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Resumo

A artrite reumatóide (AR) é uma doença autoimune caracterizada por uma resposta inflamatória crónica

provocando inicialmente lesões nas articulações e podendo levar à perda da sua função. A incerteza da sua

causa e a heterogeneidade dos pacientes dificultam o processo terapêutico. A combinação de medicamen-

tos biológicos modificadores de AR, nomeadamente inibidores do fator de necrose tumoral (anti-TNF)

com metotrexato constitui uma abordagem terapêutica comum. Porém, a dificuldade em prever o tipo

de resposta do paciente à medicação constitui um grande obstáculo, dado que no eventual caso desta

funcionar, os seus efeitos são apenas sentidos meses após o ińıcio da administração, o que leva a uma

evolução dos sintomas e acarreta custos financeiros. A identificação de biomarcadores tem sido um tema

incansável que, com base em métodos de aprendizagem automática, visa compreender os mecanismos

desencadeadores da AR e alcançar a melhor terapêutica, que no limite constitui a “medicina de precisão”.

Esta tese envolveu a análise de dados transcriptómicos de pacientes com AR em instâncias diferentes de

tratamento com anti-TNF. Regressão loǵıstica esparsa permitiu a seleção das caracteŕısticas relevantes.

Redes Bayesianas identificaram duas interações entre protéınas (MPO–CTSG e CTSG–AZU1 ) indicado-

ras da eficácia do tratamento e sabidas relevantes na comunidade cient́ıfica. e os seus desempenhos

comparados a ńıvel de esparsidade, influência das funções de normalização/transformação e tipo de al-

goritmo. A regressão loǵıstica esparsa aliada à análise Bayesiana permitiu identificar biomarcadores com

potencial cĺınico.

Palavras-chave: Artrite reumatóide, Biomarcador, Modelos esparsos, Previsão de resposta,

Rede Bayesiana.
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Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory response

causing joint damage and ultimately severe disability. There is no cure for RA and it is regarded as

therapeutically challenging due to patient heterogeneity and variability. Biologic agents such as anti-

TNF (tumor necrosis factor) in combination with metothrexate are a common first approach. However,

the problem remains to be the prediction of the patient’s response, since the eventual positive results are

only observable months after initiating treatment. This is unsettling because, regardless of the patient’s

response, the anticipation period may cause irreversible repercussions and have a socio-economic impact.

Many researches have focused the use of machine learning algorithms on finding biomarkers (e.g. at

transcriptomic or protein level) which can aid the understanding of RA pathogenesis and consequently

find the appropriate treatment. The development of improved analysis strategies is leading towards

precision medicine. This thesis applied a sparse logistic regression framework to transcriptomic data

of RA patients collected at day 0 and day 90 of anti-TNF treatment in order to select the significant

features. Bayesian network learning allowed for the identification of known protein-protein interactions,

such as MPO–CTSG and CTSG–AZU1 for patients regarded, respectively, as good-responders and non-

responders, according to the EULAR criteria. Finally, different classification algorithms were tested in

order to evaluate parameters such as sparsity, influence of normalization methods and performance based

on their continuous/discrete/voom-based nature. Structured sparse regression conjugated with Bayesian

learning identified RA biomarkers which potentially can support the clinical domain.

Keywords: Bayesian network, Biomarker, Response prediction, Rheumatoid arthritis, Sparse

models.

xiii



xiv



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Rheumatoid Arthritis 7

2.1 Brief description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Disease activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Remission criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Response criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Disease treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Socioeconomic impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Materials and Methodology 15

3.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Regularization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Model Validation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Normalization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.2 Transformation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.3 Continuous-based Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xv



3.5.4 Discrete-based Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.5 Voom-based Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Work Methodology 27

4.1 Finding Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Classification Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Experimental Results 31

5.1 Sparse Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Bayesian Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Classification algorithms analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions 53

Bibliography 55

A Complete names of referenced genes 63

xvi



List of Tables

2.1 Formulas for calculation of RA disease activity scores: DAS, DAS28, SDAI and CDAI . . 10

2.2 Interpretation of DAS, DAS28, SDAI and CDAI in the context of disease activity state . . 11

2.3 ACR/EULAR boolean and index based definition of remission for clinical trials and clinical

practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 EULAR response criteria using DAS28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Final datasets after pre-processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 AUC median, maximum, minimum and interquartile amplitude values for different α pa-

rameters in the BL dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 AUC median, maximum, minimum and interquartile amplitude values for different α pa-

rameters in the M03 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Designation of the 4 models obtained with the elastic net regularization. . . . . . . . . . . 32

5.5 Leave-one-Out Cross-Validation results of each model. . . . . . . . . . . . . . . . . . . . . 33

5.6 Predictive genes obtained with Leave-one-Out Cross-Validation in each model. . . . . . . 34

5.7 Number of variables selected by elastic net when applied to BL and M03 models. . . . . . 38

5.8 BN interactions obtained with highest edge weight for BL data. . . . . . . . . . . . . . . . 39

5.9 BN interactions obtained with highest edge weight for M03 data. . . . . . . . . . . . . . . 39

5.10 Overlapping protein-protein interactions between learnt Bayesian Networks from BL data

and STRING Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.11 Overlapping protein-protein interactions between learnt Bayesian Networks from M03 data

and STRING Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.12 Classifiers prediction performance for BL sub-datasets when using deseq method for regu-

larization and vst method for transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.13 Classifiers prediction performance for BL sub-datasets when using deseq method for regu-

larization and rlog method for transformation. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.14 Classifiers prediction performance for BL sub-datasets when using deseq method for regu-

larization and logcpm method for transformation. . . . . . . . . . . . . . . . . . . . . . . . 50

5.15 Classifiers prediction performance for BL sub-datasets when using TMM method for reg-

ularization and logcpm method for transformation. . . . . . . . . . . . . . . . . . . . . . . 50

5.16 Classifiers prediction performance for M03 sub-datasets when using deseq method for reg-

ularization and vst method for transformation. . . . . . . . . . . . . . . . . . . . . . . . . 51

xvii



5.17 Classifiers prediction performance for M03 sub-datasets when using deseq method for reg-

ularization and rlog method for transformation. . . . . . . . . . . . . . . . . . . . . . . . . 51

5.18 Classifiers prediction performance for M03 sub-datasets when using deseq method for reg-

ularization and logcpm method for transformation. . . . . . . . . . . . . . . . . . . . . . . 52

5.19 Classifiers prediction performance for M03 sub-datasets when using TMM method for

regularization and logcpm method for transformation. . . . . . . . . . . . . . . . . . . . . 52

A.1 List of gene names repeatedly found over all predictive models with Leave-on-Out Cross-

Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 List of gene names belonging to the highest edges found in each BN. . . . . . . . . . . . . 64

xviii



List of Figures

3.1 Representation of lasso and ridge regressions . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Directed acyclic graph representing two independent possible causes of a computer failure 21

4.1 Flowchart of procedure used to obtain Bayesian Networks and gene candidates for predic-

tion of treatment response to anti-TNF. The procedure was conducted in parallel for BL

and M03 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Complete set of Bayesian Networks obtained when adjusting the number of edges allowed

in the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Sub-datasets used as starting point for classification analysis for each data group. . . . . . 29

4.4 Flowchart of procedure used to fit data into classifiers and to compare model’s performance

after prediction of class labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Calculated Area under the curve values for each α using the BL and M03 datasets. . . . . 32

5.2 ROC curves based on LOOCV for the four models . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Schematic representation of common genes disclosed by LOOCV between the 4 models. . 34

5.4 Reading counts of common repeatedly selected genes obtained with LOOCV for BL models

and M03 models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Comparison between responders and non-responders regarding reading counts of RCAN3AS,

CTSG, PRSS30P and MPO at BL and M03. . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Comparison between responders and non-responders regarding reading counts of ELANE

and TRIM7 at BL and M03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7 Final set of Bayesian Networks obtained when adjusting the number of edges allowed in

the solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8 Venn diagrams showing common interactions between learnt BN from responders and non-

responders groups and STRING database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.9 Bayesian Networks learnt from BL data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Bayesian Networks learnt from M03 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.11 Bayesian Networks learnt from BL data with automatic solution selection. . . . . . . . . . 44

5.12 Bayesian Networks learnt from M03 data with automatic solution selection. . . . . . . . . 45

5.13 Accumulated testing accuracy results for fitted classifiers. . . . . . . . . . . . . . . . . . . 47

xix



xx



Nomenclature

Acc Accuracy

ACPA Anticitrillunated protein antibodies

ACR American College of Rheumatology

AUC Area Under the Curve

bDMARD Biologic Disease-modifying anti rheumatic drug

BL Baseline dataset

BN Bayesian Network

CDAI Clinical Disease Activity Score

csDMARD Conventional synthetic Disease-modifying anti rheumatic drug

CV Cross-Validation

DAG Directed Acyclic Graph

DAS28 Disease Activity Score at 28 Joints

DAS Disease Activity Score

DESeq Differential Expression Analysis for Sequence Count

DLDA Diagonal Linear Discriminant Analysis

DMARD Disease-modifying anti rheumatic drug

DNA Deoxyribonucleic acid

EULAR European League Against Rheumatism

GLM Generalized Linear Model

HAQ-DI Health Assessment Questionnaire Disability Index

HAQ Health Assessment Questionnaire

log-cpm logarithm of counts per million reads

xxi



LOOCV Leave-one-out Cross-Validation

M03 Post-three month dataset

MHC Histocompatibility complex

NBLDA Negative BinomialLinear Discriminant Analysis

NR Non-Responder

NSC Nearest Shrunken Centroid

OLS Ordinary Least Squares

PLDA2 Power-transformed Poisson Linear Discriminant Analysis

PLDA Poisson Linear Discriminant Analysis

PrGA Provider/Physician Global assessment of Disease Activity

PRO Patient-reported outcome

PtGA Patient Global assessment of Disease Activity

RA Rheumatoid Arthritis

RF Rheumatoid Factor

rf Random Forest

rlog regularized logarithmic

RNA-Seq Ribonucleic acid Sequencing

RNA Ribonucleic acid

ROC Receiver Operating Characteristic

R Responder

SDAI Simplified Disease Activity Score

SVM Support Vector Machine

TMM Trimmed Mean of the M-values

TNF Tumor Necrosis Factor

tsDMARD Targated Synthetic Disease-modifying anti rheumatic drug

VAS Visual Analog Scale

voom variance modeling at the observational level

vst variance stabilizing transformation

xxii



Chapter 1

Introduction

What does it implicate to be diagnosed with rheumatoid arthritis in the current decade? How does arti-

ficial intelligence aid the medical physician, specifically in the rheumatic diseases field? Is transcriptomic

data collection the direction to the ultimate goal of precision medicine? These are some of the questions

that instigated the present study. This chapter intends to broaden their answers and introduce this thesis

subject.

1.1 Motivation

Rheumatoid arthritis (RA) is an auto-immune inflammatory progressive disorder affecting primarily the

joint system. In the absence of appropriate treatment, it causes joint destruction, leading to reduced life

quality, decreased life expectancy and increased risk of cardiovascular diseases. Being a chronic disease,

there is no cure for RA. Its prevalence amongst the Portuguese population is estimated to be between 0.8%

and 1.5%, being women more likely to be affected than men. An early recognition is fundamental because

if RA is diagnosed between the first three to six months of disease activity and treated correctly, there

are great chances of preventing functional disabilities and thus contributing to a better life quality [1, 2].

Biologic agents have revolutionized the treatment of RA over the last decade. Their efficacy and safety

has been clearly demonstrated in the setting of a multitude of randomized controlled trials [3]. However,

assuming that once the diagnose is complete the treatment choice is pretty straight forward would be a

misconception. In fact, regardless of the major improvements researchers have made in the RA field in

the last decades, there are some obstacles: (1) considerably long list of options and possible combinations

regarding medical treatments; (2) uncertainty about their effect on a specific patient’s health and (3)

waiting time, sometimes it can reach several months, until the drug exerts its effect. The long document

produced by the European League Against Rheumatism (EULAR, [4]) suggests the unlikely chance of

hitting the right course of action at first. Unfortunately this means patients will undergo a trial-and-error

approach facing a long period of drug experiment until the right therapy is found. Successive changes in

drug administration can worsen patient disability and may have a big financial impact.

The possibility of predicting the patient’s response to a specific treatment is very encouraging consid-
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ering it would on the one hand, prevent the disease to cause irreversible damage in the joints and bone

erosion, and on the other hand reduce duration of time until clinical remission or low activity disease. For

these reasons, this study is devoted to identifying gene factors influencing response to anti-TNF therapy

in RA (TNF, tumour necrosis factor, is an important host defence molecule long defined as a good target

in RA [5]).

For the last four decades, modern society has witnessed tremendous advances in data storage and

computing processing power which will dramatically mark the era in which we live. Machine learning, a

field that falls under the artificial intelligence concept, has prospered with an astounding acceleration rate,

changing every industry and having a substantial impact on our day-to-day lives. Medical approaches

backed by machine learning provide a powerful tool by bringing together data, extracting insights and

presenting it to physicians for their evaluation [6].

The significant increase in data storage has brought a new dilemma. Nowadays, the focus is no longer

on how to collect data but rather how to analyse it and extract relevant information from it. This area of

expertise is called data mining. The goal is to develop new intelligent analytics and workflow technologies

that enable finding interesting patterns amongst enormous databases without any a priori hypothesis

and usually from observational data.

High-dimensional data has also become increasingly available in all fields of research and thus it is of

great interest to effectively analyse it i.e., to be able to, from a big dataset with an abounding number

of features, find the essential ones that influence or are related to a certain event under study. This

idea can be translated as sparsity. Thus, sparse models, which are obtained with regularization methods,

perform feature selection. They are of special interest when dealing with situations in which the number

of variables (for example, in a genetic study, they would correspond to the several thousand genes) is

much greater than the number of observations (corresponding to the subjects under study, in the same

example).

Graphical models are a common framework used in a broad group of fields such as genetics, oncology,

computational biology, medicine and healthcare, finance, among others. This probabilistic tool has aided

in the discovery of novel biological mechanisms [7]. Not disregarding the regularization methods, which

are essential for feature selection, they do not take into account the possible interrelations among the

variables. Bayesian networks (BNs), the most widely known directed graphical model, emerge as an intu-

itive approach that allows understanding the dependency structure of the underlying data distribution,

e.g., whether two variables are in direct interaction [8].

Transcriptomics is the study of the transciptome, a term widely understood as the complete set of

all the ribonucleic acid (RNA) molecules expressed in some given entity, for example, a cell, tissue or

organism. Complex diseases are characterized by a variety of molecular aberrations including gene ex-

pression changes. Therefore, a multidimensional understanding of the molecular features underlying a

complex disease phenotype is required for the development of effective intervention strategies. Transcrip-

tome sequencing or gene expression profiling can be achieved by microarray (a high-throughput method

involving hybridization of micro-RNA to an array of complementary deoxyribonucleic acid [DNA] probes

corresponding to genes of interest), allowing to monitor thousands of gene expression levels simultane-
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ously to study how they are affected by certain treatments or diseases. This type of experiments produce

massive amounts of data which requires suitable computational tools to process it [9]. Alternatively to

microarray, RNA sequencing (RNA-Seq) is an ever increasingly popular tool for transcriptome profiling,

but also other aspects of RNA biology, with clear advantages over the former method: it can identify

transcripts in species without genomic known sequences; it has a much lower noise level than microar-

ray, which is caused by cross-hybridization; it is much more sensitive than microarray-based methods in

detecting low and high expressed genes. The quantity and sequences of RNA in a sample are examined

using next-generation sequencing and then quantified by counting the number of reads [10, 11]. RNA-Seq

data is usually represented by a matrix of counts showing the expression levels of micro-RNAs for a set

of samples. For each sample, millions of reads can be measured by the RNA-Seq technique.

Conventional bioinformatics approaches have largely been designed for making population-level in-

ferences about “average” disease processes but they do not adequately capture and describe individual

variability i.e., they only allow physicians to stratify treatments according to some patient characteris-

tics. Unlike them, transcriptomics allied with the computational development is a promising tool that

can bring novel insights in disease mechanisms specific of a patient and unveil potential patient-specific

treatments. This is a growing field essential for precision medicine which aims at devising a different

treatment for each individual patient [12].

A common and relevant concept in this type of clinical research is biomarker. This portmanteau of

“biological marker” includes the medical signs which can be measured accurately and reproducibly. They

contrast with medical symptoms in the way that the former are objective indications of the medical state

observed from outside the patient while the latter are subject to the patient’s perception of health or

illness [13].

1.2 State-of-the-art

The beginning of the search for RA response predictors coincided with exploring readily available clinical

parameters in routine care. One of the few successes at start was the finding that absence in the blood

of the autoantibodies rheumatoid factor (RF) and anticitrillunated protein antibodies (ACPA) can, very

marginally, predict a decreased chance of response to rituximab, a type of biological treatment drug.

However, no recommendations for a tailored treatment approach according to serologic autoantibody

status are embedded in the official guidelines, most likely due to the small differences in response according

to serological status. Besides, rituximab is still considered an effective biological in all RA patients and

a good first choice after methotrexate (a commonly prescribed drug) failure [14].

Due to the limited additive success achieved by clinical parameters to discriminate patients’ responses

to biologicals, the focus shifted to biochemical markers more closely related to RA pathogenesis, arising

from the cascade DNA, RNA, epigenetics, proteins, and metabolites. However, the still unresolved

heterogeneity in RA disease processes and in clinical response to therapy makes prediction of therapeutic

response one of the major challenges in RA. The exploration of these associations has been extensively

reviewed [14–20].
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For example, the use of clinical and molecular biomarkers was proposed for informing the choice of bio-

logic treatment on a group level in the context of stratified medicine by Wijbrandts and Tak [16]. Farutin

et al., using the same dataset in this present study, has shown there are associations between differences

in innate/adaptive imumune cell-type-specific at the beginning of anti-TNF therapy and the patient’s

response within three months [17]. Just very recently, Yoosuf et al. obtained very similar conclusions, by

observing clear differences in certain gene expression levels between patients who responded to therapy

and patients who did not [18]. In 2019 Kim et al. performed a meta-analysis of RA synovial transcriptomic

data showing that differences in the activation of genes involved in several key and targetable signalling

pathways could predict the response to infliximab with high accuracy [19]. In the same year, Guan et al.

demonstrated that genetic heterogeneity, along with robust clinical assessment, can together be used for

improving treatment strategies for patients with RA [20]. Nonetheless, the mentioned research works

present some limitations, such as not including genetic information or the association of RA with clinical

factors including age, sex and disease duration, or a limited number of samples/observations having been

treated with other drugs. Consequently, individualisation of biological therapy in RA based on baseline

predictors remains an unsolved problem since the identification of biomarkers has yet to reproducibly

manifest relevant predictive value [21, 22].

The clinical utility of machine learning will likely further increase in the coming years. Thus obtaining

robust and reproducible results will take the scientific community a step further to reach regular patient

care in the form of precision medicine.

1.3 Objectives

This work’s cornerstone is to find gene signatures across the human genome with a potential role on

predicting the response treatment to RA when biologic agents are administrated. This systemic autoim-

mune disease’s etiology and pathogenesis, complex and multifaceted, are not fully understood although it

is known that genetic factors have a great degree of influence [23–25]. Thus, improved understanding of

the root pathogenesis of the disease holds the promise of improved diagnostic and prognostic tools based

upon this information.

From a dataset containing gene expression levels from RA patients undergoing treatment with biologic

agents, the main goal was to obtain sparse models which enabled the identification of predictor genes

regarding the response to anti-TNF treatment and to apply BN learning to uncover protein-protein

interactions underlying that same response. The methodology further included a comparison of different

machine learning algorithms when predicting the treatment response.

1.4 Contributions

The main contributions of this thesis are:

• A characterization of RA including a detailed explanation of T cell role in its pathogenesis, the

disease activity scores and the possible treatment options;
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• Benchmarking sparse model proposed for finding biomarkers from transcriptomic data;

• Identification of novel potential biomarkers for anti-TNF treatment response;

• Brief comparison of alternative classification tools in the context of anti-TNF response modelling

using transcriptomic data.

1.5 Thesis Outline

Rheumatoid arthritis is first described in Chapter 2. Following, Chapter 3 includes a review of the

methods applied in this thesis and, at the end, the data description. The work methodology is explained

in Chapter 4 and the experimental results and consequent discussion are analysed in Chapter 5. Finally,

in Chapter 6 the conclusions are presented, which incorporate the work achievements and possible future

research directions.
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Chapter 2

Rheumatoid Arthritis

From antiquity to the Renaissance, infrequent and fragmentary descriptions of joint diseases have been

preserved. An early reference to arthritis can be found in the age of Pericles, when Hippocrates (460-370

B.C.) described: “a disease with fever, severe joint pain, fixing itself in one joint now, then in another, of

short duration, acute, not leading to death, more apt to attack the young than the old” [3]. La Familia

de Jordaens en un Jard́ın by Jacob Jordaens (c. 1630) constitutes a more contemporary RA-like findings,

one of several examples portrayed by the Dutch Masters, in which swelling of the metacarpal-phalangeal

and proximal interphalangeal joint can be observed [26].

2.1 Brief description

Rheumatoid arthritis (RA) is the most common inflammatory arthritis and it is a major cause of disabil-

ity [26]. The word “rheumatoid” derives from the Greek rheuma, meaning that which flows, and the suffix

oid, meaning like or in the form of, which denotes “any defluxion of thin humor”. The term “arthritis”

stems from arthros, meaning joint, and it suggests inflammation [27].

RA is a systemic inflammatory disease characterized by a chronic inflammatory response which causes

joint swelling, joint tenderness, and destruction of synovial joints, leading to severe disability and pre-

mature mortality [1]. The small joints of the hands and feet are involved most often, although larger

joints (such as hips, shoulders or knees) may become involved later on. Joints are typically affected in a

symmetric pattern; hence if the left foot is affected, for example, then both feet will be affected. Patients

with RA report that their joint pain and stiffness is worse in the morning after they get out of bed. Al-

though the joint system is the main focus of the disease, it can also damage a wide variety of non-articular

tissues, including skin, eyes, lungs, heart or blood vessels, leading to different manifestations [23].

RA affects from 0.5% to 1.5% of the world’s population, and in Portugal its occurrence is estimated to

be between 0.8% and 1.5% [2]. It affects more women than man, having a proportion of 4:1 in Portugal,

according to the Portuguese Directorate-General of Health. Although it can appear at any age, its

symptoms are most likely to manifest during adulthood [28].

During recent years, it has become clear that RA is composed of several phenotypes with defined and
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different genetic and environmental risk factors. Two major phenotyping criteria are the presence of sero-

logic autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA) [15].

Being an autoimmune disease, the case is these autoantibodies lead to abnormal immune reactions, at-

tacking the patient’s own tissues and organs. The presence in RA patients of these molecules is 70% to

90% and 75%. Research which has focused on the presence of these circulating autoantibodies has made

major discoveries, one of them being that the autoantibodies precede the clinical manifestations of the

disease by many years [1, 29]. Certain risk factors such as cigarette smoking or obesity are expected to

worsen symptoms rather than triggering the systemic dysregulation per se [2].

Although RA prevalence is somewhat constant across the globe, there are some interesting exceptions.

In the Chinese population RA occurrence is somewhat lower (0.3%) whereas it is substantially higher

in native populations from North America, like the Prima Indians (5%) [23]. This is evidence that

genetic predispositions play an important role. The class II major histocompatibility complex (MHC)

genes, specifically the HLA (human leukocyte antigen) DRB1 alleles, which are associated to antigen

presentation, have been proven to be a risk factor of RA. Tumour necrosis factor (TNF) alleles have

also been linked with RA. However, it is estimated that these genes can explain only 50% of the genetic

effect [24].

The exact cause that leads to the deregulation of the immune system and the synovium inflammation

is unknown. The human immune response is characterized by two distinctive but interconnected stages.

The first line of defense is called the innate response, which is non-specific and actuated mainly by

neutrophils and eosinophils. The second line of defense is constituted by the adaptive response, a specific

and period-long mechanism. The latter involves a humoral reaction (T cells lead to activation of B cells

which produce antigen specific antibodies) and a cellular reaction (T helper cells, or Th cells, release

cytokines which synergize T cells binding to infected cell’s MHC-antigen complex, causing the latter’s

lysis).

T cells have long been implicated in mediating many aspects of joint inflammation [25, 30]:

• T cells may regulate osteoclast activation and thus joint destruction;

• CD4+ T cells (which are Th cells), being CD4 a coreceptor, have been identified to inhibit immune

reaction and suppress established immunity;

• synovial T cells produce CD40 ligand, a member of TNF receptor superfamily which is responsible

for promoting B cell proliferation and immunoglobulin production;

• CD4+ T cells expressing CD25, called Treg cells, have a big repertoire of antigen specificity and their

generation is at least in part developmentally and genetically controlled. Thus genetic defects may

affect their development/function and be a primary cause of autoimmune and other inflammatory

diseases;

• Th17 cells (Interleukin-17-producing CD4+ Th cells) induce the release of proinflamatory media-

tors;
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• Costimulation molecules (Immunoglublins, TNF receptor and cytokine receptors) may be present

at elevated levels in rheumatoid tissue, inducing T cell activation even in the absence of antigens.

T cells undergo differentiation and maturation in the thymus. After positive selection, they leave for

the tissue’s peripheral region. However, some of them when released are still function devoid, which is

the only way there could be an adaptive immune response. Thus, following thymic selection, mechanisms

are needed to maintain tolerance toward self-structures. The failure of immunologic self-tolerance leads

to development of autoimmune diseases, such as RA [30].

2.2 Disease activity

The presentation and progression over time of RA are highly variable between individuals. In the best

case scenario the patient has a very mild case of RA in which he or she remains undiagnosed. At the

other end, there is the group of severe cases: the disease progresses fast and leads to a debilitating state.

However, the majority of patients presents with an intermediate form of the illness during which the

symptoms worsen for a finite time period.

An early initiation of treatment and a frequent assessment and monitoring of the disease activity

enables a timely adoption of appropriate therapies. In the long run this control prevents radiographic

disease progression and improves the patient’s physical function and quality of life.

There is no single test defining RA. The standard and accepted means of defining RA is by use

of classification criteria. Thus several scores have been created over the years to monitor RA. They

include different variables and quantitative evidence about the patient state. Some of those scores are

the disease activity score at 28 joints (DAS28), the Clinical Disease Activity Index (CDAI) and the

Simplified Disease Activity Index (SDAI). The Visual Analog Scale (VAS) and the Health Assessment

Questionnaire Disability Index (HAQ-DI) are important scales which aid and complement, respectively,

those scores.

The VAS is an unidimensional measure of pain intensity commonly used in several rheumatic disorders.

The VAS continuum pain scale ranges from “no pai” to “worst pain”, and patients mark a line to indicate

how they are feeling [31]. Patient global assessment of disease activity (PtGA) and provider/physician

global assessment of disease activity (PrGA/PhGA) are simple patient-completed or provider completed,

respectively, on a 0–10cm or 0–100mm VAS, measuring the overall way RA affects the patient at a point

in time [32].

The health assessment questionnaire (HAQ) is an example of patient-reported outcome (PRO). Intro-

duced in 1980, it is one of the most cited and employed PRO instruments, particularly but not exclusively

in the rheumatic disease literature. The HAQ measures the extent of the functional damage caused by a

disease. It is based on five patient centered dimensions: disability, pain, medication effects, costs of care

and mortality.

There are two versions of the HAQ: the full HAQ, which assesses all five dimensions and the short

or 2-page which contains only the HAQ disability index (HAQ-DI) and the HAQ’s patient global and

pain VAS. The HAQ-DI includes items that assess fine movements of the upper extremity, locomotor

9



activities of the lower extremity and activities that involve both the upper and lower extremities. The

items, organized in 8 categories, represent functional activities, for example dressing, eating or walking.

To calculate the HAQ-DI there has to be a response to at least six of the eight categories [33, 34].

Regarding the disease activity scores, they are described as follows:

The DAS is a clinical index of RA disease activity that combines information from swollen joints,

tender joints, the acute phase response and general health. Due to its complexity and difficult computation

requirements, a simplified version was developed: the DAS at 28 joints. DAS28 is a joint index that

includes a maximum of 28 joints which are evaluated for swelling and tenderness. It also comprises

erythrocyte sedimentation rate. If the score is higher than 5.1 it is considered that the disease is active

and if it is lower than 2.6 it is indicative of a remission state. The DAS28 is the most common score

used [35].

SDAI combines single measures into an overall continuous measure of RA disease activity, including

a 28-swollen joint count, 28-tender joint count, the patient global assessment of disease activity, provider

global assessment of disease activity and C-reactive protein level [36].

Finally, an alternative and simplified tool for assessment of disease activity, which does not include

C-reactive protein levels, is called CDAI. Its greater advantage is the potential to be employed in evalu-

ation of patients with RA consistently with close frequency and independently of any calculating device,

therefore, it can essentially be used everywhere and anytime for disease activity assessment in RA pa-

tients [37].

The explicit formulas for the different score models and their respective range is indicated in Table 2.1.

Their interpretation is found in Table 2.2.

Table 2.1: Formulas for calculation of RA disease activity scores: DAS, DAS28, SDAI and CDAI [32, 38].

Score Model Formula Range

DAS 0.53938
√

RAI + 0.06465 SJC44 + 0.33ln ESR + 0.00722 GH 0 - 10
DAS28 0.56

√
TJC28 + 0.28

√
SJC28 + 0.7ln ESR + 0.014 GH 0 - 9.4

SDAI TJC28 + SJC28 + PtGA + PhGA + CRP 0 - 86
CDAI TJC28 + SJC28 + PtGA + PhGA 0 - 76

Disease activity score (DAS and DAS28); simplified disease activity index (SDAI); clinical disease
activity index (CDAI). Ritchie articular index (RAI); Tender joint count (TJC); swollen joint count
(SJC). SJC can be determined using 44 or 28 joints. C-reactive protein (CRP) in mg/dL; erythrocyte
sedimentation rate (ESR) in mm/h. DAS and DAS28 use the general health (GH) or patient global
assessment (PtGA) on a 0 to 100mm Visual Analog Scale.

2.3 Remission criteria

Remission represents an absence of disease activity. However, practically speaking, to require a complete

absence of disease activity in RA would define a state that almost no patient with disease could meet.

In fact, it has been shown that subclinical inflammation may be present on imaging despite the absence

of clinical findings of disease activity. Thus, a realistic treatment expectation in clinical practice may be
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Table 2.2: Interpretation of DAS, DAS28, SDAI and CDAI in the context of disease activity state [32].

Score Interpretation

Remission Low disease activity Moderate disease activity High Disease activity

DAS < 1.6 1.6 ≤ DAS < 2.4 2.4 ≤ DAS ≤ 3.7 DAS > 3.7

DAS28 < 2.6 2.6 ≤ DAS28 < 3.2 3.2 ≤ DAS28 ≤ 5.1 DAS28 > 5.1

SDAI ≤ 3.3 3.3 < SDAI ≤ 11 11 < SDAI ≤ 26 SDAI > 26

CDAI ≤2.8 2.8 < CDAI ≤ 10 10 < CDAI ≤ 22 CDAI > 22

Disease activity score (DAS and DAS28); simplified disease activity index (SDAI); clinical disease
activity index (CDAI).

to achieve a level of disease activity so low that it is not troublesome to the patient and portends a later

good prognosis [39, 40].

Several remission criteria have been defined. However, varying definitions of what constitutes remis-

sion make it difficult to compare results of current drug trials and to know how to apply those results to

clinical practice. Therefore it is fundamental to have a standardize remission measure. With this in mind,

in 2010 the American College of Rheumatology (ACR) and the European League Against Rheumatism

(EULAR) met to define a uniform remission criterion for RA in trials and practice. The resulting work

produced two definitions for evaluating remission: one is Boolean-based and the other is based on the

composite index SDAI [41]. According to ACR/EULAR, in order to consider a patient in a remission

state, at any point in time one of the conditions should be verified (see Table 2.3).

Table 2.3: ACR/EULAR boolean and index based definition of remission for clinical trials and clinical
practice [41].

Boolean-based Index-based

Clinical trials SJC, TJS, PtGA, CRP all ≤ 1 SDAI ≤ 3.3
Clinical practice SJC, TJS, PtGA all ≤ 1 CDAI ≤ 2.8

Swollen joint count (SJC) using 28 joints, tender joint count (TJS) using
28 joints, patient global assessment (PtGA) on a 0 to 10 scale, C-reactive
protein (CRP) in mg/dL, simplified disease activity index (SDAI), clinical
disease activity index (CDAI)

The committee recommends that, even though the inclusion of ankles and forefeet in the assessment of

remission is not mandatory, it should be taken into account in the examination. The new ACR/EULAR

definitions are stringent and achievable, and they should be a major outcome for trials. However, they

were developed using trial data and should be validated for use in practice settings [1, 41].

2.4 Response criteria

In RA clinical trials, treatment response is often assessed via the EULAR criteria, developed by the

European League Against Rheumatism. This evaluation is based on change from baseline (which is a
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statistical approach) and the individual change in DAS reached during followup (low moderate or high,

based on treatment decisions, which is a judgmental approach). This criteria is used to classify the

participants as good, moderate or non-responders in relation to the efficacy of treatment according to

Table 2.4.

Table 2.4: EULAR response criteria using DAS28 [38].

DAS28 at endpoint DAS28 improvement from baseline (∆DAS28)

> 1.2 0.6 - 1.2 ≤ 0.6

≤ 3.2 GR MR NR
3.2− 5.1 MR MR NR
> 5.1 MR NR NR

GR: good responder; MR: moderate responder; NR: non-responder

A change of 1.2 (i.e., 2 times the measurement error, 95% confidence, since the variables used to

calculate the DAS28 are transformed to have a Gaussian distribution) in a patient’s DAS28 is considered

indicative of a statistically significant change. For example, a patient must show a significant change

(∆DAS28 > – 1.2), but must also reach low disease activity (DAS28 ≤ 3.2) to be classified as a good

responder. The EULAR response criteria can also be applied using the DAS [38].

2.5 Disease treatment

Thirty decades ago the diagnose of RA was synonymous of a devastating quality of life, with progressive

joint destruction, reduced life expectancy, early unemployment and considerable disability. The thera-

peutic agents that existed then were scarce and not efficacious. Today research has revolutionized the

way RA patients live with this diagnose.

The most recent update of the EULAR recommendations for RA treatment happened in 2019. Since

2010, when they were initially developed, there has been progresses in the classification criteria, novel

information on optimal clinical targets, evolution of treatment algorithms and introduction of new drugs.

These contributions lead to the necessity of creating new or updating the RA management principles and

recommendations. It is widely accepted nowadays that clinical remission is the main therapeutic target

for patients with RA, with low disease activity as a best possible alternative, and that the best treatment

approach is a treat-to-target strategy.

The so-called overarching principles, based more on the common sense nature rather than on specific

scientific evidence, constitute the foundation on which the actual recommendations are based. They

include the patient right to be a part of the treatment decision and to require access to multiple drugs

with different modes of action [4].

Regarding the recommendations, as soon as the diagnose is concluded, it is highly indicated to initi-

ate therapy with disease-modifying antirheumatic drugs (DMARDs), which are immunosuppressive and

immunomodulatory agents that slow the progression of joint damage. Methotrexate, a conventional syn-

thetic DMARD (csDMARD), is the most common prescribed one and it is efficacious used as monother-
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apy. Additionally, it is also the basis for combination therapies with other DMARDs or glucocorticoids.

Glucocorticoids are recommended as a short bridging therapy when initiating or changing conventional

synthetic DMARD therapies; once the treatment exhibits efficacy, their use should be rapidly tapered

(within 3 months) [4].

The patient should be monitored frequently in active disease (every 1–3 months). When there is no

improvement by at most three months after initiating the treatment or the target has not been reached

by six months, therapy should be adjusted.

On the one hand, in case the treatment target is not achieved with the first csDMARD strategy, and

in the absence of poor prognostic factors (such as high disease activity, presence of erosions and autoan-

tibody positivity at high titres), other csDMARDs should be considered (leflunomide or sulfasalazine

are common alternatives). On the other hand, if poor prognostic factors are present, then it is recom-

mended adding a biologic DMARD (bDMARD) or a targeted synthetic DMARD (tsDMARD). EULAR

recommends that bDMARDs and tsDMARDs should be combined with a csDMARD since they are less

efficacious in monotherapy. A series of different combinations should be applied until the right therapy

is found [4].

When the patient is in persistent remission, after tapering the glucocorticoids, the physician may

consider tapering the comedication, if that is the case, and later on if improving, the first-line treatment

may also be reduced [4].

Produced with biotechnology, bDMARDs are highly specific and engineered to act like a natural

human protein and interrupt immune system signals. Some biological therapies are called TNF inhibitor

or anti-TNF. They block the TNF alpha (TNF-α), a cytokine that induces local inflammation and pannus

formation (abnormal tissue which invades the space in between a joint’s bones, covering the bones and

their protective layer of articular cartilage), leading to erosion of cartilage and bone destruction. So,

by taking anti-TNF, the TNF is prevented from acting and thus triggering inflammation. The clinical

use of anti-TNF includes the drugs infliximab, adalimumab, etanercept, golimumab and certolizumab

pepol [42].

The bDMARDS that do not target the TNF-α are called non-TNFi. They may act by targeting CD20

(cluster of differentiation 20) proteins and destroying B cells (drug called rituximab) or CD80/86 proteins

preventing T-cell activation (drug called abatacept), both of which cells play an important role in RA,

as mentioned before. Moreover, non-TNFi therapies may block the interleukin-1 receptor, preventing the

action of proinflammatory cytokine IL1 (anakinra) or the interleukin-6 receptor, which ultimate effect is

bone erosion (tocilizumab) [43].

Being a type of drug that suppresses the immune system, the administration of any DMARD carries

risks and thus after initiating the treatment, patients need to be monitored for potential side effects

of the medications. Concerning the bDMARDs, the most concerning adverse effect is increased risk of

common and serious infections including bacterial, fungal and viral infections. Besides, their production

method makes the price much larger than other csDMARDs and the patient preference must be taken

into account [44].

Finally, one needs to bear in mind that RA is regarded a usually incurable disease, hence a drug that
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proves to be efficacious and is tolerated by the patient should not be stopped, otherwise the possibility

of relapse becomes a new reality.

2.6 Socioeconomic impact

RA can become a overwhelming disease with its different possible manifestations which are not necessarily

restricted to the joint system. Repercussions may arise from different directions, for example the disease

related direct costs, the inability to attend work and thus the risk of income lost or the impact on the

quality of life and psychological well-being. Thus, ideally patients should be guided from an early stage

and have access to a multitude of health and non-health professionals: family doctor, rheumatologist,

physiotherapist, nutritionist, social worker, among others.

Regarding the financial cost, in Portugal, each early diagnose can represent to the state an annual

average saving of 30% per each new case, according to Sociedade Portuguesa de Reumatologia [45]. A

study conducted in Portugal explored the RA financial impact. It was estimated that the annual mean

cost of treating one RA patient is about 3.415€. The total cost of the disease increases with its stage

going from 2.205€ per patient per year in case of remission to 5.634€ in case of high activity [46]. In

fact, the emergence of biological therapies for RA in the last decade increased the cost of treatment of

rheumatic diseases. It has also been reported the existence of an association between rheumatic diseases

and other major chronic diseases with early exit from paid employment in Portugal [47].
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Chapter 3

Materials and Methodology

This chapter introduces the supporting tools employed in the discovery of the gene signatures predictable

of anti-TNF treatment response. They include sparse logistic regression, Bayesian network learning and

examples of other machine learning methods. The type of data and its origin is further described.

3.1 Logistic regression

Regression techniques are versatile in their application to medical research because they enable to predict

outcomes and measure associations, and to control for confounding variable effects. Generalized Linear

Models (GLMs), proposed by McCullagh and Nelder in 1989, provide a flexible framework to study the

association between a family of continuous or categorical outcomes and a set of independent variables [48].

A fundamental aspect of the generalization is the presence in all the models of a linear predictor based

on a linear combination of explanatory or stimulus variables.

Consider y = {y1, . . . , yn}T to be the vector of observations and assumed to be a realization of a

random variable Y whose components are independently distributed with means µ. X = {x1, . . . ,xn} is

the n×p matrix containing the set of covariates or explanatory variables. β = {β1, . . . , βp}T is the vector

of unknown regression coefficients associated with each covariate which is intended to be estimated. One

can consider the following three-part specification as a generalization of GLMs [48]:

1. Random component: the components of Y reflect a certain probability distribution;

2. Systematic component: covariates x1,x2, ...,xp produce a linear predictor η given by

η = Xβ;

3. The link function relates the random and systematic components and is defined as

g(µ) = η.

This allows a generalization of GLMs, where the link function says how the expected value of the
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response E(Y) relates to the linear predictor of explanatory variables, as follows:

E(Y) = g(µ) = η = Xβ. (3.1)

Depending on the three components just mentioned, there are different examples of GLMs. For

example, linear regression is used when the response variable y is continuous and Y is considered to

follow a normal distribution. Hence, the link function is the identity function (the simplest of all link

functions). Simple linear regression will model how mean expected value of the continuous response

variable depends on the explanatory variables set:

Yi = µi =
p∑
j=1

xijβj + ei, (3.2)

where i indexes the observations; β contains the unknown regression coefficients to be estimated and ei

is the error associated with the discrepancy between the estimated and the observed value for the i-th

observation. Errors ei are assumed to have a normal distribution, with mean zero and constant variance.

Ordinary least squares (OLS) method estimates the unknown parameters by minimizing the sum of the

error parcels ei,

β̂ = arg min
x

n∑
i=1

(yi −
p∑
j=1

xijβj)2. (3.3)

Another example is the poisson regression which typically uses the log link function and the Poisson

distribution.

However, in case the response variable y is binary, Y is assumed to follow a Binomial distribution.

Considering pi to be the probability of success i.e., the probability of Yi = 1, given the associated features

vector xi, pi is defined as:

pi = Prob(Yi = 1 | xi) = exp(xiβ)
1 + exp(xiβ) . (3.4)

Then, using the logit link function (natural logarithm of the odds), the binary logistic regression

models how the response variable depends on the set of features:

E(Yi) = logit(pi) = log
(

pi
1− pi

)
= xiβ; i = 1, ..., n, (3.5)

where β is the vector of unknown regression coefficients to be assessed. The framework used is the

maximum likelihood estimation. For a n sized sample, the likelihood function for a binary regression is

given by Equation 3.6 and its simplification, after applying the log transformation, is called log-likelihood

(Equation 3.7).

L(β) =
n∏
i=1

pyi

i (1− pi)1−yi . (3.6)
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l(β) =
n∑
i=1

[yilog(pi) + (1− yi)log(1− pi)]. (3.7)

Logistic regression is one of the most commonly used tools for applied statistics and discrete data

analysis. It has even shown equally performing results when compared to alternative machine learning

techniques in clinical and biological research. This regression technique is an efficient and powerful way

to assess independent variable contributions to a binary outcome. Nevertheless, there are important

considerations when conducting logistic regression including a careful variable selection. [49, 50]

This will be the subject of the following section.

3.2 Regularization Methods

Situations of high dimensionality, where the number of variables p is much higher than the number of

observations n, have become recurrent in genetics research, medical studies, risk management and other

fields. The estimates β̂ = {β̂1, ..., β̂p}T obtained with logistic regression or other models are usually all

nonzero and if p > n, they are not unique. Besides, when model selection involves “sparse modeling,” the

estimation approach that zeroes out all but the most relevant of variables from hundreds or thousands

of possible candidates, only a relatively small number of predictors is different from zero. In order to

encourage sparsity, it is necessary to constrain the regression problems, which can be achieved through

regularization methods.

Ridge regression was proposed by Hoerl and Kennard in 1970 [51]. The basic idea was to constrain

the estimates of β coefficients which otherwise could “explode”, being susceptible to very high variance

and affecting the model prediction accuracy. Ridge regression imposes a `2 constraint (sum of the squared

error of the coefficients) as follows

p∑
j=1

β2
j ≤ t; t ≥ 0. (3.8)

This constraint technique reduces the model complexity by coefficient shrinkage but sparsity is not

encouraged.

Lasso regularization, which means Least Absolute Shrinkage and Selection Operator, was proposed

by Tibshirani in 1996 [52]. It allows not only coefficient shrinkage, as in the ridge regression, but also

subset selection, by imposing an `1 constraint (sum of the absolute values of the coefficients):

p∑
j=1
|βj | ≤ t; t ≥ 0. (3.9)

Due to the nature of this penalty, lasso tends to produce some coefficients that are exactly zero

and hence it gives interpretable models. Figure 3.1 illustrates intuitively the reason why this happens

by representing a case where p = 2. The regularized solution in both methods corresponds to finding

the first point where the elliptical contours hit the constraint region. Unlike the disk shape area (`2

constraint), the diamond (`1 constraint) has corners. Thus, if the solution occurs at a corner, it will have
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one parameter βj equal to zero.

Figure 3.1: Representation of the lasso (left) and the ridge (right) regressions. The red ellipses show the
level curves of the cost function. Point β̂ shows the (usual) unconstrained OLS estimation. The solid
blue areas are the imposed boundaries |β1|+ |β2| ≤ t and β2

1 + β2
2 ≤ t, respectively. Figure from [53].

Although the lasso has shown success in many situations, it has some limitations. For example

when p > n, it selects at most n before it saturates, which is a limiting feature for a variable selection

method [54]. Another problem is, if in the presence of highly correlated features, it selects only one rather

than taking the whole group (there is no clustering). This motivated the development of a new method

that could work as well as lasso whenever the lasso does its best. The elastic net regularization is a

weighted combination of both lasso and ridge regression:

λ

p∑
j=1
{(1− α)β2

j + α|βj |}, (3.10)

where λ ≥ 0 controls the magnitude of the parameters and α ∈ [0, 1] controls the relative weight of each

penalty. The `1 norm contributes to a sparse model (thus, increasing α leads to more sparsity) and the

`2 norm removes the limitation on the number of selected variables and encourages the grouping effect.

At the limits, if α = 0, the ridge penalty will be applied otherwise if α = 1, the regularization method

will be the lasso.

3.3 Model Validation Approaches

When learning the parameters of a prediction function from a certain dataset, one should not use the

same data to test it, since the model would just repeat the labels of the samples from where it was built,

having a perfect score, but failing to predict any new data. This would be a case of over-fitting. One

way to combat it is to increase the amount of data from where the algorithm learns, thus making it less

likely the model will overlearn the data. However, in the absence of a very large amount of observation

data, one common practice is to apply a resampling procedure: k-fold cross-validation or simply CV.
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This approach involves randomly dividing the set of observations of size m into k groups, or folds, with

size m/k. For each k fold, the model is trained using k − 1 folds and validated on the held-out fold.

CV allows, for example, tuning a certain model parameter, by comparing the accuracy of the supervised

learning algorithm across all k iterations [55].

Leave-one-out cross-validations (LOOCV) is the particular case of CV when the k number of folds

corresponds to the total number of observations m i.e., the model is estimated in each iteration by

considering all but one observation (m − 1) which is then used to validate the predictive power of the

model [55].

In order to evaluate the estimated model a heuristic and straightforward method exists: the Receiver

Operating Characteristic (ROC) curve. This graphical plot displays the trade-off between two measure-

ment rates of a binary prediction as the classification probability threshold varies: false positive rate

(1 − specificity) and true positive rate (sensitivity). Specificity measures how well a test can identify

true positives and sensitivity measures how well a test can identify the true negatives. For a certain

threshold, the accuracy of the test is given by the sum of the true classifications over the total observa-

tions. The overall performance of a classifier, summarized over all possible thresholds, is given by the

Area under the ROC curve (AUC). An ideal ROC curve will hug the top left corner which means that

the larger the AUC, the better the classifier will be [55].

ROC analysis is used in clinical epidemiology in order to quantify how accurately medical diagnostic

tests (or systems) can distinguish between two patient states, typically referred to as “diseased” and

“nondiseased” [56].

3.4 Bayesian Networks

Bayes’s rule is a fundamental mathematical theorem that describes the conditional probability P (A|B)

of a certain event A based on prior knowledge B related to that event. Mathematically speaking, the

belief of an event can be updated according to

P (A|B) = P (B|A)P (A)
P (B) . (3.11)

Bayesian Networks (BNs) are a type of probabilistic graphical models that aim to model conditional

dependence, between variables, allowing the computation of the joint probability distribution (JPD). The

graphical representation provides an intuitive and natural way for considering an event that occurred and

predicting the likelihood that any one of several possible known causes was the contributing factor.

BNs are directed acyclic graphs (DAG), commonly defined G = (V,E), in which the vertices or nodes

V represent the random variables of interest and the edges or links E represent the informational or

causal dependencies amongst those variables. A directed graph is acyclic if there is no directed path

X1 → · · · → Xn so that X1 = Xn.

For instance, an edge between nodes Xi and Xj indicates that the value taken by the variable Xj is

conditionally dependent on the value taken by the variable Xi. Node Xi is the parent node of Xj and

node Xj is the child node of Xi. Perpetuating this logic, the “descendants” set of a node include all the
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nodes that can be reached on a direct path from the node and the “ascendants” set of a node contains

all the nodes from which that node can be reached on a direct path. Hence, being acyclic means that no

node is its own ancestor or descendent. Any node in a BN is always conditionally independent of its all

nondescendants given that node’s parents.

The understanding of factorization is fundamental to define a BN. Let X = {X1, ..., Xp}T be a

p-dimensional vector of random variables Xj , where Xj ⊂ R, that coincides with the nodes V from

G = (V,E). G represents a joint probability distribution P(X) over the same space. It can be stated

that P factorizes according to G if it can be expressed as a product, called the chain rule, as follows

P (X1, ..., Xp) =
p∏
j=1

P (Xj |PaGXj
) = θ, (3.12)

where PaGXj
= {Zi : Zi → Zj ∈ E} denotes the set of parents of Xj in G and the factors θj are called

conditional probability distributions (CPDs) or local probabilistic models. In summary, a BN is a joint

probability distribution over the set of random variables, defined as a pair B = (G, θ) where θ factorises

over G, and where θ is specified as a set of CPDs associated with G’s nodes [8].

If the random variables in X are discrete, the CPDs are usually represented in a table that lists the

local probabilities that a node takes on each of the possible values for each combination of the values

taken by its parents. The joint probability distribution of a collection of variables can be determined

uniquely by these local conditional probability tables.

An illustrative BN example is shown in Figure 3.2 describing a trivial example of a computer failure

(denoted by C ) [57]. If the computer does not initiate when there is an attempt, one would like to know

the possible causes for that misfortune. In this example there are only two alternatives: either electricity

failure (denoted by E) or computer malfunction (denoted by M ). The variables take binary values i.e.,

either True (denoted as T ) or False (denoted as F). The example is a rather simplified case, hence it is

assumed some independence between the causal nodes. As a result of the dependencies encoded by the

graph, the JPD of the network can be factored as

P (C,E,M) = P (E)P (M)P (C|E,M). (3.13)

The joint probability defined by the Bayesian Network is given by the product of all conditional

probability tables specified in the BN.

In reality, the DAG structure is usually not a given parameter and the BN learning problem is char-

acterized by finding the best network representing the data and the corresponding joint probability

distribution parameters. While the latter is rather straightforward once the DAG structure is available,

the former can be a difficult challenge.

Computational BN learning from high dimensional data can be very demanding since directed graph-

ical models do not scale well with the number of variables. In order to solve this problem, an R package

was developed, called sparsebn, which learns the structure of large, sparse graphical models with a focus

on BNs [7].
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E M P (C = T |E,M)
T T 1
T F 1
F T 0.5
F F 0

Figure 3.2: Directed acyclic graph representing two independent possible causes of a computer failure [57].
E = Electricity failure; M = Computer malfunction; C = Computer failure; T = True; F = False.

To learn a BN from data, the authors have used a score-based approach that relies on regularized

maximum likelihood estimation. The criterion considered was

min
B∈D

l(B; X) + ρλ(B) (3.14)

where X is a matrix of observations assumed to not have any missing values, l denotes the negative

log-likelihood, ρλ is some regularizer, matrix B is the weighted adjacency matrix of a DAG and D the set

of weighted adjacency matrices that represent directed graphs without cycles. The BNs are learnt from

data using the method estimate.dag.

The output of this algorithm is a solution path with multiple graph estimates rather than a single

one. It is so because the program depends on the unknown parameter λ, that must be passed to the

algorithm. Hence the solution path consists of a sequence of estimates {β̂(λmax), β̂(λ1), ..., β̂(λmin)} for

a predetermined set of lambdas λmax > λ1 > ... > λmin. When λ increases, there is less regularization,

hence the resulting estimates β̂(λm) become more dense (meaning contain more edges). Since the focus

is on sparse graphs, the algorithm is terminated early if the number of edges exceeds some user-defined

threshold (which is controlled by the parameter edge.threshold).

From the solution path, the user can choose the solution with the preferred number of nodes. Al-

ternatively, a method called select.parameter is available with which the algorithm returns the optimal

solution, based on a trade-off between the increase in log-likelihood and the increase in complexity between

solutions.

3.5 Classification algorithms

The recent advances of next-generation sequencing technologies have allowed measuring the expression

levels of tens to thousands of transcripts simultaneously, promising to revolutionize the methodologies

used for investigating potential disease markers. However, microarray based classifiers cannot be directly

applied due to the discrete nature of RNA-Seq. Consequently, one available option is to develop count-

based (or discrete) classifiers. Alternatively, one may wish to bring RNA-Seq samples hierarchically

closer to microarrays and apply known algorithms for classification applications of continuous data.
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Before describing the used classifiers, several normalization and transformation methods are explained,

the latter being crucial when using continuous approaches. All the following classifiers, normalization

and transformation methods are available on the MLSeq R package [58].

3.5.1 Normalization Methods

During RNA-Seq analysis, normalization is a crucial step, being standardly applied with the intent

of reducing the non-biologically derived variability inherent in transcriptomic measurements. These

variations may be originated from both between-sample variations including library size (sequencing

depth) and the presence of majority fragments, and within-sample variations including gene length and

sequence composition (guanine-cytosine content) [59].

There is a multitude of approaches and methods developed to address this problem. One idea is to

find the ratio of each read count to the geometric mean of all read counts for that gene across all samples.

The median of these ratios for a sample, called the size factor, is used to scale that sample. Anders and

Huber designed the method for differential expression analysis for sequence count entitling it DESeq [60].

Another example is the trimmed mean of the M-values (TMM ) normalization. TMM first trims the data

in both lower and upper side by log-fold changes (default 30%) to minimize the log-fold changes between

the samples and by absolute intensity (default 5%). After trimming, TMM calculates a normalization

factor using the weighted mean of data. These weights are calculated based on the inverse approximate

asymptotic variances using the delta method [61].

3.5.2 Transformation Methods

RNA-Seq data is usually represented by a matrix of counts showing the expression levels of micro-RNAs

(rows) for a set of samples (columns). For each sample, millions of reads can be measured by the RNA-Seq

technique. According to the gene annotation and genome build, numbers of features might be different.

Different pipelines can result in different properties of the count matrix. Besides, gene expression levels

are heavily skewed in linear scale: lower expressed genes have read counts between 0 and 1 while the

higher expressed genes between 1 and positive infinity. Thus an appropriate transformation on raw counts

is needed.

One simple approach is the logarithm of counts per million reads (log-cpm) method [61], which trans-

forms the data from the logarithm of the division of the counts xij by the library sizes Xj and multipli-

cation by one million, given by:

zij = log2

(
xij+0.5
Xj + 1 × 106

)
(3.15)

Although log-cpm transformation provides less-skewed distribution, the gene-wise variances are still

unequal and possibly related to the distribution mean. Hence, alternative methods which aim to remove

the dependence of the variance on the mean are particularly useful, specially when genes with low ex-

pression level and therefore low read counts are present. These tend to have high variance, which is not

removed efficiently by the ordinary logarithmic transformation. Two examples of such methods are the

variance stabilizing transformation (vst), presented by Anders and Huber [60], and regularized logarith-
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mic (rlog) transformation, presented by Love et al. [62]. They produce very similar effects, although rlog

is more robust in the case when the size factors vary widely.

Another major challenge in a differential expression analysis is the frequent possibility of encountering

variations in sample quality in small RNA-Seq experiments. In fact, to remove the high variation samples

would reduce noise, but at a cost of reducing power, thus limiting the ability to detect biologically

meaningful changes. Contrarily, retaining those samples in the analysis may not reveal any statistically

significant changes due to the higher noise level. Thus, Law et al. presented a method which reflects

the compromise of using all available data, but to down-weight the observations from more variable

samples called variance modeling at the observational level or voom. Essentially, it applies the log-

cpm transformation and estimates the mean-variance relationship, and uses this to compute appropriate

observational-level weights [63].

3.5.3 Continuous-based Classifiers

Support Vector Machine (SVM) learning is a powerful machine learning tool that creates a decision

boundary between two classes, enabling the prediction of labels from one or more feature vectors. This

decision boundary, known as the hyperplane, is orientated in such a way that it is as far as possible from

the closest data points (called support vectors) from each of the classes [64].

In some occasions it might be necessary to apply a kernel method, which enables the modelling

of higher dimensional, non-linear models. In such cases, a kernel function is used to add additional

dimensions to the raw data and thus make it a linear problem in the resulting higher dimensional space.

Choosing a kernel function is a matter of great importance since it can affect the performance of the

SVM algorithm. The characteristic to look for is to be able to separate the data without introducing too

many irrelevant dimensions. Some examples of kernel functions include linear, polynomial, radial basis

function and sigmoidal kernels. Two major advantages of using kernel functions are the possibility to

handle nonvector data and the fact that they provide a mathematical formalism for combining different

types of data [65].

A decision tree is an intuitive multipurpose support tool like tree structure, in which each internal

node denotes a test on an attribute, each branch represents an outcome of the test and each leaf (terminal)

node holds a class label. The decision tree is the main building block of a random forest, a classification

algorithm that outperforms any of its individual constituent models (the trees). Given an input vector,

each decision tree gives a classification and it “votes” for that class. The forest then chooses the class

which gathered the majority of votes over all the trees. Each decision tree in the forest considers a random

subset of features when classifying and only has access to a random set of the training data points. These

decorrelated trees encourage low variance for the ensemble, increasing diversity in the forest. At last, it

leads to more robust overall predictions.

This algorithm runs efficiently on large datasets, it can handle thousands of input variables without

variable deletion, it generates an internal unbiased estimate of the generalization error as the forest

building progresses, to name a few of the many remarkable features [66].

The standard nearest centroid classification consists on computing a standardized centroid for each
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class, which in gene profiling studies corresponds to the average gene expression for each gene in each

class divided by the within-class standard deviation for that gene. Then, for a new sample, the classifier

takes its gene expression profile and compares it to each of these class centroids. The class whose centroid

that it is closest to, in squared distance, is the predicted class for that new sample.

Nearest centroid classifier assigns to an observations the label of the class of training samples whose

mean (centroid) is closest to the observation. The idea behind nearest shrunken centroid (NSC)

models, an extension of the former, is to shrink each class centroid towards the overall centroid by

an amount defined a priori - the threshold. This modification to the standard classification has two

advantages. On the one hand it can make the classifier more accurate by reducing the effect of noisy

genes. On the other hand it does automatic gene selection when there are more than two classes. In

particular, if a gene is shrunk to zero for all classes, then it is eliminated from the prediction rule.

Alternatively, it may be set to zero for all classes except one, which is an indicator of how that gene

expression characterizes that class [67].

Before using any of the three classifiers, given the discrete nature of RNA-Seq, it is necessary that

the data undergoes a transformation, hence the methods described previously in Section 3.5.2.

3.5.4 Discrete-based Classifiers

As RNA-Seq consists of nonnegative data, in matters of expression-based classification it is more ap-

propriate to model it with discrete-count distributions, such as the poisson and the negative binomial.

Discriminant functions consist in linear combination of independent variables that are able to discrimi-

nate between the categories of the dependent variable. The purpose of discriminant analysis is to assign

an unknown subject to one of several classes on the basis of a multivariate observation [68].

The sparse poisson linear discriminant analysis (PLDA) is a count-based classifier that extends

from nearest shrunken centroids, popularly used for microarray (it takes on continuous values, on the

contrary to RNA-Seq) classification, developed by Witten. The authors also suggested applying a power

transformation, since poisson distribution underestimates the variation observed from the data, which

henceforth will be referred as PLDA2 [69].

Dong et al. proposed a similar method, negative binomial linear discriminant analysis, as

an alternative to PLDA, which is more appropriate when biological replicates are available and in the

presence of overdispersion (i.e., when the variance is larger than or equal to the mean) [70].

3.5.5 Voom-based Classifiers

Novel classification methods integrating voom transformation have been developed to open access mi-

croarray based methods for RNA-Seq analysis. One such method is called voomDLDA, an extension of

Diagonal Linear Discriminant Analysis (DLDA) for RNA-Seq with weighted parameter estimates. DLDA

belongs to the family of Naive Bayes classifiers, where the distributions of each class is assumed to be

multivariate normal and to share a common covariance matrix. The voomDLDA in a nonsparse method

which assumes that the gene specific weighted variances are equal across groups and it uses the weighted
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pooled covariance matrix in modeling class-conditional densities. The voomNSC is a sparse classifier,

which accepts either a normalized or non-normalized count data as input, applies voom method to data,

provides precision weights for each observation and ultimately, fits an adapted NSC classifier by taking

these weights into account [71].

3.6 Data Description

The CORRONA (Consortium of Rheumatology Researchers of North America) independent registry,

founded in 2001, collects longitudinal data, “real world” data from patients with rheumatologist-diagnosed

inflammatory arthritis (which includes RA, osteoarthritis, psoriatic arthritis and/or osteoporosis) and

their treating physicians [3]. At the time of this writing, data on 51,649 patients and 769 rheumatol-

ogists have been collected. One decade ago, with the objective of expanding the scope of clinical data

and focusing the scientific yield on comparative effectiveness, the CERTAIN (Comparative Effectiveness

Registry to study Therapies for Arthritis and Inflammatory conditions) registry was launched. This

prospective, non-randomized cohort study includes patients with RA fulfilling the ACR criteria (having

at least moderate disease activity with a CDAI score higher than 10; see Table 2.2) who are starting or

switching biologic agents [3].

The data used in this thesis consists of RNA-Seq of whole blood samples from biologic näıve pa-

tients from the CORRONA CERTAIN registry immediately prior to initiation of anti-TNF treatment

(at baseline, which will be referred as BL) and following three months of therapy (M03 ). Being bio-

logic näıve means that the patients had no previous biologic agent treatment. The patients initiated

treatment with adalimumab or infliximab in conjunction with methrotrexate. Data containing 25370

variables (gene expressions) measured from 63 patients at BL and 65 patients at M03 were selected for

RNA-Seq, proteomics, and targeted glycopeptide analysis, as explained by Farutin et al. [17]. The public

files are deposited in the National Center for Biotechnology Information - Gene Expression Omnibus

(NCBI-GEO) database (GSE:129705). The clinical evaluations were performed based on EULAR criteria

for clinical response to therapy three months into the treatment and each patient was classified as good

responder or non-responder [38]. Patients classified as moderate responders were not selected for this

study [17].

STRING is a database of known and predicted protein-protein interactions. These include direct

(physical) and indirect (functional) associations which stem from computational prediction, from knowl-

edge transfer between organisms and from interactions aggregated from other (primary) databases. Its

aim is to collect and integrate such information for a large number of organisms (it covers 24,584,628

proteins from 5,090 organisms) in order to develop the knowledge of all functional interactions between

the expressed proteins and in the late run to widen the understanding of cellular function [72].

Each protein–protein association stored in STRING is given a score. These scores represent confi-

dence levels, and are scaled between zero and one (interactions may be given: (a) highest confidence,

score ≥ 0.9; (b) high confidence or better, score ≥ 0.7; (c) medium confidence or better, score ≥ 0.4; (d)

low confidence or better, score ≥ 0.15). They indicate the estimated likelihood that a given interaction
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is biologically meaningful, specific and reproducible, given the supporting evidence. This supporting

evidence is provided by evidence channels, which depend on the origin and type of the evidence. Ex-

amples of these channels include: genomic context predictions, high-throughput laboratory experiments,

automated text-mining of the scientific literature and data import from curated, among others.

The data used in this work corresponded to the interactions at highest confidence interval for Homo

sapiens. The file (9606.protein.links.full.v11.0.txt.gz) was acquired directly from the STRING database

(downloaded from http://https://string-db.org/cgi/download, assessed on July 13th, 2020).
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Chapter 4

Work Methodology

The approach channeled to uncover the gene signatures, the core of this study, is explained and tested.

In addition, the research regarding alternative machine learning algorithms and their performance in

predicting the patient’s treatment response is schematized.

4.1 Finding Biomarkers

The following methodology regarding a sparse approach to unravel gene interactions through Bayesian

Network (BN) learning was based on the work developed by Brito [73], where common gene signatures of

breast and prostate cancers were investigated, and Constantino et al. [74], whose work was the foundation

for this thesis.

Prior to any analysis, and bearing in mind the medical potential of distinguishing patients before and

after therapy, two datasets were created regarding the moment of data collection: one at baseline (BL)

and another after three months of the beginning of the therapy (M03), both of which maintained the

initial 25370 variables.

This work’s cornerstone was the possibility that gene expression profiling could give a clue about the

efficacy of anti-TNF treatment in RA patients. To that end, prior to performing feature selection, a

pre-processing step was carried out. The variables with zero standard deviation were disregarded in both

datasets. Following, the variables were log-transformed and normalized to unit variance. An auxiliary

vector with the binary response of each patient was created for each dataset: “1” for good responders, R

(for simplification reasons, henceforward “R” will be used instead of “GR”) and “0” for non-responders,

NR, in accordance to the clinical evaluations performed three months into the treatment, as described in

Section 3.6.

Following, the dimensionality reduction step was conducted. Sparse logistic regression with elastic net

regularization was performed by means of the glmnet R package [75]. The procedure, which was applied

independently in both datasets, went as follows: in a total of 5,000 times, the data was split in 70% for

training the model and the remaining 30% for testing it. In each run, the model was estimated from the

training data with logistic regression using method cv.glmnet, where the parameter α (Equation 3.10)
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varied between 0 and 1 with 0.1 intervals. The penalty λ (Equation 3.10) was optimized by 10-fold CV:

the chosen λ was the largest one with which the error was within one standard error of the minimum [75].

Lastly, the fitted model was used to predict the treatment response of the test set. For each model, the

ROC curve was estimated and the AUC calculated.

Two α values were selected for each dataset, which resulted in obtaining two predictive models for

BL and two other predictive models for M03. Afterwards, LOOCV (Leave-one-out cross-validation)

approach was used to explore which variables were strongly associated with the treatment response. The

premise was that the variables repeatedly selected across all iterations of that procedure could indicate

which genes are strongly associated with the treatment response. To evaluate each estimated model, the

classifier’s specificity and sensitivity trade-off in the validation set was visualized through ROC curves.

In order to uncover the gene networks regulating the anti-TNF treatment in each dataset, BN learn-

ing was performed using the sparsebn R package [7]. For that purpose, each model had to be split into

other two, according to each patient’s treatment response. Finally, the BN were obtained. For each BN,

the adjacency weights of each edge were inspected. At last, the protein-protein interactions found from

learning the BNs were validated by comparing them with the STRING database [72]. Only the highly

scored combinations (score > 0.7) were taken into account. The flowchart in Figure 4.1 summarizes the

overall methodology until this point.

BL
M03

Pre-processing
Dimensionality reduction:

logistic regression
glmnet R package

BN learning
sparsebn R package

Shared genes
connections

Validation with
STRING

Figure 4.1: Flowchart of procedure used to obtain Bayesian Networks and gene candidates for prediction
of treatment response to anti-TNF. The procedure was conducted in parallel for BL and M03 datasets.

Regarding the BN analysis, different network architectures were experimented, as schematized in

Figure 4.2. The algorithm’s controller edge.threshold forces the number of edges in the solution networks

to be equal or less than the specified number. Therefore, firstly this parameter matched the number of

variables (i.e., it matched the model’s number of genes given by the chosen α) and the solution with that

number of nodes was chosen. In other words, the BN algorithm received a model with n var variables

and learned a network in which the number of edges was n edges = n var. This corresponds to the

labeled S (“single”) boxes in the scheme. Secondarily, the same parameter was set to be the double of

variables number i.e., n edges = 2 × n var (D, “double”). Lastly, the method select.parameter, which

automatically returns the optimal solution, was used both when n edges = n var and n edges = 2×n var

(A, “algorithm”). These four steps were applied to both models of each dataset and to each group of

patients.

4.2 Classification Analysis

The obtained models using the sparse logistic regression inspired the second part of this thesis which

consisted in evaluating different classifiers using the transcriptomic data. The goal was not only to
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Figure 4.2: Complete set of Bayesian Networks obtained when adjusting the number of edges allowed
in the solution. BL 1 and BL 2 indicate the two models obtained with each α from the sparse logistic
regression (likewise for M03 1 and M03 2). R and NR indicate the good-responder and non-responder
patients cohorts, respectively. S, D and A refer to the number of edges in the solution (S : n edges = n var;
D: n edges = 2 × n var; AS and AD: trade-off solution chosen by the algorithm when given maximum
number of edges n edges = n var and n edges = 2× n var, respectively).

compare different machine learning tools, but also to inspect how each performed when given different

portions of the same data. All the different stages were conducted with the aid of MLSeq R package [58].

The first assessment was made using the complete BL and M03 datasets after eliminating the variables

(genes) with zero standard deviation. Later, for each dataset, six new sub-datasets were created using a

maximum variance filtering: they contained the top 5, 10, 15, 20, 25 and 30 variables with the highest

variance. Lastly, the two models of each dataset previously obtained with the sparse logistic regression

were used. Figure 4.3 illustrates the final ensemble of the input data used for each dataset (BL and M03).

All genes
(after removal

of invariant
variables)

Maximum variance filtering

#5 #10 #15 #20 #25 #30 Model 1 Model 2

Sparse Logistic
Regression model

Figure 4.3: Sub-datasets used as starting point for classification analysis for each data group (BL and
M03). “#5 ” indicates the sub-dataset with the top 5 features in terms of variable variance, and so on
until “#30 ”. Model 1 and 2 refer to the models obtained in the previous pipeline (Figure 4.1) which
resulted in selecting two α values for each data group.

From the huge variety of classification algorithms, eight were selected to fit the data and predict the

patient’s response to the anti-TNF treatment. The classifiers used are the ones described in Section 3.5:

• Continuous-based: svmRadial (svm algorithm with radial kernel function), rf (random forest) and

NSC (nearest shrunken centroid);

• Discrete-based: plda (poisson linear discriminant analysis), plda2 (plda with power transformation)

and nblda (negative binomial linear discriminant analysis);

• Voom-based: voomDLDA and voomNSC.

To all sub-datasets one normalization method (deseq and TMM, which were exposed in Section 3.5.1)

was applied. Regarding the continuous-based classifiers, the sub-datasets were also transformed a priori

with vst, rlog and logcpm (in detail in Section 3.5.2 ). Thus, the combinations tested were:

• deseq-vst;
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• deseq-rlog;

• deseq-logcpm;

• tmm-logcpm.

One should bear in mind that the transformation methods are not applied when using discrete clas-

sifiers or voom-based classifiers (the latter perform the voom transformation within itself).

The splitting ratio for training and testing was 70% and 30%, respectively. All the models were

trained using 5-fold CV repeated 10 times to assess performance variability across simulations. The

test set underwent the same normalization and transformation (in the cases where the classifier was

continuous) before the algorithm predicted its class labels. Each model was further evaluated over 16

repeats in order to give robustness to the results. The flowchart in Figure 4.4 describes how the overall

approach for the investigation of the different classifiers and their performance across the different datasets

created was conducted. For comparison purposes, the accuracy, sensitivity and specificity was assessed

and stored. Furthermore, the sparse models’ (NSC, plda, plda2 and voomNSC ) sparsity, a measure of

proportion of features used in the trained model, was calculated.

Data

NORMALIZATION

Data Splitting

Deseq or TMM

TRANSFORMATION

vst, rlog, logcpm

Model Fitting 

Continuous 
Classifiers

Discrete
Classifiers

Voom-based
Classifiers

Training Set Testing Set

NORMALIZATION

same train parameters

same train parameters

same model

Prediction and
Performance

Figure 4.4: Flowchart of procedure used to fit data into classifiers and to compare model’s performance
after prediction of class labels.
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Chapter 5

Experimental Results

Did the sparse logistic regression pipeline originate accurate models? Can Bayesian network learning

expose new gene associations not yet known to be associated with anti-TNF treatment response? Did

the alternative classifiers contribute with supplementary information? The results produced by the im-

plemented approaches are revealed and examined alongside with the available literature.

5.1 Sparse Logistic Regression

The final datasets used after applying the pre-processing step are summarized in Table 5.1.

Table 5.1: Final datasets after pre-processing.

Dataset Observations Variables
(patients) (genes)

BL 63 21,911
M03 65 22,142

BL: Baseline dataset; M03: Third month dataset

From applying sparse logistic regression, tables 5.2 and 5.3 show the values of the median, maximum,

minimum and interquartile (IQR) amplitude of the Area under the curve (AUC) obtained over the 5,000

runs, using each value of α, in each dataset. The corresponding box plots can be found in Figure 5.1.

Through the boxplots from Figure 5.1 two clear traits are observed: across the α parameter range,

Table 5.2: AUC median, maximum, minimum and interquartile amplitude values for different α param-
eters in the BL dataset.

α

AUC 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Median 0.615 0.619 0.607 0.606 0.604 0.596 0.594 0.59 0.586 0.583 0.512
Max 0.984 0.938 1 0.976 0.939 0.952 0.978 0.947 0.964 0.952 0.901
Min 0.333 0.343 0.319 0.352 0.33 0.343 0.354 0.32 0.341 0.343 0.188
IQR 0.141 0.135 0.138 0.131 0.13 0.128 0.126 0.121 0.116 0.118 0.1

AUC: Area under the curve; Max: Maximum value; Min: Minimum value; IQR: Interquartile range
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Table 5.3: AUC median, maximum, minimum and interquartile amplitude values for different α param-
eters in the M03 dataset.

α

AUC 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Median 0.583 0.611 0.614 0.622 0.622 0.625 0.622 0.622 0.611 0.603 0.5
Max 0.978 0.976 0.978 1 1 0.974 0.967 0.977 0.949 1 0.966
Min 0.341 0.3 0.344 0.344 0.356 0.33 0.321 0.352 0.33 0.25 0.2
IQR 0.122 0.135 0.143 0.142 0.138 0.138 0.144 0.138 0.141 0.141 0.1

AUC: Area under the curve; Max: Maximum value; Min: Minimum value; IQR: Interquartile range
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(a) BL dataset
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Figure 5.1: Calculated Area under the curve values for each α using the BL (a) and M03 (b) datasets.
Box plots show median values (border between grey and orange boxes), the distance between the first
and third quartiles (interquartile range; joint grey and orange boxes) and the lower and upper extremes
(vertical line that extends from lowest or highest value, respectively).

the obtained median value for the AUC is somewhat constant and there is a great variability of values,

all ocurring for each dataset. Considering the few obervations (63 and 65), values of around 0.6 for the

AUC medians are satisfactory. Due to the absence of an obvious choice about which α value to choose

for each dataset, two values were chosen for each one, and considered to represent the best predictive

models. Hereupon these are the four models to be used, and thus they should be clearly defined:

Table 5.4: Designation of the 4 models obtained with the elastic net regularization.

BL M03

α = 0.3 α = 0.2 α = 0.4 α = 0.3

Model 1 Model 2 Model 1 Model 2
BL 1 BL 2 M03 1 M03 2

Regarding the biomarkers possibly in strong association with the treatment response, the Leave-one-

Out Cross-Validation (LOOCV) approach was applied to each model. The Receiver Operating Charac-

teristic (ROC) curves can be compared in Figure 5.2. At first look, the BL models seem to perform worst

than the M03 models. Setting the threshold for prediction at 0.5, the model which best performed for BL

data had an accuracy value of 0.651 and for M03 data an accuracy of 0.4. Due to the apparent contradic-

tion between AUC and accuracy results, and the fact this classification procedure is in fact imbalanced
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Figure 5.2: ROC curves based on LOOCV for the four models.

(in both datasets the positive class occurrence is higher than the negative one), it was inspected which

threshold value represented the best overall prediction. The highest accuracy was achieved with models

1 of each dataset: BL 1 performed with an accuracy of 0.683 and M0 3 of 0.738. All the metrics used

to evaluate the LOOCV performances are explicit in table 5.5. This result points at the conclusion that

the best treatment response prediction is obtained from the transcriptomic data retrieved after the third

month of treatment.

Table 5.5: Leave-one-Out Cross-Validation results of each model when letting the default threshold set
at 0.5 and for the best accuracy across the threshold range.

Model Default (cut off = 0.5) Optimal cut off value

Accuracy AUC Threshold Specificity Sensitivity Accuracy

BL 1 0.635 0.637 0.541 0.593 0.750 0.683
BL 2 0.651 0.629 0.529 0.556 0.750 0.667

M03 1 0.400 0.739 0.563 0.793 0.694 0.738
M03 2 0.369 0.751 0.573 0.724 0.722 0.723

The intersection of genes appearing in all the predictive models calculated with LOOCV may corre-

spond to those that give a better prognostic about the RA treatment. From model 1 (highest α value)

to model 2 (smallest α value), the number of genes repeatedly selected by LOOCV for model prediction

increased, as it was expected given the influence of that parameter. In fact, the number of genes was 24

(BL 1), 35 (BL 2), 12 (M03 1) and 22 (M03 2). In both datasets, the list of genes in model 2 includes all

the genes in model 1 (the Venn diagram in Figure 5.3 illustrates these results). Besides, Constantino et al.

presented the intersection between models with α = 0.1 and α = 0.4, thus obtaining an even smaller list

of genes, all of which were found in the present study. The list of genes obtained is presented in Table 5.6

and their corresponding complete name can be found in Table A.1 of Appendix A.

Narrowing the analysis to the genes with a minimum reading count of 20, the boxplots of Figure 5.4
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Table 5.6: List of predictive genes in RA treatment after applying Leave-one-Out Cross-Validation in
each model for each dataset.

Dataset Genes

BL 1 ALOX12B, CAPNS2, CCDC108, CTSG, EPHX4, ERICH6, EVPLL, FAM133CP,
FOXD4L3, HIST1H3J, IGF2BP1, LOC339975, LRGUK, MPO, NUAK1, ODF3L2,
PRKG1, PRSS30P, RAD21L1, RCAN3AS, ROPN1L-AS1, SLC6A19, SYT1 and TGFB2

BL 2 ALOX12B, CAPN11, CAPNS2, CCDC108, CTSG, EPHX4, ERICH6, EVPLL,
FAM133CP, FOXD4L3, HIST1H3J, IGF2BP1, KCNH4, LINC00696, LMOD3,
LOC339975, LRGUK, MAG, MAGEC2, MIR941-4, MPO, NUAK1, ODF3L2, PMS2L2,
PRKG1, PRSS30P, RAD21L1, RCAN3AS, RNU6-28P, ROPN1L-AS1, SKA3, SLC6A19,
SYT1, TBX2 and TGFB2

M03 1 ADAM33, CCDC110, ELANE, KCNJ8, LOC101928222, LRRN4CL, MTRNR2L3,
TMEM105, TRIM7, UBE2QL1, VSTM2L and ZNF843

M03 2 ADAM33, CCDC110, ELANE, FBLIM1, GFAP, HYAL4, KCNJ8, KCNK4, KNCN,
LOC100128076, LOC100268168, LOC101928222, LRRN4CL, MTRNR2L3, SERTM1,
TMEM105, TPBG, TRIM7, TTC25, UBE2QL1, VSTM2L and ZNF843

11

24

10

12

BL_1

BL_2

M03_1

M03_2

Figure 5.3: Schematic representation of common genes disclosed by LOOCV between the 4 models.

a) reveal that at baseline, the expression MPO, PRSS30P, RCAN3AS and CTSG stands out compared

to the remaining. Note that until the end of this section all the results refer to models 1 of BL and M03

since in models 2 all the additional genes have a reading count lower than 20.

High serum levels of myeloperoxidase (encoded by MPO gene), the most frequent protein in mature

neutrophils, are known to be associated with RA and other autoimmune complications. When released

by this abundant circulating white blood cells, the neutrophils, MPO binds to macrophages, a distinctive

type of white blood cells, initiating a molecular cascade resulting in secretion of interleukin-1, interleukin-8

or TNF-α [76].

CTSG encodes Cathepsin G (CatG), which belongs to the neutrophil serine proteases family. Among

its many functions, there is a clear role of CTSG in immune and inflammation reactions, participating

in the pathogenesis of some autoimmune diseases by promoting the migration of neutrophils, monocytes

and antigen presenting cells. CTSG constitutes a biomarker for inflammatory arthritis and its activity

is increased in the synovial fluids of RA patients [77, 78].

Being expressed by RA neutrophils, MPO and CTSG are directly related to neutrophil granule pro-

teins, which synergize to modulate inflammation and even tumor development. It has been demonstrated

that expression of MPO and CTSG in peripheral blood neutrophils from patients with RA, before therapy

with an anti-TNF, can predict a subsequent response to anti-TNF as a first biologic, with specificities

and sensitivities of up to 100%. Specifically, they were identified as being significantly different expressed
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(b) Reading counts of repeatedly selected genes in M03 data

Figure 5.4: Reading counts of common repeatedly selected genes obtained with LOOCV for BL models
and M03 models, respectively.

in nonresponder patients [79].

PRSS30P is a pseudogene related to a serine protease but of unknown function. No reference of this

gene being related to any pathogenesis or inflammation process was found.

The regulators of calcineurin (RCANs) are a group of proteins which form a functional subfamily

with three members: RCAN1, RCAN2, and RCAN3. They are reported to either facilitate or inhibit

calcineurin, depending on RCAN protein amount and calcineurin affinity. RCAN3 specifically has shown

to modulate T cell development by increasing positive selection and suppressing pro-inflammatory T

cell differentiation in cell culture and in arthritis development induced by collagen injection in murine

models, and thus suggesting that it may be an effective treatment for RA [80]. However future research

is expected to explore and expand on these functions. Nevertheless, RCAN3AS actually refers to the

RCAN3 antisense. Antisense RNAs are unique transcripts that complement mRNA and thus block its

translation into a protein [81]. Consequently, the gene RCAN3 will be under-expressed. One could

hypothesize that if in non-responders this protein is prevented from being translated, then in responders

its expression levels will be higher and thus considered a biomarker.

To better understand how the previous disclosed four genes relate to the treatment response, their

levels of expression in responder and non-responder patient groups were compared, not only at the be-

ginning of the anti-TNF treatment but also at the third month-post treatment initiation in order to

understand their time evolution. This is illustrated in Figure 5.5. At baseline, where the four genes were

identified as most relevant, the clear differences in expression between responders and non-responders

suggest their predictive power: MPO and CTSG are more expressed in the responder group, whereas

RNAC3AS and PRSS30P are more expressed in the non-responder group. Three months into the treat-

ment, the differences between read counts in responders and non-responders was less noticeable except

for MPO gene.

Since no literature exists regarding the matter of RCAN3 and its antisense in RA context, the reading

counts of gene RCAN3 were assessed in hope that the expression would be higher in the responder group
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(b) Expression at M03

Figure 5.5: Comparison between responders and non-responders regarding reading counts of RCAN3AS,
CTSG, PRSS30P and MPO at BL (left, orange color) and M03 (right, red color). Each pair corresponds
to one gene, with left and right boxes corresponding to responder and non-responder.

and thus validate the conjecture made before. However, the results showed exactly the opposite i.e., the

non-responder group had higher median counts. Nevertheless, this is a study involving a small number

of patients and so a more complex investigation focusing gene RCAN3 should not be disregarded. At

last, even though no allusion of PRSS30P gene being associated to RA was uncover, given the evidence

found relating the remaining genes to the disease, it gives confidence that understanding gene PRSS30P

might enlighten the complicated process of RA.

Regarding the M03 dataset, the boxplots in Figure 5.4b disclosed a substantial expression of the genes

ELANE and TRIM7. Similarly to CTSG, elastase, neutrophil expressed (ELANE) codes for human

neutrophil elastase (HNE), a neutrophil serine protease and thus it is involved in the same mechanisms

as the former: it is considered a multifunctional enzyme involved in the killing of pathogens, regulation

of inflammation and tissue homeostasis. Regarding RA, it can directly degrade the matrix, destroying

cartilage components [78]. Being involved in many inflammatory diseases, HNE is a therapeutic target

of considerable interest as it is demonstrated by the number of HNE inhibitors patents developed in the

last decade by pharmaceutical companies [82]. In the same research study, Wright et al. also notice the

significantly different expression of ELANE, although the focus was only in the patients’ transcriptomic

data prior to the treatment initiation.

Gene TRIM7, Tripartite Motif Containing 7, encodes a member protein of the tripartite motif

(TRIM ) family which have been implicated in a broad range of biological processes including cell differ-

entiation, development, oncogenesis and antiviral immunity. The TRIM7 protein has gained attention

in cancer studies, having been described in one of them as a negative regulation in lung tumors [83]. On

the contrary, little references were found associating RA and TRIM7, except when Stangenberg et al.

observed a decrease of its expression in the ankle nerve of patients who had previously suffered from

unilateral transection of the sciatic and femoral nerves [84]. Nevertheless, this study was focus on the

intriguing observation that these patients, if they evolve to RA later on, its typical inflammatory sym-
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Figure 5.6: Comparison between responders and non-responders regarding reading counts of ELANE and
TRIM7 at BL (left, orange color) and M03 (right, red color). Each pair corresponds to one gene, with
left and right boxes corresponding to responder and non-responder.

metry is not observed. Furthermore, Kim et al. findings also suggest that the TRIM family is part of one

of the RA subgroups representing a distinct mode of inflammation which is deflected toward a certain

combination of signaling pathways [19]. Nonetheless, no clear evidence has been found of a possible

connection between TRIM7 and the response to anti-TNF.

Once more, the expression of these last two genes was analysed individually for responder and non-

responder patients at both instants in order to understand if the expression patterns were already there at

the treatment beginning. Figure 5.6b shows that while being both considered predictors by the LOOCV

approach, their expression differences is not so obvious. At baseline, the gene ELANE expression was

more distinct between responders and non-responders, and later it appeared to have evolved to a similar

level. Nonetheless, the methods applied in this work revealed ELANE to be a predictor for RA treatment

at M03.

The datasets used in this thesis were the basis of previous work [17]. Even though the biomarkers

found with the proposed methodology were confirmed with other literature, they do not correspond to

the ones obtained by Farutin et al.. However it should be noticed the cited research team used other

methods in which not only transcriptomic data but also plasma proteomics was available.

5.2 Bayesian Network Models

Selecting the best α parameters which fitted the data (0.3, 0.2 for BL data and 0.4, 0.3 for M03 data) and

applying the elastic net regularization resulted in 4 new sparse datasets with a smaller variable number.

The dimension of those 4 new models is indicated in table 5.7. At this point, each model was split into

two according to the RA treatment response of each patient contained in it (R versus NR).

Accordingly to the scheme presented in Figure 4.2, a total of 32 BN were to be obtained. However,

in some of the cases where the algorithm was given the command to choose the network corresponding

to the optimal solution, it chose the one with the given number of edges (recalling, that could either lead
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Table 5.7: Number of variables selected by elastic net when applied to BL and M03 models.

BL M03

BL 1 BL 2 M03 1 M03 2

71 111 61 91

to a network with number of edges as the specified limit or with a smaller number). In other words, it

happened that there were no difference between forcing the number of edges and letting the algorithm

chose the BN based on the trade-off. To illustrate the cases in which this happened, the scheme 4.2

previously presented in the methodology was rearranged to enlighten which networks were effectively

obtained (see Figure 5.7).

BL data

BL_1

NR_BL_1R_BL_1

S AD

M03 data

Bayesian Network

D

BL_2

NR_BL_2R_BL_2

M03_1

NR_M03_1R_M03_1

M03_2

NR_M03_2R_M03_2

AS S ADDAS S ADDAS S ADDAS S ADDAS S ADDAS S ADDAS S ADDAS

Figure 5.7: Final set of Bayesian Networks obtained. The grey squares indicate the networks which were
in repetition and thus not included in the results.

In respect to BL data, letting the algorithm choose the best solution only produced a different network

in the responder group of model 2. Contrarily, all the eight “hand-picked” networks of M03 data did not

correspond to the optimal solution automatically chosen. The complete set of BN obtained can be found

in figures 5.9, 5.10, 5.11 and 5.12. It is important to mention that “forcing” the network to have a certain

edge number does not necessarily mean that the algorithm will return a solution with such edge number

(i.e., in a few cases the network had slightly fewer edges than what was pretended). However, it was not

considered that this affected the analysis.

In order to disclose which gene networks may regulate the response to anti-TNF treatment, the 3

interactions with the highest weight value for every network were assessed. The results are presented in

Tables 5.8 and 5.9 (Table A.2 contains the explicit genes’ names). In general terms, there was consistency

in the edges identified across the different models and the different sizes networks, for both BL and M03

data (the cell colors in the tables intends to highlight examples of that consistency). Increasing the

number of allowed edges (“S” cases vs “D” cases) revealed a few changes in the interactions. Regarding

the comparison between ”hand-picked” networks (“S” and “D” cases) and algorithm-chosen (“AS” and

“AD””cases, accordingly), there was no difference when using the BL models (in the only two occasions

the algorithm optimal solution was distinctive, the three most weighted edges remained the same).

Intriguingly, for the M03 models it produced a massive change: the number of edges in each net-

work varied only between 1 and 3. On this account, the few genes connecting those edges were further

investigated: RSPH10B2 and RSPH10B correspond to genes encoding for the head components of ra-

dial spoke structures (a multi-unit protein structure found in axonemes of eukaryotic cilia and flagella);
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Table 5.8: BN interactions obtained (showing only 3) with highest edge weight for BL data. Colors
highlight four examples of equivalent edges across the different networks obtained. Note that the symbol
“-” simply indicates the cases where the obtained network were repeated, as illustrated in Figure 5.7.

S D AS AD

Model 1

R
EPHX4 - LRGUK TBX2 - CYGB - -

MIR941-4 - MIR941-2 EPHX4 - LRGUK - -
BATF2 - EVPLL LOC100507156 - LINC00696 - -

NR
EVPLL - IGF2BP1 MAG - MAGEC2 - -

RCAN3AS - KCNH4 EVPLL - IGF2BP1 - -
ERICH6 - SULF1 LOC339975 - LILRB4 - -

Model 2

R
CDC42EP4 - TCN2 LOC100507156 - LINC00696 CDC42EP4 - TCN2 LOC100507156 - LINC00696
EPHX4 - LRGUK TBX2 - CYGB EPHX4 - LRGUK TBX2 - CYGB

LOC100507156 - LINC00696 DRD2 - CAPN11 LOC100507156 - LINC00696 DRD2 - CAPN11

NR
MIR941-4 - FGD5P1 MIR941-4 - FGD5P1 - -
C1orf95 - MAGEC2 SLC25A52 - ADAMTS9 - -

SLC25A52 - ADAMTS9 EVPLL - IGF2BP1 - -

Table 5.9: BN interactions obtained (showing only 3) with highest edge weight for M03 data. Colors
highlight four examples of equivalent edges across the different networks obtained. none indicates that
the BN learning did not reveal further interactions.

S D AS AD

Model 1

R
KCNK4 - MIR718 KCNK4 - MIR718 RSPH10B2 - RSPH10B RSPH10B2 - RSPH10B

RSPH10B2 - RSPH10B RSPH10B2 - RSPH10B none none
CTSG - ELANE MTRNR2L3 - ZNF843 none none

NR
F3 - LOC101927468 C8B - LOC102467224 KNCN - CCDC110 KNCN - CCDC110

C8B - LOC102467224 F3 - LOC101927468 RSPH10B2 - RSPH10B RSPH10B2 - RSPH10B
KNCN - CCDC110 FBLIM1 - UBE2QL1 none none

Model 2

R
MTRNR2L3 - MIR4271 MTRNR2L3 - MIR4271 RSPH10B2 - RSPH10B RSPH10B2 - RSPH10B
TRIM7 - TMEM51-AS1 KCNK4 - MIR718 none none

KCNK4 - MIR718 FSD2 - RS1 none none

NR
VWA1 - LINC01361 VWA1 - LINC01361 KNCN - CCDC110 KNCN - CCDC110
FBLIM1 - UBE2QL1 LOC100506071 - HIST1H2AJ MIR3918 - VWA1 MIR3918 - VWA1

VWA1 - CES1P1 FBLIM1 - UBE2QL1 RSPH10B2 - RSPH10B RSPH10B2 - RSPH10B

kinocilin, KNCN, has a role in stabilizing dense microtubular networks or in vesicular trafficking [85];

CCDC110 has been identified as novel cancer/testis antigen recognized by cellular and humoral immune

responses [86]; MIR3918 are short non-coding RNAs that are involved in post-transcriptional regulation

of gene expression in multicellular organisms by affecting both the stability and translation of mRNA

(messenger RNA) [87] and finally VWA1 belongs to a superfamily of extracellular matrix proteins and ap-

pears to play a role in cartilage structure and function [87]. The possible relation of these protein-protein

interactions to RA is not evident in the literature.

Not disregarding the top gene-gene interactions found through the BN learning, it was essential to

compare them to what has been published; hence the use of STRING database [72].

Regarding the BN learnt from BL data, Table 5.10 indicates the overlapping interaction found. On the

one hand, CTSG and MPO genes share an interaction in the responders group, which is given a total

score of 0.989 in STRING database. Given that they were found to be anti-TNF response predictor in the

conducted LOOCV approach, there is strong evidence that their expression levels might be determinant

for a future anti-TNF good responder patient. On the other hand, CTSG – AZU1, which scores 0.964,

was an interaction found in the non-responders group. AZU1 encodes for azurocidin 1 granules, a known

important multifunctional inflammatory mediator for recruitment of monocytes in the second wave of

inflammation. The protein encoded by the gene SERPINB10 is a protease inhibitor which helps in the
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regulation of protease activities. It has been reported its influence in inhibiting TNF-α-induced cell

death [88].

The Venn diagrams regarding model 2 (see figure 5.8) highlight one interaction common to both

responders and non-responders: MPO – AZU1 (score: 0.985), suggesting that it might be be relevant

for both types of patients. An important aspect from Table 5.10 stands out: either increasing the number

of variables with the elastic net penalisation (which corresponds to defining a smaller α) or increasing

the number of allowed edges in the BN learned did not influence the results in regard to the interactions

found in the STRING database.

In relation to the overlaps obtained from the M03 data, only one interaction was found to be in common

with the STRING database: CTSG – ELANE (score of 0.982). Similarly as previously stated, this

protein-protein interaction being found in responders and non-responders advocates for its importance

in the mechanisms of anti-TNF treatment. Moreover, the ELANE gene was not selected by the elastic

net in the regularization applied to the BL data, an hypothesis for that being that its expression became

relevant somewhere between the day 1 and day 90 of the anti-TNF treatment. This observation might

be worth of exploring in further research. In addition, none of these findings exempt a rigorous analysis

by a team of rheumatologists.

Table 5.10: Overlapping protein-protein interactions between learnt Bayesian Networks from BL data
and STRING Database. Note that the symbol “-” simply indicates the cases where the obtained network
were repeated, as illustrated in Figure 5.7.

S D AS AD

Model 1

R-BL ∩ STRING
MPO - CTSG

CTSG - SERPINB10
AZU1 - MPO

MPO - CTSG
AZU1 - MPO - -

NR-BL ∩ STRING AZU1 - MPO
CTSG - AZU1

AZU1 - MPO
CTSG - AZU1 - -

Model 2

R-BL ∩ STRING MPO - CTSG
AZU1 - MPO

MPO - CTSG
AZU1 - MPO

MPO - CTSG
AZU1 - MPO

MPO - CTSG
AZU1 - MPO

NR-BL ∩ STRING AZU1 - MPO
CTSG - AZU1

AZU1 - MPO
CTSG - AZU1 - -

Table 5.11: Overlapping protein-protein interactions between learnt Bayesian Networks from M03 data
and STRING Database. none indicates that overlapping analysis revealed no interactions.

S D AS AD

Model 1 R-BL ∩ STRING CTSG - ELANE CTSG - ELANE none none

NR-BL ∩ STRING CTSG - ELANE CTSG - ELANE none none

Model 2 R-BL ∩ STRING CTSG - ELANE CTSG - ELANE none none

NR-BL ∩ STRING CTSG - ELANE CTSG - ELANE none none
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BL_1: S BL_1: D BL_2: S BL_2: D

M03_1: S M03_1: D M03_2: S M03_2: D

Figure 5.8: Venn diagrams showing common interactions between learnt BN from responders and non-
responders groups and STRING database.
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5.3 Classification algorithms analysis

The problem of classification will be analysed based on the results presented in Tables 5.12, 5.13, 5.14,

5.15, 5.16, 5.17, 5.18, and 5.19. The performance of each classifier was evaluated based on the accuracy,

sensitivity and specificity values obtained after performing the response prediction with the fitted models.

Overfitting (which occurs when the algorithm “over-learns” the data from the training set and does not

perform well on the unseen testing data) was a liability, specially when learning from the obtained

sparse models whose sizes varied between 61 and 111 features versus 63/65 observations. Thus repeating

the fitting and prediction over different partitions of the train and test sets allowed a better result

interpretability. Training and testing from the raw data was the only exception to this matter: assessment

was made one single time due to the computational time required.

Inexplicably, only one time it was possible to perform class label prediction using the fitted continuous-

based classifiers when the pre-processing step applied was the deseq-logcpm normalization-transformation

combination. Notwithstanding being less reliable, the decision was not to neglect those results (this

regards Tables 5.14 and 5.18).

The plots from Figure 5.13 gather the classifiers according to their nature and type of pre-processing

method (first two columns) and according to the feature selection competency (last column). Each bar

corresponds to the accumulated accuracy obtained over the different sub-datasets used (as indicated in

Figure 4.3), allowing an interpretation about the overall capacity of the classifiers and also an inference

regarding the performance for the different data types explored.

As it would be expected, the overall performance of the classifiers when learning from the complete

datasets is poor (looking at the first two columns, the orange bar portion associated to All Genes cor-

responds to around 0.5 or less then the unity). Interestingly, increasing the number of high variance

variables did not have a consistent positive impact on the overall testing accuracy. In fact, in some cases

using the top 5 to top 15 of the high variant variables delivered better results then using the top 20 to

top 30, which may be related to the fact that models with lower complexity are less prone to overfit.

Being the rf models the only exception, all the classifiers reached a better prediction performance

when constructed from the M03 data. The elastic net penalized models, however, revealed a better

prediction accuracy at BL.

Despite the fact that only one voom-based classifier is sparse, they both delivered very similar accuracy

when the data was transformed with TMM (Figure 5.13k). Moreover, when deseq was used, voomDLDA

(non-sparse) slightly reached a better performance (Figure 5.13h).

Unquestionably the sparse data models obtained with the proposed methodology lead to more accurate

classifiers and consequently the following observations will focus on them (last two portions of each plots

bars). Witten has stated the little impact on choosing the normalization procedure on the classification

performance (it is rather more important in differential expression analysis) [69]. However, concerning the

two approaches used in this work, and looking at figure 5.13’s second and third columns, TMM appears

to impact negatively the algorithm’s performance in relation to deseq in the case of discrete-based models.

In the cases of other two types, it had no effect (case of svm models) or little positive effect (remaining
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models).

Data transformation on the other hand is considered to influence on classification results, by changing

the distribution of data. Unfortunately, since there are no results available regarding deseq-logcpm com-

bination, it is only possible to consider the influence of vst and rlog (Figures 5.13a and 5.13d). The latter

did not seem to affect the svm models while it lead to a higher prediction accuracy in the rf and NSC

models. Additionally, the transformation approach revealed to have a role on the number of variables

selected, as it was previously observed [89]. In this study vst resulted in lower sparsity.
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(l) tmm, non-sparse classifiers

Figure 5.13: Accumulated testing accuracy results for fitted classifiers. On the x-axis the classifiers are
featured, whereas the y-axis indicates the added accuracy.
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All sparse classifiers best performed when the data was normalized with deseq. Only voomNSC did

not use all the features when given the elastic-net penalized models. The models obtained with svm

outperformed the remaining, having voom-based classifiers and rf showed good results likewise.

Given the use of four sparse classification algorithms, it was compared which features were selected

by each one to make the response predictions with the features given by the elastic net penalisation. This

analyses concerned the fitting of the classifiers when it were the initial datasets given as input so that

the fitting and consequent selection was accomplished from the raw data. More precisely, by applying

deseq and TMM to the data, NSC (the transformation procedure used in this case was vst since it

was the one with which best accuracy was achieved), plda, plda2 and voomNSC algorithms performed

feature selection. The common genes selected by these four sparse tools (further labelled as Z) were later

compared to the BL and M03 models previously obtained. The resulting overlap showed no differences

between comparing model 1 or model 2 of either the datasets. This observations allows to infer the

diminutive relevance of the additional variables selected by the LOOCV approach. The analysis lead to

the following findings:

• BLmodels ∩ Zdeseq: SERINC2, CTSG, MPO and SERPINB10 ;

• BLmodels ∩ ZTMM : RCAN3AS, SERINC2, EPHX4, SYT1, SKA3, CTSG, MPO, AZU1, ERICH6,

IL2, SLC6A19, COBL and NTRK3 ;

• M03models ∩ ZTMM : F3.

The fact that the features selected by the sparse classifiers revealed genes selected by the initial

implemented approach reinforces the first results. MPO and CTSG are relevant genes whose expression

has an influence on the anti-TNF treatment response of each patient. It is then proposed that they may

be of therapeutic value and represent important biomarkers which can be used in clinical practice. This

analyses revealed an isolated gene in the M03 dataset which the LOOCV approach did not select but was

present in the highest scored protein-protein interactions found through the BN learning: Coagulation

Factor III, Tissue Factor or simply Tissue Factor (F3 ). It is an essential initiator of the extrinsic

pathway of blood coagulation and it is also involved in the angiogenesis and the pannus formation of

RA progression. In fact, it has been demonstrated that it is expressed not only in arthritic synovial

tissue but also infiltrating macrophages, favoring extravascular coagulation and leading to inflammation

in RA [90, 91].

To conclude, the sparse logistic approach used to obtain predictive models of anti-TNF treatment lead

to the identification of genes consensually associated with therapy response, some known to be related

with RA pathogenesis. The novel genes discovered are suggested to center further research regarding

this subject. The BN learning analysis revealed protein-protein interactions both specific to the type of

patients (responder and non-responder) and common to the whole group. The classification algorithms

analysis allowed an heuristic evaluation of their performance predicting the treatment response, revealing

several genes to be outcome predictors in accordance to the results from the sparse logistic regression

methodology.
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Table 5.12: Classifiers prediction performance for BL sub-datasets when using deseq method for regular-
ization and vst method for transformation. Every performance value corresponds to the median over 16
repeats except the first column ones.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.632 0.526 0.474 0.526 0.474 0.526 0.579 1.000 1.000
Sn 0.750 0.833 0.909 1.000 0.857 0.900 1.000 1.000 1.000
Sp 0.429 0.167 0.000 0.000 0.000 0.000 0.000 1.000 1.000

rf
Acc 0.421 0.526 0.526 0.579 0.632 0.632 0.579 0.842 0.868
Sn 0.417 0.778 0.571 0.700 0.818 0.636 0.636 1.000 1.000
Sp 0.429 0.333 0.400 0.444 0.300 0.500 0.500 0.692 0.683

NSC

Acc 0.474 0.526 0.526 0.474 0.474 0.474 0.474 0.974 1.000
Sn 0.667 0.917 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sp 0.143 0.222 0.000 0.000 0.143 0.000 0.000 1.000 1.000

Sparsity 0.000 0.800 0.300 0.933 0.650 0.200 0.367 1.000 1.000

plda

Acc 0.474 0.526 0.526 0.526 0.526 0.526 0.526 0.763 0.842
Sn 0.417 0.400 0.417 0.500 0.444 0.444 0.429 0.707 0.809
Sp 0.571 0.667 0.600 0.571 0.571 0.571 0.571 0.944 0.857

Sparsity 1.000 1.000 0.900 0.600 0.500 0.400 0.233 1.000 1.000

plda2

Acc 0.526 0.526 0.579 0.579 0.632 0.579 0.579 0.895 0.895
Sn 0.500 0.444 0.600 0.600 0.636 0.636 0.636 0.894 0.889
Sp 0.571 0.556 0.545 0.571 0.600 0.556 0.545 0.894 0.866

Sparsity 0.160 1.000 0.900 0.600 0.500 0.400 0.233 1.000 1.000

nblda
Acc 0.474 0.526 0.684 0.632 0.632 0.579 0.579 1.000 1.000
Sn 0.417 0.400 0.571 0.615 0.571 0.636 0.667 1.000 1.000
Sp 0.571 0.714 0.700 0.625 0.625 0.500 0.500 1.000 1.000

voomDLDA
Acc 0.579 0.526 0.632 0.579 0.526 0.526 0.526 0.947 0.947
Sn 0.583 0.444 0.636 0.636 0.583 0.600 0.636 1.000 1.000
Sp 0.571 0.636 0.600 0.500 0.500 0.455 0.444 1.000 0.955

voomNSC

Acc 0.474 0.526 0.526 0.526 0.526 0.526 0.526 0.921 0.895
Sn 0.417 0.833 0.636 0.667 0.667 0.667 0.692 0.913 0.958
Sp 0.571 0.333 0.400 0.444 0.429 0.429 0.375 0.888 0.903

Sparsity 0.034 0.400 0.700 0.600 0.650 0.680 0.233 0.563 0.495
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.

Table 5.13: Classifiers prediction performance for BL sub-datasets when using deseq method for regu-
larization and rlog method for transformation. Every performance value corresponds to the median over
16 repeats except the first column ones.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.368 0.474 0.474 0.579 0.526 0.579 0.526 1.000 1.000
Sn 0.429 0.818 0.833 0.917 1.000 0.917 1.000 1.000 1.000
Sp 0.200 0.143 0.143 0.143 0.000 0.000 0.111 1.000 1.000

rf
Acc 0.421 0.526 0.526 0.632 0.579 0.579 0.632 0.895 0.895
Sn 0.429 0.667 0.636 0.750 0.625 0.667 0.692 1.000 1.000
Sp 0.400 0.429 0.333 0.571 0.500 0.556 0.556 0.879 0.889

NSC

Acc 0.474 0.579 0.526 0.526 0.526 0.526 0.526 1.000 1.000
Sn 0.500 0.917 1.000 0.778 0.778 0.786 0.818 1.000 1.000
Sp 0.400 0.143 0.100 0.222 0.143 0.100 0.091 1.000 1.000

Sparsity 0.016 1.000 0.600 0.800 0.800 0.440 0.300 1.000 1.000
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.
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Table 5.14: Classifiers prediction performance for BL sub-datasets when using deseq method for reg-
ularization and logcpm method for transformation. Every performance value corresponds to a single
repeat.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.368 0.579 0.474 0.526 0.579 0.579 0.632 1.000 0.947
Sn 0.429 0.800 0.667 0.778 0.750 0.800 0.733 1.000 0.923
Sp 0.200 0.333 0.143 0.300 0.286 0.333 0.250 1.000 1.000

rf
Acc 0.421 0.474 0.474 0.421 0.368 0.684 0.632 1.000 1.000
Sn 0.429 0.500 0.500 0.444 0.417 0.700 0.600 1.000 1.000
Sp 0.400 0.444 0.429 0.400 0.286 0.667 0.750 1.000 1.000

NSC

Acc 0.474 0.526 0.632 0.474 0.632 0.526 0.790 1.000 1.000
Sn 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sp 0.400 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000

Sparsity 0.012 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.

Table 5.15: Classifiers prediction performance for BL sub-datasets when using TMM method for regu-
larization and logcpm method for transformation. Every performance value corresponds to the median
over 16 repeats except the first column ones.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.368 0.526 0.579 0.526 0.526 0.526 0.526 1.000 1.000
Sn 0.429 0.833 0.875 0.917 1.000 0.889 1.000 1.000 1.000
Sp 0.200 0.100 0.286 0.000 0.000 0.000 0.000 1.000 1.000

rf
Acc 0.474 0.526 0.526 0.579 0.632 0.632 0.632 0.921 0.895
Sn 0.500 0.636 0.727 0.700 0.750 0.700 0.750 1.000 1.000
Sp 0.400 0.333 0.333 0.500 0.444 0.571 0.556 0.857 0.789

NSC

Acc 0.474 0.632 0.526 0.526 0.526 0.526 0.474 0.947 0.947
Sn 0.500 0.923 1.000 0.833 0.778 0.818 1.000 1.000 1.000
Sp 0.400 0.286 0.000 0.143 0.200 0.143 0.000 0.955 0.950

Sparsity 0.032 0.800 0.200 0.533 0.400 0.320 0.200 1.000 1.000

plda

Acc 0.316 0.526 0.526 0.579 0.579 0.526 0.579 0.474 0.474
Sn 0.286 0.833 0.917 1.000 1.000 1.000 1.000 0.442 0.551
Sp 0.400 0.200 0.200 0.100 0.000 0.000 0.000 0.516 0.388

Sparsity 1.000 0.800 0.700 0.467 1.000 0.160 0.133 1.000 1.000

plda2

Acc 0.474 0.526 0.474 0.474 0.474 0.474 0.474 0.526 0.474
Sn 0.643 1.000 1.000 1.000 0.667 1.000 1.000 0.578 0.449
Sp 0.000 0.000 0.000 0.000 0.143 0.000 0.000 0.429 0.500

Sparsity 1.000 0.800 0.700 0.467 1.000 0.160 0.133 1.000 1.000

nblda
Acc 0.316 0.526 0.579 0.526 0.474 0.474 0.474 0.474 0.474
Sn 0.286 0.667 0.667 0.444 0.625 0.625 0.500 0.442 0.551
Sp 0.400 0.286 0.286 0.500 0.429 0.400 0.429 0.431 0.369

voomDLDA
Acc 0.368 0.579 0.579 0.632 0.526 0.526 0.526 0.947 0.947
Sn 0.429 0.538 0.571 0.667 0.583 0.615 0.571 1.000 1.000
Sp 0.200 0.545 0.571 0.571 0.500 0.444 0.444 1.000 0.955

voomNSC

Acc 0.474 0.579 0.526 0.632 0.579 0.579 0.526 0.895 0.921
Sn 0.500 0.833 0.750 0.667 0.667 0.714 0.667 0.894 0.920
Sp 0.400 0.300 0.400 0.571 0.444 0.400 0.400 1.000 0.905

Sparsity 0.015 0.600 0.500 0.533 0.550 0.240 0.333 0.873 0.694
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.
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Table 5.16: Classifiers prediction performance for M03 sub-datasets when using deseq method for regu-
larization and vst method for transformation. Every performance value corresponds to the median over
16 repeats except the first column ones.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.250 0.450 0.500 0.600 0.550 0.550 0.500 1.000 1.000
Sn 0.000 0.778 0.875 0.818 0.833 0.917 0.846 1.000 1.000
Sp 1.000 0.111 0.250 0.333 0.250 0.091 0.091 1.000 1.000

rf
Acc 0.600 0.550 0.400 0.450 0.450 0.500 0.450 0.700 0.725
Sn 0.533 0.615 0.455 0.462 0.615 0.500 0.500 0.923 0.846
Sp 0.800 0.429 0.375 0.333 0.429 0.375 0.375 0.389 0.597

NSC

Acc 0.450 0.550 0.550 0.500 0.550 0.550 0.550 0.925 0.938
Sn 0.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sp 0.600 0.000 0.000 0.000 0.000 0.000 0.000 0.806 0.819

Sparsity 0.034 0.800 0.200 0.267 0.050 0.080 0.067 1.000 1.000

plda

Acc 0.550 0.450 0.500 0.500 0.550 0.550 0.550 0.750 0.725
Sn 0.467 0.429 0.462 0.455 0.500 0.500 0.455 0.818 0.818
Sp 0.800 0.556 0.667 0.667 0.625 0.667 0.667 0.690 0.667

Sparsity 0.000 0.600 0.400 0.467 0.400 0.760 0.167 1.000 1.000

plda2

Acc 0.500 0.450 0.450 0.500 0.500 0.450 0.500 0.750 0.750
Sn 0.467 0.455 0.455 0.462 0.455 0.462 0.462 0.794 0.772
Sp 0.600 0.571 0.444 0.571 0.556 0.500 0.556 0.732 0.723

Sparsity 1.000 0.800 0.600 0.667 0.400 0.640 0.267 1.000 1.000

nblda
Acc 0.400 0.500 0.450 0.500 0.450 0.500 0.550 1.000 0.975
Sn 0.400 0.462 0.364 0.455 0.444 0.417 0.500 1.000 1.000
Sp 0.400 0.667 0.571 0.571 0.571 0.556 0.500 1.000 0.944

voomDLDA
Acc 0.600 0.500 0.500 0.450 0.500 0.450 0.450 0.925 0.900
Sn 0.533 0.500 0.500 0.462 0.455 0.417 0.364 0.962 0.916
Sp 0.800 0.625 0.429 0.500 0.500 0.500 0.500 0.889 0.889

voomNSC

Acc 0.500 0.500 0.500 0.500 0.450 0.450 0.450 0.925 0.913
Sn 0.467 0.636 0.636 0.636 0.556 0.538 0.500 1.000 1.000
Sp 0.600 0.375 0.286 0.273 0.333 0.333 0.333 1.000 1.000

Sparsity 0.003 0.400 0.500 0.267 0.350 0.280 0.267 0.693 0.670
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.

Table 5.17: Classifiers prediction performance for M03 sub-datasets when using deseq method for regu-
larization and rlog method for transformation. Every performance value corresponds to the median over
16 repeats except the first column ones.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.500 0.550 0.550 0.550 0.500 0.500 0.500 1.000 1.000
Sn 1.000 0.786 0.769 0.750 0.727 0.833 0.778 1.000 1.000
Sp 0.000 0.250 0.222 0.222 0.125 0.182 0.222 1.000 1.000

rf
Acc 0.550 0.500 0.500 0.450 0.450 0.450 0.450 0.900 0.900
Sn 0.800 0.556 0.455 0.462 0.692 0.462 0.500 0.962 0.981
Sp 0.300 0.375 0.375 0.333 0.333 0.375 0.333 0.857 0.857

NSC

Acc 0.350 0.550 0.500 0.550 0.500 0.550 0.500 0.950 0.950
Sn 0.200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sp 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.903 0.910

Sparsity 0.870 0.800 0.200 0.133 0.100 0.040 0.133 1.000 1.000
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.
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Table 5.18: Classifiers prediction performance for M03 sub-datasets when using deseq method for reg-
ularization and logcpm method for transformation. Every performance value corresponds to a single
repeat.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.500 0.650 0.650 0.450 0.400 0.600 0.500 1.000 1.000
Sn 1.000 0.917 0.917 0.875 0.857 0.909 0.818 1.000 1.000
Sp 0.000 0.250 0.250 0.167 0.154 0.222 0.111 1.000 1.000

rf
Acc 0.550 0.650 0.650 0.550 0.400 0.700 0.500 0.700 0.900
Sn 0.800 0.917 0.917 1.000 0.857 1.000 0.818 1.000 0.929
Sp 0.300 0.250 0.250 0.250 0.154 0.333 0.111 0.000 0.833

NSC

Acc 0.350 0.600 0.600 0.400 0.350 0.550 0.550 1.000 0.950
Sn 0.200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sp 0.500 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.833

Sparsity 0.882 0.034 0.034 0.034 0.034 0.034 0.034 1.000 1.000
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.

Table 5.19: Classifiers prediction performance for M03 sub-datasets when using TMM method for reg-
ularization and logcpm method for transformation. Every performance values correspond to the median
over 16 repeats except the first column ones.

Classifier All Genes #5 #10 #15 #20 #25 #30 Model 1 Model 2

svm
Acc 0.500 0.500 0.500 0.550 0.550 0.500 0.450 1.000 1.000
Sn 1.000 0.909 0.818 0.750 0.818 0.909 0.778 1.000 1.000
Sp 0.000 0.111 0.250 0.182 0.182 0.143 0.125 1.000 1.000

rf
Acc 0.550 0.450 0.400 0.450 0.450 0.500 0.450 0.825 0.850
Sn 0.800 0.545 0.462 0.545 0.636 0.500 0.583 1.000 1.000
Sp 0.300 0.333 0.500 0.333 0.333 0.333 0.333 0.732 0.764

NSC

Acc 0.350 0.500 0.500 0.550 0.550 0.500 0.550 0.875 0.950
Sn 0.200 1.000 1.000 1.000 1.000 1.000 1.000 0.909 1.000
Sp 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.866 0.889

Sparsity 0.886 0.600 0.300 0.133 0.100 0.040 0.067 1.000 1.000

plda

Acc 0.350 0.550 0.550 0.450 0.450 0.450 0.450 0.575 0.550
Sn 0.000 0.833 0.875 0.643 0.538 0.429 0.417 0.523 0.583
Sp 0.700 0.250 0.250 0.222 0.429 0.500 0.625 0.697 0.352

Sparsity 1.000 0.200 0.100 0.067 0.050 0.040 0.033 1.000 1.000

plda2

Acc 0.400 0.550 0.550 0.500 0.550 0.550 0.550 0.550 0.525
Sn 0.000 1.000 1.000 1.000 1.000 1.000 1.000 0.477 0.458
Sp 0.800 0.000 0.000 0.000 0.000 0.000 0.000 0.670 0.604

Sparsity 1.000 0.800 0.500 0.333 0.150 0.120 0.100 1.000 1.000

nblda
Acc 0.550 0.500 0.450 0.450 0.550 0.550 0.571 0.600 0.550
Sn 0.700 0.333 0.444 0.538 0.625 0.500 0.550 0.523 0.840
Sp 0.400 0.667 0.429 0.500 0.500 0.556 0.500 0.697 0.056

voomDLDA
Acc 0.300 0.500 0.450 0.450 0.450 0.450 0.450 0.850 0.950
Sn 0.000 0.417 0.462 0.462 0.444 0.444 0.385 0.899 1.000
Sp 0.600 0.571 0.500 0.444 0.556 0.500 0.429 0.882 0.889

voomNSC

Acc 0.250 0.500 0.500 0.500 0.450 0.400 0.450 0.900 0.950
Sn 0.100 0.583 0.750 0.583 0.556 0.545 0.583 0.873 1.000
Sp 0.400 0.375 0.167 0.429 0.250 0.286 0.333 0.958 0.889

Sparsity 0.001 0.400 0.400 0.667 0.350 0.160 0.267 0.934 0.791
Acc: Accuracy; Sn: Sensitivity; Sp: Specificity.
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Chapter 6

Conclusions

Over the last decade, several gene expression signatures associating with response to anti-TNF have been

identified, but few replicated. A multiplicity of reasons may explain the inconsistencies. For example, the

study design used (heterogeneous and small cohorts, different disease stages or time points considered

and the analysis of distinct tissues or even cell types) or the technical/analytic approaches (different tran-

scriptomic platforms, different computational analysis methods). Indeed, important cell-type specificities

have been reported but can also be missed when whole tissue (such as blood or synovium) is tested.

Nonetheless, transcriptomics has tremendous potential in the field of precision medicine.

This thesis’ main goal was to identify biomarkers able to predict anti-TNF rheumatoid arthritis treat-

ment response. The starting point was two publicly available datasets containing transcriptomic data,

one from patients initiating that treatment and another from patients three-month into the treatment. A

sparse logistic regression approach was used where elastic net regularization permitted a selection of the

relevant features. Predictive models were achieved and considered to be reliable, having the models at

M03 achieved a better prediction performance. Comparing the results in regard to the two time-points,

the obtained genes which potentially may be able to predict the response were not the same. These

changes in expression profile are consistent with a decrease in blood neutrophil counts and associated

biology [17].

The protein-protein interactions found through the Bayesian network learning from the same tran-

scriptomics datasets were later validated by the STRING database, revealing CTSG – MPO and CTSG

– AZU1 to be relevant at baseline for the prediction of, respectively, “responders” and “non-responders”

patients. The results also suggested that interactions MPO – AZU1 (prior to treatment initiation) and

CTSG – ELANE (three month into treatment) were influential for both types of treatment response.

The fact that these findings are in line with the known role of the proteins encoded by those genes argues

that the created pipeline was favorable.

Regarding the second half of this study, several machine learning algorithms were applied to the data

and different angles evaluated in order to expand the suite of the classification algorithms tested. The

normalization methods applied to the data prior to classification revealed to have a smaller role in the

model’s accuracy then the transformation methods. The overall best performances were achieved by
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svm, rf, voomDLDA and voomNSC (being the latter the only one which performs feature selection). The

four sparse classification approaches used selected from the raw data a number of genes in common with

the ones obtained with the elastic net, such as MPO, CTSG, AZU1 and RCAN3AS. Hence, the present

study has led to the identification of all these genes whose expression is suggestive of being helpful for

predicting response to anti-TNF therapy.

It is very encouraging that the second component of this thesis confirmed in part the conclusions

taken from the sparse logistic regression and subsequent Bayesian network learning. Even though the

eight machine learning algorithms were not further deeply investigated, evidence was shown that they

have the potential to be used as basis to similar studies and thus should be explored in the context of

RNA-Seq and RA treatment response.

The methodology created for obtaining the RA treatment response predictive models revealed to

be satisfactory and thus it is suggested that it could be used to replicate the results with a dataset

comprising a higher number of observations. In fact, that is one of the limitations of this work, since the

number of patients used in each dataset was rather small. Alternative sparse tools should be considered,

since the sparse logistic regression approach revealed a considerable variability in the results, and thus

a stronger classifier is suggested, such as voomDLDA or voomNSC, which are two recent and promising

tools specially devoted to the RNA-Seq field. Besides, individual gene signatures should be studied in

order to validate the biomarkers and use them later in clinical practice. These biomarkers could be an

important factor in modulating the response to anti-TNF or other biologic treatments and ultimately

yield better treatment assignments to patients. In future, other factors besides transcriptomic data could

be taken in regard, for example age, sex, disease duration and complete molecular profiling of plasma.

This is an exciting time for RA as the growth of big data in clinical research and advancements in

computational approaches have opened up new avenues to study complex diseases. Hopefully in a near

future the increasing efforts to support medical informatics standards and the enrichment of cohesive

genome-wide transcriptional profiling for RA databases will result in more accurate and innovative insights

and revolutionize RA healthcare.
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Appendix A

Complete names of referenced genes

Table A.1: List of gene names repeatedly found over all predictive models with Leave-on-Out Cross-
Validation (referred in table 5.6) [92].

BL M03

Gene symbol Gene name Gene Symbol Gene name

ALOX12B Arachidonate 12-lipoxygenase ADAM33 ADAM metallopeptidase domain 33
CAPN11 Calpain 11 CCDC110 coiled-coil domain containing 110
CAPNS2 Calpain small subunit ELANE Neutrophil elastase
CCDC108 Cilia- and flagella-associated protein 65 FBLIM1 filamin binding LIM protein 1

CTSG Cathepsin G GFAP glial fibrillary acidic protein
EPHX4 Epoxide hydrolase 4 HYAL4 hyaluronidase 4
ERICH6 Glutamate Rich 6 KCNJ8 potassium inwardly rectifying channel subfamily J member 8
EVPLL Envoplakin Like KCNK4 potassium two pore domain channel subfamily K member 4

FAM133CP family with sequence similarity 133 member C, pseudogene KNCN kinocilin
FOXD4L3 forkhead box D4 like 3 LOC100128076 Protein Tyrosine Phosphatase Pseudogene
HIST1H3J H3 clustered histone 12 LOC101928222 Uncharacterized LOC101928222
IGF2BP1 insulin like growth factor 2 mRNA binding protein 1 LRRN4CL LRRN4 C-terminal like
KCNH4 Potassium voltage-gated channel subfamily H member 4 MTRNR2L3 MT-RNR2 like 3

LINC00696 Long intergenic non-protein coding RNA 696 SERTM1 serine rich and transmembrane domain containing 1
LMOD3 Leiomodin 3 TMEM105 TMEM105 long non-coding RNA

LOC339975 Uncharacterized LOC339975 TPBG trophoblast glycoprotein
LRGUK Leucine-rich repeat and guanylate kinase domain containing TRIM7 tripartite motif containing 7

MAG myelin associated glycoprotein TTC25 outer dynein arm docking complex subunit 4
MAGEC2 MAGE family member C2 UBE2QL1 ubiquitin conjugating enzyme E2 Q family like 1
MIR941-4 microRNA 941-4 VSTM2L V-set and transmembrane domain containing 2 like

MPO Myeloperoxidase ZNF843 zinc finger protein 843
NUAK1 NUAK family kinase 1
PMS2L2 PMS1 homolog 2, mismatch repair system component pseudogene 2
PRKG1 Protein kinase cGMP-dependent 1

PRSS30P serine protease 30, pseudogene
RAD21L1 RAD21 cohesin complex component like 1
RCAN3AS RCAN3 Antisense RNA
RNU6-28P RNA, U6 small nuclear 28, pseudogene

ROPN1L-AS1 ROPN1L antisense RNA 1
SKA3 Spindle and kinetochore-associated protein 3

SLC6A19 Solute carrier family 6 member 19
SYT1 Synaptotagmin-1
TBX2 T-box transcription factor 2

TGFB2 Transforming growth factor beta 2
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Table A.2: List of gene names belonging to the highest edges found in each BN [92].

BL M03

Gene symbol Gene name Gene Symbol Gene name

ADAMTS9 ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9 CCDC110 coiled-coil domain containing 110
BATF2 Basic Leucine Zipper ATF-Like Transcription Factor 2 CES1P1 Carboxylesterase 1 Pseudogene 1

CAPN11 Calpain 11 CTSG Cathepsin G
CDC42EP4 CDC42 Effector Protein 4 C8B Complement C8 Beta Chain

CYGB Cytoglobin ELANE Neutrophil elastase
C1orf95 Stum, Mechanosensory Transduction Mediator Homolog FBLIM1 Filamin Binding LIM Protein 1
DRD2 Dopamine Receptor D2 FSD2 Fibronectin Type III And SPRY Domain Containing 2

EPHX4 Epoxide hydrolase 4 F3 Coagulation Factor III, Tissue Factor
ERICH6 Glutamate Rich 6 HIST1H2AJ H2A Clustered Histone 14
EVPLL Envoplakin Like KCNK4 potassium two pore domain channel subfamily K member 4
FGD5P1 FYVE, RhoGEF And PH Domain Containing 5 Pseudogene 1 KNCN Kinocilin
IGF2BP1 Insulin Like Growth Factor 2 MRNA Binding Protein 1 LINC01361 Long Intergenic Non-Protein Coding RNA 1361
KCNH4 potassium voltage-gated channel subfamily H member 4 LOC100506071 Uncharacterized
LILRB4 Leukocyte Immunoglobulin Like Receptor B4 LOC101927468 Uncharacterized

LINC00696 Uncharacterized LOC102467224 Uncharacterized
LOC339975 Uncharacterized MIR3918 MicroRNA 3918

LRGUK Leucine-rich repeat and guanylate kinase domain containing MIR4271 MicroRNA 4271
MAG myelin associated glycoprotein MIR718 MicroRNA 718

MAGEC2 MAGE family member C2 MTRNR2L3 MT-RNR2 like 3
MIR941-2 MicroRNA 941-2 RSPH10B Radial Spoke Head 10 Homolog B
MIR941-1 MicroRNA 941-4 RSPH10B2 Radial Spoke Head 10 Homolog B2
RCAN3AS RCAN3 Antisense RNA RS1 Retinoschisin 1
SLC25A52 Solute Carrier Family 25 Member 52 TMEM51-AS1 Transmembrane Protein 51 Antisense RNA1

SVLF1 Sulfatase 1 TRIM7 tripartite motif containing 7
TBX2 T-box transcription factor 2 UBE2QL1 ubiquitin conjugating enzyme E2 Q family like 1
TCN2 Transcobalamin 2 VWA1 Von Willebrand Factor A Domain Containing 1

ZNF843 zinc finger protein 843
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