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Abstract 

The aim of this study is to propose a full body model representation of the human body to conduct an 

inverse dynamic analysis of the lower limbs during swimming activities. Considering multibody 

dynamics, a three-dimensional biomechanical model using Cartesian coordinates is presented. The 

anatomical articulations are approximated by ideal kinematic joints, which are controlled by rotational 

driver actuators. 

Kinematic data were collected at the Porto Biomechanics Laboratory for a front crawl swimming stroke 

and external forces describing the interactions between the human body and surrounding environment 

were estimated using a computer simulation method available in the literature. An interface between the 

full body biomechanical model and the simulation software is developed to perform (1) the conversion 

of body geometry specifications and motion data, that is given as input to the simulation, and (2) the 

processing of the simulation output data containing the external forces, that are addressed to the full 

body model. Inverse dynamic analyses are performed considering the full body biomechanical model 

actuated upon by driver actuators, referred to as determinate problem, to evaluate the joint torques and 

intersegmental joint forces acting on the human lower limbs. 

The kinematic results, which are generally in good agreement with the literature, show the alternate 

rhythmical movement upwards and downwards performed by the lower limbs. However, as far as the 

interface developed is concerned, the results show some discrepancies on the force magnitudes acting 

upon the feet during some phases of the stroke cycle. It is expected that these discrepancies have 

impact on the intersegmental joint forces and joint torques of the lower limbs, although the lack of 

literature in this field of research does not allow a complete validation of results. Nevertheless, the results 

of the determinate problem are presented and discussed for the anatomical joints of the human lower 

limbs. 

 

Keywords: Biomechanics, Front crawl stroke, Hydrodynamic forces, Inverse dynamics, Joint torques, 

Lower limbs, Multibody dynamics, Swimming analysis. 
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Resumo 

Neste trabalho é desenvolvido um modelo completo do corpo humano para realizar a análise dinâmica 

inversa de um movimento de natação. No contexto de dinâmica multicorpo, é apresentado um modelo 

biomecânico tridimensional cuja formulação utiliza coordenadas Cartesianas. As articulações 

anatómicas são representadas por juntas mecânicas, cujos graus de liberdade são controlados por 

atuadores de junta ao longo do movimento realizado. Embora a análise seja conduzida para o corpo 

humano completo, este estudo foca-se apenas na dinâmica nos membros inferiores. 

A recolha de dados cinemáticos do movimento de natação crawl foi realizada no Laboratório de 

Biomecânica da Universidade do Porto. Relativamente às forças externas, no contexto de natação 

estas correspondem às interações mútuas entre o corpo em movimento e o meio envolvente. Uma vez 

que não é possível utilizar placas de força para medir as forças instantâneas e respetivos pontos de 

aplicação, as forças hidrodinâmicas foram obtidas através de um programa computacional de 

simulação disponível na literatura. Para isso, foi desenvolvida uma interface entre o modelo 

biomecânico em estudo e o programa de simulação de forma a realizar (1) a conversão dos dados 

geométricos e cinemática do modelo que representa o corpo humano, de forma a assegurar a 

correspondência correta dos mesmos, e (2) o processamento dos dados que resultam da simulação, 

que correspondem às forças externas aplicadas sobre o corpo. É então realizada a análise dinâmica 

inversa com atuadores de juntas, que permite a obtenção das forças e momentos intersegmentares 

dos membros inferiores. 

Os resultados da análise cinemática mostram-se concordantes com a literatura. Estes permitem aferir 

quanto ao movimento rítmico alternado dos membros inferiores, descrito como batidas sucessivas 

ascendentes e descendentes. No que diz respeito à interface implementada, durante algumas fases do 

ciclo de crawl, a magnitude das forças externas obtidas nos pés através do programa de simulação 

revela discrepância relativamente ao valor que seria esperado encontrar. É possível que estas 

divergências tenham posteriormente impacto nos resultados da análise dinâmica inversa, apesar de 

não ser possível concluir quanto à validade dos mesmos dada a falta de literatura nesta área. De 

qualquer forma, os valores obtidos para as forças intersegmentares e momentos articulares são 

apresentados e discutidos para as articulações dos membros inferiores. 

 

Palavras-chave: Biomecânica, Técnica de nado crawl, Forças hidrodinâmicas, Dinâmica inversa, 

Momentos articulares, Membros inferiores, Dinâmica de sistemas multicorpo, Análise de natação. 
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1. Introduction 

1.1. Motivation and Objectives 

Biomechanics is the field of science that describes, analyses, and assesses the physiology of living 

structures and animals using the laws of mechanics. Human motion is one of the objects of study in 

biomechanics (Winter, 2009), which involves complex interactions between the neuromuscular and 

skeletal systems. Understanding these interactions is necessary for the diagnosis and treatment of 

patients with motor deficiencies and to enhance performance of able-bodied individuals (Rajagopal et 

al., 2016). 

While some components of human motion, such as body segment kinematics, ground reaction forces, 

and muscle activity can be measured using non-invasive tools including motion capture systems, force 

plates, and electromyography, more invasive means are necessary to measure muscle-tendon 

(Ishikawa et al., 2005) and joint contact forces (Bergmann et al., 2001). Computational biomechanical 

models based on multibody dynamics are powerful tools that enable the evaluation of these quantities 

in the human body, whose in vivo or in vitro measurement is, when possible, extremely difficult (Quental 

et al., 2015). In the context of human swimming, current biomechanical models are mostly based on 

simplified models of specific parts of the human body (Cohen et al., 2015; Lauer et al., 2016). Due to 

limitations on motion acquisition, especially in the air-water interface, they are kept simple and are hardly 

able to simulate the broad range of motion of many of the anatomical segments relevant to swimming. 

Another fundamental data for the evaluation of internal forces are the external forces acting on the 

human body during swimming, herein referred to as hydrodynamic forces, which cannot be acquired 

with sufficient accuracy using current experimental methods (Takagi et al., 2015). These shortcomings 

limit the evaluation of the internal forces in the human body, even when only joint torques are required. 

This work aims to contribute to the development of more representative biomechanical models focused 

on the dynamics of human swimming motion, by combining different fields of knowledge, such as the 

biomechanics, medical sciences, sports performance, and fluid dynamics. The main objective of the 

present dissertation is to evaluate the dynamic response of the multibody system of the human lower 

limbs during a six-beat front crawl swimming motion. To achieve this, a three-dimensional full body 

biomechanical model of the human body is proposed, the Lisbon Human Body Model (LHBM). The 

modelling anthropometric measurements are given as input to the inverse dynamic analysis program 

alongside the motion kinematic and kinetic data of the subject under analysis. The multibody system 

representing the entire human body is actuated upon by joint torques. However, the determination of 

the kinetic data in the context of human swimming cannot be obtained by means of conventional tools, 

such as force plates. Instead, the hydrodynamic forces exerted in the human subject during the stroke 

cycle are accounted for using a simulation software available in the literature, the Swimming Human 

Model with Synthetic User Interface Tools (Swumsuit) (Nakashima et al., 2007). The second aim of this 

work is to develop an interface between the simulation software and the LHBM that performs the 
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adjustment on the software inputs and outputs to properly fit the characteristics between the LHBM and 

the simulation Swimming Human Model (SWUM). The interface is developed on a general basis to allow 

future studies to be conducted for front crawl or any other swimming technique supported by Swumsuit. 

1.2. State of the Art 

Modelling human body motion requires the understanding of biological and physical principles that 

provide a realistic representation of the mechanical behaviour of living systems. The ability to predict 

how the whole body moves and how it exchanges forces with the surrounding has been shown to provide 

valuable information in areas such as orthopaedics, ergonomics, forensics, sports science, and medical 

rehabilitation (Xiao and Fu, 2016). The potential of this type of analysis is ever increasing as, over the 

last decades, with the increase in computational power, numerical models of the human body have 

undergone enormous improvements (Rajagopal et al., 2016). 

1.2.1. Multibody Biomechanical Modelling 

Musculoskeletal models support with data computational methodologies instrumented for biomechanical 

analysis, in which the skeletal system consisting of rigid body segments connected by kinematic joints 

moves their body according to a dynamic activation of sets of muscles. When the modelling does not 

contemplate the muscle apparatus system, these are simply referred to as biomechanical or multibody 

models. Human biomechanical models can cover the whole body modelling (Rajagopal et al., 2016; 

Silva and Ambrósio, 2003) or only a part of it (Horsman et al., 2007; Quental et al., 2015). The 

mathematical formulation and level of discretisation of the biomechanical model depend upon the area 

of research, the objective of the analysis, and the results expected (Silva, 2003). For instance, finite 

element methods are usually used to analyse in detail the localised structural deformations or the 

mechanical behaviour of structures (Quental, 2013). On the other hand, multibody models are well 

suited to conduct large body displacements and complex interactions with the surrounding (Silva, 2003). 

The study of multibody systems is particularly useful in the prediction of the mechanical behaviour of 

the human body during daily activities, providing valuable information concerning the intersegmental 

joint contact forces between the rigid bodies that compose the biomechanical system. These results can 

be obtained either by a forward or an inverse dynamic analysis. In a forward dynamic analysis, the 

motion is predicted when the applied forces and torques are known, whereas in an inverse dynamic 

analysis the intersegmental forces are predicted for a prescribed or acquired motion. Despite both types 

of analyses being attractive in the study of the upper limb dynamics, most models, including the one 

presented in this work, mainly focus on inverse dynamic analyses because they are much more efficient 

computationally (Quental, 2013). 

A large number of biomechanical models are available in the literature. Horsman et al. (2007) and 

Cleather and Bull (2015) developed a complete dataset of the human lower limbs. Commercial 

programs, such as the AnyBody Modelling System (AnyBody Technology A/S, Aalborg, Denmark) (Lund 

et al., 2015) and the OpenSim (Simbios, Stanford, CA, USA) (Rajagopal et al., 2016) contain several 

modelling systems for a wide range of activities (Langholz et al., 2016). Quental et al. (2015) focus the 
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modelling on the detailed representation of the shoulder complex. Other studies model the full human 

body, mostly envisaging gait analysis (Pàmies-Vilà, 2012; Rajagopal et al., 2016; Silva, 2003). The 

modelling requirements of a biomechanical model mostly depend upon the motion under analysis and 

the available data. If the objective of the analysis only concerns the mechanical response of a specific 

limb, a partial description of the human body can be more efficient and less computational demanding 

than a whole-body description. Usually in swimming applications, due to the complexity of undertaking 

simulation analyses to determine the external forces, models are composed of detailed parts of the 

human body (Cohen et al., 2010; Lauer et al., 2016). Nevertheless, one purpose of this work is to 

implement a full body model that can be used to take into consideration the influence of the motion of 

the upper limbs and involve the results of the simulation of the hydrodynamic forces developed during 

swimming. Therefore, the anthropometric data of the biomechanical model applied is based on the 

dataset of Dumas et al. (2007a, 2007b). Dumas et al. (2007a) developed, for both males and females, 

a complete dataset of scaling equations for the computation of body segment inertial parameters 

(BSIPs), directly applicable in the conventional segment coordinate systems (Wu et al., 2002, 2005) and 

without restraining the position of the centre of mass (COM) and the orientation of the principal axes of 

inertia. The dataset of Dumas et al. (2007a) does not require further scaling procedures to match the 

characteristics of the anthropometric model and those of the subject whose kinematic data was 

collected. 

1.2.2. Swimming Analysis 

Human swimming is a highly competitive sport where performance has a complex dependence on 

technique, fluid dynamics, biomechanics, and physiology (Cohen et al., 2010). Several aspects 

contribute to enhance performance of swimming motion and prevent injury. A few essential components 

that help proper the swimming technique are related with body position, breathing pattern, stroke 

technique, fingers spacing, and wall turns (Hall, 2012; Wei et al., 2014). In order to quantity the effect of 

all these aspects, research have been made in the development of more kinematic and kinetic analyses 

of swimming motions. 

Aquatic movements pose unique challenges with the medium of water increasing the complexity in the 

measurement of performance and by the continuously changing nature of the geometry of the human 

body (Honda et al., 2012). A swimmer moves forward using hydrodynamic forces created with their own 

movements in water, while locomotion on land uses ground reaction force (Matsuda et al., 2016). Unlike 

terrestrial motion where these ground reaction forces are easily measured using force platforms, the 

determination of the external forces in water is very difficult (Lauer et al., 2016). Takagi and Sanders 

(2002) computed the fluid forces acting on the swimmer’s hand by direct pressure measurement. 

However, such tools only provide the hydrodynamic forces acting upon specific parts of the human body 

being inexistant today any experimental apparatus able to acquire the hydrodynamic forces on the 

complete human body during swimming activities. 

Initial investigations into swimming propulsion were strictly experimental, and conducted for simplified 

models of specific parts of the human body (Jensen and McIlwain, 1979). However, all predictions were 



4 

 

limited by the fact that they tend to constraint several parameters, such as body geometry, motion data, 

or fluid properties. Over the last decades, the use of computational fluid dynamics (CFD) has emerged 

in aquatic locomotion research as a promising alternative of determining all the important quantities and 

thus provide insight into swimming hydrodynamics. CFD is a numerical simulation technique for solving 

the Navier-Stokes equations of fluid flow (Takagi et al., 2015). The advantage of CFD simulations in the 

context of human swimming lie in the treatment of (1) the complicated and transient movements of a 

flexible body shape in the water; (2) the dynamically changing shape, with rotations of many body 

segments about multiple axes; and (3) the large deformation of the water surface (Takagi et al., 2015). 

The first applications of CFD to swimming were conducted under steady state conditions of fixed bodies 

(Bixler and Riewald, 2002). However, with the arising interest of the scientific community over more 

complex swimming analyses, a variety of CFD simulations incorporating the moving body of the 

swimmer were developed: Von Loebbecke et al. (2009) computed the drag past a streamlined swimmer 

during dolphin kick; Keys (2010) studied several swimming techniques, namely the dolphin kick, the 

freestyle, or front crawl, and the freestyle and breaststroke kick considering the full body model; Samson 

et al. (2017) performed the simulation in front crawl swimming to analyse the propulsive forces 

generated by the hand and forearm; Lauer et al. (2016) simulated the underwater sculling motion of the 

upper limbs. 

More recently, smoothed-particle hydrodynamics (SPH) methods emerged to answer to more complex 

questions regarding the splashing fluid effects and refractions at the free surface during swimming 

strokes, such as the front crawl swimming (Cleary et al., 2013; Cohen et al., 2009, 2015). However, 

computer simulation based on CFD and SPH methods is time-consuming not efficient to conduct large-

scale parameter studies (Takagi et al., 2015). Therefore, an alternative computer simulation method that 

requires much less computation time has been developed by Nakashima et al. (2007). The simulation 

software, called Swumsuit, offers the possibility of conduct human swimming simulations without solving 

the flow field while still providing good results and considering the unsteady fluid effects. Swumsuit is a 

freely available software capable of perform simulations of various swimming motions, including the 

front crawl swimming, backstroke, breaststroke, among others (Nakashima et al., 2013; Takagi et al., 

2015). These simulations have provided practical information for adjusting swimming movements and 

to enable swimmers to move faster and more efficiently. Moreover, Swumsuit was utilised not only for 

swimming performance analysis, but also for a transfemoral prosthesis of lower limb amputees 

(Nakashima et al., 2015). Of fundamental importance for the work developed in this dissertation is that 

Swumsuit estimates and outputs a representation of the hydrodynamic forces in all anatomical segments 

of the swimmer body model, thus providing the missing link for the inverse dynamic analysis. 

1.2.3. Application Case 

Fundamental quantities of interest in human motion research are the intersegmental forces and 

moments acting at the joints, which represent the net loads that act at each biomechanical joint. Due to 

the nature of human motion research, direct measurements techniques are rarely available and often 

inadequate to measure internal loading during activities of daily living and exercise (Derrick et al., 2020). 

The exception is the work of Bergmann et al. (2001) with instrumented prosthesis, but cannot be used 
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in a broad range of activities (Bergmann et al., 2001). Inverse dynamics analyses represent an 

alternative of estimate these quantities. To perform an inverse dynamic analysis, the motion of the 

multibody system must be known in advance as well as the externally applied forces so that the only 

unknowns are the internal forces of the system (Nikravesh, 1988). 

For several swimming techniques, such as the front crawl stroke, the experimental data acquisition 

presents technical difficulties when compared with data acquisition for terrestrial motions. For instance, 

the air-water interface reduces marker visibility, and normal splashing produces a large amount of 

reflections that made tracking of some of the markers difficult (Andersen, 2019). Also, a recent work 

evaluated the changes in swimming motion performance and velocity induced by motion capture 

systems (Washino et al., 2019). Washino et al. (2019) showed that the effect of the reflective markers 

attached to the swimmer’s surface reduces swimming velocity and produces drag, thus contributing 

negatively to swimming performance. Developments on the assessment of 3D motion kinematics 

specific to the area of swimming are expected to contribute to augment the analysis potential in the 

context of swimming (Ceccon et al., 2013; Honda et al., 2012). 

In this work, the multibody biomechanical model of the full human body is applied in an inverse dynamics 

methodology to evaluate the intersegmental joint forces and joint torques of the human lower limbs 

during a front crawl swimming stroke. The kinematic data of the swimming motion performed by a male 

subject were provided by the Porto Biomechanics Laboratory (LABIOMEP-UP). The simulation software 

Swumsuit is used to estimate the external hydrodynamic forces during front crawl swimming. 

Regarding the front crawl swimming stroke technique, the propulsive force is mainly created by the 

upper limbs, and thus the majority of studies in the literature have examined the movements of the upper 

limbs (Cohen et al., 2015; Harrison et al., 2014). The only study found in the literature in which the hip 

joint torques were determined for a front crawl swimming motion was developed by Nakashima et al. 

(2015). The work aimed to investigate the effect of knee joint motion on the swimming performance of 

an individual with a transfemoral prosthesis. Nevertheless, the contribution of the kicking action of the 

lower limbs is thought to improve the arm stroke technique, contribute to propulsion, and help to keep 

the body in a streamlined position, thus reducing the resistive drag (Gourgoulis et al., 2013). The present 

dissertation focuses on the analysis of the intersegmental forces and joint moments of the human lower 

limbs. 

1.3. Dissertation Outline 

This dissertation is organised in two main parts: the first part, Chapters 1 through 5, addresses the 

background literature, methods, and biomechanical data required for the dynamic analysis of swimming; 

the second part focuses on the kinetic data acquisition, or computation, and on the analysis of a 

swimming activity. 

Chapter 1 introduces the background to the dissertation indicating the aims and general motivation 

behind the study, and reviews the current developments in biomechanical modelling, as well as in 

inverse dynamic analysis of biomechanical models in the context of swimming. Chapter 2 exposes the 
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work methodology to accomplish the dissertation’s objectives. Chapter 3 describes the topology of the 

full-body biomechanical model, LHBM, and lists all the anatomical data of the human subject under 

analysis. Chapter 4 describes the principles for the implementation of the biomechanical model using a 

multibody formulation based on fully Cartesian coordinates. Chapter 5 outlines the methodology 

followed in the kinematic data acquisition of the swimming motion for a front crawl swimming stroke, and 

respective processing of data. The joint angles of the human lower limbs and the swimmer’s body 

rotation about its longitudinal axis in terms of shoulder roll and hip roll are compared with the literature 

to validate the kinematic analysis and the biomechanical model formulation. 

Chapter 6 addresses the computation of the hydrodynamic forces generated over the swimmer’s body 

during swimming, using a simulation software Swumsuit developed by Nakashima et al. (2007). An 

interface between the simulation software and the biomechanical model presented in Chapter 3 is 

created to perform the conversion between modelling specifications. Some results of the fluid forces 

acting on the lower limbs are compared with Nakashima et al. (2007) to validate the applied 

methodology. Chapter 7 develops the determinate inverse dynamic analysis of the swimming motion. 

The degrees of freedom of the multibody system are actuated by driving joint actuators. A discussion of 

results regarding the intersegmental forces and joint torques obtained for the lower extremity of the 

biomechanical model is performed. 

Chapter 8 summarises the thesis and addresses future developments in the field of human swimming. 

In Appendix A, the markers setup protocol used in the kinematic data acquisition is presented. Appendix 

B shows the layout of LABIOMEP-UP facilities, in which the experimental data acquisition was 

conducted. Appendix C contains the description of the input data files that are given to the simulation 

program to estimate the hydrodynamic forces. 

1.4. Novel Aspects of the Work 

The present dissertation develops a full body biomechanical model to study the human swimming motion 

of a front crawl swimming stroke. The biomechanical modelling data is based on the dataset of Dumas 

et al. (2007a, 2007b) that provides scaling equations for the computation of BSIPs. The work of Pàmies-

Vilà (2012) is used to assess data for the head and neck, as two different body segments. The kinematic 

data acquisition was conducted in LABIOMEP-UP for a male subject and provided to the current work. 

Regarding the front crawl swimming stroke, the role played by the upper and lower limbs is unbalanced 

since the upper limbs contribute with the most part of the total body propulsion (Guignard et al., 2019). 

Therefore, several studies in the literature are focused on the study of the arm stroke to understand the 

effects of fluid dynamics on the swimmer’s performance. However, leg kicking is very important as well 

to ensure stability and help to maintain the body in an optimal position, thus reducing the resistive drag 

(Davies et al., 2009). In this work, the analysis is concentrated on the motion dynamics of the human 

lower limbs. 

There have been few studies of the multibody dynamic analysis of human swimming because external 

forces are very difficult to obtain. CFD and SPH modelling offer quantitively insight into fluid forces. 
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However, the computational time cost becomes enormous for a single subject-specific analysis. 

Swumsuit offers the possibility of conduct human swimming simulations without solving the flow field 

(so the computational cost decreases) while still providing good results (Nakashima et al., 2007; Takagi 

et al., 2015). The integration of Swumsuit in a computational routine that performs kinematic data 

processing, kinematic analysis, and solves the inverse dynamic analysis is performed. 
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2. Methodology 

The present dissertation studies the dynamics of motion of a healthy human subject performing a front 

crawl swimming stroke. To this end, the proposed methodology uses a general 3D multibody formulation 

in Cartesian coordinates to describe the position of the anatomical segments and the topological 

structure of the human body. By means of an inverse dynamic analysis, quantitative information on the 

resultant joint torques and intersegmental forces produced during the swimming stroke cycle is provided. 

The methodological approach employed in this work is coded in MATLAB (Mathworks, Natick, MA). The 

data flow of the computational implementation, shown in Figure 2-1, is described in the following main 

steps of the analysis: 

1. Development of a biomechanical human body model 

Biomechanical models consist in mathematical representations that describe the physics and 

physiology of human body movement. For a wide variety of motions, biomechanical models are 

described as an open kinematic chain composed of several rigid bodies, that are interconnected by 

kinematic pairs, or joints, and acted upon by externally applied forces. Each rigid body represents 

an anatomical segment of the human body, holding the respective physical characteristics (mass, 

length, tensor of inertia, and position of the centre of mass in a local coordinate system), and the 

kinematic joints correspond to the anatomical articulations that constrain the relative motion 

between body segments. The externally applied forces set the dynamic interaction between the rigid 

bodies and the surrounding. For the sake of simplicity, anatomical segments are assumed to be 

infinitely rigid and the articulations to be ideal kinematic joints. 

From the numerical point of view, the development of biomechanical models to study and analyse 

the structures of the human body is quite challenging due to the complexity and non-linear nature 

of the equations involved. Therefore, there has been a considerable effort to develop not only more 

accurate biomechanical models but also more efficient formulations that allow a simpler and 

systematic solution of the equations (Quental, 2013). 

According to the type of motion being studied, the requirements on the discretisation level of detail 

of the biomechanical model may change. In this work, a full body biomechanical model was 

developed to study the front crawl swimming motion. The numerical methodology used in the 

definition of the biomechanical model followed a multibody formulation. By means of a Cartesian 

formulation, the position and orientation of each body segment was determined at each instant of 

time. 

2. Experimental setup and data acquisition 

In an inverse dynamics approach, the externally applied forces and the full-body system kinematics 

are given as input to the computational program. Regarding the experimental data acquisition, 
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motion capture systems represent the most common method for obtaining kinematic data in aquatic 

motion (Honda et al., 2012). 

Data acquisition for the front crawl swimming stroke was conducted in LABIOMEP-UP using a three-

dimensional motion capture system. Given the nature of the motion, the capture system comprised 

a set of underwater and above-water cameras. Reflective markers were attached to anatomical 

landmarks of the subject’s body, following the protocol described in Appendix A. Due to the COVID-

19 pandemic no complementary kinematic data acquisitions were performed during this dissertation. 

Instead, data taken previously for a male subject performing a hip-driven front crawl swimming 

stroke was provided by LABIOMEP-UP to be used in this work. 

3. Data treatment and processing 

Due to the inherent difficulties in an aquatic environment, especially in the air-water interface, the 

kinematic data acquisition by means of a motion capture system is associated with inaccuracy 

issues. The reliability of these measurements is proved to have an extreme impact on the goodness 

of the results of an inverse dynamic analysis (Honda et al., 2012). For that reason, experimental 

data were filtered for noise removal, and processed kinematically to obtain a suitable data set for 

the inverse dynamic analysis, ensuring that the motion reconstruction is consistent with the 

biomechanical model at every time instants of the stroke cycle, i.e., that the positions, velocities, 

and accelerations of the anatomical segments of the biomechanical model are consistent with the 

kinematic constraint equations of the biomechanical model and their derivatives. 

4. Estimation of the hydrodynamic forces 

Unlike other human motions (e.g. gait, jumping, running), in swimming there are no biomechanical 

equipment tools to acquire the external forces acting on each body segment. Takagi and Sanders 

(2002) computed the fluid forces acting on the hand by direct pressure measurements at a 

swimmer’s hand surface using micro pressure sensors. Other studies (Arellano et al., 2000; 

Benjanuvatra et al., 2007; Jesus et al., 2019) made use of force plates to detect the external forces 

in swimming starts and turns. However, such tools do not allow the computation of the hydrodynamic 

forces acting on all body segments of the human body, for the entire swimming stroke cycle. 

Numerical methods combined with experimental investigations are used to predict the 

hydrodynamic forces developed during swimming motions (Takagi et al., 2015). Computer 

simulation based on CFD and SPH methods has proven to be very powerful to this end. However, 

such methods are computationally and time expensive, given the complexity of simulating human 

swimming. Nakashima et al. (2007) developed an alternative computer simulation tool that requires 

much less computation time. The human body model is called SWUM and the simulation software 

in which the hydrodynamic forces are computed, based on simplified geometries of the swimmer 

anatomical segments moving on a fluid environment, is called Swumsuit. The software is available 

for free download and is used in the estimation of the hydrodynamic forces developed during the 

front crawl swimming stroke studied in this dissertation. 
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5. Implementation of an inverse dynamic analysis 

The dynamics of a multibody system can be solved by means of an inverse or a forward dynamic 

analysis. The latter is used to predict the system’s kinematics when the applied forces and joint 

torques are known, but not the subject motion. Although it is a more powerful alternative since in its 

formulation the availability of experimental data is not always necessary, a forward dynamic analysis 

is very often impractical in the computational cost point of view due to its very high computational 

costs and eventual lack of adherence between the computed movement and a realistic motion 

(Quental et al., 2016). For these reasons, the inverse dynamics approach is preferred for 

biomechanical system analyses. The intersegmental forces and joint torques are determined from 

the solution of the system of non-linear equations of the multibody system. In this dissertation, an 

inverse dynamic analysis of the human body system is performed for a front crawl swimming stroke 

cycle. The multibody system is actuated upon by joint torques. 

 

Figure 2-1: Flowchart of the MATLAB program implemented to perform inverse dynamic analyses of 
human motions. The steps highlighted in blue are further detailed in Chapter 6. 
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3. Biomechanical Model Formulation 

In this chapter, the 3D multibody biomechanical model developed to study front crawl swimming is 

described. The modelling parameters, such as anthropometric data, and definition of the different body 

segments are based on scaling equations defined by Dumas et al. (2007a; 2007b), except for the head 

and neck, whose data is taken from Pàmies-Vilà (2012). Regarding the motion of body segments, the 

biomechanical model includes the definition of the articular structure of the full body model (Oliveira, 

2016; Silva and Ambrósio, 2002). 

3.1. Skeletal System 

The study of human motion requires the formulation of biomechanical models composed of rigid bodies 

with proper physical and physiological properties. Since the definition of anthropometric data for every 

single individual is infeasible, linear regressions such as scaling equations, based on total body mass 

and segment length, are commonly used to obtain all the necessary BSIPs. Dumas et al. (2007a) 

developed, for both males and females, a complete dataset of scaling equations for the computation of 

BSIPs. In their work, data taken originally from McConville et al. (1980), who studied 31 adult males 

(mean age 27.5 years old, mean weight 80.5 kg, mean stature 1.77 m), were adjusted in order to provide 

BSIPs directly applicable in the conventional segment coordinate systems (Wu et al., 2002, 2005) and 

without restraining the position of the centre of mass (COM) and the orientation of the principal axes of 

inertia. 

 

ID Rigid Body Description 

1 Pelvis From the 1st lumbar vertebra to the pelvic bone 

2 Right Thigh From right hip to right knee 

3 Right Leg From right knee to right ankle 

4 Right Foot 
From right ankle to midpoint between 1st and 5th 
right metatarsals 

5 Left Thigh From left hip to left knee 

6 Left Leg From left knee to left ankle 

7 Left Foot 
From left ankle to midpoint between 1st and 5th left 
metatarsals 

8 Torso From the 1st to the 12th thoracic vertebra 

9 Right Arm From right shoulder to right elbow 

10 Right Forearm From right elbow to right wrist 

11 Right Hand 
From right wrist to midpoint between 2nd and 5th 
right metacarpals 

12 Left Arm From left shoulder to left elbow 

13 Left Forearm From left elbow to left wrist 

14 Left Hand 
From left wrist to midpoint between 2nd and 5th left 
metacarpals 

15 Neck From the 1st to the 7th cervical vertebra 

16 Head Cranium, upper and lower jaws 

Figure 3-1: Schematic representation of the full body biomechanical model of the human body and 
definition of the respective anatomical segments. 
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The 3D biomechanical model proposed here follows the human body topology considered by Dumas et 

al. (2007a), being composed of sixteen anatomical segments: pelvis, torso, neck, head, and right and 

left thighs, legs, feet, arms, forearms, and hands. The head and neck body segments are considered as 

two different bodies according to Pàmies-Vilà (2012). Given the complexity of the motion under analysis, 

all limbs play an important role on the body propulsion and lifting. For that reason, the biomechanical 

model is a full body representation of the human body. Figure 3-1 illustrates the skeletal structure and 

the description of each anatomical segment. 

3.1.1. Anthropometric Measurements 

The kinematic data provided by LABIOMEP-UP are obtained for a 25-year-old male swimmer with 70.3 

kg, and 1.80 m, whose anthropometry is within the population considered for the development of the 

scaling equations proposed by Dumas et al. (2007a; 2007b). The resulting anthropometric 

measurements considered for the swimmer subject are listed in Table 3-1. The adjustment procedures 

and BSIPs scaling equations described in the dataset of Dumas et al. (2007a; 2007b) follow the 

recommendations of the International Society of Biomechanics (ISB) (Wu et al., 2002, 2005). 

Table 3-1: Anthropometric data of the sixteen anatomical segments of the developed biomechanical 
model. The ID corresponds to the numeration in Figure 3-1. The COM, moments of inertia, 
and products of inertia are described in the respective body’s local reference frame (with the 
origin at the proximal joint). 

ID 
Length 

[m] 
COM in local frame 

[m] 
Mass 
[kg] 

Moments of Inertia 
[10-2 kg·m2] 

  𝜉 𝜂 𝜁  𝐼𝜉𝜉 𝐼𝜂𝜂 𝐼𝜁𝜁 𝐼𝜉𝜂 𝐼𝜉𝜁  𝐼𝜂𝜁 

1 0.25911 -0.0871 -0.0386 -7.7727e-04 9.9826 68.36 75.29 60.48 4.19 0.96 0.43 

2 0.4689 -0.0192 -0.2011 0.0155 8.6469 15.99 4.28 17.11 0.93 0.08 0.93 

3 0.3927 -0.0189 -0.1610 0.0027 3.3744 4.08 0.52 4.08 0.08 0.02 0.13 

4 0.1311 0.0501 -0.0198 0.0034 0.8436 0.04 0.20 0.19 0.02 0.01 0 

5 0.4687 -0.0192 -0.2011 -0.0155 8.6469 15.98 4.27 17.10 0.93 0.08 0.93 

6 0.4065 -0.0195 -0.1667 -0.0028 3.3744 4.37 0.56 4.37 0.09 0.02 0.14 

7 0.1158 0.0442 -0.0175 -0.0030 0.8436 0.03 0.15 0.15 0.02 0.01 0 

8 0.4055 -0.0146 -0.1703 -0.0008 23.4099 28.06 24.06 30.18 12.47 0.15 0.62 

9 0.3066 0.0052 -0.1386 -8.1097e-04 1.6872 1.52 0.31 1.62 0.06 0.04 0.01 

10 0.2659 0.0027 -0.1109 0.0037 1.1951 0.66 0.10 0.62 0.01 0 0.05 

11 0.0920 0.0075 -0.0772 0.0068 0.4218 0.13 0.05 0.11 0.02 0.01 0.01 

12 0.3075 0.0052 -0.1390 0.0080 1.6872 1.53 0.31 1.63 0.06 0.04 0.01 

13 0.2613 0.0026 -0.1090 -0.0037 1.1951 0.64 0.10 0.59 0.01 0 0.05 

14 0.0988 0.0081 -0.0829 -0.0073 0.4218 0.15 0.06 0.13 0.02 0.01 0.02 

15 0.1444 0 0.0570 0 0.9420 0.15 0.09 0.18 0.01 0 0 

16 0.1733 0.0791 0.0303 0 3.7681 0.89 0.50 1.02 0.06 0 0.01 

1For pelvis, see Figure 3-2 for length definition and origin of local reference frame. 

Apart from the pelvis body segment, all anatomical lengths correspond to the description in Figure 3-1, 

and the position of the COM, moments of inertia, and products of inertia are expressed in the body local 
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reference frame (𝜉, 𝜂, 𝜁) (with the origin at the proximal joint). Regarding the pelvis body segment, 

Dumas et al. (2007a) proposed an alternative definition, consisting in the distance between the right 

anterior superior iliac spine (RASIS) to left anterior superior iliac spine (LASIS). Following this 

alternative, the origin of the pelvis local reference frame is the midpoint between RASIS to LASIS. The 

alternative body length definition and origin of the local reference frame are illustrated in Figure 3-2. 

 

Figure 3-2: Frontal view of the pelvic bone (adapted from Lower extremity: Anatomy study course | 
Kenhub), showing the right and left anterior superior iliac spine and right and left posterior 
superior iliac spine (RASIS, LASIS, RPSIS, and RPSIS, respectively) anatomical 
landmarks. The midpoint between the RASIS and LASIS is displayed in red. 

3.2. Articular System 

The sixteen anatomical segments are linked by fifteen anatomical joints: eight spherical joints represent 

the cervical, lumbar, and right and left hip, shoulder, and ankle joints; four universal joints represent the 

right and left elbow and wrist joints; and three revolute joints represent the right and left knee, and the 

atlanto-occipital joints (Oliveira, 2016). Figure 3-3 illustrates the topology of the articular system of the 

biomechanical model. 

For most swimming stroke techniques, the range of motion between body segments is higher than the 

common motions studied in the literature, especially regarding the shoulder complex. Considering the 

model topology described before, the level of discretisation of the biomechanical model may be 

considered insufficient to study the dynamics of motion of the upper limbs. However, and since the aim 

of this study is to analyse the dynamics of the lower limbs during a front crawl swimming stroke, the 

formulation of the articular system is deemed suitable for the motion under analysis (Nakashima et al., 

2007). 

The type of anatomical joint dictates the number of constrained degrees of freedom (DOF). The 

remaining, unconstrained, DOF define the total DOF of the multibody system. The 3D biomechanical 

model developed includes 41 DOF: six describe the position and orientation of the pelvis with respect 

to the global reference frame, which is responsible for the motion of the human body model as one 

whole; the remaining 35 DOF are related to the relative motion of the anatomical segments at the 

kinematic joints: 24 for the rotation of the cervical, lumbar, and right and left hip, shoulder, and ankle 

joints; 8 for the rotation of the right and left elbow and wrist joints, and 3 for the rotation of the right and 
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left knee, and the atlanto-occipital joints. Figure 3-3(b) illustrates the 41 DOF of the articular system of 

the biomechanical model. 

  

(a) (b) 

Figure 3-3: Schematic representation of kinematic joints of the full body biomechanical model: (a) 
topology of the articular system and (b) exploded view of the full body biomechanical 
model. The 41 DOF are represented by circular arrows. 

Considering a Cartesian coordinates formulation, to be detailed in Chapter 4, the joint centres of rotation 

and other anatomical reference points are defined in body-fixed reference frames (𝜉, 𝜂, 𝜁). The origin of 

each local reference frame is the COM of the respective body segment, and the corresponding 

orientations of the local axes are defined according to the ISB recommendations (Wu et al., 2002, 2005). 

Table 3-2 contains all the data regarding the fifteen kinematic joints. Each joint is described in the local 

reference frame of the proximal and distal bodies. Spherical joints are fully described by their centre of 

rotation since no constraints exist on the rotation. Universal and revolute joints require the definition of 

axes of rotation about which the bodies rotate. In vivo measurements allow the estimation of biological 

axes of rotation, offering a more accurate and consistent dataset (Horsman et al., 2007). However, in 

this study the axes of rotation of the universal and revolute joints were determined as being the same 

as the local direction axes, i.e., the rotation axes are aligned with the body-fixed reference frame. 
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Table 3-2: Coordinates of the centres of rotation of the 15 kinematic joints in the biomechanical model 
developed. The ID corresponds to the numeration in Figure 3-3. All coordinates are 
described in the respective body’s local reference frame. 

ID Joint Type 
Proxi-
mal 

Body 

Distal 
Body 

Local centre of rotation in the 
proximal body 

[m] 

Local centre of rotation in the 
distal body 

[m] 

     𝜉 𝜂 𝜁 𝜉 𝜂 𝜁 

1 Right Hip Spherical Pelvis 
Right 
Thigh 

0.0613 -0.0567 0.0937 0.0192 0.2011 -0.0155 

2 Right Knee Revolute 
Right 
Thigh 

Right Leg 0.0195 -0.2675 -0.0152 0.0189 0.1610 -0.0027 

3 
Right 
Ankle 

Spherical 
Right 
Leg 

Right 
Foot 

0.0190 -0.2317 -0.0027 -0.0501 0.0198 -0.0034 

4 Left Hip Spherical Pelvis 
Left 

Thigh 
0.0613 -0.0567 -0.0937 -0.0192 0.2011 -0.0155 

5 Left Knee Revolute 
Left 

Thigh 
Left Leg -0.0195 -0.2674 -0.0152 -0.0195 0.1667 -0.0028 

6 Left Ankle Spherical Left Leg Left Foot -0.0197 -0.2399 -0.0028 0.0442 0.0175 -0.0030 

7 Lumbar Spherical Pelvis Torso -0.0035 0.0301 0 0.0145 -0.2355 
8.5008e-

04 

8 
Right 

Shoulder 
Spherical Torso 

Right 
Arm 

0.0323 0.1088 0.1785 -0.0052 0.1386 0.0080 

9 
Right 
Elbow 

Universal 
Right 
Arm 

Right 
Forearm 

-0.0057 -0.1618 0.0079 -0.0027 0.1109 -0.0037 

10 Right Wrist Universal 
Right 

Forearm 
Right 
Hand 

-0.0028 -0.1560 -0.0038 -0.0075 0.0772 -0.0068 

11 
Left 

Shoulder 
Spherical Torso Left Arm 0.0323 0.1088 -0.1785 0.0052 0.1390 0.0080 

12 Left Elbow Universal Left Arm 
Left 

Forearm 
0.0057 -0.1623 0.0079 0.0026 0.1090 -0.0037 

13 Left Wrist Universal 
Left 

Forearm 
Left 

Hand 
0.0028 -0.1533 -0.0037 0.0081 0.0829 -0.0073 

14 Cervical Spherical Torso Neck 0.0146 0.1703 
8.1097e-

04 
0 -0.0570 0 

15 
Atlanto-
occipital 

Revolute Neck Head 0 0.0875 0 -0.0791 -0.0303 0 
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4. Multibody Dynamics Overview 

In this chapter, the methods based on multibody dynamics used to study the human motion, including 

the formulation required to perform kinematic and inverse dynamic analyses, are introduced. The 

methodology and notation adopted in this work follows that of Nikravesh (1988), being the system 

described using a set of Cartesian coordinates. 

4.1. Cartesian Coordinates 

The development of general-purpose programs is of great interest in biomechanics, since the governing 

equations addressed to a mechanical system can be replicated to another. The computational efficiency 

of a general-purpose program depends upon several factors, one of which is the choice of coordinates 

(Nikravesh, 1988). However, the computational efficiency might not be the decisive factor for all 

analyses. Regarding multibody dynamics applied to inverse dynamic analyses, a Cartesian coordinates 

formulation is a common methodology used. Even though it is a less computationally efficient method 

than others based on minimal coordinates, the low order of nonlinearity and the simplicity in deriving the 

equations of motion becomes an enormous advantage when compared to other types of coordinates, 

such as generalized and relative coordinates (Nikravesh, 1988). Therefore, Cartesian coordinates are 

adopted in this work to describe the multibody system. When using this type of coordinates, body-fixed 

reference frames are considered embedded in each body segment of the multibody system so that their 

position and orientation can be defined about a global, stationary reference frame, at every instant of 

time of the analysis, as illustrated in Figure 4-1. 

In the three-dimensional domain, an unconstrained body requires 6 independent coordinates to describe 

its configuration, i.e., in 3 translations and 3 rotations. These coordinates define the Cartesian coordinate 

system that is fixed in the body, meaning that the translational coordinates locate the origin of the body-

fixed, or local, reference frame relative to the global reference frame, and the rotational coordinates 

define the orientation of the respective local axes. 

For large-scale computer programs dealing with the angular orientation of rigid bodies, an alternative to 

the three angles defining the body orientation, for instance Euler angles, consists in the definition of a 

set of four orientational coordinates, known as Euler parameters, which are normalised quaternions. 

These coordinates are related by the relationship 𝐩T𝐩 = 1, where 𝐩 is a vector containing the four Euler 

parameters. Note that this alternative also describes 3 rotations only. Although both formulations lead 

to the same rotational matrix 𝐀, their physical meaning is different: Euler angles represent three 

consecutive rotations while Euler parameters represent a single rotation about a specific axis. The 

application of Euler parameters is preferred over the Euler angles since the former drastically simplifies 

the mathematical formulation involved in large-scale multibody programs, and is free of some 

deficiencies, such as singularity issues (Nikravesh, 1988). 



20 

 

Considering the Cartesian coordinates formulation, the coordinates of a point P, defined in the local 

reference frame of a body i, are given in the global reference frame by the expression: 

𝐫𝑃 = 𝐫𝑖 + 𝐀𝑖𝐬′𝑖
𝑃 (4-1) 

where 𝐫𝑃 are the global coordinates of point P, 𝐫𝑖 are the translational coordinates of body i, 𝐀𝑖 is the 

rotation matrix of body i, defined by its Euler parameters, and 𝐬′𝑖
𝑃 are the coordinates of point P in the 

local reference frame of body i. Note that any vector defined in the local reference frame of a body is 

represented with a superscripted apostrophe. 

 

Figure 4-1: Location of point P in the global (XYZ) and local (𝜉, 𝜂, 𝜁) reference frames. 

Considering a multibody system composed of 𝑛 bodies, in which the position and orientation of each 

body at every instant of time is defined in a column vector of generalised coordinates 𝐪, the overall 

vector of coordinates has (7 × 𝑛) entries, and is written as 

𝐪 = [𝐪1
T,  𝐪2

T, . . .  𝐪𝑛
T]T, with 𝐪𝑖 = {𝐫𝑖

T, 𝐩𝑖
T} = {𝑥, 𝑦, 𝑧, 𝑒0, 𝑒1, 𝑒2, 𝑒3}𝑖

T (4-2) 

where 𝐫 = {𝑥, 𝑦, 𝑧} represent the translational coordinates, and 𝐩 = {𝑒0, 𝑒1, 𝑒2, 𝑒3} represent the Euler 

parameters of a body. 

The multibody system configuration is not independent since kinematic joints constrain the relative 

motion of adjacent body segments. Besides, driver actuators are responsible for guiding the body 

system according to the motion performed, in particular for biomechanical applications. The 

relationships between the coordinates at every instant of time are introduced in the form of algebraic 

equations, grouped as a vector of constraint equations, 𝚽. The number of DOF of the multibody system 

decreases by the same number of independent constraint equations. From the kinematic point of view, 

all constraints must be fulfilled for every instant of time, which is reflected by: 

𝚽(𝐪, 𝑡) = [𝚽1(𝐪), . . . 𝚽𝑛𝑠(𝐪), . . . 𝚽1(𝐪, 𝑡), . . . 𝚽𝑛𝑟(𝐪, 𝑡)]T = 𝟎 (4-3) 
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where 𝚽𝑖 is the ith kinematic constraint equation, ns is the total number of scleronomic constraints, nr is 

the total number of rheonomic constraints, and 𝟎 is a null vector. Scleronomic constraints are time 

independent, i.e., the time variable does not appear explicitly in them, while rheonomic constraints are 

time dependent. The first type is associated with the equation constraints of the kinematic joints, such 

as spherical, revolute, or universal joints, while the latter is mostly associated to driver constraint 

equations (Silva, 2003). 

4.2. Kinematic Consistency 

From the mechanical formulation point of view, the motion of a multibody system is considered fully 

known when the consistency between its motion and the kinematic constraints is achieved. The 

fulfilment of the kinematic constraints can be ensured via a kinematic analysis. A kinematic analysis 

consists in the study of motion independently of the forces responsible for modifying the dynamic 

behaviour of the system. Instead, the positions, velocities and accelerations are calculated according to 

the topology of the mechanical system. Considering the multibody system guided by driving elements, 

the kinematic consistent positions, for every instant of time of the analysis, are obtained by solving 

Equation (4-3) with respect to the vector of generalised coordinates 𝐪. 

The system of constraint equations yields to a set of non-linear equations that must be solved using an 

appropriate optimization method. The most common and frequently used solution method for nonlinear 

equations is the Newton-Raphson method (Nikravesh, 1988). By following the approach of Newton-

Raphson, the solution of the system is based in the linearization of Equation (4-3), i.e., by replacing the 

system of equations with the two first terms of its expansion in a Taylor series, evaluated at an initial 

approximation 𝐪𝒊. By doing so, Equation (4-3) becomes: 

𝚽(𝐪, 𝑡) ≅ 𝚽(𝐪𝒊, 𝑡) + 𝚽𝐪(𝐪𝑖)(𝐪 − 𝐪𝑖) = 𝟎 (4-4) 

where 𝚽𝐪(𝐪𝑖) is the Jacobian matrix of the constraints, evaluated at the approximated solution 𝐪𝒊. The 

iterative procedure stops when the residual for the actual iteration, defined as Δ𝐪𝑖 = 𝐪𝑖+1 − 𝐪𝑖, is less 

than a predefined tolerance. 

The Jacobian matrix of the constraints is defined by the partial derivatives of each kinematic constraint 

with respect to the vector of generalised coordinates, given as: 

𝚽𝐪(𝐪) =

[
 
 
 
 
𝜕𝚽1

𝜕𝐪1

⋯
𝜕𝚽1

𝜕𝐪𝑛𝑐

⋮ ⋱ ⋮
𝜕𝚽𝑛ℎ

𝜕𝐪1

⋯
𝜕𝚽𝑛ℎ

𝜕𝐪𝑛𝑐 ]
 
 
 
 

 (4-5) 

where nc is the number of rigid bodies, and nh is the number of constraint equations. 
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Once the consistency of the system positions is achieved, the velocities and accelerations can be 

determined using the velocity and acceleration constraint equations, respectively. The velocity vector of 

constraint equations, 𝚽̇, is obtained by differentiating Equation (4-3) with respect to time: 

𝚽̇(𝐪, 𝐪̇, 𝑡) =
𝜕𝚽(𝐪, 𝑡)

𝜕𝑡
+

𝜕𝚽(𝐪, 𝑡)

𝜕𝐪
𝐪̇ = 𝟎 (4-6) 

where 𝜕𝚽(𝐪, 𝑡)/𝜕𝑡 is the vector of partial derivatives of the constraints with respect to time, 𝜕𝚽(𝐪, 𝑡)/𝜕𝐪 

is the Jacobian matrix of the constraints, and 𝐪̇ is the vector of generalised velocities. If 𝛎(𝑡) is defined 

as the right-hand side vector of the velocity constraint equations, the consistent velocities of the system 

are obtained by the solution of the following system of equations: 

𝚽𝐪𝐪̇ = 𝛎(𝑡),   𝑤𝑖𝑡ℎ   𝛎(𝑡) = −
𝜕𝚽(𝐪, 𝑡)

𝜕𝑡
 (4-7) 

Similarly, the acceleration vector of constraint equations, 𝚽̈, is determined by differentiating Equation 

(4-6) with respect to time, which is analogous to the second differentiation of Equation (4-3) also with 

respect to time. The following expression for 𝚽̈ is obtained: 

𝚽̈(𝐪, 𝐪̇, 𝐪̈, 𝑡) = 𝚽𝐪𝐪̈ + (𝚽𝐪𝐪̇)
𝐪
𝐪̇ − 𝛎̇(𝑡) = 𝟎 

(4-8) 

where 𝐪̈ is the vector of generalised accelerations. Defining 𝛄(𝐪, 𝐪̇, 𝑡) as the right-hand side of the 

acceleration constraint equations, Equation (4-8) can be rewritten to: 

𝚽𝐪𝐪̈ = 𝛄(𝐪, 𝐪̇, 𝑡),   𝑤𝑖𝑡ℎ    𝛄(𝐪, 𝐪̇, 𝑡) = 𝛎̇(𝑡) − (𝚽𝐪𝐪̇)
𝐪
𝐪̇ 

(4-9) 

The solution of Equations (4-4), (4-7), and (4-9) leads to the consistent positions, velocities, and 

accelerations of the multibody system, respectively. It should be noted that, in the presence of redundant 

constraint equations, i.e., when the number of equations is greater than the number of DOF, linearly 

dependent lines appear in the system. In order to solve this, a least squares formulation is adopted 

(Silva, 2003). 

In biomechanical literature, it is common to find applications in which the system velocities and 

accelerations are obtained by performing time derivatives as a spline interpolation of the positions. 

Although the errors in the velocities and accelerations obtained by spline differentiation may be under 

control, these velocities are deemed as non-consistent with the constraint equations (Silva and 

Ambrósio, 2002). 

4.3. Kinematic Constraints 

The coordinates in vector 𝐪 are usually not independent, being their relations described by kinematic 

constraints. Several types of constraint equations exist to describe the relationship between the overall 
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coordinates of a multibody system. In this section, only the kinematic constraints required to define the 

multibody model described in Chapter 3 are introduced. 

Two types of kinematic constraints can be essentially identified when using Cartesian coordinates: joint 

constraints that are applied to impose the relative motion between two adjacent body segments, such 

as those associated with spherical, universal, and revolute kinematic joints; and driver constraints that 

prescribe changes in the motion of the system over time. The complete description of each kinematic 

constraint includes the algebraic equation constraining the DOF, the contribution to the Jacobian matrix, 

and the right-hand side vectors of velocity and acceleration constraint equations. 

Before addressing the different types of kinematic constraints, it should be noticed that although the use 

of Euler parameters is presented as the better alternative to define the angular orientation of a body in 

the three-dimensional space, more equations are generated when using their time derivatives 

(Nikravesh, 1988). Therefore, the Jacobian matrix and the right-hand side vectors of the velocity and 

acceleration constraint equations are modified to be described with respect to three local angular 

velocities and accelerations, denoted as 𝛚′ and 𝛚̇′, respectively. By doing so, the number of equations 

is reduced without any conflict with the definition of body orientations by means of Euler parameters 

(Nikravesh, 1988). As a result of this modification, the vector of generalised velocities and accelerations, 

𝐪̇ and 𝐪̈, respectively, reduces to six entries per rigid body, instead of seven as is the case of the vector 

of generalised positions 𝐪. 

4.3.1. Spherical Joint 

A spherical, or ball-and-socket, joint between two rigid bodies i and j is established by three algebraic 

equations that constrain the position of a shared point P, locally defined in the body-fixed reference 

frames of bodies i and j, as depicted in Figure 4-2. Accordingly, only rotational movements are allowed 

about the given point P, defined as the centre of rotation. The vector of constraint equations is expressed 

as: 

𝚽(𝑠,3) = 𝐫𝑖 + 𝐀𝑖𝐬′𝑖
𝑃 − 𝐫𝑗 − 𝐀𝑗𝐬′𝑗

𝑃 = 𝟎 (4-10) 

where the superscripts in 𝚽 indicate the type of joint and the number of constraint equations, 𝐫 is the 

global position vector, 𝐀 is the rotation matrix, and 𝐬′𝑃 is the position vector of point P in the local 

reference frame of bodies i and j. 

The Jacobian matrix and the right-hand side vectors of the velocity and acceleration constraint equations 

are modified to be written with respect to the local angular velocities and local angular accelerations. 

Thus, the differentiation of Equation (4-10) with respect to time yields: 

𝚽̇(𝑠,3) =
𝜕𝚽(𝑠,3)

𝜕𝐫𝑖

𝐫̇𝑖 +
𝜕𝚽(𝑠,3)

𝜕𝐩𝑖

𝐩̇𝑖 +
𝜕𝚽(𝑠,3)

𝜕𝐫𝑗
𝐫̇𝑗 +

𝜕𝚽(𝑠,3)

𝜕𝐩𝑗

𝐩̇𝑗 = 

(4-11) 

=
𝜕𝚽(𝑠,3)

𝜕𝐫𝑖

𝐫̇𝑖 +
1

2

𝜕𝚽(𝑠,3)

𝜕𝐩𝑖

𝐋𝑖
T𝛚′𝑖 +

𝜕𝚽(𝑠,3)

𝜕𝐫𝑗
𝐫̇𝑗 +

1

2

𝜕𝚽(𝑠,3)

𝜕𝐩𝑗

𝐋𝑗
T𝛚′𝑗 
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where 𝜕𝚽(𝑠,3)/𝜕𝐫 and 𝜕𝚽(𝑠,3)/𝜕𝐩 are the vectors containing the partial derivatives of the constraints with 

respect to 𝐫 and 𝐩, respectively, and 𝐋 is the local transformation matrix for bodies i and j, given by: 

𝐋 = [

−𝑒1

−𝑒2

−𝑒3

 

𝑒0

−𝑒3

𝑒2

𝑒3

𝑒0

−𝑒1

−𝑒2

𝑒1

𝑒0

] (4-12) 

where 𝑒0, 𝑒1, 𝑒2, and 𝑒3 are the Euler parameters. The contribution of the spherical joint to the Jacobian 

matrix and to the right-hand side vector of the velocity constraint equations is given by: 

 𝐫̇1 𝛚′1         …         𝐫̇𝑖 𝛚′𝑖         …         𝐫̇𝑗 𝛚′𝑗         …         𝐫̇𝑛 𝛚′𝑛 

(4-13) 𝚽𝐪
(𝑠,3)

= [𝟎 𝟎      …      𝐈 −𝐬̃𝑖
𝑃𝐀𝑖       …      −𝐈 𝐬̃𝑗

𝑃𝐀𝑗       …      𝟎 𝟎] 

𝛎(𝑠,3) = 𝟎  

where 𝐈 is the (3 × 3) identity matrix, and 𝐬̃𝑃 is the skew-symmetric matrix of the vector 𝐬𝑃 of either body 

i or body j. References to the translational and rotational velocities of each body are presented in 

Equation (4-13), above the Jacobian matrix, to help identify the position of the non-null entries of the 

Jacobian matrix. 

 

Figure 4-2: Spherical joint between bodies i and j. 

Similarly, the second time differentiation of Equation (4-10) leads to the acceleration equations. The 

right-hand side vector of the acceleration constraint equations is given as: 

𝛄(𝑠,3) = −𝛚̃𝑖𝐬̇𝑖
𝑃 + 𝛚̃𝑗𝐬̇𝑗

𝑃, with 𝐬̇𝑃 = 𝛚̃𝐬𝑃 (4-14) 

where 𝛚̃ is the skew-symmetric matrix of the global angular velocity and 𝐬̇𝑃 is the first-time derivative of 

vector 𝐬𝑃. 
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4.3.2. Universal Joint 

A universal joint connecting bodies i and j is illustrated in Figure 4-3. Analogously to the spherical joint, 

P is a point that simultaneously belongs to bodies i and j, being locally defined in both body-fixed 

reference frames. Therefore, the same set of equations defined in Equation (4-10) are valid to constrain 

the 3 translational DOF of the universal joint. The cross in the middle of the two bodies results in the 

definition of two axes of rotation that intersect at point P, meaning that 1 rotational DOF is also 

constrained. 

 

Figure 4-3: Universal joint between bodies i and j. The vector 𝒔𝑖  is perpendicular to 𝒔𝑗. 

Considering 𝐬𝑖 as the vector defining the joint axis of rotation from the configuration of body i, and 𝐬𝑗 the 

vector defining the joint axis of rotation from the configuration of body j, the rotational constraint equation 

states that these two vectors must always remain perpendicular (Nikravesh, 1988). The vector of 

constraint equations of the universal joint is given by: 

𝚽(𝑢,4) = [
𝚽(𝑠,3)

𝐬𝑖
T𝐬𝑗

] = 𝟎 (4-15) 

The contribution to the Jacobian matrix and to the right-hand side vectors of the velocity and acceleration 

constraint equations is given by: 

𝚽𝐪
(𝑢,4)

= [
𝚽𝐪

(𝑠,3)

𝟎 𝟎      …       𝟎 −𝐬𝑗
T𝐬̃𝑖𝐀𝑖       …       𝟎 −𝐬𝑖

𝑇𝐬̃𝑗𝐀𝑗       …      𝟎 𝟎
] 

(4-16) 𝛎(𝑢,4) = 𝟎  

𝛄(𝑢,4) = [
𝛄(𝑠,3)

−2𝐬̇𝑖
T𝐬̇𝑗 + 𝐬̇𝑖

T𝛚̃𝑖𝐬𝑗 + 𝐬̇𝑗
T𝛚̃𝑗𝐬𝑖

]  
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4.3.3. Revolute Joint 

A revolute, or hinge, joint between bodies i and j is shown is Figure 4-4. The revolute joint can be 

regarded as an extension of the spherical joint, meaning that all translational DOF are constrained. 

However, the motion of a revolute joint occurs about a single specific axis, which means that the 

remaining 2 rotational DOF are also constrained. 

 

Figure 4-4: Revolute joint between bodies i and j. The vectors 𝒔𝑖1 and 𝒔𝑖2 represented in the left low 

corner are simultaneously perpendicular to 𝒔𝑖 and to each other, and 𝒔𝑖 is the vector 
defining the joint axis of rotation from the configuration of body i. 

Considering the same 𝐬𝑖 and 𝐬𝑗 vectors described for the universal joint, the rotational constraint 

equations must ensure that 𝐬𝑖 and 𝐬𝑗 are always parallel to each other. According to Nikravesh (1988), 

this is accomplished by performing the cross product between 𝐬𝑖 and 𝐬𝑗. However, this leads to three 

constraint equations, one of which is linearly dependent of the remaining. The formulation used to 

overcome this indeterminacy consists in the application of two dot products instead of one cross product 

(Quental, 2013). Defining two vectors, 𝐬𝑖1 and 𝐬𝑖2, simultaneously perpendicular to 𝐬𝑖 and to each other 

(represented in the left low corner of Figure 4-4), the constraint equations of the revolute joint can be 

written as: 

𝚽(𝑟,5) = [

𝚽(𝑠,3)

𝐬𝑖1
T 𝐬𝑗

𝐬𝑖2
T 𝐬𝑗

] = 𝟎 (4-17) 
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The contribution of the revolute joint to the Jacobian matrix and to the right-hand side vectors of the 

velocity and acceleration constraint equations is given by: 

𝚽𝐪
(𝑟,5)

= [

𝚽𝐪
(𝑠,3)

𝟎 𝟎      …       𝟎 −𝐬𝑗
T𝐬̃𝑖1𝐀𝑖       …       𝟎 −𝐬𝑖1

T 𝐬̃𝑗𝐀𝑗       …      𝟎 𝟎

𝟎 𝟎      …       𝟎 −𝐬𝑗
T𝐬̃𝑖2𝐀𝑖       …       𝟎 −𝐬𝑖2

T 𝐬̃𝑗𝐀𝑗       …      𝟎 𝟎

] 

(4-18) 𝛎(𝑟,5) = 𝟎  

𝛄(𝑟,5) = [

𝛄(𝑠,3)

−2𝐬̇𝑖
T𝐬̇𝑗 + 𝐬̇𝑖

T𝛚̃𝑖𝐬𝑗 + 𝐬̇𝑗
T𝛚̃𝑗𝐬𝑖

−2𝐬̇𝑖
T𝐬̇𝑗 + 𝐬̇𝑖

T𝛚̃𝑖𝐬𝑗 + 𝐬̇𝑗
T𝛚̃𝑗𝐬𝑖

]  

4.3.4. Prescribed Motion Constraint 

In the three-dimensional space, the absolute motion of the multibody system can be mathematically 

described by means of driving constraints that guide the position and orientation of a reference body 

belonging to the multibody system, over time, as illustrated in Figure 4-5. 

 

Figure 4-5: Prescribed motion constraint applied to body i. 

The driving, or base, body is the reference for the whole multibody system. Considering the 

biomechanical model described in Chapter 3, the pelvis is the assigned driving element. The 

configuration of the driving body over time is described in Cartesian coordinates by 7 coordinates: 3 of 

translation and 4 Euler parameters to define the body orientation. Therefore, seven constraint equations 

are used to define the prescribed motion constraint: 

𝚽(𝑝𝑚𝑐,7) = 𝐪𝑖 − 𝐪𝑖
∗(𝑡) = 𝟎 (4-19) 

where 𝐪𝑖
∗(𝑡) is the actual position vector of body i at time 𝑡. 
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The contribution of the prescribed motion constraint to the Jacobian matrix and to the right-hand side 

vectors of the velocity and acceleration constraint equations is given by: 

𝚽𝐪
(𝑝𝑚𝑐,7)

= [
𝟎 𝟎     …         𝐈 𝟎          …       𝟎 𝟎

𝟎 𝟎      …       𝟎
1

2
𝐋𝑖
T      …       𝟎 𝟎

] 

(4-20) 
𝛎(𝑝𝑚𝑐,7) = 𝐪̇𝑖

∗(𝑡)  

𝛄(𝑝𝑚𝑐,7) = [

𝐫̈𝑖
∗(𝑡)

𝐩̈𝑖
∗(𝑡) +

1

4
(𝛚′𝑖

T𝛚′𝑖)𝐩𝑖

]  

where 𝐪̇𝑖
∗(𝑡), 𝐫̈𝑖

∗(𝑡), and 𝐩̈𝑖
∗(𝑡) are the experimentally measured time dependent vectors of generalised 

velocities, translational accelerations, and second time derivatives of the Euler parameters of body i, 

respectively. These vectors are determined by interpolating the prescribed motion vector 𝐪𝑖
∗(𝑡) using 

cubic splines, for instance, and by differentiating these once and twice with respect to time to obtain, 

respectively, velocity and acceleration. 

4.3.5. Rotational Driver 

While the kinematic joints in Sections 4.3.1 to 4.3.3 constrain the relative motion of adjacent body 

segments, the rotational driver constraint guides the DOF of those kinematic pairs. Figure 4-6 illustrates 

the rotational driver constraint between bodies i and j for a given instant of time. 

 

Figure 4-6: Rotational driver constraint applied between bodies i and j. 

Considering the example in Figure 4-6, the mechanical motion of the human knee can be described by 

a revolute joint (5 DOF constrained) and a single rotational driver (the remaining DOF). The kinematic 

joint only allows the knee to flex and extend, and the driver controls the rotating angle variation given by 

𝜃(𝑡). Before performing a kinematic analysis, u and v are defined at every instant of time as unitary 
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vectors aligned with the 𝜂𝑖 and 𝜂𝑗 local axes of bodies i and j, respectively, and 𝜃(𝑡) is determined as 

the angle variation between them. Since both vectors are unitary, the dot product between u and v is 

equal to the cosine of the angle between them. Hence, the constraint equation becomes: 

𝚽(𝑟𝑑,1) = uTv − 𝑐𝑜𝑠(𝜃(𝑡)) = 0, with 𝜃(𝑡) = 〈u, v〉(𝑡) (4-21) 

The number of constraint equations increases by the same number of DOF of the kinematic pair. The 

contribution of the rotational driver constraints to the Jacobian matrix and to the right-hand side vectors 

of the velocity and acceleration constraint equations is given by: 

𝚽𝐪
(𝑟𝑑,1)

= [𝟎 𝟎      …       𝟎 −vTũ𝐀𝑖       …       𝟎 −uTṽ𝐀𝑗       …      𝟎 𝟎] 

(4-22) 𝛎(𝑟𝑑,1) = −𝑠𝑖𝑛(𝜃(𝑡)) ∙ 𝜃̇(𝑡)  

𝛄(𝑟𝑑,1) = −2u̇Tv̇ + u̇T𝛚̃𝑖v + v̇T𝛚̃𝑗u − 𝑐𝑜𝑠(𝜃(𝑡)) ∙ 𝜃̇(𝑡)2 − 𝑠𝑖𝑛(𝜃(𝑡)) ⋅ 𝜃̈(𝑡) 

where 𝜃̇(𝑡) and 𝜃̈(𝑡) are, respectively, the first and second derivatives of a cubic spline interpolation of 

the rotating angle variation 𝜃(𝑡). 

4.4. Dynamic Analysis 

The dynamic analysis of a multibody system consists in the study of motion when the system is 

subjected to externally applied forces that modify the dynamic behaviour of its components. In the field 

of biomechanics, dynamic analyses are performed to obtain the intersegmental joint forces, joint 

moments-of-force, and muscle forces of the biomechanical model. The determination of those quantities 

requires the establishment of the mechanical principles of a constrained multibody system in the three-

dimensional space. 

4.4.1. Joint Contact Forces 

Each kinematic joint introduces reaction forces, also known as constraint forces, between the connected 

body segments. These forces can be expressed in terms of the constraint equations of the multibody 

system as long as they are defined with respect to the same coordinate system as the vector of 

generalised positions, 𝐪 (Nikravesh, 1988). This relationship is obtained using the Lagrange multipliers 

method defined in Nikravesh (1988), and expressed by: 

𝐠(𝑐) = −𝚽𝐪
T𝛌 (4-23) 

where 𝐠(𝑐) is the generalised vector of internal contact forces, and 𝛌 is the vector of Lagrange multipliers. 

From the physical point of view, the rows of the Jacobian matrix define the direction of the constraint 

forces while the Lagrange multipliers define their unknown magnitudes. 
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4.4.2. Equations of Motion 

For a general constrained multibody system, the equations of motion are given by: 

𝐌𝐪̈ = 𝐠 + 𝐠(𝑐) (4-24) 

where 𝐌 is the mass matrix of the system, containing the body masses and the moments of inertia of 

each individual anatomical segment, 𝐪̈ is the vector of generalised accelerations, and 𝐠 is the vector of 

external forces. By substituting Equation (4-23) into Equation (4-24), the equations of motion become: 

𝐌𝐪̈ + 𝚽𝐪
T𝛌 = 𝐠 (4-25) 

In an inverse dynamic analysis, in which the kinematic data are fully known, the equations of motion are 

solved for the unknown Lagrange multipliers, which are directly associated with the intersegmental joint 

forces and joint torques of the human body model (Silva and Ambrósio, 2003), which is further explained 

in Chapter 7. 

The set of equations of motion of a multibody system has the vector of kinematic consistent 

accelerations written explicitly, as given by Equation (4-25). Since in an inverse dynamic analysis the 

kinematic data are given as input, accurate motion information is determinant in the goodness of the 

results obtained (Andersen et al., 2009). The methodology followed to provide the kinematic data 

required for an inverse dynamic analysis is described in Chapter 5. 
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5. Data Acquisition and Processing 

When performing an inverse dynamic analysis of a complex human motion, the acquisition of three 

distinct types of information is required to give as input to the analysis program: anthropometric 

information regarding the subject performing the motion, described in Chapter 3; kinematic information, 

characterised by a set of trajectories of markers placed on relevant palpable bony landmarks, which is 

used to describe the motion of the anatomical segments, to be introduced in the current chapter; and 

kinetic information concerning all external forces applied on anatomical segments, including their 

application points, to be presented in Chapter 6. 

In this dissertation, experimental data taken for a front crawl swimming motion, captured by three-

dimensional motion tracking systems at the LABIOMEP-UP, is used. The data provided, containing the 

static and dynamic trials of the swimming motion are processed and provided as input to the LHBM for 

motion reconstruction. Finally, the verification of the kinematic consistency between the experimental 

measurements and the biomechanical model used in this work is addressed in the last section of this 

chapter. 

5.1. Kinematic Data Acquisition 

Although the kinematic data acquisition was not performed during the period of this dissertation, a brief 

description of the experimental setup is provided here (Andersen, 2019; Lauer et al., 2016). The 

experimental data collected includes the positions of anatomical landmarks of a 25-year-old male, with 

a height of 1.80 m, and weighing 70.3 kg, performing a front crawl swimming stroke. The subject is a 

healthy regional level swimmer. 

The testing is conducted in a 25 m indoor swimming pool by automatically tracking the swimmer’s motion 

with a Qualisys Track Manager system (Qualisys, Gothenburg, Sweden) at 100 Hz, using 12 above 

water cameras (3x Oqus 310+, and 9x Oqus 400) and 10 underwater cameras (4x Oqus 300+u, 4x 

Oqus 700+u, and 2x Oqus 310+u). The placement of the 22 cameras along the swimming pool is 

illustrated in Figure 5-1. A three-step calibration process is performed in order to synchronise the above 

and underwater cameras, as well as the air-water interface (Andersen, 2019). The space of interest 

results in a volume of approximately 28 m3 (7 m in length, 2 m in width, 2 m in height) positioned in the 

middle of the swimming pool, which corresponds to the coloured rectangle in Figure 5-1. Only markers 

passing through the calibrated volume are detected. The global frame origin is in the midsection of the 

calibrated volume, at the water surface level, i.e., 𝑍 = 0. The orthogonal axes of the global frame define 

𝑋 in the lateral direction, 𝑌 in the direction of swim, and 𝑍 in the vertical direction. 
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Figure 5-1: Top view configuration of the LABIOMEP-UP layout. UW stands for underwater cameras, 
and LAND stands for above water cameras. The coloured rectangle in the centre of the 
swimming pool corresponds to the calibrated volume covered by the 22 cameras. 

The motion of the swimmer performing a front crawl swimming stroke is captured by tracking 66 

reflective markers’ trajectories placed on anatomical bony landmarks. These points consist in easily 

palpable places of the subject’s skin, where the underlying bones are normally close to the surface. The 

markers set protocol used in the experimental data acquisition is fully described in Appendix A. Due to 

the increased drag created by the water in swimming motion applications, besides the double sided tape 

used to place the markers on surface skin, these are additionally fixed with an hydrophobic tape 

(Euroderm) to ensure resistance, and are finally covered with an adhesive tape (Omnitape) (Cascais et 

al., 2014). 

The experimental data acquisition consists in 1) a static trial and 2) a trial containing the kinematic data 

of the motion under analysis: 

1. The static trial consists in the collection of kinematic data of the swimmer standing in the 

anatomical reference position (ARP). For that, a metal frame is positioned in the middle of the 

calibrated volume, inside the swimming pool, where the swimmer stands stationary until data is 

collected. The lower limbs, including the pelvis are submersed, while the torso and upper limbs 

are above water. This trial is used for calibration of the experimental data and further 

construction of the swimmer’s biomechanical model (Section 5.3). 

2. The dynamic trial contains the 3D kinematic data of the front crawl swimming motion that are 

given as input to the kinematic analysis. 
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It is usual to detect some gaps in the experimental data obtained by swimming motion capture systems. 

One of the reasons for that is the falling of a marker from the swimmer due to the water flow. Another, 

more concerning, reason is associated with missing marker visibility, when a body part is blocking a 

marker from being recorded, or at the air-water interface as a result of the splashing (Andersen et al., 

2009). In this case, spline filtering algorithms in the Qualisys Track Manager software are used to fill the 

missing markers trajectories (Andersen, 2019). However, it must be noted that the gap-filling may not 

be possible if the gap is very long, or if it occurs in the beginning or ending of the calibrated volume data 

acquisition. 

5.2. Data Filtering 

The accuracy of the motion data captured experimentally has a major impact on the output of a dynamic 

analysis (Andersen et al., 2009). However, experimental procedures and motion tracking systems are 

naturally susceptible to noise and kinematic deviations. Despite the errors associated with the 

measurement equipment, the main source of noise occurs due to soft tissue artefacts, which consist in 

the sliding of markers with the skin relative to the bones. The presence of this high-frequency noise in 

the kinematic positions is even more problematic when considering the double differentiation of the 

vector of consistent positions to obtain the accelerations of the multibody system, since it appears 

directly in the equations of motion (Winter, 2009). Therefore, instead of the double differentiation 

referred, the velocities and accelerations are obtained, in this work, via the velocity and acceleration 

constraint equations. 

The kinematic data are filtered to reduce the noise without affecting the description of the motion 

performed. The data provided by LABIOMEP-UP are already filtered in the Qualisys Track Manager 

software with a 5-frame moving average filtering technique. Nonetheless, considering the works of 

Andersen (2019) and Lauer et al. (2016), an additional filtering is performed. Thus, the kinematic data 

are filtered using a 2nd order Butterworth low-pass filter, and the cut-off frequencies are determined 

through a residual analysis (Winter, 2009). This allows the selection of the optimal cut-off frequency that 

better suits the noise level of each marker. 

5.3. Motion Reconstruction 

Consistency between both laboratorial and model data must be guaranteed to ensure a proper 

simulation of the acquired data. The anthropometric measurements listed in Table 3-1 were obtained by 

applying the anatomical information of the swimmer subject to the scaling equations of Dumas et al. 

(2007a, 2007b). 

Considering the experimental setup protocol followed in LABIOMEP-UP (Figure A-1), markers are 

usually placed in the human body near anatomical articulations and extremities of body segments. 

Therefore, the kinematic data containing the positions of the markers are used to define the joint centres 

of the biomechanical model. The body-fixed reference frames are defined according to the ISB 
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recommendations (Wu et al., 2002, 2005), where at least three markers are used to define each body 

orientation. 

As discussed in Chapter 2, the kinematic data provided by LABIOMEP-UP were acquired before the 

development of this dissertation, with the purpose of creating a realistic 3D avatar performing the front 

crawl swimming motion. However, in this work, the kinematic data are required to define the joint centres 

and extremities of body segments. Therefore, from the total of 66 reflective markers measured in the 

laboratory, only 38 are used to define the biomechanical model, according to Table A-1 which contains 

the information about the markers to be used. The elbow, wrist, knee, and ankle joint centres are 

estimated as the midpoint between two reflective markers (Dumas et al., 2007a, 2007b). The same 

procedure is used to determine the distal points of the hands and feet. The distal point of the head is 

given by the position of the marker labelled as HEADTOP. For the joints of the human skeleton that 

cannot be accessed by palpation, such as the hip, lumbar, cervical, shoulder, and atlanto-occipital joints, 

their centres are determined by means of predictive equations. Predictive methods consist of non-

invasive ways of determining anatomical joint centres using anthropometry based regression equations 

(Murphy et al., 2011). Naturally, the selection of a predictive method over another depends on the 

experimental data available. 

Dumas et al. (2007a) recommended the estimation of the hip joint centre (HJC), lumbar joint centre 

(LJC), cervical joint centre (CJC), and shoulder joint centre (SJC) based on the regressions defined by 

Reed et al. (1999). These equations are preferred over other methods since they are all based on the 

same anatomical landmarks as those of McConville et al. (1980), from which the anthropometric scaling 

equations were determined. Furthermore, they make distinctions between genders. However, because 

not all anatomical landmarks required for the estimation of the HJC, LJC, and SJC are available in the 

experimental data provided by LABIOMEP-UP, only the estimation of the CJC follows the definition of 

Reed et al. (1999). 

5.3.1. Estimation of the Hip Joint Centre 

The location of the HJC is an important aspect of biomechanical modelling for several human 

movements since it is the origin point for hip rotation. Accordingly, the prediction accuracy has a direct 

repercussion in the interpretation of kinematic results and internal contact forces (Hara et al., 2016). 

Hara et al. (2016) propose a set of regression equations to estimate the location of the HJC. The study 

evaluate whether the accuracy of the hip contact forces is improved by considering different 

anthropometric measurement predictors. 

Leg length, defined as the distance from ASIS to medial malleolus passing through the medial 

epicondyle of the femur, is found to be the best single predictor. Hara et al. (2016) identify this 

measurement as the less affected by the thickness of soft tissues when compared to the pelvic depth 

and pelvic width used by other authors (Harrington et al., 2007). The leg length measurement is depicted 

in Figure 5-2. 
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Figure 5-2: Estimation of the hip joint centre. Leg length as the distance from ASIS to medial malleolus 
(MA) passing through the medial epicondyle of the femur (MK). 

Consequently, the estimation of the HJC in the pelvis body-fixed reference frame is given by Equation 

(5-1): 

 Posterior-anterior direction: 𝐻𝐽𝐶𝜉 = 11 − 0.063𝐿𝐿 

(5-1) 
 Inferior-superior direction: 𝐻𝐽𝐶𝜂 = −9 − 0.078𝐿𝐿 

 Medial-lateral direction: 𝐻𝐽𝐶𝜁 = 8 + 0.086𝐿𝐿 

where 𝐿𝐿 is the leg length measured in millimetres, and 𝜉, 𝜂, and 𝜁 are the direction axes of the pelvis 

coordinate system according to (Wu et al., 2002). Note that Hara et al. (2016) defines the origin of the 

pelvis coordinate system as the midpoint between RASIS and LASIS, similar to the definition in this 

work, as seen in Figure 3-2. 

5.3.2. Estimation of the Lumbar Joint Centre 

The understanding of the kinematics and internal kinetics of the pelvis-lumbar complex is of great 

interest for the prevention of lower back pain injuries (Murphy et al., 2011). Moreover, for swimming 

applications, the pelvis and torso anatomical segments play an important role with respect to body 

coordination, posture, and spine stability to enhance performance during motion (Andersen, 2019). 

Murphy et al. (2011) proposed two sets of regression equations to predict the location of the LJC via a 

non-invasive protocol. Both proposals consider the location of palpable surface landmarks on the pelvic 

bone, which are used to define three distances in the body local axis system: pelvic depth is the distance 

from the midpoint between RASIS and LASIS to the midpoint between RPSIS and LPSIS; anterior pelvic 

width is the distance from RASIS to LASIS; and posterior pelvic width is the distance from RPSIS to 
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LPSIS. The authors found that the most effective way to estimate the LJC utilised pelvic depth and 

anterior pelvic width, which are represented in Figure 5-3. 

 

Figure 5-3: Pelvic depth as the distance from the midpoint between RASIS and LASIS to the midpoint 
between RPSIS and LPSIS, and anterior pelvic width as the distance from RASIS to 
LASIS. 

The resulting equations, described in the pelvis body-fixed reference frame, are given by: 

 Posterior-anterior direction: 𝐿𝐽𝐶𝜉 = −0.7006𝑃𝐷 

(5-2) 
 Inferior-superior direction: 𝐿𝐽𝐶𝜂 = 0.0349𝐴𝑃𝑊 

 Medial-lateral direction: 𝐿𝐽𝐶𝜁 = −0.0045𝑃𝐷 

where 𝑃𝐷 is the pelvic depth, 𝐴𝑃𝑊 is the anterior pelvic width, and 𝜉, 𝜂, and 𝜁 are the direction axes of 

the pelvis coordinate system according to Wu et al. (2002). Like in this work (Figure 3-2), Murphy et al. 

(2011) defines the origin of the pelvis coordinate system as the midpoint between RASIS and LASIS. 

5.3.3. Estimation of the Cervical Joint Centre 

The estimation of the CJC follows the calculation methods of Reed et al. (1999). Contrary to the methods 

used for the estimation of the HJC and JLC, the method proposed by Reed et al. (1999) is not defined 

locally. Instead, its calculation is obtained using the markers of the 7th cervical vertebrae (C7) and the 

first marker of the sternum cluster (ST1) measured in the global reference frame. 

Reed et al. (1999) assume the location of the CJC to be symmetric in the sagittal plane, which means 

that the component in 𝑋 is the average between the 𝑋 coordinates of the C7 and ST1 surface landmarks. 

Regarding the 𝑍 and 𝑌 components of the CJC, they are obtained by rotating the vector that goes from 

C7 to ST1 in the sagittal plane upward by 8º. Then, this vector is scaled to have a length equal to 55% 

of the measured distance from C7 to ST1, as shown in Figure 5-4. 
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Figure 5-4: Estimation of the cervical joint centre on the sagittal plane, measured in the global 
reference frame. 

5.3.4. Estimation of the Shoulder Joint Centre 

Pàmies-Vilà (2012) developed a complete set of equations to determine the joint centres of rotation of 

the entire 3D biomechanical model. However, in this work, only the SJC and OJC are determined based 

on the equations of Pàmies-Vilà (2012), since the remaining HJC, LJC, and CJC require the position of 

markers that are not used in the protocol of LABIOMEP-UP. The estimation of the right and left SJC 

uses the markers of the right and left acromion, RAC and LAC, respectively, and the estimation of the 

LJC, as depicted in Figure 5-5. 

  

Figure 5-5: Estimation of the shoulder joint centre in the global reference frame. The vector v goes 
from RAC to LAC, and u is the vector perpendicular to the plane defined by LJC, LAC, 

and RAC. u and v are unitary vectors. 
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The expression used to compute the right and left SJC in the global frame is given by: 

 Right SJC: 𝐒𝐉𝐂 = 𝐫𝑅𝐴𝐶 − 0.02v − 0.05w 

(5-3) 
 Left SJC: 𝐒𝐉𝐂 = 𝐫𝐿𝐴𝐶 + 0.02v − 0.05w 

where 𝐫𝑅𝐴𝐶 and 𝐫𝐿𝐴𝐶 are the coordinates of the RAC and LAC markers, respectively, and u, v, and w are 

unitary vectors. The vector v goes from RAC to LAC, u is the vector perpendicular to the plane defined 

by LJC, LAC, and RAC, and w is the cross product between u and v. 

5.3.5. Estimation of the Atlanto-occipital Joint Centre 

Similarly to the estimation of the SJC, the location of the OJC is computed according to the set of 

regression equations defined by Pàmies-Vilà (2012). The calculation method uses the markers of the 

top of the head, right head, and left head, represented in Figure 5-6. 

 

Figure 5-6: Estimation of the atlanto-occipital joint centre in the global reference frame. The vector v 
goes from RHEAD to LHEAD, and u is the vector perpendicular to the plane defined by 

HEADTOP, RHEAD, and LHEAD. u and v are unitary vectors. 

Accordingly, the position of the OJC is given by: 

𝐎𝐉𝐂 = 0.5(𝐫𝑅𝐻𝐸𝐴𝐷 + 𝐫𝐿𝐻𝐸𝐴𝐷) − 0.04u − 0.1w (5-4) 

where 𝐫𝑅𝐻𝐸𝐴𝐷 and 𝐫𝐿𝐻𝐸𝐴𝐷 are the coordinates of the RHEAD and LHEAD markers, respectively, u, v, and 

w are unitary vectors. The vector v goes from RHEAD to LHEAD, u is the vector perpendicular to the 

plane defined by HEADTOP, RHEAD, and LHEAD, and w is the cross product between u and v. 

5.4. Application to the Front Crawl Swimming Stroke 

In front crawl swimming, one stroke cycle is defined as the period between consecutive entries of one 

same hand into the water (Andersen, 2019). Each stroke cycle is typically divided into three phases: 

pull, push, and recovery. The pull phase is further divided into two events (entry and stretch, and 

downsweep), as well as the push phase (insweep and upsweep) (Davies et al., 2009; Samson et al., 

2017). The segmentation of the stroke cycle uses the position of the hand relative to the swimmer’s 
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body or to the water surface to identify the different phases (Cortesi et al., 2019). The characteristics of 

each event are as follows: 

• Entry and Stretch: the entry and stretch is the initial event of the stroke during which the 

swimmer sets up the arms and body to develop as much thrust as possible. The hand palm is 

pointed straight down at the bottom of the swimming pool to initiate the pull (Wei et al., 2014). 

• Downsweep: immediately after entering the water, the swimmer’s hand moves backwards and 

downwards until reaching the deepest point. 

• Insweep: the insweep begins with the hand at its deepest position. The arm, forearm, and hand 

are vertically positioned with respect to the swimming direction, resulting in more work 

developed in propelling the body forward using the resistance of the water (Davies et al., 2009; 

Samson et al., 2017). 

• Upsweep: the upsweep is the second most propulsive phase (Samson et al., 2017). It is initiated 

when the hand starts moving outwards until leaving the water. 

• Recovery:  the stroke cycle ends by moving the hand forward, overhead out of the water, to 

initiate the next stroke. During the recovery phase the swimmer rolls the body to the same side 

of the arm stroke and breathing occurs by slightly turning the head to the side. The rotation is 

used to propel the body forward. 

The complete front crawl stroke cycle is illustrated in Figure 5-7. During the entire stroke, the lower limbs 

perform an alternate rhythmical movement upwards and downwards, denoted as flutter or leg kick 

(Guignard et al., 2019). The downbeat consists in the motion towards the bottom of the swimming pool 

and begins with the flexion at the hip, followed by extension at the knee. In a wave-like motion, the thigh 

moves down first, followed by the leg and then the foot. Right before the transition to the ascending 

movement, the foot reaches the deepest point of its path at maximum plantarflexion. The upbeat is 

initiated again with the thigh moving upwards and creating a slight hyperflexion in the knee (Keys, 2010). 

 

Figure 5-7: Front crawl swimming stroke phases. The figure illustrates one full stroke cycle for the 
right hand (adapted from Ceccon et al. (2013)). 

The front crawl technique is characterised by several aspects, such as on the underwater movement of 

the hand during the propulsive phase, which can present an “S”-shaped or an “I”-shaped path (Sanders 

et al., 2017; Takagi et al., 2015; Wei et al., 2014), the frequency between upper and lower limb 

coordinated movements, i.e., number of leg kicks per number of arm strokes (Guignard et al., 2019), or 

even the swimming stroke rate (Matsuda et al., 2016). In front crawl swimming, swimmers change their 



40 

 

velocity and stroke rate according to the swimming distance. For training and long-distance races, more 

energy-efficient techniques are preferred over those performed on sprint races (Hall, 2020). A shoulder-

driven technique enables swimmers to swim at a much higher stroke rate and therefore move at a higher 

speed for a short duration. The forearm is released much quicker from the water surface with very low 

rotation of the torso which leads to higher stresses on the shoulders (Walker, 2020). To reduce the risk 

of injury, a hip-driven technique is used alternatively to a shoulder-driven technique whenever possible. 

Although it is not the fastest technique, it helps taking pressure off the shoulders. During the hip-driven 

front crawl swimming, the hip is kept near the water surface which leads to less water resistance 

(TritonWear, 2020; Walker, 2020). To compensate for the lower stroke rate, hip rotation is used as a 

power source for propulsion and to help maintain a streamlined body position. The kinematic data used 

in this dissertation to study the front crawl swimming were captured from a swimmer performing the hip-

driven technique. 

5.4.1. Results and Discussion 

From the motion collected at LABIOMEP-UP, the swimmer performed three complete strokes, 

consisting of two right-hand strokes and one left-hand stroke. The left-hand stroke is selected to be 

studied in this dissertation since it has the shortest cycle time among the others and, most importantly, 

no loss of reflective markers registration during that period has been observed. Table 5-1 outlines the 

temporal key events measured in LABIOMEP-UP throughout the left-hand stroke cycle. 

Table 5-1: Critical temporal events during one left-hand front crawl swimming stroke measured in 
LABIOMEP-UP. 

Stroke phase Time [s] Time [%] Description 

Entry and Stretch 0.00 0 Left hand enters the water 

0.06 2.5 Left foot reaches top as right foot reaches bottom of sweep 

0.18 7.5 Right hand reaches the deepest point 

0.54 22.6 Left foot reaches bottom as right foot reaches top of sweep 

0.78 32.6 Right hand exits the water 

Downsweep 0.96 40.2 Left foot reaches top as right foot reaches bottom of sweep 

1.01 42.3 Left hand starts moving downwards 

1.16 48.5 Right hand enters the water 

1.28 53.6 Left foot reaches bottom as right foot reaches top of sweep 

Insweep 1.37 57.3 Left hand reaches the deepest point 

1.62 67.8 Right foot reaches bottom of sweep 

Upsweep 1.73 72.4 Left hand moves outwards 

1.75 73.2 Left foot reaches top of sweep 

Recovery 1.95 81.6 Left hand exits the water 

2.18 91.2 Left foot reaches bottom as right foot reaches top of sweep 

2.39 100 Left hand imminent to enter the water 

The cycle time varies according to the swimmer’s performance and the swimming race. For high level 

swimmers performing a 200-m front crawl, Sanders and Psycharakis (2009) reports an estimated cycle 

time of about 1.4 s, while Nakashima et al. (2007) records a stroke cycle of 1.96 s. A cycle time of 2.39 



41 

 

s is registered for the left-hand stroke, which is substantially higher than those reported in the literature, 

even though it is not recorded at the same maximal sprint race conditions. 

The joint angles obtained after the kinematic analysis are compared against the data of Nakashima et 

al. (2007), as shown in Figure 5-8. Nakashima et al. (2007) recorded the motion of a 20-29-year-old 

swimmer male, performing the front crawl technique and the joint motion was constructed based on 

video imaging. The manual reconstruction procedure introduced errors of about ±15º in the data 

reported by Nakashima et al. (2007). In both works, the left-hand stroke is analysed. Since this 

dissertation is focused on the human lower limbs, more emphasis is given to the flexion and extension 

of the hip, knee, and ankle joints, which are the main motions that characterise the leg kick (Matsuda et 

al., 2016). 

(a) 

 

(b) 

 

Figure 5-8: Joint angles obtained for a left-hand six-beat front crawl swimming stroke cycle performed 
by a male swimmer in LABIOMEP-UP (solid and dash-dotted lines): (a) hip joint, (b) knee 
joint and (c) ankle joint. Data of the right lower limb reported by Nakashima et al. (2007) 
(dashed line) is also presented for the sake of comparison. The horizontal axis 
corresponds to a percentage of the stroke cycle. 
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(c) 

 

Figure 5-8: (cont.) 

Three peaks and three valleys can be identified for all joints. This behaviour is related to the number of 

leg kicks per arm strokes, defined as the frequency ratio. In this case, for one arm stroke, i.e., one cycle, 

the swimmer performs three upbeats and three downbeats in each leg, which means that the motion 

performed is a six-beat front crawl swimming stroke. This is actually the most common technique used 

in front crawl swimming (Guignard et al., 2019) and the most appropriate for a hip-driven style since it 

allows the swimmer to move faster and propel the body forward, compensating for the lower stroke rate 

(TritonWear, 2020). Besides, the alternate movement of the leg kick in the current model is verified in 

Figure 5-8 between right (solid line), and left (dash-dotted line) sides, with small discrepancies in 

amplitude. 

The hip and knee joint angles, shown in Figure 5-8(a) and Figure 5-8(b), respectively, are in good 

agreement with the literature in terms of amplitudes and phases. During the leg kick, each downbeat is 

expected to be coordinated with one of the three hand sweeps that composes the underwater arm stroke 

(Guignard et al., 2019). When the left hand is positioned to initiate the pull (0-15%), the first downbeat 

is performed by the ipsilateral leg (left leg), which causes extension of the left knee and flexion of the 

left hip, while the opposite leg moves upwards. The beginning of the push phase (53%) is coordinated 

by the downbeat of the contralateral leg (right leg), which causes extension of the right knee and flexion 

of the right hip. Finally, the upsweep is performed at the same time as the last downbeat of the ipsilateral 

leg (72-81%), meaning that during this time the right leg performs the upbeat. 

Regarding the ankle joint, Figure 5-8(c) shows that the motion alternates between increasing and 

decreasing rotation in the direction of a plantar-flexed position. Higher plantar-flexed angles correspond 

to the downbeat sequences, in the direction of hip flexion, while lower angles occur during the upbeat, 

in the direction of hip extension. The alternating ankle joint motion is performed as a strategy to maximise 

the generation of thrust, since the downbeat is the propulsive sequence of the leg kick (Guignard et al., 

2019). Hence, the contact surface area of the foot with the water is increased during the downbeat by 

plantar flexing the foot to its maximum amplitude, while during the upbeat the foot should hang loosely 
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to not counteract propulsion. The results in Figure 5-8(c) are consistent with this in strategy since the 

maximum plantarflexion of the left ankle occurs at approximately 19%, 50%, and 87% of the stroke 

cycle, corresponding to the transition between down to up kick of the left leg, represented by the peaks 

in Figure 5-8(a). Although the motion amplitude differs between the current data and that reported by 

Nakashima et al. (2007), with 26.5º variation in the right ankle and 23º variation in the left ankle versus 

40.4º, respectively, the phase correlation of the right ankle peaks and valleys shows a similar pattern. A 

different work performed by Keys (2010) for a six-beat front crawl swimming obtained variations in the 

ankle flexibility of 35.3º in the right ankle compared to 42.1º in the left ankle. However, the intra-cycle 

variation registered peak plantarflexion angles varying by as much as 20º on some kicks, which supports 

the non-stationary profile of the ankle variation obtained in this work. 

In general, the results obtained for the joint angles are consistent with the expected upper to lower limb 

coordinated dynamics reported in the literature (Guignard et al., 2019; Sanders et al., 2017). However, 

the joint motion profile in Figure 5-8(c) shows the existence of small oscillations at each peak of both 

right and left ankle joints, when the respective leg kicks upwards. During the upbeat, the foot is closer 

to the water surface. The difficulties associated with the measurement of the position of the reflective 

markers through two different mediums, of air and water, are widely depicted in the literature, 

representing one of the biggest limitations of motion capture systems for water motion recording (Honda 

et al., 2012; Keys, 2010). Since the biomechanical model is formulated based on the location of these 

markers, some irregularities are likely introduced in the 3D kinematic data of the markers of the foot due 

to refraction and surface turbulence. Nevertheless, it is interesting to note the lag between 

corresponding peaks and valleys of the hip, knee, and ankle joints. Regardless of its descending or 

ascending movement, the leg kick is described as a wave-like-motion, in which the thigh moves first, 

followed by the leg and then the foot. Accordingly, the transition between up and downbeats, is first 

imposed by the hip, and followed by the knee and ankle joints. 

Besides the rotation that occurs at the hip, knee, and ankle joints about the lateral axis of the thighs, 

legs, and feet (Figure 5-8), respectively, additional rhythms associated with the rolling action of the trunk 

around its longitudinal axis, defined as body roll, seems to have important functions in swimming motion 

(Psycharakis and Sanders, 2008). Body roll facilitates the breathing action and influences the hand 

displacement relative to the water, thereby contributing to arm stroke velocity. Moreover, it helps to 

maintain a streamlined body position, and reduces drag by decreasing the frontal surface area of the 

body in the direction of motion (Barber, 2013; Psycharakis and Sanders, 2008). Several authors reported 

that swimmers tend to rotate their shoulders considerably more than the hips due to the increased 

mobility of the shoulder girdle compared to the pelvic girdle. Therefore, a separate calculation of body 

roll in terms of shoulder roll and hip roll is preferred (Andersen, 2019; Barber, 2013; Psycharakis and 

Sanders, 2008). Figure 5-9 shows the roll-time profile of the shoulders and hips obtained with the 

experimental data collected in LABIOMEP-UP. The calculation adopted to determine shoulder and hip 

roll is detailed in the work of Psycharakis and Sanders (2008). Briefly, it consists in measuring the angle 

between the vertical global axis, 𝑍, and the projection of the normal to the plane of the shoulder/trunk, 

or hip/trunk, respectively, onto the transverse 𝑍𝑋 plane. 
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(a) 

 

(b) 

 

Figure 5-9: Body roll obtained for a six-beat front crawl swimming stroke cycle performed by a male 
swimmer in LABIOMEP-UP (solid line) and compared with the literature (shaded line): (a) 
shoulder roll and (b) hip roll. The solid and shaded lines represent, respectively, a left-
handed and a right-handed stroke. The horizontal axis corresponds to a percentage of the 
stroke cycle. 

The results obtained are compared with the experiments of Psycharakis and Sanders (2008), displayed 

as shaded curves in Figure 5-9, who established the rhythm characteristics of ten skilled front crawl 

male swimmers performing the 200-m front crawl swimming using a six-beat kick. The experiment was 

performed at a maximal effort and all subjects were instructed not to breath throughout the calibrated 

recording zone. 

On average, the roll angles obtained for shoulder roll, depicted in Figure 5-9(a), and hip roll, shown in 

Figure 5-9(b), changed in a rhythmic pattern during the stroke cycle. In both cases it appears to exist 

symmetry with respect to the abscissa between the data reported in the current work and that in 

Psycharakis and Sanders (2008). This is due to the hand-stroke being analysed, noticing that this study 

is conducted for the left-hand stroke, while Psycharakis and Sanders (2008) studies the right-hand side. 
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However, since front crawl is a cyclic motion, the body roll to right and left sides is lagged by half cycles. 

In Figure 5-9, positive and negative angles represent rolling to the left and right side, respectively, i.e., 

clockwise and counter clockwise directions about the swimmer’s longitudinal axis. 

The results obtained for shoulder roll, shown in Figure 5-9(a), are generally in good agreement with the 

literature. As the left hand enters the water, the roll angle decreases until its maximum absolute 

magnitude, that occurs at approximately 38% of the stroke. During this period, the body rolls to the right 

side, counter clockwise rotation, while the right arm is moving out of the water. After the right arm 

reaches its highest point, the body roll decreases until the swimmer’s body neutral position (0º). The 

rolling direction changes to the opposite side, i.e., in the clockwise direction, during the insweep of the 

left arm (62%). Once again, the maximum roll angle occurs during the recovery phase of the left arm, 

while it moves out of the water. The same pattern is observed in the study of Psycharakis and Sanders 

(2008), but instead of rolling first to the right, and then to the left side, the swimmer rotates in the opposite 

direction. The magnitudes of total shoulder roll angle, i.e., left plus right sides, found in this work range 

between -65º and 62º, corresponding to an amplitude of approximately 130º. Psycharakis and Sanders 

(2008) report a mean amplitude of 106.6º±8.4º. 

For the hip roll, the computed angles are considerably greater than those presented by Psycharakis and 

Sanders (2008). The total amplitude of the hip roll angle in the current model is 107º, which is more than 

twice the magnitude of 50.4º±12.3º reported by Psycharakis and Sanders (2008). This difference in 

results is likely due to the instruction given to swimmers not to breath during the motion acquisitions 

performed by Psycharakis and Sanders (2008). Barber (2013) studies the effect of breathing on hip roll 

asymmetry on which experimental data are collected for twenty males and females performing the 100-

m front crawl swimming at sub-maximal speed. The amplitudes found by Barber (2013) are between 

108.3º-118.8º, which is consistent with the results found here. Furthermore, the profile of the hip roll 

shows two oscillations during 20-40% and 70-90% of the stroke, when the swimmer’s body is rolling to 

his right and left sides, respectively. During these intervals, the swimmer performs a downbeat with the 

right leg, and a downbeat with the left leg, respectively. A possible reason for these small oscillations is 

the instantaneous kicking action of the leg, which acts in the opposite direction in which the body rotates. 

At the time the swimmer starts rolling his body to his right side, the first downbeat is performed with the 

left leg, shown in Figure 5-8(a) by left hip flexion. At approximately 20% of the stroke cycle, the body 

continues rolling to the right (negative hip and shoulder roll angles). However, the right hip starts flexing 

to initiate the first downbeat with the right leg. As the kick is an accelerated movement, the right hip is 

instantaneously forced downwards. The same is expected to happen, but in the opposite direction, when 

the body rolls to his left side and the last downbeat with the left leg is initiated (~70%). 

Shoulder and hip rolls are usually analysed in terms of their magnitude, timing differences, bilateral 

asymmetries, and the impact of swimming velocity (Barber, 2013; Psycharakis and Sanders, 2008). On 

the four strokes performed, Psycharakis and Sanders (2008) observed that swimmers decreased their 

velocity during the test, and that hip roll was higher on the last stroke. Barber (2013) justifies the referred 

differences in swimming speed as a factor contributing to the higher hip roll amplitudes. Similarly, the 

swimming motion performed in this study was not conducted at maximal speed, which may explain the 
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discrepancies in total hip roll amplitudes observed. Furthermore, the deviations in hip roll magnitudes 

are more significant than those in shoulder roll, i.e., the shaded area is larger in Figure 5-9(b) than in 

Figure 5-9(a), even for skilled swimmers. Another contributing factor for the higher rolling amplitude of 

the pelvic girdle obtained for the data collected in LABIOMEP-UP may be related with bilateral 

asymmetry, namely due to breathing during the recovery phase. On his work, Barber (2013) found that 

total hip roll angle is significantly higher when breathing occurs. Finally, the timings of the shoulder roll 

and hip roll peak values is consistent with the literature, confirming that there is no out of phase between 

shoulder and hip rolling (Psycharakis and Sanders, 2008). 

The fact that shoulder and hip rolls offer a very complete insight on the overall body kinematics makes 

these two important parameters that contribute to swimming performance. The most evident difference 

between shoulder roll and hip roll is usually related with the range of motion, indicating that there is a 

relative rotation between the upper and lower trunk (Psycharakis and Sanders, 2008). Even though that 

difference was not has high in this work has reported by Psycharakis and Sanders (2008), a difference 

of 23º was measured between shoulder roll and hip roll. This supports the discretisation of the 

biomechanical model in Chapter 3, namely the division of the human trunk in an upper and lower part, 

i.e., torso and pelvis, respectively.  
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6. Estimation of the Hydrodynamic 

Forces During Front Crawl Swimming 

Water-based activities have received substantially less attention regarding the dynamics of human 

motion. The main reason for that is justified by the inherent difficulty in determining the external forces 

acting upon the human body in an aquatic environment. Although advances have been made in the 

development of pressure measurement equipment, their application is still very limited to specific body 

segments. Moreover, they do not precisely reflect the instantaneous points of force application (Lauer 

et al., 2016). Alternative methods based on numerical analysis represent the most promising alternative 

to overcome these difficulties. 

6.1. Forces in Swimming 

Swimmers move their limbs through the water to propel themselves forward. In an aquatic environment, 

the swimmer pushes off against a nonfixed environment, which is brought into motion because of the 

swimmer’s actions. The combining movements of the upper and lower limbs generate hydrodynamic 

forces, which contribute to the swimmer’s forward motion (van Houwelingen et al., 2017). In front crawl 

swimming, about 10-15% of the total body propulsion is due to the kicking motion of the lower limbs, 

while the remaining 85-90% comes from the contribution of the arm stroke (Cohen et al., 2015; Guignard 

et al., 2019; Mullen, 2018). Swimming hydrodynamics consists of the application of the physical 

principles of fluid dynamics to describe how water interacts with the body during swimming and quantify 

the external forces acting upon the body. 

The fluid forces acting upon a swimmer’s body under motion are generally of four types: (1) propulsive 

forces, which are related to the thrust and forward movement (positive forces); (2) resistive forces, which 

act opposite to the swimming direction (negative forces); (3) buoyancy forces, resulting from the reaction 

exerted by a fluid over a floating body; and (4) inertial forces, which are mostly related to the unsteadily 

fluid effects of human swimming. The force mechanisms that contribute to each type are described next. 

Both upper and lower limbs produce thrust by three main mechanisms: propulsive drag, lift forces, and 

vortices. Newton’s third law of motion accounts for forward propulsion from hydrodynamic reaction 

forces when portions of water mass are accelerated backwards. It is the case of the underwater arm 

stroke, when the arm, forearm, and hand move in the opposite direction of the body’s motion, pulling 

the water backwards. Consequently, a reaction drag force is produced in the forward direction. The 

underwater trajectories of the body segments generally describe sculling movements, generating lift 

forces that act perpendicularly to the fluid flow, contributing to propulsion as well (Mullen, 2018). 

Mathematically, the propulsive drag and lift forces are given by (Hall, 2012): 

𝐹𝐷,𝐿 =
1

2
𝐶𝐷,𝐿𝜌𝐴𝑝𝑈

2 (6-1) 
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where 𝐶𝐷,𝐿 is the drag and lift coefficients, respectively, 𝜌 is the fluid density (for the water: 𝜌 ≅

1000 𝑘𝑔/𝑚3 at 20℃ and standard atmospheric pressure), 𝐴𝑝 is the projected area of the body or the 

surface area of the body oriented perpendicular to the fluid flow, and 𝑈 is the velocity of the body relative 

to the fluid. Drag and lift coefficients are dimensionless quantities that depend on the body’s shape and 

flow characteristics (van Houwelingen et al., 2017). From Equation (6-1), the magnitude of these two 

forms of thrust increase linearly with the propulsive surface area (meaning that more water is displaced), 

and with the square of the instantaneous velocity of the body segments. For this reason, swimmers tend 

to increase the speed of the hands and feet during underwater trajectories (Mullen, 2018). 

Excluding some specific swimming motions in which the swimmer moves at relative low velocity and at 

streamlined position with the flow (e.g., gliding), in most aquatic movements, the swimmer’s body 

segments are constantly changing their speed and direction. When these changes take place at the air-

water interface or underwater, the surrounding water molecules are accelerated, generating a flow 

phenomenon in which rotating masses of water, known as vortices, are created (Andersen and Sanders, 

2018; Sanders et al., 2017). Figure 6-1 illustrates this phenomenon during the underwater arm stroke. 

As vortices are shed from one side of the hand, the pressure difference between the dorsal and palm 

sides increases, producing a propulsive reaction force that goes from the high to low pressure side of 

the hand. Since the generated force has the same direction as the swimming motion, it helps propelling 

the body forward. 

 

Figure 6-1: Illustration of the vortices generation during the underwater arm stroke (adapted from 
Sanders et al. (2017)). 

The resistive, commonly known as drag, forces are responsible for slowing down the motion of a body 

moving through a fluid and are the main concern regarding swimming performance (Mullen, 2018). Drag 

forces are usually broken down into three different components: skin friction (or viscous) drag, pressure 

(or form) drag, and wave drag. Skin friction drag results from the interaction between the water’s 

viscosity and the body’s surface, decelerating the water particles in contact with the swimmer’s skin. 

Pressure drag is related to the pressure differential between the leading and trailing edges of the body, 
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where high pressure develops at the front while low pressure exists at the bottom, meaning that particles 

tend to move from the front to the rear of the body, pushing it backward. The last and most significant 

form of resistive force is the wave drag. The combining effect of the reflected waves from the pool walls 

that collide with the swimmer, and the high agitation of water due to body motion, has a negative impact 

on swimming efficiency (Mullen, 2018). The drag forces are obtained from Equation (6-1), in which 𝐶𝐷 

includes all drag force components described. 

Buoyancy is a fluid force that acts over a floating body, pushing it upwards. The factors that contribute 

to the magnitude of the buoyant force are explained by Archimedes’ principle, which states that the 

magnitude of the buoyant force acting on a given body is equal to the weight of the fluid displaced by 

the body (Hall, 2012). Consequently, it depends on the density of the fluid in which the body is 

submerged. 

A body’s inertial mass is a measure of its resistance to changes in velocity, i.e., to being accelerated. 

Newton’s second law of motion states that there is an inverse relationship between mass and 

acceleration. Under unsteady flow conditions, the inertial force is the sum of the swimmer’s body mass 

times its acceleration plus the effects of the portions of water that are dragged during the accelerated 

body segment movements, known as the added mass of water. The unsteady-state inertial forces are 

computed by the following expression: 

𝐹𝑚 = 𝐶𝑚𝜌𝑉𝑈̇ = (1 + 𝐶𝑎)𝜌𝑉𝑈̇ (6-2) 

where 𝐶𝑚 is the inertial coefficient, 𝐶𝑎 is the added mass coefficient, 𝑉 is the body volume, and 𝑈̇ is the 

time derivative of the body velocity. Analogously to drag and lift coefficients, 𝐶𝑚 and 𝐶𝑎 are 

dimensionless parameters that depend on body geometry and flow characteristics. 

Understanding the propulsive and resistive characteristics of swimming is of main concern for sports 

analysts, coaches, and swimmers. Swimming performance is improved by maximising the propulsion, 

minimising the resistive drag forces, and optimising the swimming efficiency (Cohen et al., 2010; Honda 

et al., 2012). However, due to the non-stationary condition of the flow field in most swimming motions, 

it becomes extremely difficult to quantitatively describe the impact of these characteristics and how they 

interplay. To overcome this issue, simulation analysis tools well suited to consider the complex and 

dynamically changing effects of flow fields and body motions are used. 

6.1.1. Challenges in Simulating Front Crawl Swimming 

Front crawl swimming is not only the most complex stroke, but also the most commonly performed, both 

in training as well as in competition (Cohen et al., 2015; Sanders and Psycharakis, 2009; Takagi et al., 

2015). The modelling challenges lie in the treatment of (1) the dynamically changing shape, with 

rotations of many body segments about multiple axes; (2) the out of phase motion characteristics 

between right and left sides of the human body; (3) the body roll asymmetries due to breathing 

(Psycharakis and Sanders, 2008); and (4) the air-water interface. 
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Current technologies are used to solve the complex non-linear equations of unsteady flow fields. The 

two most common numerical simulation techniques used in CFD are methods with structured meshes, 

such as the Finite Element Method (FEM) or Finite Differences (FD), and meshless methods, such as 

SPH. Both types of methods are based on fundamental fluid mechanics principles. However, FEM and 

FD consist of a grid-based continuum method, while SPH modelling involves a meshless particle-based 

approach (Cleary et al., 2013; Cohen et al., 2015). The required modelling components to perform the 

simulations are the swimmer’s body geometry, which can be obtained from 3D laser scanning, and a 

computational model of the fluid, which accounts of the fluid flow regime and respective dynamic 

properties. Also, CFD mesh methods are established to handle large body deformations (Lauer et al., 

2016), while in SPH modelling the surface representing the human body is attached to an underlying 

skeletal structure using commercial software (Cohen et al., 2015). The SPH is better suited to deal with 

the splashing free surface fluid flow as well as the added mass effects inherent to front crawl swimming 

due to the higher quality free surface representation (Cohen et al., 2015). Despite the arising 

contributions of CFD and SPH, there are still some barriers to their use. Each simulation requires too 

much computational time and increased computational solver capabilities (Cohen et al., 2015). Besides, 

a variety of input data that is not always available are required to define the body geometry. 

Nakashima et al. (2007) developed an alternative computer simulation method that requires much less 

computation time than the commercial software programs based on FEM, FD, and SPH approaches. 

The analytical simulation model Swumsuit defines a simplified geometry of the swimmer’s body and 

computes the hydrodynamic forces acting on each body segment while considering the unsteady fluid 

effects. This is actually a very important condition since in human swimming the unsteady effects are 

often more important due to the relatively high accelerations of the body segments throughout the stroke 

cycle when compared to relatively low velocities (Honda et al., 2012). Experimental investigations were 

performed by Nakashima et al. (2007) to obtain the force coefficients of the governing equations for a 

rotating limb motion, and a simulation for the gliding position. 

6.2. Simulation Software: Swumsuit 

Swumsuit is a software in which the swimming human simulation model SWUM, proposed by 

Nakashima et al. (2007), is implemented. The model topology and body parts’ geometry are imposed, 

consisting of a series of truncated elliptic cones. The analysis tool allows the computation of the fluid 

forces acting on each segment of the whole body, including the unsteady fluid effects. The unsteady 

fluid forces are computed without solving the flow field (Nakashima et al., 2007; Nakashima, 2005). 

Instead, they are determined from the local kinematics of each part of the human body at each instant 

of time, and from force coefficients estimated experimentally. The simulation results has been reported 

to be associated with a 7.5% error compared with experimental results obtained for a standard six-beat 

front crawl swimming, based on the swimming speed (Nakashima et al., 2007). According to the authors, 

the main reason for the discrepancies stems from the modelling errors of the fluid forces and the joint 

motions, especially at the start or end of a stroke cycle and when close to the water surface (Nakashima 

et al., 2007; Takagi et al., 2015). 
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Due to its ability to provide the fluid forces developed over the full body while considering the contribution 

of the unsteady effects, Swumsuit is the method used in this dissertation to obtain the hydrodynamic 

forces of the front crawl swimming performed in LABIOMEP-UP. 

6.2.1. Swimming Human Model (SWUM) 

The human body model developed by Nakashima et al. (2007), denoted as SWUM, is divided into 

twenty-one body segments, as illustrated in Figure 6-2. 

Each body in SWUM is represented as a truncated elliptic cone. Accordingly, for each body segment, 

additional geometric and anthropometric data are necessary to define the bottom and top distances of 

the major and minor axes of the ellipses, the body length, and body density. Nakashima et al. (2007) 

provided a complete dataset with all these quantities measured for a Japanese male, at the age of 20-

29, with 1.705 m, and 64.9 kg. All lengths were normalised by the subject’s stature, and the segments’ 

density were obtained relative to the water. Consequently, the normalised lengths represent geometric 

scaling parameters of each segment of the human body model.  

To obtain the corresponding data for another specific swimmer subject, in particular for that under 

analysis in this work (swimmer male subject at the age of 25 years old, with 1.80 m and 70.3 kg), the 

normalised lengths provided in the dataset of  Nakashima et al. (2007) are used in the current study. By 

doing so, it is assumed that both subjects belong to the same percentile (Dumas et al., 2007a). 

Furthermore, at this point, the model topology is not consistent between SWUM and LHBM, as 21 versus 

16 body segments are used to represent the full body, respectively. To be able to consider the data 

provided by Swumsuit in the biomechanical model developed, a relationship between the body 

 

Figure 6-2: SWUM model topology: 1 – lower waist, 2 – upper waist, 3 – lower breast, 4 – upper breast, 
5 – shoulder, 6 – neck, 7 – head, 8 – upper hip, 9 – lower hip, 10 – right thigh, 11 – left 
thigh, 12 – right shank, 13 – left shank, 14 – right foot, 15 – left foot, 16 – right upper arm, 
17 – left upper arm, 18 – right forearm, 19 – left forearm, 20 – right hand, and 21 – left hand. 



52 

 

segments of SWUM and LHBM is defined. Table 6-1 details the association between SWUM and LHBM 

body topologies. Regarding the specific body density, the percentage of mass of each body segment is 

estimated from the literature (Dempster and Gaughran, 1967; Winter, 2009). The complete dataset 

computed for the current study can be consulted in Table C-2 of Appendix C. 

Table 6-1: Correspondence between body models. The ID of the twenty-one rigid bodies in SWUM 
is consistent with Figure 6-2. The percentage of body mass is relative to the respective 
body in LHBM, except bodies with the superscript 3. The body lengths in SWUM are 
normalised by the swimmer’s stature. 

LHBM SWUM 

ID Rigid Body ID Body Name 
Body mass 

[%] 
Scaling factor for body 

length 

1 Pelvis 1 Lower_waist 35.451 0.035308 

8 Upper_hip 64.551 0.054417 

9 Lower_hip (30+30)2 0.074896 

2 Right Thigh 10 Right_thigh 70 0.187566 

3 Right Leg 12 Right_shank 100 0.180938 

4 Right Foot 14 Right_foot 100 0.137193 

5 Left Thigh 11 Left_thigh 70 0.187566 

6 Left Leg 13 Left_shank 100 0.180938 

7 Left Foot 15 Left_foot 100 0.137193 

8 Torso 2 Upper_waist 173 0.071847 

3 Lower_breast 5.493 0.071847 

4 Upper_breast 5.493 0.065689 

5 Shoulder 5.273 0.031202 

9 Right Arm 16 Right_upper_arm 100 0.186628 

10 Right Forearm 18 Right_forearm 100 0.15132 

11 Right Hand 20 Right_hand 100 0.107331 

12 Left Arm 17 Left_upper_arm 100 0.186628 

13 Left Forearm 19 Left_forearm 100 0.15132 

14 Left Hand 21 Left_hand 100 0.107331 

15 Neck 6 Neck 100 0.016422 

16 Head 7 Head 100 0.139062 

1From (Winter, 2009); 230% of the Right Thigh and 30% of the Left Thigh (LHBM); 3Percentage of body mass 
relatively to total body weight (Dempster and Gaughran, 1967). 

6.2.2. Swumsuit Coordinate Systems 

The simulation model considers three different coordinate systems: (1) the absolute coordinate system, 

𝑂 − 𝑥𝑦𝑧; (2) the body coordinate system, 𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏; and (3) the camera coordinate system, 𝑂𝑐 −

𝑥𝑐𝑦𝑐𝑧𝑐. 

The mechanical simulation is conducted in the absolute coordinate system. In this reference frame, the 

swimming direction depends on the initial direction of the swimmer, which is defined in the analysis 

settings input data file. The 𝑧 axis points vertically upwards, and the 𝑥 and 𝑦 direction axes define the 

plane of the water surface. The origin of the absolute coordinate system is located at the water surface, 

at 𝑧 = 0. 
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The motion of the joints in SWUM are represented as rotations of body segments about their respective 

body coordinate system, located at the proximal joint of each body. In this reference frame, the direction 

axes are given as: 𝑥𝑏 points from the posterior to anterior direction; 𝑦𝑏 points from the right to the left 

side of the body; and 𝑧𝑏 runs from inferior to superior direction. These directions are valid for all bodies 

in SWUM. 

The camera coordinate system is a non-stationary reference frame that moves at constant velocity with 

the swimmer. The output data file that contains all data regarding the animation of the swimming motion 

in Swumsuit is described in this reference frame. However, the orientation of the camera coordinate 

system (𝑂𝑐 − 𝑥𝑐𝑦𝑐𝑧𝑐) is not known. 

Understanding the difference between the three coordinate systems used by Swumsuit is crucial to 

address the correct correspondence between modelling specifications and swimmer’s motion, and to 

be able to integrate them in both the simulation model and the MATLAB program code. Figure 6-3 

provides a schematic representation of the simulation coordinate systems. Note that the representation 

of 𝑂𝑐 − 𝑥𝑐𝑦𝑐𝑧𝑐 is only illustrative since its orientation is not provided by Nakashima et al. (2007). 

 

Figure 6-3: Representation of SWUM coordinate systems: absolute coordinate system (𝑂 − 𝑥𝑦𝑧), body 

coordinate system (𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏), and camera coordinate system (𝑂𝑐 − 𝑥𝑐𝑦𝑐𝑧𝑐). The global 
coordinate system in which the LHBM is defined is parallel to 𝑂 − 𝑥𝑦𝑧. In this figure, one 
single body coordinate system is represented in red, although in SWUM each body has its 
own reference frame fixated at the proximal joint. The representation of 𝑂𝑐 − 𝑥𝑐𝑦𝑐𝑧𝑐 is only 
illustrative since its orientation is not known. 

6.2.3. Swumsuit Outline 

The simulation software Swumsuit consists of a main program developed in Fortran that performs the 

analysis engine part, and a Graphical User Interface (GUI) organised as follows (Nakashima, 2005): 

• A “Project folder” tab, to locate the working directory. 

• An “Input” tab, to give and edit the body geometry and joint motion input data. 
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• An “Analysis” tab, to set and edit the simulation analysis conditions and run the simulation. 

• And an “Output” tab, which allows the visualisation of the three-dimensional swimming human 

motion animation and the computed output data (fluid forces, swimming speed, etc). 

Swumsuit is designed to solve the 6 DOF absolute motion of the swimmer’s body as one single body, 

given the human body geometry and relative body motion. As simulation input, the analysis engine part 

reads three files, each containing data of body geometry, joint motion, and analysis settings. For studies 

in which the body motion is obtained by a motion capture system and the only objective concerns the 

determination of the fluid forces acting on the swimmer’s body, Swumsuit can be set to read the absolute 

movement, without solving the equations of motion. In such case, six additional files are given as input 

regarding the linear and angular velocities of the COM of the whole body during the stroke cycle, and 

the whole-body COM and principal axes of inertia are respectively fixed to the lower tip of the lower 

waist body segment and to the body coordinate system (𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏). Since the absolute motion 

kinematics of the front crawl swimming performed in LABIOMEP-UP is already determined and only the 

computation of the fluid forces is of interest in this study, Swumsuit is used without solving the equations 

of motion. 

According to the software requirements, the first part of the analysis consists in the definition of the input 

data files: (1) data of body geometry and density, body_geometry.dat; (2) relative body motion as 

rotation angles, joint_motion.dat; (3) analysis parameters and initial condition, 

analysis_settings.dat; and (4) absolute body motion for the whole swimmer’s body – linear 

velocities defined in the three directions of the absolute coordinate system, 

input_vgx/vgy/vgz.dat, plus three angular velocities defined in the body coordinate system, 

input_ome1/ome2/ome3.dat. 

The body geometry data file is written for the subject under analysis following the SWUM topology. The 

specifications of the human body model are described in Section 6.2.1. The relative body motion in 

SWUM is represented through rotations of body segments about their own body coordinate system 

(𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏), each fixed at the proximal extremity of the respective body segment. The configuration 

of SWUM for which all rotations are null is with the upper limbs raised upward, the trunk and lower limbs 

straight, and the feet pointing downward. The resulting joint motion depends on the order of the rotations 

of the body segments that are provided to Swumsuit in the joint_motion.dat file about the 𝑥𝑏, 𝑦𝑏, 

and 𝑧𝑏 direction axes (Nakashima et al., 2007). Moreover, in SWUM, the rotation of a body segment 

about a given axis does not affect the subsequent body segment(s), so the same rotation should be 

given to the consecutive body segment(s) as well to ensure the overall coordinated body motion. The 

analysis settings necessary to conduct the simulation are defined in a data file that includes the stroke 

cycle time, the number of total steps per stroke cycle, the number of cycles to perform, the coordinates 

of the whole-body COM at the first time step (𝑡 = 0) in the absolute coordinate system (𝑂 − 𝑥𝑦𝑧), the 

direction of the whole-body principal axes of inertia about 𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏, and the linear and angular 

velocities of the whole-body COM at 𝑡 = 0. Besides these parameters, the settings data file also contains 

a list of the fluid force coefficients used in the simulation for each body segment. If the motion kinematics 
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are known a priori, additional input data files including the linear and angular velocities of the whole-

body COM about the absolute and body coordinate systems, respectively, for all time steps are required. 

The simulation is conducted for the number of cycles defined. Since the front crawl stroke is a cyclic 

motion, the input files require data for only one single stroke cycle. The format of the nine input data 

files is described in the software manual and can be consulted in Appendix C of the present document 

(format of body geometry, joint motion, analysis settings, and linear and angular velocities data files are 

given, respectively, in Table C-1, Table C-3, Table C-4, and Table C-5). 

The analysis engine consists in the solution of the analytical model of Swumsuit given the input files. 

The fluid forces acting on each body segment throughout the swimming stroke are given as output data 

files. The software fluid force model is depicted in Figure 6-4. 

   

(a) (b) (c) 

Figure 6-4: Analytical modelling of the fluid forces in Swumsuit (adapted from Nakashima et al. (2007)): 
(a) Fluid force components acting on a thin elliptic plate’s centre (except buoyancy),              
(b) buoyancy is calculated by integrating the pressure force on divided quadrangles, and  
(c) decision on whether quadrangles are above or below the water surface. 

The unsteady fluid force components acting on each truncated elliptic cone result from inertial force due 

to added mass of fluid (𝐹𝑎), normal (𝐹𝑛) and tangential (𝐹𝑡) drag forces, and buoyancy (𝐹𝑏), which 

includes the gravitational forces. Each truncated elliptic cone is divided into thin elliptic plates along the 

longitudinal axis, as shown in Figure 6-4(a), and all fluid force components except buoyancy are 

assumed to act on each centre of the thin elliptic plates (Nakashima et al., 2007). 

The drag force tangential to the longitudinal axis of the cone 𝐹𝑡 represents the resistive fluid effects, 

while the drag force normal to the axis 𝐹𝑛 corresponds to the drag and lift force generated by limb motion 

(Nakashima, 2006). These two components plus the inertial force due to added mass 𝐹𝑎 are computed 

from the local kinematics of each body segment, at each time step. From Equations (6-1) and (6-2), 𝐹𝑛 

and 𝐹𝑡 are proportional to the local velocity at the thin plate’s centre in the normal and tangential 

directions, respectively, whereas 𝐹𝑎 is assumed to be proportional to the local acceleration in the normal 

directions. Furthermore, these fluid force components are computed using their coefficients, 𝐶𝑛, 𝐶𝑡, and 

𝐶𝑎, respectively. 

Nakashima et al. (2007) conducted an experimental investigation to identify the coefficients of the 

normal drag 𝐶𝑛, and added mass 𝐶𝑎. The experimental setup consisted in the measurement of the 

rotating angles and bending moment at the root of an artificial limb motion in water. From the 24 trials 
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performed, the experimental coefficients were identified as 𝐶𝑎 = 0.472 ∼ 0.831 and 𝐶𝑛 =  0.994 ∼ 1.192, 

and by averaging for all trials they were finally determined as 𝐶𝑎 = 0.651 and 𝐶𝑛 = 1.077, within 10% 

error (Nakashima et al., 2007). These two values are considered for all body segments of SWUM, as 

the authors considered this assumption not to cause significant error since the inertial force due to added 

mass and the drag force in the normal direction are thought to be relatively small for the trunk, including 

head and neck. Regarding the tangential drag coefficient 𝐶𝑡, it was estimated by performing a simulation 

in which the human body took the gliding position. From the simulation 𝐶𝑡 was determined to be 0.036 

(Nakashima et al., 2007). 

Buoyancy, on the other hand, is calculated by integrating the pressure force due to gravity acting on a 

quadrangle, into which the side surface of the thin elliptic plate is divided in the circumferential direction, 

as seen in Figure 6-4(b). This force is computed only for the submerged quadrangles, as shown in 

Figure 6-4(c) (Nakashima, 2006; Nakashima et al., 2007). 

By numerically integrating all the above-mentioned fluid forces computed for each thin plate in the 

longitudinal direction, the fluid force acting on each truncated elliptic cone is obtained. 

Once the simulation is finished, an “Output_data” folder is created in the workspace directory containing 

all computed data. The external forces are given in two different types of files: (1) a motion.dat file 

with the distributed fluid forces acting at the centre of each thin plate of each body, for all time steps of 

the stroke cycle; and (2) 63 force files (21 body segments × 3 components), each containing, for all time 

steps, five columns of force data – total force, added mass, normal drag, tangential drag, and buoyancy. 

In both cases, the data files give the direction and the nondimensional magnitude of the fluid forces in 

each component of the 3D space. The data in the 63 force files are defined in the absolute coordinate 

system (𝑂 − 𝑥𝑦𝑧), while the forces in the motion.dat file are in the camera coordinate system (𝑂𝑐 −

𝑥𝑐𝑦𝑐𝑧𝑐). Since the fluid forces in motion.dat represent only those acting at the centre of each thin 

plate, buoyancy is not accounted for in this file. 

6.2.4. Interface between Swumsuit and LHBM 

Data output from the Swumsuit must be processed to be consistent with the biomechanical model 

developed and its formulation. This section addresses the procedure implemented to convert modelling 

specifications and motion data from LHBM to SWUM, and vice versa. The overall data flow is illustrated 

in Figure 6-5.  
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Figure 6-5: Data flow of the interface between the simulation software Swumsuit and the LHBM. The 
blue shaded rectangle represents the simulation analysis that is performed in Swumsuit. 
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As described in Section 6.2.1, the first obstacle in the application of Swumsuit is the different 

discretisation of its human body model. Twenty-one body segments compose the human body model in 

SWUM, the geometry and density of which must be defined for all. In this work, the geometric dataset 

of Nakashima et al. (2007), which is scaled by swimmer’s stature is used considering the height and 

weight of the subject under analysis here. The density of the body segments relative to the water is 

computed considering the percentage of body mass addressed to each body described in Table 6-1. 

The kinematic analysis performed for the front crawl swimming stroke measured in LABIOMEP-UP 

outputs the consistent positions, velocities, and accelerations of the LHBM. As explained in Chapter 4, 

the vector of consistent positions 𝐪 defines the coordinates of the COM and orientation of each body 

segment for all time steps. The orientation is defined by Euler parameters, which describe the direction 

axes of the body-fixed reference frame (𝜉, 𝜂, 𝜁) of each body. Since body motion in SWUM is given as 

rotations of body segments about their own body coordinate systems (𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏), the orientations 

obtained in the kinematic analysis are converted to represent rotations of body segments: 

(i) First, the four Euler parameters are converted to rotation angles about the 𝜉, 𝜂, and 𝜁 axes. 

The body-fixed reference frames in LHBM follow the recommendations of the ISB (Wu et 

al., 2002, 2005). Consequently, the local reference frames are not the same for the right 

and left sides of the human body, as they are defined based on anatomical landmarks. 

(ii) To transform coordinates from (𝜉, 𝜂, 𝜁) to (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏), a rotation matrix 𝐑𝑏𝑜𝑑𝑦 is considered 

such that: 

For the pelvis, torso, head, neck, and right thigh, leg, foot, arm, forearm, and hand, the 

rotation matrix is given by: 

 
𝐑𝑏𝑜𝑑𝑦 = [

1 0 0
0 0 −1
0 1 0

] , (6-4) 

while for the left thigh, leg, foot, arm, forearm, and hand, it is given by: 

 
𝐑𝑏𝑜𝑑𝑦 = [

−1 0 0
0 0 1
0 1 0

] (6-5) 

The definition of the body coordinate system direction axes is described in Section 6.2.2. 

(iii) Considering that the body model configuration in which the rotations of body segments are 

null in SWUM differs from that in LHBM (see Section 6.2.3), during the conversion, the 

rotation angles about the 𝑦𝑏 axis of the right and left feet are subtracted by 90º, while for 

the right and left arms, forearms, and hands, 180º are added and subtracted to the rotation 

angles about the 𝑦𝑏 and 𝑧𝑏 axes, respectively. 

 
[

𝑥𝑏

𝑦𝑏

𝑧𝑏

] = 𝐑𝑏𝑜𝑑𝑦 [
𝜉
𝜂
𝜁
] (6-3) 
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Regarding the swimmer’s absolute body motion given in the input_vgx/vgy/vgz.dat and 

input_ome1/ome2/ome3.dat input files, Swumsuit defines the whole-body COM fixed to the lower 

tip of the lower waist body segment, which corresponds to the pelvis in LHBM (Table 6-1), and the 

principal axes of inertia are settled to the body coordinate system (𝑂𝑏 − 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏), thus corresponding 

to the rotation matrix in Equation (6-4). Accordingly, the linear and angular velocities of the pelvis are 

taken from the vector of consistent velocities 𝐪̇ for all time steps. Note that 𝐪̇ has, for each body segment, 

6 entries – three linear velocities defined in the global reference frame, and three angular velocities 

defined in the body-fixed reference frame. As mentioned before, the linear velocities in Swumsuit are 

defined in the absolute coordinate system, while the angular velocities are defined in the body coordinate 

system. Since the global reference frame (𝑂 − 𝑋𝑌𝑍), in which LHBM is defined, and the absolute 

coordinate system (𝑂 − 𝑥𝑦𝑧), in which the simulation model is conducted, are parallel to each other 

(Figure 6-3), the linear velocities in 𝐪̇ can be directly applied in SWUM. Regarding the angular velocities, 

the rotation matrix in Equation (6-4) must be considered to transform the angular velocities from the 

pelvis body-fixed reference frame to 𝑂𝑏 − 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏. 

The analysis parameters in Table 6-2 are given as input to the simulation. Besides the definition of the 

stroke cycle time and total time steps, which come from the kinematic analysis, the direction of the 

whole-body principal axes of inertia about (𝑂𝑏 − 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏), the position, and the linear and angular 

velocities of the swimmer’s body COM at 𝑡 = 0 are also given in the input data file. Regarding the fluid 

force model specifications, the number of longitudinal and circumferential divisions of each truncated 

elliptic cone and the force coefficients used to compute the fluid forces are provided. In this work, the 

modelling parameters are the same as those defined by Nakashima et al. (2007) since both studies are 

performed for a six-beat front crawl swimming motion and the shape and geometry of both swimmers’ 

body segments are similar. 

Table 6-2: Specifications of the simulation analysis. 

Stroke cycle 2.39 s 

Time steps 240 

Number of divisions of each 
truncated elliptic cone 

 

- For longitudinal direction 10 

- For circumferential direction 36 

Added mass coefficient, 𝐶𝑎 0.651 

Normal drag coefficient, 𝐶𝑛 1.077 

Tangential drag coefficient, 𝐶𝑡 0.036 

All the input data are written into the respective files, following the specifications detailed in Appendix 

C. The MATLAB function system is called to execute the operating command of Swumsuit. Once the 

simulation is finished, the force files are read, and data are converted from SWUM to LHBM. 

In LHBM, the vector of external forces 𝐠 in Equation (4-25) has 6 entries: the global forces in the 𝑋, 𝑌, 

and 𝑍 components, and the local moments defined in the body-fixed reference frame of the respective 

body. As mentioned in Section 6.2.3, the data in the 63 force files are described in the absolute 
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coordinate system (𝑂 − 𝑥𝑦𝑧). The dimensional force coefficient is given in the header part of each file, 

and the force components are described in different columns, corresponding to total force, added mass, 

normal drag, tangential drag, and buoyancy. Since the absolute coordinate system and the global 

reference frame are parallel, the “total forces” columns provide the forces in the global 𝑋, 𝑌, and 𝑍 

components of each body in SWUM, and the conversion to the LHBM is depicted in Table 6-1. However, 

these files do not provide enough information for the computation of the local moments as the total 

forces are given in the COM of each body and thus the points of application of the corresponding 

distributed forces are not provided. 

On the other hand, the motion.dat file contains the distributed forces and respective points of 

application acting upon the longitudinal axis of each body, except buoyancy. The force data are defined 

in the camera coordinate system (𝑂𝑐 − 𝑥𝑐𝑦𝑐𝑧𝑐) and are scaled for the animation. Since the animation 

scaling coefficient is not known, a relationship between the 63 force files and motion.dat file is 

established to: obtain the dimensional local forces; convert the local forces from the camera to the 

absolute coordinate system; and add the contribution of buoyancy into the vector of local forces. 

The methodology implemented computationally is explained in the following: 

(i) The force data in the 63 force files is multiplied by the dimensional coefficient provided in 

the header part of the respective file, thus obtaining the fluid forces in Newton. 

(ii) For each body segment, the added mass, normal drag, and tangential drag fluid forces are 

added in the three directions (𝑥, 𝑦, and 𝑧). This force is hereafter denoted as (𝐟𝑖)𝑥𝑦𝑧, where 

𝑖 is the body segment in SWUM, and the subscript “𝑥𝑦𝑧” points that the force is described 

in the absolute coordinate system. In this calculation the buoyancy force is not considered 

since the magnitude of (𝐟𝑖)𝑥𝑦𝑧 is to be used to identify the coefficient that converts the fluid 

forces in motion.dat file, which disregard buoyancy, into Newtons. 

(iii) Similarly, the non-dimensional distributed forces acting upon the longitudinal axis of body 𝑖, 

(𝐟𝑘,𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
, where 𝑘 is the number of longitudinal divisions given in Table 6-2, are given in 

the motion.dat file in the 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐 components. Note that the dimensional force 

coefficient is not known for these forces. 

(iv) In order to obtain the dimensional force magnitudes of (𝐟𝑘,𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
, the 10 distributed forces 

acting along the longitudinal axis of each body segment, at each time step, are summed for 

the 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐 components, and the resulting non-dimensional magnitude is computed: 

 
(𝐟𝑖)𝑥𝑐𝑦𝑐𝑧𝑐

 = ∑ (𝐟𝑘,𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
 

10

𝑘 = 1

⇒ ‖(𝐟𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
‖ (6-6) 

where (𝐟𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
 is the vector of non-dimensional fluid forces acting on body 𝑖 in SWUM, 

(𝐟𝑘,𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
 is the vector of non-dimensional distributed fluid forces acting in the centre of 

each thin plate along the longitudinal axis of that same body 𝑖, and 𝑘 is the number of 
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longitudinal divisions. The subscript “𝑥𝑐𝑦𝑐𝑧𝑐” points that these forces are described in the 

camera coordinate system. 

(v) The force magnitudes are compared by computing the ratio 𝑟𝑓 between ‖(𝐟𝑖)𝑥𝑦𝑧‖ and 

‖(𝐟𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
‖. 

(vi) The dimensional distributed forces are obtained by multiplying the computed ratio 𝑟𝑓 with 

the corresponding non-dimensional force vector in (iii). At this point, the dimensional 

distributed forces (𝐟𝑘,𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
 are still defined in the camera coordinate system and do not 

consider the buoyancy force component. 

(vii) Because the relationship between the camera and the absolute coordinate systems is 

unknown, the rotation matrix relating these is computed through the solution of the following 

system of equations: 

 (𝐟𝑖)𝑥𝑦𝑧 = (𝐀𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
(𝐟𝑖)𝑥𝑐𝑦𝑐𝑧𝑐

 (6-7) 

where (𝐀𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
 is the rotation matrix from the camera to the absolute coordinate system. 

(viii) Using the rotation matrix (𝐀𝑖)𝑥𝑐𝑦𝑐𝑧𝑐
 computed through Equation (6-7), the distributed forces 

(𝐟𝑘,𝑖)𝑥𝑦𝑧
 in the absolute coordinate system are computed from (𝐟𝑘,𝑖)𝑥𝑐𝑦𝑐𝑧𝑐

. 

(ix) From the dimensional forces in step (i), the total force vector (𝐟𝑖)𝑥𝑦𝑧
𝑇𝑂𝑇𝐴𝐿 is defined containing 

all fluid force components, including buoyancy. To determine the contribution of the 

buoyancy forces missing in the motion.dat file, the sum of (𝐟𝑘,𝑖)𝑥𝑦𝑧
 along the 10 thin 

plates of body 𝑖 is subtracted to (𝐟𝑖)𝑥𝑦𝑧
𝑇𝑂𝑇𝐴𝐿. The difference represents how much of buoyancy 

must be added to the distributed forces vector (𝐟𝑘,𝑖)𝑥𝑦𝑧
. 

(x) Since all bodies are divided into 10 thin plates along the longitudinal axis, the buoyancy 

forces, computed in step (ix), are assumed equally distributed over all plates. 

(xi) Finally, the total distributed forces in the absolute coordinate system (𝐟𝑘,𝑖)𝑥𝑦𝑧

𝑇𝑂𝑇𝐴𝐿
 are obtained 

from (𝐟𝑘,𝑖)𝑥𝑦𝑧
 updated with the buoyancy components in (x). The conversion from the 

absolute coordinate system in SWUM to the global reference frame in LHBM is direct, and 

the correspondence between body segments is established in Table 6-1. 

At this point, the global distributed hydrodynamic forces acting upon the longitudinal axis of the body 

segments are determined and converted to the LHBM. The force application points of these forces are 

determined as equally spaced points along the longitudinal axis of each body segment, i.e., the line that 

connects the proximal and the distal end points of the respective body. Each force applied in its 

application point produces a moment in relation to the body segment COM. Finally, the total local 

moment of each body is the sum of the contribution of the 10 thin plates, expressed in the body-fixed 

reference frame. 

Note that the conversion depicted in Table 6-1 is performed twice: first, to transform the biomechanical 

and kinematic data from LHBM to SWUM and give them as input to the simulation analysis; once the 
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simulation in Swumsuit is concluded, the hydrodynamic forces are applied to the correspondent bodies 

in LHBM to perform the inverse dynamic analysis. 

6.3. Results and Discussion 

The results of the simulation performed in Swumsuit of the six-beat front crawl swimming motion are 

presented in Figure 6-6 for six events of the stroke cycle. These events are identified by the 

corresponding percentage of the total stroke cycle time. The red arrows represent the direction and 

magnitude of the fluid forces acting on the swimmer’s body segments, except buoyancy. The distributed 

characteristics of the forces reflect the force in each one of the elliptic thin plates used for their 

evaluation. The total simulation computing time was approximately 1 minute and 38 seconds on an Intel 

Core i5-7200U CPU with 8GB RAM, with the analysis settings depicted in Table 6-2. 

   

(a) 17.6% (b) 37.2% (c) 49.6% 

   

(d) 63.2% (e) 71.2% (f) 90.4% 

Figure 6-6: Simulation results of the left-hand six-beat front crawl swimming stroke in Swumsuit 
(lateral view). The six events are identified by the corresponding percentage of the total 
stroke cycle time. 

The global 𝑋, 𝑌, and 𝑍 fluid force components acting upon the right foot, leg, and thigh body segments 

of LHBM are shown in Figure 6-7. These results are compared to those obtained by Nakashima et al. 

(2007). Although the force profiles are similar among the bodies of the right lower limb, their magnitudes 

are generally higher in the current study than those reported in the simulation performed by Nakashima 

et al. (2007), especially in the three components of the foot body segment. 
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Figure 6-7: Simulation results of the hydrodynamic forces developed during a left-hand six-beat front 
crawl swimming stroke cycle. The global fluid forces obtained in the current study (solid 
line), and reported by Nakashima et al. (2007) (dashed line) are given in the 𝑋, 𝑌, and 𝑍 
components. The horizontal axis corresponds to a percentage of the stroke cycle. 

Regarding the fluid forces acting on the right foot, three force peaks can be clearly identified in the 

vertical component, each acting approximately at 28%, 60%, and 99% of the stroke cycle, which is 

consistent with its motion towards the bottom of the swimming pool a few instants before, approximately 

at 20%, 51%, and 90%, which corresponds to frames (a), (c), and (f) in Figure 6-6. These instants of 

time are coincident in Figure 6-7 with the beginning of generation of propulsive force by the respective 

body, and the peak force is then reached a few instants later. The correlation of these peaks with the 

right ankle joint motion verifies the postulated assumptions in the literature that state that the maximum 

propulsive forces in the lower limbs occur during the downbeat, when the ankle in maximum 

plantarflexion (Keys, 2010; Sanders et al., 2017; Wei et al., 2014). On the other hand, the lateral and 

axial force components are of two types: resistive, or negative, forces, and propulsive, or positive. 

Despite the similarity regarding the distribution of fluid forces throughout the stroke cycle, the force 

magnitudes obtained in the current work are larger, by more than 40 N, than those reported by 

Nakashima et al. (2007). As already mentioned, the propulsive forces in the leg kick motion are mostly 

generated during the downbeat. Keys (2010) studied the front crawl motion of an elite male swimmer 

and the hydrodynamic forces were obtained by performing a simulation analysis using a CFD 

commercial software. In his work, he observed that the greater flexibility on the left ankle joint resulted 
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in higher propulsion developed by the left foot. Analogously, the third and last downbeat of the right leg 

is initiated by the flexion of the right hip, at 85% of the stroke cycle. The downbeat results from the 

combined action of the hip flexion, followed by knee extension, and ankle plantarflexion. From Figure 

5-8(a), the hip flexibility registered its maximum amplitude at that specific time, which may have 

contributed to the increased generation of force. Another hypothesis is related with the body roll. As 

shown in Figure 5-9(b), the hip roll amplitude performed by the swimmer in this work is greater than the 

usual interval reported in the literature. One of the objectives of a hip-driven technique is to use the hip 

rotation as a power source for propulsion. The transition of the swimmer’s body rotation from the right 

to the left side occurs in the stroke cycle at approximately 53%. At that same time, the downbeat of the 

right leg is initiated, with the ankle joint flexing towards its maximum position, as seen in Figure 5-8(c). 

The combined rotation of the whole swimmer’s body to the left side and the kicking action of the right 

leg could result in a higher peak of force, as seen in the 𝑍 component of the right foot. A third possible 

contribution to the high force magnitudes obtained may be related with the acceleration. In swimming 

motion analysis, the unsteady fluid forces are often more important due to the relatively high 

accelerations of the body segments. Swimmers are constantly changing the velocity and position of 

body segments to enhance swimming efficiency. As the pelvis linear and angular accelerations are given 

as input to the simulation analysis, it is possible that the acceleration of body segments is higher in this 

work than that obtained by Nakashima et al. (2007). 

Regarding the axial and lateral force components in Figure 6-7, the forces developed at the right foot 

are significantly more relevant than those developed at the thigh and leg body segments. However, in 

the vertical component, the peak force of the right thigh and right leg in the LHBM are, respectively, 80.3 

N and 44.3 N, against 71.2 N and 37.7 N in Nakashima et al. (2007). Although the maximum vertical 

force of 103.3 N remains in the right foot, the contribution of the remaining bodies is also important for 

thrust force generation. Keys (2010) obtained larger percentage of propulsion in the thighs than the feet, 

which reinforces the importance of entire leg movement and positioning rather than just focusing on feet 

propulsion. 

The results shown in Figure 6-7 support the validity of the interface developed between Swumsuit and 

the LHBM, as the dynamic response developed at the lower limbs is similar between the results obtained 

here and those reported by Nakashima et al. (2007), for the same swimming motion. However, a similar 

analysis is required for the remaining structures of the biomechanical model to ensure consistency with 

the expected behaviour of the human swimming motion. Lastly, the magnitude of the fluid forces 

computed for LHBM shows large discrepancies during some intervals of the stroke. These discrepancies 

are expected to repercuss on the results of the inverse dynamic analysis. 

A final remark is made regarding the biggest limitations found in the software Swumsuit: 

1. The simulation model has been found to be within 7.5% error against the experimental values, 

as reported by Nakashima et al. (2007). 

2. The fluid forces are calculated without solving the flow field. Although it becomes advantageous 

from the computational time point of view, it does not consider neither the effects of the 

surrounding walls nor the mutual interaction of limbs. In front crawl swimming analysis, the latter 
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aspect is tremendous since both the leg kick and the arm stroke generate vortices that 

characterise the motion of the body segments. Neglecting their role in the overall body motion 

should impact the results of the estimated fluid forces (Andersen and Sanders, 2018; Takagi et 

al., 2015). 

3. Although Swumsuit allows importing of the swimmer’s absolute body motion, i.e., the linear and 

angular velocities of the whole-body COM for all time steps of the stroke cycle, the simulation 

program cannot solve the kinematic analysis of an acquired motion. Therefore, the kinematic 

analysis must be performed a priori in a different program, and then the linear and angular 

velocities are provided to Swumsuit, according to the simulation software specifications. 

4. As described in Section 6.2.3, the motion given as rotations of body segments in the 

joint_motion.dat file is influenced by the order in which these rotations are written, which 

is to be expected as rotations cannot be added, i.e., in 3D the rotations do not have the additive 

property. Considering that a Cartesian coordinates formulation is considered in this study, it 

becomes troublesome the transformation from Euler parameters to the rotation sequences 

expected by Swumsuit, especially due to the complexity and variety of segmental movements 

from upper to lower limbs. This may be a potential source of error on the estimation of fluid 

forces due to discontinuities in the rotation angles for some intervals of the analysis, thus 

suggesting that a more robust transformation of rotations should be identified. 
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7. Inverse Dynamic Analysis of 

Determinate Biomechanical Systems 

In this chapter, the solution of the determinate inverse dynamic analysis of the six-beat front crawl 

swimming motion performed in LABIOMEP-UP is presented. In this application, the DOF of the 

multibody system are actuated upon by driver actuators at the joints, instead of muscles. From the 

physiological point of view, these results are not characteristic of a biological system. However, they 

represent the lumped action of the muscles about the joints during a specific human motion, thus 

providing insight into valuable information and biomechanical modelling requirements. The results of the 

swimming motion under analysis are presented and discussed for the principal joints of the human lower 

limbs. 

7.1. Solution of the Determinate Inverse Dynamic 

Analysis 

In an inverse dynamics approach, the equations of motion of a multibody system are solved for a set of 

unknown parameters, defined as Lagrange multipliers, 𝛌. The solution of the system of non-linear 

equations requires the consistent kinematic data, the global biomechanical mass matrix, and the vector 

of externally applied forces as input data, as expressed in Equation (4-25). The Lagrange multipliers 

consist of a measure of the intersegmental forces that are developed by the kinematic constraints. Thus, 

the internal product of the vector of Lagrange multipliers by the transpose of the Jacobian matrix of the 

multibody system provides the intersegmental joint forces and joint torques developed by the driver 

actuators described in Section 4.3.5 at the kinematic joints. 

The global components of the intersegmental joint forces of the hip, knee, and ankle joints are discussed 

in the following section, along with the joint torques developed during the swimming motion. 

7.2. Results and Discussion 

The profile and magnitude of the intersegmental forces and joint torques during the six-beat front crawl 

swimming motion are shown in Figure 7-1 and Figure 7-2, respectively, for the hip, knee, and ankle 

joints.   
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(a) 

 

(b) 

(c) 

Figure 7-1: Intersegmental forces magnitude obtained during a left-hand six-beat front crawl 
swimming stroke cycle in the a) hip, b) knee, and c) ankle joints. The horizontal axis 
corresponds to a percentage of the stroke cycle. 
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(a) 

 

 

(b) 

 

(c) 

 

Figure 7-2: Joint torques obtained during a left-hand six-beat front crawl swimming stroke cycle in the 
a) hip, b) knee, and c) ankle joints. The horizontal axis corresponds to a percentage of the 
stroke cycle. 
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During the recovery phase, the arm stroke travels above the head. Due to the differences in fluid density 

between air and water, the force decreases by around 800 times for any body part out of the water 

(Keys, 2010). Therefore, the external forces acting upon the arm that moves above water during the 

recovery phase are nearly zero. Harrison et al. (2014) used a coupled Biomechanical-Smoothed Particle 

Hydrodynamics (B-SPH) model to calculate the joint torques for the arms of a male swimmer performing 

the front crawl stroke. The analysis proved that the joint torque is approximately zero during the recovery 

phase, and small, but non-zero, in the entry phase. Contrary to the upper limbs, the entire motion of the 

lower limbs occurs underwater. Although it highly depends on the swimmer’s ability and technique, the 

concept of keeping the feet submerged at all time steps is expected to contribute to body propulsion 

and avoid wave drag (Keys, 2010). Because of that, thighs, legs, and feet are acted upon by external 

forces throughout the entire stroke. 

The results obtained in the current work show that the intersegmental forces of the right and left joints 

of the lower limbs are never null. However, for the knee and ankle joints, their value is very small during 

some intervals of the stroke (3-18%, 44-49%, and 68-84% for the right lower limb; 20-38%, 52-68%, and 

95-100% for the left lower limb). Considering the analyses in Sections 5.4.1 and 6.3, the larger and 

smaller peaks in Figure 7-1, correspond, respectively, to the three downbeats and three upbeats of each 

leg. During the upbeat, extension of the thigh occurs at the hip, followed by the upward motion of the 

leg and foot. Consequently, these bodies reach a position near the water surface and the joint force 

decreases, as is the case of the hand during the entry phase. If the ankle and knee joint forces are 

compared at the instants depicted in Figure 6-6, it can be observed that their magnitudes are lower 

when the body segments move closer to the water surface. Furthermore, the development of larger 

peaks during the downbeat of the lower limbs is consistent with the analysis of the external forces 

performed in Chapter 6 for the right lower limb, since during this phase the force created by the 

surrounding water over the body parts of the lower limbs is higher, propelling the body forward. 

However, from the results in Figure 7-1, the magnitude of the intersegmental forces at the right knee 

and ankle joints ranges from nearly 0 to 150 N and 125 N, respectively, while the right hip joint forces 

are up to 225 N. On the other hand, the analysis performed in Section 6.3 verified that the higher 

hydrodynamic forces are registered for the foot. This shows that peak loads at the kinematic joints are 

not uniquely due to the magnitude of the external hydrodynamic forces acting upon the adjacent body 

segments. If it was so, the results of the ankle joint forces should correspond to the highest magnitudes. 

Instead, it is verified that the intersegmental forces are dependent on the combined effects of the 

external hydrodynamic forces plus the active joint forces necessary for controlling the joint motion, in 

this case, hip, knee, and ankle flexion and extension. Considering the nature of motion of the leg kick 

described in Section 5.4, the swimmer moves his lower limbs from the proximal to the distal bodies. 

Being the hip the first element of the kinematic chain of the human lower limbs, higher intersegmental 

forces are concentrated at this joint. Despite the intra-cycle variations among joints, the comparison 

between the force amplitudes of the right and the left sides is very similar for all joints. Table 7-1 details 

the peak-to-peak force amplitudes for all joints. 
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Considering the convention for the joint toques depicted in Figure 7-2, the joint torque at the hip should 

be positive (extension) during the upbeat, and negative (flexion) in the downbeat. The knee should 

produce a positive joint torque (flexion) at half of the upbeat and in the transition to downbeat. On the 

other hand, a negative joint torque (extension) is produced at half of the downbeat and in the transition 

to the upbeat sequence. The ankle joint torque is expected to be positive (plantarflexion) during the 

downbeat, when the propulsion from the lower limbs is maximal, and negative (dorsiflexion) at half of 

the upbeat. 

The stroke cycle under analysis begins with the downbeat of the left lower limb. In Figure 7-2(a), the left 

hip joint torque changes from positive to negative, while the hip is flexing and moving towards the bottom 

of the swimming pool. Accordingly, the left leg follows the thigh, and the left knee is extended (negative 

joint toque in Figure 7-2(b)). The left ankle joint torque in Figure 7-2(c) is approximately zero during the 

first half of the downbeat (0-10%) and becomes negative during the second half (10-20%), which means 

that the articular moment has the opposite direction (dorsiflexion). As mentioned in the previous 

paragraph, the left ankle joint torque was expected to be positive during this interval, since it corresponds 

to the downbeat sequence of the respective lower limb. A possible reason for the incongruity is due to 

the external hydrodynamic forces acting upon the left foot during this period, i.e., although the left foot 

is in plantarflexion, as seen in Figure 5-8(c), the external forces cause a negative joint torque at the left 

ankle. Simultaneously, the right lower limb performs the upbeat. Accordingly, the right hip joint torque is 

positive as the right thigh moves upwards (hip extension), and the right knee changes from negative to 

positive torques while flexing. During the same interval, the right ankle joint torque becomes positive. 

In general, the results for the hip and knee joints show agreement throughout the cycle for both sides of 

the lower limbs. The joint torque variation is consecutively alternating according to the downbeat and 

upbeat sequences. However, the variation of the right and left ankle joint torques does not follow the 

expected behaviour throughout the entire stroke cycle. During the first half (0-50%), the joint torques 

are negative on the downbeat (dorsiflexion), and positive during the upbeat (plantarflexion) of the 

respective lower limb, but during the second half cycle (50-100%) they change to the expected variation. 

For instance, the second downbeat of the right leg begins at approximately 51% of the cycle and lasts 

until 64%. During this interval, the right lower limb moves downwards. The external hydrodynamic forces 

acting upon the right foot have the opposite direction of motion, which contributes to a positive moment 

at the right ankle joint, and therefore corresponding to a positive torque in Figure 7-2(c). Nevertheless, 

the joint torques for the ankle joints are one order of magnitude lower than those for the hip and knee 

joints. 

Analogously to the intersegmental forces, the joint torques are of greater magnitude for the hips. The 

amplitudes defined as the difference between maximum and minimum values for the right and left lower 

limbs are given in Table 7-1. 
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Due to the lack of literature on joint torques and intersegmental joint forces in the context of human 

swimming motion, validation of the obtained results is not possible at this stage. The only study found 

in the literature in which the hip joint torques are demonstrated for a front crawl swimming motion was 

developed by Nakashima et al. (2015). The work aimed to investigate the effect of knee joint motion on 

the swimming performance of a male subject with a transfemoral prosthesis. The individual is an 

experienced swimmer with an acquired one-sided transfemoral amputation of the right lower limb. 

Consequently, only the joint torques obtained for the healthy leg (the left leg) are used for comparison 

in this work. 

 

Figure 7-3: Joint torques at the left hip obtained in the current work (solid line), and reported by 
Nakashima et al. (2015) (dashed line). The horizontal axis corresponds to a percentage 
of the stroke cycle. 

The results obtained reveal several differences between both models. However, one aspects related 

with the definition of the hip joint centre must be considered. Nakashima et al. (2015) defined the hip 

joint centre as the position of the markers of the trochanter (see Appendix A). This assumption has 

tremendous implications and repercussions in the accuracy and interpretation of results (Hara et al., 

2016). With that being said, the data reported by Nakashima et al. (2015) is used only to evaluate the 

Table 7-1: Differences between the amplitudes of intersegmental forces and joint torques of the hip, 
knee, and ankle. The difference is computed as the measured peak-to-peak magnitude. 

Joint Intersegmental forces Joint torques 

 Peak force [N] Difference [N] Peak [Nm] Difference [Nm] 

Hip Right 224.2 169.41 62.99 (extension) 105.37 

 Left 207.5 168.22 79.66 (flexion) 106.56 

Knee Right 153.8 142.35 37.67 (flexion) 68.49 

 Left 170.0 158.79 35.03 (extension) 56.79 

Ankle Right 125.7 121.93 10.27 (plantarflexion) 13.59 

 Left 143.8 139.76 7.02 (dorsiflexion) 9.93 
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expected torque amplitude of the hip joint. The difference between peak to peak resulted in a total 

amplitude of 113.5 Nm, against 105.37 Nm and 106.56 Nm obtained in the current work for the right 

and left hip joints, respectively, as depicted in Table 7-1. Both differences are of the same order of 

magnitude, and very similar, which provides some confidence in the results. 

Additionally, the joint torques of the upper limbs reported by Harrison et al. (2014) were of greater 

magnitude for the proximal joints, which is identical to the results obtained in this work for the lower 

limbs. The joint torque magnitudes decrease from the hip to the ankle joint, as shown in Figure 7-2. On 

the other hand, the difference from peak-to-peak reported by Harrison et al. (2014) was 176 Nm for the 

shoulder, 85 Nm for the elbow, and 17 Nm for the wrist joint. As mentioned in Chapter 6, in front crawl 

swimming the upper limbs are responsible for the most part of the overall body propulsion. This is verified 

for the current results since the torque magnitudes obtained for all joints of the lower limbs are below 

the values reported for the upper limbs. 

The results obtained from the inverse dynamic analysis performed underly the importance of considering 

the whole system dynamics of the human lower limbs during front crawl swimming, and not only the 

feet. Despite the apparent consistency of some results, the biomechanical model developed requires 

further validation. Although the dynamic pattern estimated seems to represent the mechanisms of front 

crawl swimming in the lower limbs, with the major discrepancies occurring with the ankle joints, the 

intersegmental forces and joint torques are expected to be greater in this work because of the high 

hydrodynamic forces obtained in Chapter 6 during some phases of the stroke cycle, when compared to 

Nakashima et al. (2007) and Keys (2010). From the analysis of those intervals in the animation of 

Swumsuit, they correspond to situations in which the feet are not properly positioned relative to the 

adjacent body. The reason for that may be due to the movement performed by the swimmer, or a more 

plausible source of error is related with the order of rotations given in the simulation input file. The latter 

has an immediate impact on the contact surface area of the feet with water, and thus in the generated 

joint forces. Since the vector of external forces is an explicit input of an inverse dynamic analysis, the 

results here obtained are certainly higher.  
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8. Conclusions 

This work studies the dynamic behaviour of the human lower limbs during a six-beat front crawl 

swimming motion. The comprehensive, three-dimensional mathematical model of the full human body 

developed in MATLAB uses a multibody based formulation in which the position and orientation of the 

anatomical segments are represented by Cartesian coordinates. The model is driven through an 

acquired motion by joint torque actuators that drive the degrees of freedom of the anatomical 

articulations, represented as ideal kinematic joints. In order to determine the external hydrodynamic 

forces during swimming, the simulation software Swumsuit developed by Nakashima et al. (2007) is 

used. The second accomplishment and novel feature of the present work consists in the development 

of an interface between Swumsuit and LHBM. The aim of the interface is twofold: the first is to allow the 

computation of the kinetic data developed for the actual swimming motion and give as input to the 

inverse dynamic analysis; the second concerns the development of a general adjustment procedure and 

integration in a pre-existing program that performs data processing and kinematic consistency analysis, 

thus allowing the study of different subjects and types of swimming techniques obtained by motion 

capture systems. The results of the inverse dynamic analysis are discussed for the principal articulations 

responsible for the motion of the human lower limbs, i.e., the hip, knee, and ankle joints. 

A three-dimensional full body biomechanical model was developed based on the dataset of Dumas et 

al. (2007a; 2007b), except for the head and neck anatomical segments that followed the topology 

presented by Pàmies-Vilà (2012). The complete dataset provides the scaling equations for the body 

segment inertial parameters, thus ensuring the fitting of the anthropometric data between the 

biomechanical model and the subject under analysis. 

The kinematic data of the six-beat front crawl swimming motion provided by LABIOMEP-UP were treated 

and filtered to remove the noise related to the position of the anatomical markers. The kinematic joints 

of the hip, lumbar, cervical, shoulder, and atlanto-occipital were defined based on predictive methods to 

better represent the actual centres of rotation, while the remaining joints were determined as the 

midpoint between anatomical landmarks. A kinematic analysis was performed to ensure the kinematic 

consistency between the biomechanical model and the actual swimming motion. The results of the 

driving angles of the hip, knee, and ankle joints provided confidence with those reported by Nakashima 

et al. (2007). However, there is still some concern regarding the ankle joint motion, especially during the 

intervals in which the foot is near the water surface, i.e., in the transition from the upbeat to the downbeat 

of the respective lower limb. The rolling action of the swimmer’s body along its longitudinal axis was also 

evaluated in terms of shoulder roll and hip roll. The roll-time profile of the shoulders showed similarity 

with the results of Psycharakis and Sanders (2008). On the other hand, the rhythm characteristics of the 

hips registered higher range of motion, possibly due to breathing. 

The simulation software Swumsuit was used in this work to obtain the hydrodynamic forces acting upon 

the swimmer’s body during the six-beat front crawl swimming. The simulation program allows the 

computation of the fluid forces acting on each segment of the human body model (SWUM). The 
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unsteady fluid forces are computed without solving the flow field. Instead, they are determined from the 

local kinematics of each part of the human body at each time step, and from the force coefficients 

estimated experimentally (Nakashima et al., 2007). The conversion of the software input data from 

LHBM to the SWUM, i.e., body geometry data, kinematic data, and analysis settings parameters, and 

from that to the inverse dynamics program, accordingly, external forces acting upon the body segments 

of LHBM, was embedded in an interface that was developed in a general-based methodology to allow 

future research and a larger variety of subject data and swimming motion techniques to be studied. 

Despite specific cases in which the researcher pretends to change the fluid force coefficients, the 

number of cycles to simulate, or other parameters of the analysis, the conversion procedure is fully 

implemented, being the computing time the only variable that differs significantly among studies. From 

this point of view, Swumsuit is much less time consuming than other simulation software programs, such 

as CFD and SPH. The forces generated at the right thigh, leg, and foot over a stroke cycle were 

compared to Nakashima et al. (2007). The results showed that the computed hydrodynamic forces are 

overestimated during some phases of the stroke cycle, especially in the 𝑋, 𝑌, and 𝑍 components of the 

right foot. These intervals of overestimated forces coincide with abnormalities in the orientation of the 

foot as shown in the software animation. Despite any inaccuracies, larger peaks were visible during the 

downbeat of the lower limbs, which link the downbeat to the propulsive sequence of the leg kick, as 

reported in the literature (Guignard et al., 2019). Moreover, the results achieved on the overall 

hydrodynamic forces of the lower limbs supported the importance of considering the contribution of the 

thighs and legs on the generation of body propulsion rather than just the feet (Keys, 2010). 

The inverse dynamic analysis was solved considering the full body biomechanical model actuated upon 

by driver actuators, referred to as determinate problem. The results of the intersegmental joint forces 

and moments acting at the kinematic articulations of the human lower limbs were analysed in the current 

work. Since these quantities are not generally described in the literature it was not possible to compare 

the results with those of other authors. 

The intersegmental forces represent the net loads that act at the joints. According to Derrick et al. (2020), 

the external forces acting upon the body segments of the biomechanical model are often many times 

smaller than the actual joint contact forces. This occurs because the magnitude of the contact joint 

forces depends on the combined effects of the external forces, in this case, the hydrodynamic forces, 

plus the active joint forces necessary for controlling joint motion (flexion and extension) (Scott and 

Winter, 1990). The results obtained showed that the magnitude of the intersegmental forces is much 

higher than the magnitude of the hydrodynamic forces obtained for the lower limbs. Also, the higher 

magnitudes of intersegmental forces occur at the hip joints. These results are consistent with Scott and 

Winter (1990) in a way that the external hydrodynamic forces are not the only influence over the joint 

force magnitudes. Considering the motion profile of the leg kick, the swimmer moves his lower limbs 

from the proximal to the distal joints. Possibly the controlling action of the hip flexion/extension during 

the down/upbeat of the entire lower limb, respectively, contributes to the higher magnitudes at this joint. 
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The results of the joint forces also showed that they are higher during the downbeat sequences of the 

respective lower limb and smaller during the upbeat. In the transition from up to downbeat, when the leg 

and foot are closer to the water surface, the knee and ankle joint forces reach their minimum values. 

Regarding the joint torques, the results obtained for the hip and knee joints are thought to show 

agreement with the expected variation from positive and negative values during the down and up kicks 

of the lower limbs. On the other hand, the ankle joint torques do not represent the same consistency 

throughout the entire stroke. Once again, one possible reason for the non-consistency is related to the 

incorrect position of the foot during some phases of the stroke, thus influencing the external forces acting 

upon the foot. 

One single research paper was found in the literature that reported the hip joint torque during a six-beat 

front crawl swimming (Nakashima et al., 2015). However, the hip joint centre was defined as the position 

of the marker of the trochanter, which is a completely different definition from that considered in this 

work. Therefore, the results reported by Nakashima et al. (2015) were compared only in terms of joint 

torque amplitudes, which were very similar to those determined for both hips. 

Finally, one of the difficulties found in this work remains with a robust description of the body rotations 

and the accurate transformation from Euler parameters to rotation sequences in Swumsuit. The 

animation in Swumsuit showed that during some phases of the stroke, the position of the foot relative 

to the leg is not correct. Simultaneously, the generated hydrodynamic forces are overestimated. It is 

expected that these results have influenced the intersegmental joint forces and joint torques. 

Another aspect consists in the approximation performed during the conversion of the distributed forces 

in SWUM to the reference frame of LHBM. The force acting at the centre of each thin plate of the 

longitudinal axis was added by 1/10 of the total buoyancy force component missing to that body, 

independently from the distinction between submerged and non-submerged thin plates, using the 

terminology depicted in Swumsuit. 

8.1. Future Work 

Even if the full body biomechanical model developed in the current work provides generally good results 

regarding the kinematic analysis of the human lower limbs, several limitations are still present in the 

kinematics validation of the upper limbs. Due to the complexity of movements in front crawl swimming 

and wide range of motion performed, especially during the arm stroke, the LABIOMEP-UP markers 

setup protocol described in Appendix A was initially analysed with the objective of introducing new 

markers that would allow the discretisation of the biomechanical model. However, due to the COVID-19 

pandemic no kinematic data acquisitions were performed during this dissertation. Therefore, the 

development of the biomechanical model was limited to the available data. Future work should be 

developed regarding the discretisation of the shoulder complex if the interest of the analysis changes 

for the upper limbs, or even for different swimming techniques, such as breaststroke, butterfly, or 

backstroke. 



78 

 

Furthermore, fundamental quantities of interest in human motion research are the intersegmental forces 

and moments acting at the joints (Derrick et al., 2020). The location of the centre of rotation of the 

kinematic joints is either obtained through functional or predictive methods, although the latter are most 

used since offer a simpler implementation while delivering good results (Hara et al., 2016; Murphy et 

al., 2011). The accuracy of these regression equations has a strong repercussion in the goodness of 

the computed intersegmental joint forces and joint moments. Simultaneously, the selection criteria of a 

regression equation over another depends upon the available kinematic data, namely the position of 

bony landmarks. Further investigations on more accurate predictions of the HJC, LJC, SJC, CJC, and 

OJC could be performed according to the availability of more relevant kinematic data. 

In the present work, the flexion and extension of the hip, knee, and ankle joints were studied, since they 

represent the main motions that characterise the leg kick (Matsuda et al., 2016). However, future work 

should evaluate the kinematics of a wide range of motions, to validate the consistency of the kinematic 

analysis performed. For instance, in breaststroke, the motion of the lower limbs cannot be evaluated 

only in terms of flexion and extension of the anatomical joints. 

A very important aspect that requires further investigation is related with the interface developed 

between Swumsuit and LHBM for the determination of the hydrodynamic forces during swimming. As 

this presents a novel feature in this work, several tests should be conducted to validate the implemented 

methodology. The main points for improvement found to date are depicted in the following: 

1. The motion given as rotations of body segments in the joint_motion.dat file is influenced 

by the order in which these rotations are written. The complexity and variety of segmental 

movements from upper to lower limbs induce some discontinuities in the rotation angles for 

some intervals of the analysis, especially for the body segments with a higher range of motion. 

The conversion of the rotation angles from LHBM to Swumsuit should be improved to eliminate 

these discontinuities. 

2. Because of (1), during the intervals of discontinuities the position of the body segments in the 

water does not represent the reality. The results found in this work speculate that this represents 

the potential source of error for the overestimated hydrodynamic forces. However, further 

possibilities may be investigated. 

3. Since this dissertation was focused on the dynamics of the human lower limbs, it is 

recommended to compare the hydrodynamic forces with other studies in the literature for the 

remaining body segments. In front crawl swimming, several analyses using CFD and SPH 

numerical methods are conducted for the upper limbs, as they contribute with the most part of 

the total body propulsion (Cohen et al., 2015; Guignard et al., 2019; Samson et al., 2017). 

4. Since Swumsuit does not solve the flow field, evaluate the impact on the computed 

hydrodynamic forces of not considering the unsteady fluid effects, such as the generation of 

vortices, the effects of the surrounding walls, and the mutual interactions of limbs.  

There have been no studies of the multibody system dynamics of human swimming because external 

forces are very difficult to measure. Current works in the literature are more frequently focused on the 

analysis of specific hydrodynamic factors that contribute to performance, than on the comprehension of 
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internal aspects of the human body dynamics, namely intersegmental joint forces and joint torques. 

Because of that, there is a lack of literature that may be used to validate the results achieved in this 

dissertation. Future research in this area requires the development of more swimming motion analyses 

and improvement on the interface developed to discuss whether the results are within the expected 

range. 

It is worth noting that joint torque and intersegmental joint forces calculations do not directly predict 

magnitudes of muscle forces. Future work will also involve incorporating muscle models to calculate 

muscle, tendon, and ligament forces and muscle work. In addition, improvements in motion capture 

technology will permit more detailed 3D modelling systems, including electromyography data collection 

to discuss more quantitatively the muscle forces during swimming.  
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Appendix A: Marker Setup Protocol 

The full body anatomical markers setup protocol for swimming applications in the Porto Biomechanics 

Laboratory (LABIOMEP-UP) are listed in Table A-1 and illustrated in Figure A-1. 

Table A-1: Markers description and location on the subject’s skin. The column labelled as “Used” 
identifies whether the marker was used to define the biomechanical model or not. 

ID Marker Name Location Used 

1 C7 7th Cervical Vertebrae  

2 HEADFRONT Forehead, above the nose  

3 HEADTOP On the top of the head, vertically above the ears  

4 LAC Left acromial edge of the scapula  

5 LASIS Left Anterior Superior Iliac Spine  

6 LBACK Left mid-distance between the scapula and pelvis  

7 LCA 
Distal end of the posterior aspect of the left Calcaneus. Should be vertically 
aligned with LFM2  

8 LFA1 Left forearm cluster marker 1  

9 LFA2 Left forearm cluster marker 2  

10 LFA3 Left forearm cluster marker 3  

11 LFM1 Lateral aspect of the 1st metatarsal head of the left foot  

12 LFM2 
Dorsal aspect of the 2nd metatarsal head of the left foot. Calcaneus marker 
should be vertically aligned  

13 LFM5 Lateral aspect of the 5th metatarsal head of the left foot  

14 LHEAD Above the left ear centre  

15 LLA Prominence of the left lateral Malleolus  

16 LLELB Lateral Epicondyle of the Left Humerus  

17 LLH Lateral portion of the 2nd metatarsal head of the left hand  

18 LLK Lateral Epicondyle of the Left Femur  

19 LMA Prominence of the left medial Malleolus  

20 LMELB Medial Epicondyle of the Left Humerus  

21 LMH Medial portion of the 5th metatarsal head of the left hand  

22 LMK Lateral Epicondyle of the Left Femur  

23 LPSIS Left Posterior Superior Iliac Spine  

24 LRAD Left Radio-Styloid Process  

25 LSHIN In front of the left shin  

26 LSHOULDERBACK Over the left scapula  

27 LSK1 Left shank cluster marker 1  

28 LSK2 Left shank cluster marker 2  

29 LSK3 Left shank cluster marker 3  

30 LTH1 On the left thigh, above the kneecap  
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31 LTROC Left Trochanter  

32 LUA1 Laterally on the left arm, between the biceps and the triceps  

33 LULN Left Ulna-Styloid Process  

34 RAC Right acromial edge of the scapula  

35 RASIS Right Anterior Superior Iliac Spine  

36 RBACK Right mid-distance between the scapula and pelvis  

37 RCA 
Distal end of the posterior aspect of the right Calcaneus. Should be 
vertically aligned with RFM2  

38 RFA1 Right forearm cluster marker 1  

39 RFA2 Right forearm cluster marker 2  

40 RFA3 Right forearm cluster marker 3  

41 RFM1 Lateral aspect of the 1st metatarsal head of the right foot  

42 RFM2 
Dorsal aspect of the 2nd metatarsal head of the right foot. Calcaneus 
marker should be vertically aligned  

43 RFM5 Lateral aspect of the 5th metatarsal head of the right foot  

44 RHEAD Above the right ear centre  

45 RLA Prominence of the right lateral Malleolus  

46 RLELB Lateral Epicondyle of the Right Humerus  

47 RLH Lateral portion of the 2nd metatarsal head of the right hand  

48 RLK Lateral Epicondyle of the Right Femur  

49 RMA Prominence of the right medial Malleolus  

50 RMELB Medial Epicondyle of the Right Humerus  

51 RMH Lateral portion of the 5th metatarsal head of the right hand  

52 RMK Medial Epicondyle of the Right Femur  

53 RPSIS Right Posterior Superior Iliac Spine  

54 RRAD Right Radio-Styloid Process  

55 RSHIN In front of the right shin  

56 RSHOULDERBACK Over the right scapula  

57 RSK1 Right shank cluster marker 1  

58 RSK2 Right shank cluster marker 2  

59 RSK3 Right shank cluster marker 3  

60 RTH1 On the right thigh, above the kneecap  

61 RTROC Right Trochanter  

62 RUA1 Laterally on the right arm, between the biceps and the triceps  

63 RULN Right Ulna-Styloid Process  

64 ST1 Sternum cluster marker 1  

65 ST2 Sternum cluster marker 2  

66 ST3 Sternum cluster marker 3  
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Figure A-1: Anterior and posterior view of the human skeleton. Location of the sixty-six markers placed 
on the subject's skin. 
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Appendix B: LABIOMEP-UP Layout 
The schematic of the Porto Biomechanics Laboratory (LABIOMEP-UP) layout, shown in Figure 5-1, is 

as follows. 

 

Figure B-1: Top view overall configuration of the LABIOMEP-UP layout. UW stands for underwater 
cameras, and LAND stands for above water cameras. The coloured rectangle in the 
centre of the swimming pool corresponds to the calibrated volume covered by the 22 
cameras. 
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Appendix C: Swumsuit Input Data 

Files Format 

The format of the body geometry, joint motion, analysis settings, and linear and angular velocities input 

data files of the simulation program Swumsuit, respectively denominated as body_geometry.dat, 

joint_motion.dat, analysis_settings.dat, input_vgx.dat, input_vgy.dat, 

input_vgz.dat, input_ome1.dat, input_ome2.dat, and input_ome3.dat, is described next. 

All data files are in written in DAT format. 

Note that the joint motion, and linear and angular velocities data files are written for one single stroke 

cycle, even if the number of cycles set in the analysis settings data file is greater than one. 

Body geometry data file: body_geometry.dat 

 Table C-1: Format of body geometry data file. 

1 Root depth of body segment 1 Root width Tip depth Tip width Length Density 

2 Root depth of body segment 2 Root width Tip depth Tip width Length Density 

: (repeat for all bodies)      

21 Root depth of body segment 21 Root width Tip depth Tip width Length Density 

22 Distance between shoulder joint and upper arm’s root in 𝑦𝑏 direction 

23 Distance between shoulder joint and upper arm’s root in 𝑧𝑏 direction 

24 Distance between neck’s tip and head’s root in 𝑥𝑏 direction 

25 Distance between lower hip’s tip and hip joint in 𝑦𝑏 direction 

26 Distance between lower hip’s tip and hip joint in 𝑧𝑏 direction 

27 Distance between shank’s tip and foot joint in 𝑧𝑏 direction 

28 Rotating angle of upper and lower hip parts [rad] 

29 Subject’s height [m] 

30 Subject’s weight [kg] 

All quantities are nondimensionalised by the subject’s height, except the data in lines 28 to 30 (i.e., the 

rotating angle of upper and lower hip parts, and the subject’s height and weight). The 𝑥𝑏, 𝑦𝑏, and 𝑧𝑏 

directions correspond to the base coordinate system direction axes described in Section 6.2.2. 

Nakashima et al. (2007) measured the widths and depths of the root and tip of the body segments and 

the body lengths from captured images of frontal and sagittal views of a swimmer subject male at age 

20-29 years old, with 1.705 m height, and 64.9 kg weight. Since the geometric data was scaled by the 

subject’s stature, the same dataset was used in this work by adjusting it to the swimmer’s anthropometry 

under analysis (male subject at the age of 25 years old, with weight 70.3 kg, and 1.80 m height). By 



96 

 

doing so, it is assumed that both subjects belong to the same percentile, which is a reasonable 

assumption (Dumas et al., 2007a). The order of the bodies in SWUM is as described in Section 6.2.1. 

 Table C-2: Body geometry data. 

1 0.064633  0.084696  0.060020  0.078768  0.035308  1.072631 

2 0.060020  0.078768  0.071138 0.084677 0.071847 1.783209 

3 0.071138 0.084677 0.082255 0.090587 0.071847 0.453868 

4 0.082255 0.090587 0.058592 0.113724 0.065689 0.336663 

5 0.058592 0.113724 0.040660 0.040660 0.031202 1.964305 

6 0.040660 0.040660 0.033903 0.033903 0.016422 2.246407 

7 0.041393 0.040572 0.055191 0.048686 0.139062 0.725793 

8 0.064640 0.084691 0.065402 0.105926 0.054417 0.928367 

9 0.065402 0.105926 0.050020 0.100030 0.074896 0.666456 

10 0.050015 0.050015 0.034428 0.032959 0.187566 1.009118 

11 0.050015 0.050015 0.034428 0.032959 0.187566 1.009118 

12 0.034428 0.032959 0.020359 0.020359 0.180938 1.346060 

13 0.034428 0.032959 0.020359 0.020359 0.180938 1.346060 

14 0.037848 0.020359 0.010698 0.028241 0.137193 0.303078 

15 0.037848 0.020359 0.010698 0.028241 0.137193 0.303078 

16 0.026034 0.026034 0.023355 0.023355 0.186628 0.808331 

17 0.026034 0.026034 0.023355 0.023355 0.186628 0.808331 

18 0.023355 0.023355 0.011965 0.018005 0.151320 1.002346 

19 0.023355 0.023355 0.011965 0.018005 0.151320 1.002346 

20 0.011965 0.029413 0.004106 0.015015 0.107331 1.032411 

21 0.011965 0.029413 0.004106 0.015015 0.107331 1.032411 

22 -0.00779373233      

23 0.0131378299      

24 0.00599197012      

25 0.0500147909      

26 0.068856305      

27 0.0374193548      

28 0.0140119644      

29 1.80      

30 70.3      

Joint motion data file: joint_motion.dat 

The relative body motion in SWUM is given as rotations of body segments about joints, described in the 

respective body coordinate system (𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏). Although SWUM does not have an explicit articular 

system, each coordinate system is located at the proximal extremity of each body segment. 

  



97 

 

Table C-3: Format of the joint motion data file. 

Total number of frames in one cycle  

ID of the rotating body Index of the rotating axis 

Angle on the 1st frame  

Angle on the 2nd frame  

:  

(repeat for all frames)  

:  

Angle on the last frame  

ID of the next rotating body Index of the next rotating axis 

Angle on the 1st frame  

Angle on the 2nd frame  

:  

(repeat for all frames)  

:  

Angle on the last frame  

:  

Angle on the last frame for the last rotation  

0 0  

All angles in the joint motion data file are given in degrees. The ID of the rotating body segments is the 

same as in the body geometry data file. The indices of the rotating axes are: 1 (𝑥𝑏 axis), 2 (𝑦𝑏 axis), 3 

(𝑧𝑏 axis), 4 (𝑥𝑏 axis right shoulder elevation), 5 (𝑦𝑏 axis right shoulder elevation), 6 (𝑧𝑏 axis right shoulder 

elevation), 7 (𝑥𝑏 axis left shoulder elevation), 8 (𝑦𝑏 axis left shoulder elevation), and 9 (𝑧𝑏 axis left 

shoulder elevation). 

Note that each rotation is performed in the same order in which it is written in this file. Besides, the 

rotation angles are not relative but absolute, meaning that the rotation of a body segment about a given 

axis does not affect the adjacent bodies. Consequently, to rotate the subsequent body segment(s) for 

the same angle, the same rotation must be given to the latter. 

Analysis settings data file: analysis_settings.dat 

The analysis settings data file consists in a free format list of names of analysis parameters and 

respective values. Changes in the order of the parameters do not interfere with the interpretation of the 

data file. However, the name of the parameter must be consistent with that established in the software 

program. For that, a standard six-beat front crawl swimming stroke simulation performed by Nakashima 

et al. (2007) is available in the software web page. The folder includes the input data files and output 

data, so it can be consulted as an example. 
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Table C-4: Format of the analysis settings data file. 

Name of the parameter= 

Value of the parameter 

: 

(repeat for all analysis parameters) 

: 

Linear and angular velocity data files: input_vgx.dat, input_vgy.dat, 

input_vgz.dat, input_ome1.dat, input_ome2.dat, input_ome3.dat 

The swimmer’s absolute motion captured in LABIOMEP-UP, and processed by a kinematic analysis 

method, is given as input to the simulation. The whole-body centre of mass (COM) and principal axes 

of inertia are respectively fixed to the lower tip of the lower waist segment, which corresponds to the 

pelvis in the LHBM, and to the body coordinate system (𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏). Each file is written separately in 

the absolute coordinate system (𝑂 − 𝑥𝑦𝑧) for the 𝑥, 𝑦, and 𝑧 linear velocities, while the angular velocities 

are written in the body coordinate system, 𝑂𝑏 − 𝑥𝑏𝑦𝑏𝑧𝑏. 

Table C-5: Format of the linear and angular velocities data files. 

Linear/Angular velocity of the whole body’s COM on the 1st frame 

: 

(repeat for all frames) 

: 

Linear/Angular velocity of the whole body’s COM on the last frame 

The linear velocities at each instant of time are given in m/s, while the angular velocities are given in 

deg/s. 


