, making it an ideal

duplex configuration when targeted attacks and random failures are present.

• A duplex network with one power-law layer and one lattice layer behaves similarly to a

duplex network with one power-law layer and one exponential layer. However, it shows in-

creased robustness for small-scale degree-based attacks and random failures. The improved

robustness against degree-based attacks can be attributed to the particular single-point

distribution of the lattice layer, that guarantees the integrity of the MCGC up until the

point where all nodes of degree larger than four are removed. The improved robustness

against random failures can be explained by the grid-like structure that the lattice layer

provides to the duplex network, allowing the duplex network to be connected for small

fractions of removed nodes.

• Optimizing robustness of individual layers in a duplex network leads to increased robust-

ness in the whole duplex network. However, when the global robustness is optimized, it

does not necessarily lead to an improvement of the robustness of the individual layers, and

can cause them to become more fragile.

• Multi-objective optimization showed that it is possible to substantially and simultaneously

improve the robustness of the individual layers and the global duplex network.
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5.1 Future Work

Regarding the work done on experimenting with different degree distributions, it would be

interesting to further investigate how other degree distributions behave when used in a multiplex

configuration, such as the ones studied and introduced in [1,6]. Also, it could be interesting to

study how impactful the degree distribution of one layer is in multiplex networks with more than

two layers. The optimization portion of this thesis, although results showed that optimizing one

layer leads to a global increase in robustness, it would be interesting to study how well this result

scales with multiplex networks with more than two layers. Furthermore, it would be interesting

to see if optimizing all layers separately leads to a significant improvement of global robustness,

compared against only optimizing one layer. The work done on multi-objective optimization

could be further studied by using other state-of-the art optimization algorithms such as the one

used for single-layer networks in [23]. Lastly, as this thesis focused on multiplex networks with

no degree correlation between layers, it would be interesting to understand if this results are also

valid in interdependent networks, where layers are not fully independent, and in networks that

have degree correlation, and study possible robustness properties that could emerge in these

networks.
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