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Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory response causing
joint damage and ultimately severe disability. There is no cure for RA and it is regarded as therapeutically chal-
lenging due to patient heterogeneity and variability. Biologic agents such as anti-TNF (tumor necrosis factor) in
combination with metothrexate are a common first approach. However, the problem remains to be the prediction of
the patient’s response, since the eventual positive results are only observable months after initiating treatment. This
is unsettling because, regardless of the patient’s response, the anticipation period may cause irreversible repercus-
sions and have a socio-economic impact. Many researches have focused the use of machine learning algorithms on
finding biomarkers (e.g. at transcriptomic or protein level) which can aid the understanding of RA pathogenesis and
consequently find the appropriate treatment. The development of improved analysis strategies is leading towards
precision medicine. This thesis applied a sparse logistic regression framework to transcriptomic data of RA patients
collected at day 0 and day 90 of anti-TNF treatment in order to select the significant features. Bayesian network
learning allowed for the identification of known protein-protein interactions, such as MPO–CTSG and CTSG–AZU1
for patients regarded, respectively, as good-responders and non-responders, according to the EULAR criteria. Fi-
nally, different classification algorithms were tested in order to evaluate parameters such as sparsity, influence of
normalization methods and performance based on their continuous/discrete/voom-based nature. Structured sparse
regression conjugated with Bayesian learning identified RA biomarkers which potentially can support the clinical
domain.
Keywords: Bayesian network, Biomarker, Response prediction, Rheumatoid arthritis, Sparse models.

1. Introduction

Rheumatoid arthritis (RA) is an auto-immune inflam-
matory progressive disorder affecting primarily the joint
system. In the absence of appropriate treatment, it
causes joint destruction, leading to reduced life quality,
decreased life expectancy and increased risk of cardio-
vascular diseases. Being a chronic disease, there is no
cure for RA. Its prevalence amongst the Portuguese pop-
ulation is estimated to be between 0.8% and 1.5%, being
women more likely to be affected than men [1; 2].

Biologic agents efficacy and safety have been clearly
demonstrated, having revolutionized the RA treatment
over the last decades [3]. However the patients response
to the medications is not yet fully predictable and their
effects are felt late in time after being initiated. The Eu-
ropean League Against Rheumatism (EULAR) recom-
mendations indicates the therapeutic options available
and the course of action which should be applied when
a medicine or a combination of medicines does not sort
the pretended effect or has negative effects on the pa-
tient’s health [4]. Thus the possibility of predicting the
patient’s response to a specific treatment is a therapeu-

tic goal as it would prevent irreversible health damage
caused by the trial-and-error approach currently applied.

Specifically in the medical departments, data mining,
the field which focus on data analysis and consequent
information extraction, aided to machine learning have
been in vogue as they provide powerful tools in clinical
trials and practice [5].

On another note, as high-dimensional data becomes
increasingly available, sparse methods allow to go from
an abounding number of features included in the data
to a selection of the relevant and informational ones.
Although the scientific and medical communities have
seen great development in what biologic processes are
underlying RA, the unresolved heterogeneity of its pa-
tients still constitutes a big barrier.

In this sense, the exploration of the associations be-
tween the disease processes and the clinical response
to therapy has been extensively reviewed. For exam-
ple, it has been shown in a research using the same
dataset in this present study, that there are associations
between differences in innate/adaptive imumune cell-
type-specific at the beginning of anti-TNF therapy and
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the patient’s response within three months [6]. A meta-
analysis of RA synovial transcriptomic data has evi-
denced differences in the activation of genes involved
in several key and targetable signalling pathways which
could predict the response to infliximab, an anti-TNF
drug, with high accuracy [7]. However, the identifica-
tion of biomarkers has yet to reproducibly manifest car-
nally relevant predictive.

The main goal of this thesis was to identify gene
signatures (biomarkers) from transcriptomic data in pa-
tients undergoing RA treatment with biologics. Tran-
scriptome sequencing or gene expression profiling can
be achieved by RNA sequencing (RNA-Seq), a tech-
nology which uses next-generation sequencing to quan-
tify RNA in a sample [8; 9]. With those biomarkers
the intention was to distinguish which patients would
fall under the good-responder (further labeled as “R”)
or the non-responder (“NR”) types, according to the
EULAR criteria [10]. The transcriptomic data used
was subject to regularisation methods which perform
feature selection and subsequently Bayesian networks
(BN) were learned from them in order to analyse which
protein-protein interactions were underlying the patients
in terms of their response to the treatment. At last, dif-
ferent machine learning algorithms with distinctive nu-
ances were trained with the same data and their predic-
tion performance evaluated.

RA is first described in Sec. 2, alongside with a re-
view of the methods applied and a description of the
data. The work methodology is presented in Sec. 3 and
the subsequent results and corresponding discussion are
analysed in Sec. 4. Finally Sec. 5 concludes about the
overall work achievements and proposes future direc-
tions.

2. Background
2.1. Rheumatoid Arthritis
RA is a systemic inflammatory disease characterized
by a chronic inflammatory response which causes joint
swelling, joint tenderness, and destruction of synovial
joints, leading to severe disability and premature mor-
tality [1].

During recent years, it has become clear that RA is
composed of several phenotypes with defined and dif-
ferent genetic and environmental risk factors. Two ma-
jor phenotyping criteria are the presence of serologic
autoantibodies such as rheumatoid factor (RF) and an-
ticitrullinated protein antibody (ACPA) [11]. Being an
autoimmune disease, the case is these autoantibodies at-
tack the self organism leading to abnormal immune re-
actions.

The exact pathogenesis leading to this immune sys-
tem deregulation is still unknown, but evidence has
been shown that certain genetic predispositions, such as
class II major histocompatibility complex (MHC) genes,
specifically the HLA (human leukocyte antigen) DRB1
alleles, and tumour necrosis factor (TNF) alleles, play
an important role [12]. Furthermore, T and B cells,

which are vital in the adaptive immune response, have
long been implicated in mediating many joint inflamma-
tion aspects [13; 14].

RA’s diagnose is a complicated task due to the several
causes leading to joint stiffness and inflammation. Clas-
sification criteria is the usual approach to define RA and
to assess its severity in the patient’s health. This cri-
teria is based on the disease activity, which in its turn
includes different variables and quantitative evidence
such as pain scales, questionnaires regarding functional
damage, information from swollen joints, autoantibod-
ies tests, erythrocyte sedimentation rate or C-reactive
protein level. Tab. 1 indicates examples of different ex-
isting formulas used for disease scoring.

Table 1: Formulas for calculation of RA disease activity scores: DAS,
DAS28, SDAI and CDAI [15; 16]

Score Model Formula Range

DAS 0.53938
√

RAI + 0.06465 SJC44 + 0.33ln ESR + 0.00722 GH 0 - 10
DAS28 0.56

√
TJC28 + 0.28

√
SJC28 + 0.7ln ESR + 0.014 GH 0 - 9.4

SDAI TJC28 + SJC28 + PtGA + PhGA + CRP 0 - 86
CDAI TJC28 + SJC28 + PtGA + PhGA 0 - 76

Disease activity score (DAS and DAS28); simplified disease activity index (SDAI); clinical dis-
ease activity index (CDAI). Ritchie articular index (RAI); Tender joint count (TJC); swollen joint
count (SJC). SJC can be determined using 44 or 28 joints. C-reactive protein (CRP) in mg/dL;
erythrocyte sedimentation rate (ESR) in mm/h. DAS and DAS28 use the general health (GH) or
patient global assessment (PtGA) on a 0 to 100mm Visual Analog Scale.

The DAS (disease activity score) is a clinical index
of RA activity that combines information from swollen
joints, tender joints, the acute phase response and gen-
eral health. Due to its complexity and difficult computa-
tion requirements, a simplified version was developed:
the DAS at 28 joints. DAS28 is a joint index that in-
cludes a maximum of 28 joints which are evaluated for
swelling and tenderness. It also comprises erythrocyte
sedimentation rate. If the score is higher than 5.1 (or 3.7
when using DAS) it is considered high disease activity.

SDAI (Simplified disease activity index) and CDAI
(Clinical disease activity index) commonly combine
single measures into an overall continuous measure of
the disease activity, differing only in the inclusion of C-
reactive protein level (CDAI does not include it). High
disease activity is defined if SDAI > 26 or CDAI >
22 [17; 18].

Due to varying definitions of what constitutes remis-
sion, in 2010 the American College of Rheumatology
(ACR) and the European League Against Rheumatism
(EULAR) met to define a uniform remission criterion
for RA in trials and practice. The resulting work pro-
duced two definitions for evaluating remission: one is
Boolean-based and the other is based on the compos-
ite index SDAI [10]. According to ACR/EULAR, in
order to consider a patient in a remission state, at any
point in time one of the conditions should be verified
(see Tab. 2).

In clinical trials, the treatment response is often as-
sessed via the EULAR criteria, which is based on
change from baseline and the individual change in DAS
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Table 2: ACR/EULAR boolean and index based definition of remis-
sion for clinical trials and clinical practice [10]

Boolean-based Index-based

Clinical trials SJC, TJS, PtGA, CRP all ≤ 1 SDAI ≤ 3.3
Clinical practice SJC, TJS, PtGA all ≤ 1 CDAI ≤ 2.8

Swollen joint count (SJC) using 28 joints, tender joint count (TJS) using
28 joints, patient global assessment (PtGA) on a 0 to 10 scale, C-reactive
protein (CRP) in mg/dL, simplified disease activity index (SDAI), clin-
ical disease activity index (CDAI)

Table 3: EULAR response criteria using DAS28 [16]

DAS28 at endpoint
DAS28 improvement from baseline (∆DAS28)

> 1.2 0.6 - 1.2 ≤ 0.6

≤ 3.2 GR MR NR
3.2− 5.1 MR MR NR
> 5.1 MR NR NR

GR: good responder; MR: moderate responder; NR: non-responder

reached during followup. The patients are statified in
good, moderate or non-responders according to Tab. 3.

The most recent update of the EULAR recommen-
dations for RA treatment occurred in 2019. Nowadays
the main therapeutic target is to reach clinical remission,
being low disease activity considered the best possible
alternative.

The patient should initiate treatment with disease-
modifying antirheumatic drugs (DMARDs) which slow
the progression of joint damage. Methotrexate is
the most common prescribed conventional synthetic
DMARD (csDMARD), occasionally combined with
other DMARDs or glucocorticoids. If there is no im-
provement by at most 3 months after treatment initia-
tion, adjustments should be made: if the patient does
not presents with poor prognostic factors, other csD-
MARDs should be considered; otherwise it is recom-
mended adding a biologic DMARD (bDMARD) or a
targeted synthetic DMARD (tsDMARD). When in per-
sistent remission, the therapeutics should be gradually
and thoroughly tapered [4].

bDMARDs are engineered to act like a natural human
protein and interrupt immune system signals. Depend-
ing on their target, the therapies may be TNF inhibitors
(anti-TNF), which block the TNF alpha (TNF-α), a cy-
tokine that induces local inflammation and pannus for-
mation. Alternatively, they may target interleukin-1 or
interleukin-6 receptors; may be produced in order to de-
stroy B cells or even prevent T-cell activation [19; 20].

2.2. Logistic Regression
Regression techniques are versatile in their application
to medical research because they enable to predict out-
comes and measure associations, and to control for con-
founding variable effects. Logistic regression is the spe-
cial case of a generalized linear model in which the re-
sponse variable is binary (and thus the vector of obser-

vations reflects binomial distribution).
Logistic regression is the special case of a generalized

linear model which defines the relationship between n
independent observations {Xi}ni=1, each measured over
p variables Xi = (Xi1, . . . , Xip)

T , and a binary out-
come {Yi}ni=1. It is given by:

pi = Prob(Yi = 1 | xi) =
exp(xiβ)

1 + exp(xiβ
, (1)

where β is the vector of unknown regression coefficients
related with the p variables and pi is the probability of
success.

Logistic regression is a very commonly used tool for
applied statistics and discrete data analysis, having even
shown equally performing results when compared to al-
ternative machine learning techniques in clinical and
biological research. Nevertheless, there are important
considerations when being conducted, such as includ-
ing a careful variable selection [21; 22].

2.3. Regularization Methods
Sparsity can be encouraged by constraining the regres-
sion problems with regularization methods. Elastic net
regularization is a weighted combination of ridge re-
gression and lasso (Least absolute shrinkage and selec-
tion operator) regression [23]. The former imposes a `2
constraint (sum of the squared error of the coefficients)
whereas the latter imposes an `1 constraint (sum of the
absolute values of the coefficients) [24; 25]. It can be
defined as:

λ

p∑
j=1

{(1− α)β2
j + α|βj |}, (2)

where λ ≥ 0 controls the magnitude of the parame-
ters and α ∈ [0, 1] controls the relative weight of each
penalty. The `1 norm contributes to a sparse model
(thus, increasing α leads to more sparsity) and the `2
norm removes the limitation on the number of selected
variables and encourages the grouping effect.

2.4. Bayesian Networks
Bayesian Networks (BNs) are a type of probabilistic
graphical models that aim to model conditional depen-
dence between variables, allowing the computation of
the joint probability distribution. BNs are intuitive di-
rected acyclic graphs, commonly defined as G = (V,E),
in which the vertices or nodes V represent the random
variables of interest and the edges or links E represent
the informational or causal dependencies amongst those
variables.

Let X = {X1, ..., Xp}T be a p-dimensional vector
of random variables Xj , where Xj ⊂ <, that coincides
with the nodes V from G = (V,E). G represents a joint
probability distribution P(X) over the same space. It can
be stated that P factorizes according to G if it can be
expressed as a product, called the chain rule, as follows
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P (X1, ..., Xp) =

p∏
j=1

P (Xj |PaGXj
) = θ, (3)

where PaGXj
= {Zi : Zi → Zj ∈ E} denotes the

set of parents of Xj in G and the factors θj are called
conditional probability distributions.

To find the best network representing the data is usu-
ally the core of a BN learning problem. sparsebn R
package learns a BN from data using a score-based ap-
proach relying on regularized maximum likelihood esti-
mation. The criterion considered in that algorithm is:

min
B∈D

l(B; X) + ρλ(B), (4)

where X is a matrix of observations assumed to not
have any missing values, l denotes the negative log-
likelihood, ρλ is some regularizer, matrix B is the
weighted adjacency matrix of a DAG and D the set
of weighted adjacency matrices that represent directed
graphs without cycles. The output of this algorithm is a
solution path with multiple graph estimates rather than
a single one. It is so because the program depends on
the unknown parameter λ, that must be passed to the al-
gorithm. Hence the solution path consists of a sequence
of estimates {β̂(λmax), β̂(λ1), ..., β̂(λmin)} for a pre-
determined set of lambdas λmax > λ1 > ... > λmin.
Since the focus is on sparse graphs, the algorithm is ter-
minated when the number of edges exceeds some user-
defined threshold. From the solution path the preferred
solution can either be selected by the user or automati-
cally by the algorithm (this optimal solution is based on
a trade-off between the increase in log-likelihood and
the increase in complexity between solutions).

2.5. Classification Algorithms
The discrete nature of RNA-Seq data does not allow the
use of microarray-based classifiers. Thus one available
option is to develop count-based (or discrete) classifiers.
Alternatively, one may wish to bring RNA-Seq samples
hierarchically closer to microarrays and apply known
algorithms for classification applications of continuous
data.

The continuous-based classifiers tested in this work
were svm (Support vector machine, which creates a de-
cision boundary between 2 classes [26]), rf (Random
forests, an ensemble learning method based on decision
trees [27]) and NSC (Nearest shrunken centroids, which
constrats from the standard nearest centroid classifica-
tion by shrinking each class centroid towards the overall
centroid [28]).

As for the discrete-based classifiers, the nonnegative
nature of RNA-Seq makes it more appropriate to model
the data with discrete-count distributions, such as the
poisson and the negative binomial. Therefore the mod-
els used were plda (poisson linear discriminant anal-
ysis [29]), plda2 (its power transformation) and nblda
(negative binomial linear discriminant analysis [30]).

voom transformation aims at dealing with sample
quality variability, often encountered in small RNA-
Seq experiments, by finding the compromise of us-
ing all available data, but to down-weight the ob-
servations from more variable samples [31]. Novel
classification methods integrating voom transformation
have been developed specificaly for RNA-Seq analy-
sis, such as voomDLDA or voomNSC (extensions of the
diagonal linear discriminant analysis and NSC, respec-
tively) [32].

2.6. Data Description
The data used in this thesis consists of RNA-Seq
of whole blood samples from biologic naı̈ve patients
from the CORRONA CERTAIN registry [3] imme-
diately prior to initiation of anti-TNF treatment (at
baseline, which will be referred as BL) and following
three months of therapy (M03). Being biologic naı̈ve
means that the patients had no previous biologic agent
treatment. The patients initiated treatment with adali-
mumab or infliximab (anti-TNF therapies) in conjunc-
tion with methrotrexate.The files contained 25,370 vari-
ables (gene expressions) measured from 63 patients at
BL and 65 patients at M03. Each patient was clinically
evaluated based on EULAR criteria for clinical response
at the third month of treatment as good responder (fur-
ther denoted as “R”) or non-responder (“NR”) [16].

STRING is a database of known and predicted
protein-protein interactions. The data used in this work
corresponded to the interactions at highest confidence
interval (a score each association is given which indi-
cates the estimated likelihood that a given interaction
is biologically meaningful, specific and reproducible,
given the supporting evidence) [33].

3. Proposed methodology
3.1. Finding Biomarkers
Prior to any analysis, a pre-processing step was carried
out, which removed the variables with zero standard de-
viation and performed log-transformation and normal-
ization. Sparse logistic regression with elastic net reg-
ularization was performed by means of the glmnet R
package [34]. For model validation, the data was split in
70% for training the model and 30% for testing it. This
procedure was repeated 5,000 times for each dataset. In
each run, the model was estimated from the training data
with logistic regression using method cv.glmnet, where
the parameter α (Eq. 2) varied between 0 and 1 with 0.1
intervals. The penalty λ (Eq. 2) was optimized by 10-
fold cross-validation (CV, [35]): the chosen λ was the
largest one with which the error was within one stan-
dard error of the minimum [34]. Lastly, the fitted model
was used to predict the treatment response of the test
set. For each model, the receiver operating characteris-
tic (ROC) curve was estimated and the Area under the
curve (AUC) calculated.

Two predictive models were chosen for each dataset
(a pair of α values was selected for BL and for
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M03). Afterwards, Leave-one-out cross-validation
(LOOCV, [35]) approach was used to explore which
variables were strongly associated with the treatment
response. The premise was that the variables repeat-
edly selected across all iterations of that procedure could
indicate which genes are strongly associated with the
treatment response. To evaluate each estimated model,
the classifier’s specificity and sensitivity trade-off in the
validation set was visualized through ROC curves.

BN learning was performed using the sparsebn
R package [36] to uncover the gene networks. Each
of the four models was split a priori into other two
regarding the type of treatment response. At last the
protein-protein interactions found were compared to the
STRING database. Fig. 1 schematizes the steps until
this point.

BL
M03 Pre-processing

Dimensionality reduction:
logistic regression
glment R package

BN learning
sparsebn R package

Shared genes
connections

Validation with
STRING

Figure 1: Flowchart of procedure used to obtain Bayesian Networks
and gene candidates for prediction of treatment response to anti-TNF.
The procedure was conducted in parallel for BL and M03 datasets.

At this point, eight different BN were to be obtained.
However, different network’s architectures were experi-
mented in respect to the number of edges (n edges) they
contained in the solution and how they were learnt. Con-
sequently, each of those eight BN actually evolved to 4
different networks with the following names and char-
acteristics:

• S: Forced solution in which n edges = n var;

• D: Forced solution in which n edges = 2×n var;

• AS : Trade-off solution in which maximum
n edges = n var;

• AD: Trade-off solution in which maximum
n edges = 2× n var;

These four steps applied to both models of each
dataset and to each group of patients are represented in
Fig. 2.

BL data

BL_1

NR_BL_1R_BL_1

S AD

M03 data

Bayesian Network

D

BL_2

NR_BL_2R_BL_2

M03_1

NR_M03_1R_M03_1

M03_2

NR_M03_2R_M03_2

AS S ADDAS S ADDAS S ADDAS S ADDAS S ADDAS S ADDAS S ADDAS

Figure 2: Complete set of BN obtained when adjusting the number of
edges allowed in the solution. S, D and A refer to the number of edges
in the solution (S: n edges = n var; D: n edges = 2 × n var;
AS and AD : trade-off solution chosen by the algorithm when given
maximum number of edges n edges = n var and n edges = 2 ×
n var, respectively).

3.2. Classification Analysis
Different machine learning algorithms were further ex-
ploited. In order to inspect how each performed when
given different portions of the same data, besides the

initial datasets (after removal of variables with zero
standard deviation), it was used six newly created sub-
datasets with a maximum variance filter and the sparse
models previously obtained. Fig. 3 illustrates these dif-
ferent extractions. Every step described henceforth was
conducted with MLSeq R package [37].

All genes
(after removal

of invariant
variables)

Maximum variance filtering

#5 #10 #15 #20 #25 #30 Model 1 Model 2

Sparse Logistic
Regression model

Figure 3: Sub-datasets used as starting point for classification analysis
for each data group (BL and M03). “#5” indicates the sub-dataset with
the top 5 features in terms of variable variance, and so on until “#30”.
Model 1 and 2 refer to the models obtained in the previous pipeline
(Fig. 1) which resulted in selecting two α values for each data group.

The eight classifiers selected fit the data and pre-
dict the patient’s response were the ones previously de-
scribed: continuous-based (svm with radial basis func-
tion as kernel method, rf and NSC), discrete-based
(plda, plda2, nblda) and voom-based (voomDLDA and
voomNSC). The normalization approaches used were
deseq [38] and TMM [39]. The transformation meth-
ods used in the continuous-based models were vst [38],
rlog [40] and logcpm [39]. Note that the voom-based
algorithms perform the voom transformation with itself.

The splitting ratio for training and testing was 70%
and 30%, respectively. All the models were trained us-
ing 5-fold CV repeated 10 times to assess performance
variability across simulations. The test set underwent
the same normalization and transformation (in the cases
where the classifier was continuous) before the algo-
rithm predicted its class labels. Each model was fur-
ther evaluated over 16 repeats in order to give robust-
ness to the results. The flowchart in Fig. 4 describes the
overall approach. For comparison purposes, the accu-
racy, sensitivity and specificity was assessed and stored.
Furthermore, the sparse models’ (NSC, plda, plda2 and
voomNSC) sparsity, a measure of proportion of features
used in the trained model, was calculated.

Data

NORMALIZATION

Data Splitting

Deseq or TMM

TRANSFORMATION

vst, rlog, logcpm

Model Fitting 

Continuous 
Classifiers

Discrete
Classifiers

Voom-based
Classifiers

Training Set Testing Set

NORMALIZATION

same train parameters

same train parameters

same model

Prediction and
Performance

Figure 4: Flowchart of procedure used to fit data into classifiers and
to compare model’s performance after prediction of class labels.
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4. Results
4.1. Sparse Logistic Regression
The pre-processing step applied to each dataset resulted
in a reduction of the original 25,370 variables to 21,911
at BL and 22,142 at M03. Over the 5,000 runs, the me-
dian AUC values obtained for each αwere rather similar
and around 0.6. Considering the number of observations
in each dataset, this number was considered satisfactory.
Given that there was no obvious choice about which α
resulted in a better model, two were chosen. Regarding
BL: α = 0.3 (titled by BL 1) and α = 0.2 (BL 2); and
M03: α = 0.4 (M03 1) and α = 0.3 (M03 2).

To each model, LOOCV was applied in order to find
the biomarkers possibly in strong association with the
treatment response. The ROC curves obtained revealed
the M03 models to be more accurate than the BL mod-
els, which argues that the best prediction is achived from
the data retrieved at the third month. Furthermore Tab. 4
shows that models 1 of each dataset obtained better ac-
curacy values.

Table 4: Leave-one-Out Cross-Validation results of each model when
letting the default threshold set at 0.5 and for the best accuracy across
the threshold range.

Model
Default (cut off = 0.5) Optimal cut off value

Accuracy AUC Threshold Specificity Sensitivity Accuracy

BL 1 0.635 0.637 0.541 0.593 0.750 0.683
BL 2 0.651 0.629 0.529 0.556 0.750 0.667

M03 1 0.400 0.739 0.563 0.793 0.694 0.738
M03 2 0.369 0.751 0.573 0.724 0.722 0.723

The repeatedly selected variables in each iteration of
the LOOCV was regarded as the relevant genes related
to the treatment response. As expected, decreasing the
α parameter resulted in a higher number of variables
selected. Furthermore, all the variables in each model
2 included the variables in the corresponding model 1.
Tab. 5 lists the 24 genes for BL and the 12 found for
M03.

The analysis was narrowed to the genes with a min-
imum reading count of 20, revealing that at BL the
genes which expressions stand-out were MPO (encodes
Myeloperoxidase), PRSS30P, RCAN3AS (regulators of
calcineurin 3 antisense) and CTSG (Cathepsin G) and
at M03 ELANE (elastase, neutrophil expressed) and
TRIM7 (Tripartite Motif Containing 7).

Being expressed by RA neutrophils, MPO and CTSG
are directly related to neutrophil granule proteins, which
synergize to modulate inflammation and even tumor de-
velopment. It has been demonstrated that expression of
MPO and CTSG in peripheral blood neutrophils from
patients with RA, before therapy with an anti-TNF, can
predict a subsequent response to anti-TNF as a first
biologic, with specificities and sensitivities of up to
100%. Specifically, they were identified as being signifi-
cantly different expressed in nonresponder patients [41].
RCAN3 has shown to modulate T cell development in
murine models and suggested to be an effective treat-

Table 5: List of predictive genes in RA treatment after applying Leave-
one-Out Cross-Validation in each dataset’s model 1.

Dataset Genes

BL 1 ALOX12B, CAPNS2, CCDC108, CTSG, EPHX4,
ERICH6, EVPLL, FAM133CP, FOXD4L3,
HIST1H3J, IGF2BP1, LOC339975, LRGUK,
MPO, NUAK1, ODF3L2, PRKG1, PRSS30P,
RAD21L1, RCAN3AS, ROPN1L-AS1, SLC6A19,
SYT1 and TGFB2

M03 1 ADAM33, CCDC110, ELANE, KCNJ8,
LOC101928222, LRRN4CL, MTRNR2L3,
TMEM105, TRIM7, UBE2QL1, VSTM2L and
ZNF843

ment for RA [42]. The fact that it was its antisense
identified motivated a further exploration: if a higher
expression of an antisense is detected, it means that the
complementary mRNA (in this case the RCAN3 gene)
is being under-expressed [43]. It was then hypothe-
sized that by observing that in “NR” RCAN3AS has a
higher median expression than in “R”, than in the for-
mer this protein is prevented from being translated, and
ultimately in “R” its expression levels will be higher
and thus considered a biomarker. However, the results
showed exactly the opposite i.e., the “NR” group had
median higher counts. Nevertheless, this is a study in-
volving a small number of patients and so a more com-
plex investigation focusing on gene RCAN3 should not
be disregarded. PRSS30P is a pseudogene related to a
serine protease but of unknown function and with no
allusion of it being related to inflammation. However,
given the evidence found relating the remaining genes
to the disease, it gives confidence that understanding
gene PRSS30P might enlighten the complicated process
of RA.

Regarding the two disclosed genes with a meaning-
ful expression at M03, ELANE is a neutrophil serine
protease involved in, amongst others, the killing of
pathogens and regulation of inflammation. Regarding
RA, it can directly degrade the matrix, destroying carti-
lage components [44]. In a research it was noticed the
significantly different expression of ELANE, although
the focus was only in the patients’ transcriptomic data
prior to the treatment initiation [41]. TRIM7 encodes
a member protein of a family implicated in a multitude
of biological processes, having gained much attention
in cancer studies [45]. However, other findings sug-
gested that the TRIM family is part of one of the RA
subgroups representing a distinct mode of inflammation
which is deflected toward a certain combination of sig-
naling pathways [7].

4.2. Bayesian Network Models
Applying the elastic net regularization to the datasets
originated 4 new sparse models. Their number of vari-
ables was BL 1 with 71; BL 2 with 111; M03 1 with
61 and M03 2 with 91. At this point, each model was
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split into two according to the RA treatment response
of each patient contained in it (“R” versus “NR”). Ac-
cordingly to the scheme presented in Fig. 2, a total of 32
BN were to be obtained. However, in some of the cases
where the algorithm was given the command to choose
the BN corresponding to the optimal solution, it chose
the one with the given number of edges i.e., S = AS and
D = AD. This was observed in 3 cases, all regarding
the BL data: model 1, “R”; model 1, “NR”; and model
2, “NR”.

It was assessed the 3 interactions with the highest
weight value for every BN in order to disclose which
gene networks may regulate the response to anti-TNF
treatment. The results are presented in Tables 6 and 7.

Table 6: BN interactions obtained (showing only 3) with highest edge
weight for BL data. Note that the symbol “-” simply indicates the
cases where the obtained network were repeated.

S D AS AD

Model 1

R
weight2EPHX4 - LRGUK weight8TBX2 - CYGB - -

MIR941-4 - MIR941-2 weight2EPHX4 - LRGUK - -
BATF2 - EVPLL weight9LOC100507156 - LINC00696 - -

NR
weight3EVPLL - IGF2BP1 MAG - MAGEC2 - -

RCAN3AS - KCNH4 weight3EVPLL - IGF2BP1 - -
ERICH6 - SULF1 LOC339975 - LILRB4 - -

Model 2

R
CDC42EP4 - TCN2 weight9LOC100507156 - LINC00696 CDC42EP4 - TCN2 weight9LOC100507156 - LINC00696

weight2EPHX4 - LRGUK weight8TBX2 - CYGB weight2EPHX4 - LRGUK weight8TBX2 - CYGB
weight9LOC100507156 - LINC00696 DRD2 - CAPN11 weight9LOC100507156 - LINC00696 DRD2 - CAPN11

NR
MIR941-4 - FGD5P1 MIR941-4 - FGD5P1 - -
C1orf95 - MAGEC2 SLC25A52 - ADAMTS9 - -

SLC25A52 - ADAMTS9 weight3EVPLL - IGF2BP1 - -

Table 7: BN interactions obtained (showing only 3) with highest edge
weight for M03 data. none indicates that overlapping analysis re-
vealed no interactions.

S D AS AD

Model 1

R
weight1KCNK4 - MIR718 weight1KCNK4 - MIR718 weight7RSPH10B2 - RSPH10B weight7RSPH10B2 - RSPH10B

weight7RSPH10B2 - RSPH10B weight7RSPH10B2 - RSPH10B none none
CTSG - ELANE MTRNR2L3 - ZNF843 none none

NR
F3 - LOC101927468 C8B - LOC102467224 weight4KNCN - CCDC110 weight4KNCN - CCDC110

C8B - LOC102467224 F3 - LOC101927468 weight7RSPH10B2 - RSPH10B weight7RSPH10B2 - RSPH10B
weight4KNCN - CCDC110 weight6FBLIM1 - UBE2QL1 none none

Model 2

R
MTRNR2L3 - MIR4271 MTRNR2L3 - MIR4271 weight7RSPH10B2 - RSPH10B weight7RSPH10B2 - RSPH10B
TRIM7 - TMEM51-AS1 weight1KCNK4 - MIR718 none none

weight1KCNK4 - MIR718 FSD2 - RS1 none none

NR
VWA1 - LINC01361 VWA1 - LINC01361 weight4KNCN - CCDC110 weight4KNCN - CCDC110

weight6FBLIM1 - UBE2QL1 LOC100506071 - HIST1H2AJ MIR3918 - VWA1 MIR3918 - VWA1
VWA1 - CES1P1 weight6FBLIM1 - UBE2QL1 weight7RSPH10B2 - RSPH10B weight7RSPH10B2 - RSPH10B

In general terms, there was consistency in the edges
identified across the different models and the different
sizes networks, for both BL and M03 data. Regarding
the comparison between ”hand-picked” networks (“S”
and “D” cases) and algorithm-chosen (“AS” and “AD”
cases, accordingly), there was no difference when us-
ing the BL models. Intriguingly, for the M03 models
it produced a massive change: the number of edges in
each network varied only between 1 and 3. On this ac-
count, the few genes connecting those edges were fur-
ther investigated: RSPH10B2 and RSPH10B correspond
to genes encoding for the head components of radial
spoke structures (a multi-unit protein structure found
in axonemes of eukaryotic cilia and flagella); kinocilin,
KNCN, has a role in stabilizing dense microtubular net-
works or in vesicular trafficking [46]; CCDC110 has
been identified as novel cancer/testis antigen recog-
nized by cellular and humoral immune responses [47];
MIR3918 are short non-coding RNAs that are involved
in post-transcriptional regulation of gene expression in
multicellular organisms by affecting both the stability
and translation of mRNA [48] and finally VWA1 be-
longs to a superfamily of extracellular matrix proteins

and appears to play a role in cartilage structure and func-
tion [48]. The possible relation of these protein-protein
interactions to RA is not evident in the literature.

It was essential to compare the protein-protein inter-
actions with STRING database [33] in order to validate
the results. Regarding the BN learnt from BL data:
on the one hand, the CTSG – MPO interaction, which
was found in the “R” group, is given a total score of
0.989 in STRING database. Given that both genes were
found to be anti-TNF response predictor in the con-
ducted LOOCV approach, there is strong evidence that
their expression levels might be determinant for a future
anti-TNF good responder patient. On the other hand,
CTSG – AZU1, which scores 0.964, was an interaction
found in the non responders group. AZU1 encodes for
azurocidin 1 granules, an known important multifunc-
tional inflammatory mediator for recruitment of mono-
cytes in the second wave of inflammation. The Venn di-
agrams regarding model 2 (see Fig. 5) highlight one in-
teraction common to both “R” and “NR”: MPO – AZU1,
suggesting that it might be be relevant for both types
of patients. In relation to the overlaps obtained from
the M03 data, only one interaction was found to be in
common with the STRING database: CTSG – ELANE
(score of 0.982). Similarly with the latter, this protein-
protein interaction being found in both types of patients
indicates its importance in the mechanisms of anti-TNF
treatment.

BL_1: S BL_1: D BL_2: S BL_2: D

M03_1: S M03_1: D M03_2: S M03_2: D

Figure 5: Venn diagrams showing common interactions between
learnt BN from “R” and “NR” groups and STRING database.

4.3. Classification algorithms analysis
The performance of each classifier was evaluated based
on the accuracy, sensitivity and specificity values ob-
tained after performing the response prediction with the
fitted models. Inexplicably, only one time it was pos-
sible to perform class label prediction using the fitted
continuous-based classifiers when the pre-processing
step applied was the deseq-logcpm normalization-
transformation combination. Notwithstanding being
less reliable, the decision was not to neglect those re-
sults.

The plots from Fig. 6 gather the classifiers accord-
ing to their nature and type of pre-processing method
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(first two columns) and according to the feature selec-
tion competency (last column). Each bar corresponds
to the accumulated accuracy obtained over the different
sub-datasets used (as indicated in Fig. 3).

As it would be expected, the overall performance of
the classifiers when learning from the complete datasets
is poor (looking at the first two columns, the orange bar
portion associated to All Genes corresponds to around
0.5 or less then the unity). Interestingly, increasing the
number of high variance variables did not have a consis-
tent positive impact on the overall testing accuracy. In
fact, in some cases using the top 5 to top 15 of the high
variant variables delivered better results then using the
top 20 to top 30, which may be related to the fact that
models with lower complexity are less prone to overfit.

Despite the fact that only one voom-based classifier is
sparse, they both delivered very similar accuracy when
the data was transformed with TMM (Fig. 6k). More-
over, when deseq was used, voomDLDA (non-sparse)
slightly reached a better performance (Fig. 6h).

Unquestionably the sparse data models obtained with
the proposed methodology lead to more accurate clas-
sifiers and consequently the following observations will
focus on them (last two portions of each plots bars). It
has been stated the little impact on choosing the normal-
ization procedure on the classification performance (it is
rather more important in differential expression analy-
sis) [29]. However, concerning the two approaches used
in this work, and looking at Fig. 6’s second and third
columns, TMM appears to impact negatively the algo-
rithm’s performance in relation to deseq in the case of
discrete-based models. In the cases of other two types,
it had no effect (case of svm models) or little positive
effect (remaining models).

Data transformation on the other hand is considered
to influence on classification results, by changing the
distribution of data. Since there are no results available
regarding deseq-logcpm combination, it is only possi-
ble to consider the influence of vst and rlog (Figures 6a
and 6d). The latter did not seem to affect the svm models
while it lead to a higher prediction accuracy in the rf and
NSC models. Additionally, the transformation approach
revealed to have a role on the number of variables se-
lected, as it was previously observed [49]. In this study
vst resulted in lower sparsity.

All sparse classifiers best performed when the data
was normalized with deseq. Only voomNSC did not
use all the features when given the elastic-net penal-
ized models. The models obtained with svm outper-
formed the remaining, having voom-based classifiers
and rf showed good results likewise.

Being sparse algorithms, NSC, plda, plda2 and
voomNSC performed feature selection. The common
features selected by these 4 classifiers, both when us-
ing deseq and TMM as normalization procedure, were
compared to the features given by the elastic net penal-
isation, BL 1 and M03 1 (since using models 2 did not

produce any changes in the overlap analysis). In the case
of NSC the transformation procedure used was vst since
it was the one with which best accuracy was achieved.
The common genes selected by these four sparse tools
(further labelled as Z) were later compared to the BL
and M03 models previously obtained, leading to the fol-
lowing results:

• BLmodels ∩ Zdeseq : SERINC2, CTSG, MPO and SER-
PINB10;

• BLmodels ∩ ZTMM : RCAN3AS, SERINC2, EPHX4, SYT1,
SKA3, CTSG, MPO, AZU1, ERICH6, IL2, SLC6A19, COBL and
NTRK3;

• M03models ∩ ZTMM : F3.

The fact that the features selected by the sparse classi-
fiers revealed genes selected by the initial implemented
approach reinforces the first results. MPO and CTSG are
relevant genes whose expression has an influence on the
anti-TNF treatment response of each patient. It is then
proposed that they may be of therapeutic value and rep-
resent important biomarkers which can be used in clin-
ical practice. This analyses revealed an isolated gene in
the M03 dataset which the LOOCV approach did not se-
lect: Tissue Factor (F3). It is an essential initiator of the
extrinsic pathway of blood coagulation and it is also in-
volved in the angiogenesis and the pannus formation of
RA progression. In fact, it has been demonstrated that it
is expressed not only in arthritic synovial tissue but also
infiltrating macrophages, favoring extravascular coagu-
lation and leading to inflammation in RA [50].

5. Conclusions
This thesis’ main goal was to identify biomarkers able to
predict anti-TNF RA treatment response. Through tran-
scriptomic data, a sparse logistic regression approach
was used in order to obtain the best predictive models
for each dataset (BL and M03) leading to a selection
of genes regarded as relevant in predicting the treat-
ment response to the cited drug. The protein-protein
interactions found through BN learning and validated
by STRING database revealed genes to be consistently
associated with the therapy response. Besides, highly
connected associations were uncovered at baseline not
only independently in “R” and “NR” patients but also in
common in both types of patients.

Regarding the analysis of the different machine learn-
ing tools, the overall best performances were achieved
by svm, rf, voomDLDA and voomNSC, being only the
latter a sparse classifier. Attention is given to genes
MPO, CTSG, AZU1 and RCAN3AS which have shown
to be involved in the RA modulation.

It is suggested to further investigate the potential of
the classification algorithms in the context of RNA-Seq
and RA treatment response. A critical limitation of this
work is the datasets’ sizes, as there were little observa-
tions. Thus a study involving the transcriptomic data of
more individuals is further recommended. Lastly other
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(e) tmm, discrete-based classifiers
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(h) deseq, voom-based classifiers
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Figure 6: Accumulated testing accuracy results for fitted classifiers. On the x-axis the classifiers are featured, whereas the y-axis indicates the
added accuracy.

factors besides transcriptomic data could be taken in re-
gard, for example age, sex, disease duration and com-
plete molecular profiling of plasma.

This is an exciting time for RA as the growth of
big data in clinical research and advancements in com-
putational approaches have opened up new avenues to
study complex diseases. Hopefully in a near future
the increasing efforts to support medical informatics
standards and the enrichment of cohesive genome-wide
transcriptional profiling for RA databases will result in
more accurate and innovative insights and revolutionize
RA healthcare.
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