
Journal Title Here Vol. , No. , pp. 1–9
doi: DOI HERE
Advance Access Publication Date: Day Month Year
Paper

A framework for large scale
phylogenetic analysis

Bruno Lourenço1, 2, ∗

1CSE Dept, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal and 2INESC-ID, R. Alves
Redol 9, 1000-029, Lisbon, Portugal

∗Corresponding author. bruno.leandro@tecnico.ulisboa.pt

ABSTRACT
With growing exchanges of people and merchandise between countries, epidemics have

become an issue of increasing importance and huge amounts of data are being collected every
day. Hence, analyses that were usually run in personal computers are no longer feasible. It is
now common to run such tasks in High-performance computing (HPC) environments and/or
dedicated systems. On the other hand, we are often dealing in these analyses with graphs
and trees, and running algorithms to find patterns in such structures. Hence, although
graph oriented databases and processing systems can be of much help in this setting, as
far as we know there is no solution relying on these technologies to address large scale
phylogenetic analysis challenges. This work aims to develop a modular framework that
exploits such technologies, namely Neo4j. We address this challenge by proposing and
developing a framework which allows representing large phylogenetic networks and trees,
as well as ancillary data, that supports queries on such data, and allows the deployment
of algorithms for inferring/detecting patterns and pre-computing visualizations, as a Neo4j
plugin. This framework is innovative and brings several advantages to the phylogenetic
analysis process, like the management of the phylogenetic trees, which will avoid having to
compute them again, and the use of multilayer networks, that will make the comparison
between them more efficient and scalable. The experimental evaluation results showcase
that it can be very efficient in the mostly used operations and that the supported algorithms
comply with their time complexity.

KEYWORDS: Phylogeny, Data processing, Data storage, Graphs, Database

INTRODUCTION

Phylogenetics is the study of the evolutionary
history and relationships among individuals or
groups of organisms, which aims to produce a
diagrammatic hypothesis about the history of the
evolutionary relationships of a group of organisms
known as phylogenetic tree. The relationships are
inferred through the analysis of the traits of
the individual or group, that is, by applying
computational algorithms, methods and programs to
the phylogenetics data.

With the growing exchanges of people and
merchandise between countries, epidemics have
become an issue of increasing importance. The
computational phylogenetics were mostly performed
in personal computers and desktops. However, this

kind of analysis is not feasible anymore, since huge
amounts of data are being collected every day,
and there are certain operations that require a
considerable amount of memory or time. Instead, it is
now common to run such tasks in high performance
computing environments and/or dedicated systems.
Therefore, there is a need to find a better way to
store and maintain the data rather than in personal
computers and desktops.

In large scale phylogenetic analysis of microbial
population genetics, it is often needed to sequence
and type the information of the organisms, and
afterwards to apply a set of phylogenetic inference
methods to produce a diagrammatic hypothesis
about the history of the evolutionary relationships of
a group of organisms. The computation and analysis
of microbial population genetics often produce graphs

© The Author 2020.

• 1

email:bruno.leandro@tecnico.ulisboa.pt


2 • Bruno Lourenço

and trees, which have many relationships. As graph
databases naturally apply to these data structures
and are optimized to perform queries and operations
over them, that is, they are designed specifically to
deal with highly connected data, it should be possible
to store them in a graph database.

A graph database management system is an
online database management system with create,
read, update, and delete (CRUD) methods that
expose a graph data model. Graph databases are
generally built for use with Online Transaction
Processing (OLTP) systems. Accordingly, they are
normally optimized for transactional performance,
and engineered with transactional integrity and
operational availability in mind (1). This type
of database addresses the problem of leveraging
complex and dynamic relationships in highly
connected data. Graph databases offer appealing
characteristics, such as performance and flexibility.
Regarding the performance of graph databases,
it tends to remain relatively constant, even as
the dataset grows, because the queries only use
the respective portion of the graph. In terms of
flexibility, a graph database allows adding new
nodes, labels, and relationships, to an existing
structure, without disturbing the existing queries and
application functionality.

Although graph oriented databases can be of much
help in this setting, as far as it is known there is no
solution relying on these technologies to address large
scale phylogenetic analysis challenges. Thus, a study
on which database engine better adresses the needs of
this challenge was conducted to provide new insights
and lead to innovative approaches, comparing graph
databases such as Neo4j (2), Titan Aurelius (3),
JanusGraph (4), Dgraph (5), Allegrograph (6),
and Apache Rya (7). The comparisons made are
presented in the fully extended version of this article
(8) and they suggest that Neo4j offers the most
interesting set of features and capabilities.

Neo4j is one of the most popular graph database
management systems, and is currently active and
open source. It is implemented in Java and accessible
from software written in other languages using the
Cypher query language (9). It is built over a native
graph storage and processing engine system. This
database has community-driven libraries available,
that together with the official available algorithms,
provide many algorithms to use over the graphs
stored in the system, and allows to extend itself with
plugins to support any other graph algorithm. It
supports the storage of 34 billion nodes (10), allows to
visualize data with tools that connect directly to the
database such as Neovis (11) and Popoto (12), and
supports the integration with other data processing
tools (DPT) such as Apache Spark (13). Hence, Neo4j
is the graph database system that is used to address
the large scale phylogenetic analysis challenge.

The objective of this work is to develop a
modular framework for large scale phylogenetic

analysis that exploits the Neo4j graph oriented
database technology to allow the management of
the phylogenetics data, without needing to load it
into the clients computers. This framework should
have a data model that allows the representation
of large phylogenetic networks and trees, as well
as the ancillary data. It should support queries on
such data and allow the deployment of algorithms for
inferring/detecting patterns and for pre-computing
visualizations.

APPROACH

The solution consists in a framework that complies
with the phylogenetic analysis process and uses a
graph database. This framework consists of several
components, namely a database containing the plugin
which holds the algorithms, an application server,
and an authorization server. These components are
represented in Figure 1.

  Keys

Database Application HTTP BoltQueue

Client
Client

Clients

Authorization
Server

Client
Client

Phylodb
Server

Queries

Algorithms
plugin

Jobs

Fig. 1. Client-Server architectural view.

The Phylodb Server component provides a Spring
(14) web application programming interface (API), to
perform several operations over the data stored in the
database, namely access data, load datasets, execute
algorithms and obtain results. It should be possible
to scale horizontally to handle more operations
by adding more instances of the Phylodb Server

component. The Phylodb Server interacts with the
Neo4j database component in two different ways.
That is, it can normally query data, but it can also
queue executions of the algorithms that are deployed
in the database and reside in the Algorithms Plugin

component. These algorithms also read the needed
inputs and write the computed results. The
Authorization Server component, which relies on
the Google Identity Provider (15), manages the user
information and provides operations to perform the
authentication of a user.

The solution was implemented considering an
agile methodology and is publicly available at



phyloDB • 3

CONTAINS_DETAILS

from

to

version

:Taxon

id
deprecated

CONTAINS_DETAILS

from

to

version

:Locus

id

deprecated

CONTAINS

:Schema

id

type

deprecated

:Coordinate

x
y

CONTAINS_DETAILS

from

to

version

:Isolate

id

deprecated

:Ancillary

key

value

CONTAINS_DETAILS

from

to

version

:Allele

id

deprecated

CONTAINS

CONTAINS

:Project

id

deprecated

CONTAINS_DETAILS

from

to

version

:User

id

provider

deprecated

CONTAINS

:Profile

id

deprecated

:Dataset
Details

description

DISTANCES

id

algorithm

weight

deprecated

fromVersion

toVersion

CONTAINS

CONTAINS

HAS

version

HAS

inferenceId

id

algorithm

component

deprecated

CONTAINS_DETAILS

from

to

version

:Taxon
Details

description

:Locus
Details

description

:Allele
Details

sequence

:User
Details

role
HAS

:Project
Details

description

name

type

CONTAINS_DETAILS

from

to

version

:Dataset

id

deprecated

CONTAINS_DETAILS

from

to

version

:Schema
Details

description

CONTAINS_DETAILS

from

to

version

HAS

part

version

:Profile
Details

aka

HAS

total

part

version

HAS

HAS

version

:Isolate
Details

description

  Keys

relationshipnode

Fig. 2. Data model represented by a set of nodes and relationships to compose a graph data
model, which is the format used by Neo4j.

https://github.com/Brunovski/phyloDB along with
its issues, milestones, and documentation.

Database
The database follows a data model, which is
represented in Figure 2, that allows to represent all
the entities considered in the phylogenetic analysis
and their respective relationships (16; 17).

The analysis of the phylogenetics data is based
on the need to pass files through a series of
transformations, called a pipeline or a scientific
workflow. The input of this scientific workflow
is the organism information that comes from the
laboratories. Hence, given such information that
comes as biological samples, a Next-Generation
Sequencing (NGS) process is applied to obtain the
genetic sequences. Then, alignment tools or assembly
tools are executed to assembly the genomes (18; 19).

The sequences assembled in the alignment process
may occupy a given position of a locus and define

distinct alleles of that locus. A locus is a specific
location in the chromosome, and every unique
sequence, either Deoxyribonucleic acid (DNA) or
peptide depending on the locus, is defined as a new
allele. An allele can also be defined as a viable DNA
coding sequence for the transmission of traits, and
it is represented with a number identifying the allele
and string containing the sequence.

That is, the phylogenetic data are composed of
taxonomic units, loci , and alleles. The taxonomic
units consist of several loci, thus this is represented
in the data model by a relationship named CONTAINS

between taxonomic units and loci nodes. Moreover,
the loci may hold specific locations for a set of
alleles, which is represented by a relationship named
CONTAINS between the nodes of each locus and the
associated nodes of the alleles.

After the alignment phase, a typing methodology
is applied to identify or fingerprint each organism
based on the genes that are presented in almost

https://github.com/Brunovski/phyloDB


4 • Bruno Lourenço

all organisms, which are named as conserved
genes. Bacterial identification and characterization
at subspecies level is commonly known as microbial
typing. This process provides the means to execute
phylogenetic inference methods, which then produces
a hypothesis about the history of the evolutionary
relationships about a group of organisms. There are
several typing methodologies, such as the Multilocus
Sequence Typing (MLST) (20; 21), Multiple-Locus
Variable Number Tandem Repeat Analysis (MLVA)
(22), and Single Nucleotide Polymorphism (SNP)
(23).

One of the most popular methodologies is the
MLST, which is an unambiguous procedure for
characterizing isolates of bacterial species using the
sequences of internal fragments. This methodology
types several species of microorganisms, and when
applied, the set of alleles identified at the loci are
considered to define a Sequence Type (ST), a key
identifier for this methodology, that can also be
defined as an allelic profile. The chosen loci are
usually different for each species, although some
species may share some or even all loci in their MLST
schemas. The number of chosen loci can vary and be
greater or smaller than the seven loci more commonly
adopted. The generated sequences are compared to
an allele database and for each gene, the different
sequences are assigned as distinct alleles and, for each
isolate, the alleles at each of the loci define the allelic
profile.

That is, the typing schemas can use several loci
to characterize different allelic profiles, and this
is expressed in the data model by the relationships
HAS between the details of a schema node and the
respective loci nodes. The allelic profiles belong to
a specific dataset as they are a result of applying
a typing methodology. Thus, this is described by
the relationship CONTAINS between dataset and profile
nodes. These profiles follow the same schema, hence
they should be related to the typing method used.
To impose this concern, the HAS relationship is used
between the dataset and schema nodes, which means
that all profiles from that dataset follow the related
schema. However, having the dataset connected to
the schema, only allows to perceive what loci were
used in the typing operation. Therefore, to know
what is the allele that characterizes a profile for each
locus used in the schema, the details node of a profile
must be connected to the respective allele nodes.
Hence, this is represented by using a relationship
called HAS between the profile details and the alleles
nodes.

The main goal of the typing methods is
the characterization of organisms existing in a
given sample. However, some microorganisms from
the sample collected need to be isolated to be
characterized. Thus, each organism isolated from
the microbial population becomes an isolate. An
isolate can be associated with typing information
and ancillary details. Ancillary details include

information about the place where the microorganism
was isolated, the environment, the host, and other
possible contextual details.

That is, isolates may have related ancillary data.
Thus, in the data model this is expressed as a
relationship named HAS between the detail of an
isolate and ancillary data nodes. Since an isolate may
be associated to a profile, there is also a relation
between the two, which is called HAS. The detail of
this isolate also has several relationships HAS to each
ancillary data associated to it.

Succeeding the typing process follows the
execution of a phylogenetic inference method to
the results. A phylogenetic inference method is the
application of computational algorithms, methods,
and programs to phylogenetic data that allows to
produce a diagrammatic hypothesis about the history
of the evolutionary relationships of a group of
organisms. There are several types of phylogenetic
inference methods, such as distance matrix methods,
maximum parsimony, maximum likelihood, and
Bayesian inference. In this work, we have focused
in distance matrix methods (24; 25; 26). Distance
matrix methods rely on the genetic distance between
the sequences being classified. The distances are
often defined as the fraction of mismatches at
aligned positions, with gaps either ignored or counted
as mismatches. The Globally Optimized eBURST
(goeBURST) algorithm (27) is an example of an
implementation of these algorithms.

Therefore, the inference algorithms rely on the
genetic distances between profiles. These distances
are calculated by computing a distance matrix. Based
on these distances, the algorithm is then executed
and relationships DISTANCES are created between the
different profile nodes to compose the resulting graph.
This strategy allows to consider multilayer networks
since the same nodes shall be used to represent
different graphs.

After executing an inference algorithm, a
visualization algorithm, such as Radial Static Layout
(28), or GrapeTree (29), is executed to compute the
optimal coordinates for each node of the received
graph or tree. Afterwards, the coordinates are
provided to a render framework which then presents
each profile and relationship to a user interface.

Thus, the visualization algorithms execute over
the graphs resulting from the inference algorithms,
and create visualization coordinates for each node
of the graphs. Hence, a relationship HAS between a
profile and coordinate nodes exists to represent the
coordinate of some profile, for a given inference and
visualization algorithm.

This data model also incorporates versioning and
soft deletes concerns to mitigate some problems
that occur nowadays, such as the impossibility to
delete a wrongly inserted profile after executing an
algorithm that generates a graph containing it. Such
profiles can not be removed, because the generated
graphs would then become invalid. In this case, by



phyloDB • 5

considering a versioning and soft delete strategy,
these removals should be possible, since the graphs
would be linked to the statuses of the profiles and not
to the profiles themselves. The versioning strategy
to achieve this behaviour is to separate each object
from its state, link them through a relationship
with the respective version number, and capture
changes by having different state nodes (30). In the
data model, the name of the status nodes end with
Details, and the version relationships are named as
CONTAINS_DETAILS.

API
The API provided by the framework was implemented
based on three layers, namely Controllers, Services
and Repositories, as demonstrated in Figure 3.

Controllers
(API definition, parse inputs and format

outputs)

Services
(Business logic)

Repositories
(Data access logic)

  Keys

allowed to uselayer

Fig. 3. Layered architectural view of the
PhyloDB Server component.

When a request is received by the API, it is
passed through the Controllers layer. This layer
contains the controllers that parse the received input,
execute the respective service, and retrieve the
response containing the respective status code and
the formatted content. The Services layer contains
the services that perform the business logic and
use the needed repositories. The Repositories layer
holds the repositories that shall provide operations
to interact with the database. Apart from these
layers, there is a validation logic that verifies
the request authenticity and the user permissions
before the request is processed by them. Thus,
several factors are considered in the implementation
of this API such as, the representational state
transfer (REST) architecture, the Hypertext Transfer
Protocol (HTTP) semantics, the imports and exports
of datasets, the error handling, the security concerns,
and more.

The interaction between the API and users is
accomplished through HTTP requests. Hence, the
HTTP protocol allows the API to retrieve different

types of responses depending on several factors, such
as the parameters used in the request, the type and
result of the operation that is being executed.

The security concerns are considered through
the definition of a security pipeline, which is
based on the Spring interceptor components (31).
These components allow to implement the preHandle

method, that is executed before a request is passed
to the controllers. Thus, the security pipeline
is composed by the AuthenticationInterceptor

and AuthorizationInterceptor interceptors. These
components implement the SecurityInterceptor

interface. This interface defines the method handle,
which shall contain the authenticity and user
permissions validations. However, to ensure that
these validations are executed before a request is
passed to the controllers, the SecurityInterceptor

must implement the Spring HandlerInterceptor

interface and define that the handle method is
executed within the preHandle method.

The authentication is based on the bearer token
authentication (32). This type of authentication
is based on tokens that are acquired after an
authentication process with an identity provider.

After the request passes by the security pipeline
it is handled by the controllers, that use services
to perform the respective operation. These services
rely on the repositories which define the queries
to interact with the database, either to manage
data or to schedule algorithms executions. Several
concerns were considered in the implementation of
the repositories, such as the use an object graph
mapper (OGM), pagination, parameterized queries
and more.

The use of the functionalities related to an OGM
functionalities may add some overhead (33). Hence, it
was decided that each query should be implemented
from scratch to increase the performance of the
data access operations. That is, the implementation
of each repository method contains the respective
Cypher query that it should perform.

Moreover, the use of pagination in these queries
was adopted because this framework is intended to
handle great quantities of data. This approach allows
to control the quantity of data that is dealt with
in the methods that retrieve many domain entities.
Thus, memory issues are less likely to happen since
a maximum number of records that can be retrieved
by the queries is defined. To achieve this behaviour,
the respective methods must receive the page and the
limit of records to retrieve.

Also, each of those queries is parameterized. By
using parameterized queries the performance can
be increased because Neo4j can cache the query
plans and reuse them in the following executions,
which increases the following query speed. And, it
also allows to protect from injection attacks, since
parameters are never allowed to be interpreted as
part of the query and have no means of escaping out
of being anything other than a value of some sort



6 • Bruno Lourenço

(33; 34). This can be achieved by executing a query
that contains specific placeholders for each parameter
and pass the values of the parameters, in the correct
order, as arguments.

Plugin
The plugin of the database is based on the feature of
user-defined procedures from Neo4j. A user-defined
procedure is a mechanism that allows to extend
Neo4j by writing custom code, which can be invoked
directly from Cypher. These procedures can take
arguments, perform operations on the database, and
return results. Moreover, some resources can be
injected into them from the database, which is similar
to the dependency injection mechanism from Spring.

This plugin intends to extend Neo4j to support
inference and visualization algorithms, which shall
be available as procedures. The inference algorithms
procedures are executed over the profiles of a
dataset, while visualization algorithms procedures
are executed over the results of the inference
algorithms. These procedures can be invoked directly
from Cypher like any other standard procedure.

The structure of the plugin is also based on
three layers, namely Procedures, Services and
Repositories, as shown in Figure 4.

Procedures
(Procedures definition)

Services
(Algorithms logic)

Repositories
(Data access logic)

  Keys

allowed to uselayer

Fig. 4. Layered architectural view of the
Algorithms Plugin component.

The Procedures layer holds the definitions of
the operations that allow to execute the supported
algorithms, hence a call to an algorithm is directed
to them. They parse the received input and execute
the respective service provided by the Services layer.
The Services layer reads the input data for the
algorithm from the database, compute the respective
algorithm and store the obtained result back to
the database. The reading and writing of data are
accomplished by using the methods provided by the
Repositories layer.

The algorithms receive inputs, perform the
respective computation, and produce results. Hence,
inference algorithms receive distance matrices and
produce graphs, while visualization algorithms
receive the graphs produced by inference algorithms
and generate coordinates for each of the nodes
of the graph. Thus, the interface Algorithm

defines a method compute that is extended by the
InferenceAlgorithm and VisualizationAlgorithm

interfaces to specify the respective arguments and
results. For example, InferenceAlgorithm defines
that the compute method must receive a Matrix and
retrieve an Inference.

The goeBURST algorithm is the only inference
algorithm supported, and the Radial Static Layout
algorithm is the only visualization algorithm
supported. Therefore, a class that implements
the compute method exists for each of these
algorithms. For instance, the class GoeBurst extends
from InferenceAlgorithm to implement the compute

method, which receives a Matrix and retrieves
an Inference, with the logic of the goeBURST
algorithm. Implementations of the goeBURST and
Radial Static Layout algorithms already exist, thus
our implementations are based on them (35; 36).

EVALUATION

The tests were executed over a set of read
and write operations, which were picked to be
analysed in terms of time and memory. These
operations are composed by the Save Profiles,
Run Inference, Run Visualization, Save Profile,
Get Profiles, Get Resumed Profiles, Get Profile,
Get Inference, and, Get Visualization. In these
tests, the Save Profiles saves a file containing an
increasing number of profiles. The Run Inference

executes the goeBURST algorithm over an increasing
number of profiles that are stored in the database.
The Run Visualization executes the Radial Static
Layout algorithm over the result of the goeBURST
algorithm execution with an increasing number of
profiles and edges. It must be taken into account that
these two operations not only compute the algorithm,
but also include the work of gathering the data and
storing the results. Note that, in the case of the
inference algorithms, the calculation of the distance
matrix is also included in this process. Then, the
Save Profile saves a single profile in the database
that holds an increasing number of profiles. The
Get Profiles and Get Resumed Profiles retrieve
the respective information about an increasing
number of profiles. The Get Profile retrieves only a
single profile independently of the quantity of profiles
stored in the database. Finally, the Get Inference

and Get Visualization retrieves the results of the
algorithms executed over an increasing number of
profiles and edges.



phyloDB • 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

0.5

1

1.5

2

2.5

·105

Profiles [#]

T
im

e
[m

s]

save profiles

run inference

run visualization

save profile

get profiles

get resumed profiles

get profile

get inference

get visualization

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0

200

400

600

800

1,000

1,200

Profiles [#]

M
em

o
ry

[M
B

]

save profiles

run inference

run visualization

save profile

get profiles

get resumed profiles

get profile

get inference

get visualization

Fig. 5. Plots containing the time and the memory results, in milliseconds and megabytes
respectively, as new profiles are incrementally integrated for the Streptococcus pneumoniae MLST
dataset.

The tests relied on the Streptococcus pneumoniae
(37) MLST dataset, which was specifically chosen
because it is part of several published studies and
also because it is publicly available, which will
facilitate the interpretation of the results. This
dataset contains a profile length of 7 and a total of
around 16000 profiles currently.

This experimental evaluation was performed on a
machine with an Intel Core I7 2.40 GHz quad core
processor and 8 GB of memory, where 2 GB were
allocated for the database and another 4 GB were
allocated for the API.

The average running time that each operation
took to complete, over an increasing number of
profiles is presented in the plot represented by
Figure 5, in milliseconds. The obtained results
confirm that the graph database operations that
operate over a fixed amount of data are not affected
by the increasing volume of the database data.
This is confirmed by analysing the results for
the Get Profile operation, that shows that the
respective line is flat, which means that the time
of execution is constant and independent of the
increasing number of profiles. Additionally, it can
be concluded that the presented execution times for
the algorithms comply with their time complexity,
which is quadratic for the goeBURST algorithm
(27), and linearithmic for the Radial Static Layout
algorithm (28) since the children nodes are sorted.
The presented results also reveal that relying in a
graph database to handle this type of data allows
to have a good performance in read and single write
operations.

The average memory allocated that each operation
consumed until completion, over an increasing
number of profiles, is presented in the plot

represented by Figure 5, in megabytes. The presented
results reveal that the framework allocates the
memory linearly proportional to the amount of data
that it is handling, and that the read and single write
operations allocate much less memory than batch
writes operations. However, it must be noticed that
this analysis only considers the amount of memory
allocated in the API. This is relevant because the
algorithms are executed within the database, which
causes them to use the database memory instead of
the API memory. Hence, the allocated memory for
the algorithms executions are minimal.

CONCLUSION

Epidemics have become an issue of increasing
importance due to the growing exchanges of
people and merchandise between countries. Hence,
phylogenetic analyses are continuously generating
huge volumes of typing and ancillary data. And
there is no doubt about the importance of such
data, and phylogenetic studies, for the surveillance
of infectious diseases and the understanding of
pathogen population genetics and evolution. The
traditional way of performing phylogenetic analysis
is not feasible anymore as a result of the amount of
data generated.

The goal of this work was to develop a framework
that should comply with the phylogenetic analysis
process and that exploits a Neo4j database to
allow the management of the phylogenetics data.
It should support queries on such data and allow
the deployment of algorithms for inferring/detecting
patterns and for pre-computing visualizations.

The implementation of this framework provides
a data model that is designed to represent the



8 • Bruno Lourenço

relationships between the several types of data and to
consider multilayer networks. This data model also
contemplates versioning and soft deletes concerns
to mitigate currently known problems. Furthermore,
the API implementation considers several concerns,
such as importing and exporting of datasets, logging,
error handling, and security concerns. Finally, the
implementations of the algorithms are based on
the user-defined procedures feature of Neo4j, which
allows to extend its semantic with our algorithms.

Several tests were performed over the framework,
which allowed us to conclude that the most important
facts found are related with the read operations
computational cost, when comparing to write
operations, since the former represents a notable
difference over the latter. We can also conclude that
by using a graph database the operations executed
over a fixed amount of data are not affected by an
increasing volume of data. Furthermore, we observed
that the execution times for the algorithms complied
with their time complexity. Overall, we consider our
implementation efficient in terms of read and single
write operations. However, with the presented results
and their analysis, we understand that the batch
operations can still be improved.

There are several possible continuations of this
work. One could be the extension of our solution
to provide more algorithms, and make use of
parallelization to improve their performance. The
already provided algorithms by Neo4j make use
of parallelization, hence we could improve our
algorithms execution time by parallelizing their
computations. Other potential development could be
on how to use the background triggers functionality
to achieve the dynamic computation of inference
algorithms. Another possibility could be a study of
how to perform the batch writes processing based on
a queue mechanism.

FUNDING

This work was partly supported by national funds
through FCT– Fundação para a Ciência e Tecnologia,
under projects PTDC/CCI-BIO/29676/2017 and
UIDB/50021/2020.

REFERENCES

1. Ian Robinson, Jim Webber, and Emil Eifrem.
Graph Databases. O’Reilly Media, Inc., 2013.

2. Florian Holzschuher and René Peinl. Performance
of graph query languages: Comparison of cypher,
gremlin and native access in neo4j. In Proceedings
of the Joint EDBT/ICDT 2013 Workshops,
EDBT ’13, pages 195–204, New York, NY, USA,
2013. ACM. URL: http://doi.acm.org/10.1145/
2457317.2457351, doi:10.1145/2457317.2457351.

3. Aurelius. Titan: Distributed graph database.,
2015. Last accessed 28 December 2020. URL:

http://titandb.io.
4. The Linux Foundation. Janusgraph: Distributed

graph database., 2017. Last accessed 28
December 2020. URL: http://janusgraph.org/.

5. Dgraph. Dgraph: A distributed, fast graph
database., 2016. Last accessed 28 December 2020.
URL: https://dgraph.io/.

6. F. Inc. Allegrograph., 2004. Last accessed
28 December 2020. URL: https://franz.com/
agraph/allegrograph/.

7. Roshan Punnoose, Adina Crainiceanu, and
David Rapp. Rya: A scalable rdf triple store
for the clouds. In Proceedings of the 1st
International Workshop on Cloud Intelligence,
Cloud-I ’12, pages 4:1–4:8, New York, NY, USA,
2012. ACM. URL: http://doi.acm.org/10.1145/
2347673.2347677, doi:10.1145/2347673.2347677.

8. Bruno Lourenço, Cátia Vaz, and Alexandre
Francisco. A framework for large scale
phylogenetic analysis. arXiv preprint
arXiv:2012.13363, 2020.

9. Nadime Francis, Alastair Green, Paolo
Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats
Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An evolving query language for property
graphs. In Proceedings of the 2018 International
Conference on Management of Data, pages
1433–1445. ACM, 2018.

10. Philip Rathle. Official release: 3 essentials
of neo4j 3.0, from scale to productivity and
deployment, 2016. Last accessed 28 December
2020. URL: https://neo4j.com/blog/neo4j-3-
0-massive-scale-developer-productivity/.

11. Neo4j Contrib. Neovis.js. Last accessed 28
December 2020. URL: https://github.com/
neo4j-contrib/neovis.js.

12. NHOGS Interactive. Popoto.js. Last
accessed 28 December 2020. URL: http://

www.popotojs.com/.
13. Andreia Sofia Teixeira, Pedro T Monteiro, Joao A

Carriço, Francisco C Santos, and Alexandre P
Francisco. Using spark and graphx to parallelize
large-scale simulations of bacterial populations
over host contact networks. In International
Conference on Algorithms and Architectures for
Parallel Processing, pages 591–600. Springer,
2017.

14. Spring Framework. Spring framework. Available
on:¡ https://spring. io/¿. Access in, 3, 2018.

15. Google. Openidconnect. Last accessed
28 December 2020. URL: https:

//developers.google.com/identity/protocols/
OpenIDConnect.

16. João Almeida, João Tiple, Mário Ramirez,
José Melo-Cristino, Cátia Vaz, Alexandre
P. Francisco, and João A. Carriço. An ontology
and a rest api for sequence based microbial
typing data. In Ana T. Freitas and Arcadi
Navarro, editors, Bioinformatics for Personalized

http://doi.acm.org/10.1145/2457317.2457351
http://doi.acm.org/10.1145/2457317.2457351
https://doi.org/10.1145/2457317.2457351
http://titandb.io
http://janusgraph.org/
https://dgraph.io/
https://franz.com/agraph/allegrograph/
https://franz.com/agraph/allegrograph/
http://doi.acm.org/10.1145/2347673.2347677
http://doi.acm.org/10.1145/2347673.2347677
https://doi.org/10.1145/2347673.2347677
https://neo4j.com/blog/neo4j-3-0-massive-scale-developer-productivity/
https://neo4j.com/blog/neo4j-3-0-massive-scale-developer-productivity/
https://github.com/neo4j-contrib/neovis.js
https://github.com/neo4j-contrib/neovis.js
http://www.popotojs.com/
http://www.popotojs.com/
https://developers.google.com/identity/protocols/OpenIDConnect
https://developers.google.com/identity/protocols/OpenIDConnect
https://developers.google.com/identity/protocols/OpenIDConnect


phyloDB • 9

Medicine, pages 21–28, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

17. Cátia Vaz, Alexandre P. Francisco, Mickael Silva,
Keith A. Jolley, James E. Bray, Hannes Pouseele,
Joerg Rothganger, Mário Ramirez, and João A.
Carriço. Typon: the microbial typing ontology.
Journal of Biomedical Semantics, 5(1):43, 2014.
doi:10.1186/2041-1480-5-43.

18. J A Carriço, A J Sabat, A W Friedrich,
M Ramirez, and Collective on behalf of the
ESCMID Study Group for Epidemiological
Markers (ESGEM). Bioinformatics in bacterial
molecular epidemiology and public health:
databases, tools and the next-generation
sequencing revolution. Eurosurveillance, 18(4),
2013. URL: https://www.eurosurveillance.org/
content/10.2807/ese.18.04.20382-en, doi:

https://doi.org/10.2807/ese.18.04.20382-en.
19. Keith A. Jolley and Martin CJ Maiden. Bigsdb:

Scalable analysis of bacterial genome variation
at the population level. BMC Bioinformatics,
11(1):595, 2010. doi:10.1186/1471-2105-11-
595.

20. BG Spratt. Multilocus sequence typing:
molecular typing of bacterial pathogens in
an era of rapid dna sequencing and the
internet. Current opinion in microbiology,
2(3):312—316, June 1999. URL: https://

doi.org/10.1016/S1369-5274(99)80054-X, doi:

10.1016/s1369-5274(99)80054-x.
21. Martin CJ Maiden, Jane A Bygraves, Edward

Feil, Giovanna Morelli, Joanne E Russell, Rachel
Urwin, Qing Zhang, Jiaji Zhou, Kerstin Zurth,
Dominique A Caugant, et al. Multilocus
sequence typing: a portable approach to the
identification of clones within populations of
pathogenic microorganisms. Proceedings of the
National Academy of Sciences, 95(6):3140–3145,
1998.

22. Bjørn-Arne Lindstedt. Multiple-locus
variable number tandem repeats analysis
for genetic fingerprinting of pathogenic bacteria.
Electrophoresis, 26(13):2567–2582, 2005.

23. Nicholas J Croucher, Simon R Harris, Christophe
Fraser, Michael A Quail, John Burton, Mark
van der Linden, Lesley McGee, Anne von
Gottberg, Jae Hoon Song, Kwan Soo Ko, et al.
Rapid pneumococcal evolution in response to
clinical interventions. science, 331(6016):430–
434, 2011.

24. Alexandre P Francisco, Cátia Vaz, Pedro T
Monteiro, José Melo-Cristino, Mário Ramirez,
and Joao A Carriço. Phyloviz: phylogenetic
inference and data visualization for sequence
based typing methods. BMC bioinformatics,
13(1):87, 2012.

25. Marta Nascimento, Adriano Sousa, Mário
Ramirez, Alexandre P Francisco, João A Carriço,
and Cátia Vaz. Phyloviz 2.0: providing scalable
data integration and visualization for multiple
phylogenetic inference methods. Bioinformatics,
33(1):128–129, 2016.

26. Cátia Vaz, Marta Nascimento, João A Carriço,
Tatiana Rocher, and Alexandre P Francisco.
Distance-based phylogenetic inference from
typing data: a unifying view. Briefings in
Bioinformatics, 07 2020.

27. Alexandre P Francisco, Miguel Bugalho, Mário
Ramirez, and João A Carriço. Global optimal
eburst analysis of multilocus typing data using a
graphic matroid approach. BMC bioinformatics,
10(1):152, 2009.

28. Christian Bachmaier, Ulrik Brandes, and Falk
Schreiber. Biological networks. 2014.

29. Zhemin Zhou, Nabil-Fareed Alikhan, Martin J
Sergeant, Nina Luhmann, Cátia Vaz,
Alexandre P Francisco, João André Carriço, and
Mark Achtman. Grapetree: visualization of core
genomic relationships among 100,000 bacterial
pathogens. Genome research, 28(9):1395–1404,
2018.

30. Ljubica Lazarevic. Keeping track of graph
changes using temporal versioning. Last accessed
28 December 2020. URL: https://medium.com/
neo4j/keeping-track-of-graph-changes-

using-temporal-versioning-3b0f854536fa.
31. Spring. Spring framework documentation.

Last accessed 28 December 2020. URL:
https://docs.spring.io/spring-framework/
docs/current/reference/html/web.html.

32. Microsoft. The oauth 2.0 authorization
framework: Bearer token usage. Last accessed 28
December 2020. URL: https://tools.ietf.org/
html/rfc6750.

33. Christophe Willemsen. Cypher: Write fast
and furious. Last accessed 28 December
2020. URL: https://neo4j.com/blog/cypher-
write-fast-furious/.

34. Andrew Bowman Neo4j Staff. Neo4j security.
Last accessed 28 December 2020. URL: https://
community.neo4j.com/t/neo4j-security/16044.

35. Luana Silva. phylolib. Last accessed 28
December 2020. URL: https://github.com/
Luanab/phylolib.

36. Leonardo Alexandre Luana Silva and Diogo
Loureiro. Phyloviz-electron. Last accessed
28 December 2020. URL: https://github.com/
DrLDiogo/PHYLOViZ-Electron.

37. PubMLST. Pubmlst. Last accessed 28 December
2020. URL: Available:http://pubmlst.org/.

https://doi.org/10.1186/2041-1480-5-43
https://www.eurosurveillance.org/content/10.2807/ese.18.04.20382-en
https://www.eurosurveillance.org/content/10.2807/ese.18.04.20382-en
https://doi.org/https://doi.org/10.2807/ese.18.04.20382-en
https://doi.org/https://doi.org/10.2807/ese.18.04.20382-en
https://doi.org/10.1186/1471-2105-11-595
https://doi.org/10.1186/1471-2105-11-595
https://doi.org/10.1016/S1369-5274(99)80054-X
https://doi.org/10.1016/S1369-5274(99)80054-X
https://doi.org/10.1016/s1369-5274(99)80054-x
https://doi.org/10.1016/s1369-5274(99)80054-x
https://medium.com/neo4j/keeping-track-of-graph-changes-using-temporal-versioning-3b0f854536fa
https://medium.com/neo4j/keeping-track-of-graph-changes-using-temporal-versioning-3b0f854536fa
https://medium.com/neo4j/keeping-track-of-graph-changes-using-temporal-versioning-3b0f854536fa
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html
https://docs.spring.io/spring-framework/docs/current/reference/html/web.html
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://neo4j.com/blog/cypher-write-fast-furious/
https://neo4j.com/blog/cypher-write-fast-furious/
https://community.neo4j.com/t/neo4j-security/16044
https://community.neo4j.com/t/neo4j-security/16044
https://github.com/Luanab/phylolib
https://github.com/Luanab/phylolib
https://github.com/DrLDiogo/PHYLOViZ-Electron
https://github.com/DrLDiogo/PHYLOViZ-Electron
Available: http://pubmlst.org/

	Introduction
	Approach
	Database
	API
	Plugin

	Evaluation
	Conclusion
	Funding

