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Abstract

The stability problem of structures built from periodic cellular materials and the problem of obtaining
optimal structures with maximized buckling strength are here addressed. The stability problem is con-
sidered at micro-, macro- and mixed-scales by means of a linearized buckling theory. When considering
the macro-scale problem, the effective properties are obtained from the homogenization theory. To
address the mixed-scale problem, the proposed methodology is obtained by applying the same finite
element discretization to macro- and micro-scale domains. The solution for maximum buckling strength
of structures is obtained by topology optimization with a density based approach, where no multiplicity
of eigenvalues is included. The used design variables updating scheme is the Method of Moving
Asymptotes. The computational implementations are applied to benchmark examples and the results are
compared with similar ones found in the literature. The implementation of the coupled instability problem
enables the application of the coupled instability equation. Similar results, as far as the author knows, do
not exist in the literature.
Keywords: Multi-scale Buckling, Cellular Materials, Homogenization, Topology Optimization, Finite
Elements

1. Introduction
Buckling occurs when a structure is subjected

to a gradually increasing load that, after reaching
some critical value, results in a sudden change
of its equilibrium configuration. This static equilib-
rium position modification, causes the vanishing of
the structure’s stiffness and may occur before the
structure starts to yield or fails. This means that
when a component of an given assembly buckles,
the remaining ones support the load beyond this
critical value.

In the aerospace sector, since weight plays a
crucial role, lightweight structures are widely used
and their inherent slenderness makes stability one
of the key requirements when designing aerospace
structures.

Lightweight structures are typically built from
low density cellular materials whose strength ca-
pacity is also limited by micro-structural instabil-
ities, which may occur when their slender struc-
tural members are subjected to compressing loads
[1]. Thus, structures built with these materials can
buckle on multi spacial scale levels (macro-scale,
micro-scale and mixed-scale levels).

There is, therefore, the need to design struc-
tures as well as materials for improved buckling

performance. One of the most attractive ways of
finding optimal designs is topology optimization,
since it doesn’t rely on any preconceived shape of
the structure. In fact, topology optimization ”has
been recognized as one of the most effective ap-
proaches at the conceptual design phase of most
engineering applications” [2].

In the context of buckling strength of periodic ma-
terials, Neves et al. [3] proposed a methodology
for using topology optimization for the maximiza-
tion of the critical load for micro-structures exhibit-
ing micro-scale buckling modes with the same peri-
odicity of the cellular material. Later, this work was
extend to include buckling modes of different wave-
lengths by means of the complete Bloch-wave the-
ory [1].

As for the macro-scale buckling strength of struc-
tures based on continuum models, optimality con-
ditions for single and multiple eigenvalues are pre-
sented in [4] and a methodology for the maximiza-
tion of the linearized buckling load using topology
optimization is presented in [5]. A recent review on
the topic of topology optimization addressing buck-
ling can be found in [6].

It can then be understood that the application of
topology optimization in the industrial environment
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is still quite an open topic and that that is even more
evident when addressing the stability of structures.
Furthermore, while computational models as well
as studies have been developed for the calcula-
tion and optimization of linearized buckling loads
at macro- and micro-scale levels (even though not
very extensively), no such implementations were
found for the mixed-scale buckling case.

This work aims, then, to answer to the question
of how to calculate and implement the buckling re-
sponse of a structure built from solids with periodic
materials based on a linearized stability theory.
This includes a brief review of the existing methods
for addressing buckling at separated macro- and
micro-scales as well as the study and implementa-
tion of the mixed-scale problem. Furthermore, on
the topic of obtaining optimal designs, this work fo-
cuses only on macro-scale structural optimization
for the maximization of buckling strength.

In sections 2 and 3, the used linearized sta-
bility theory and optimization formulation are pre-
sented. Section 4 is focused on the description
of the carried-out studies and numerical compu-
tations. The results from the application of the
carried-out implementations are presented in sec-
tion 5, together with some verification examples,
whenever possible. In sections 6 and 7, the main
conclusions of this work are summarized and some
comments and reflections on futures works to be
addressed are made.

2. Linear elastic buckling theory for solids with peri-
odic micro-structure
The stability problem is here analyzed by means

of a linearized theory based in [7] and [8] and the
references therein.

Let a linear-elastic body be defined by a domain
Ωε and a boundary Γ, being quasi-statically loaded
with: prescribed displacements in Γu, surface trac-
tions t in Γt and body forces f in Ωε. The su-
perscript ε indicates a dependency on the micro-
structure, as it is defined as the unit cell scale pa-
rameter, ε = d

D � 1, where d is a characteristic
dimension of the unit cell and D a characteristic
dimension of the structure.

The loading is gradually increased, only applied
at the macro-scale level and also considered pro-
portional to some reference loading, t = λtref and
f = λfref .

Assuming the body has a uniform micro-
structural shape, the solid can be represented by a
periodic repetition of a unit cell, defined by the do-
main Y =]0, Y1[x]0, Y2[x]0, Y3[ and, here, built from
a base material with holes in it. This base mate-
rial is homogeneous, linear-elastic and isotropic,
meaning that the constitutive relations can be
given by the generalized Hooke’s law, σij(uε) =
Eijkmekm(uε), where σ and e are the stress and

strain tensors, respectively, and E is the constitu-
tive matrix.

The equilibrium positions can be given by the
minimization of the total potential energy, given by

Π(uε) = A(uε)−R(uε), (1)

where A(uε) is the total elastic strain energy and
R(uε) is the applied forces potential defined as

A(uε) =
1

2

∫
Ω

Eijkmekm(uε)eij(u
ε)dΩ, (2)

R(uε) = λ

∫
Ω

frefi uεidΩ + λ

∫
Γt

trefi uεidΓ, (3)

where

eij(u
ε) =

1

2

(
∂uεi
∂xj

+
∂uεj
∂xi

)
+

1

2

(
∂uεk
∂xi

∂uεk
∂xj

)
. (4)

The displacement field, which is a function of
both the macro-spatial, x, and micro-spatial, y,
variables, is represented using an infinitesimal real
displacement parameter α:

uε = u0ε + αu1ε, (5)

where u0ε is the displacement related with the
unique primary equilibrium configuration and u1ε is
a relative displacement, which, when multiplied by
α, represents the possible ”jump” to the secondary
equilibrium position.

Based on the periodicity of the material, it is as-
sumed that the displacement field terms can be ex-
pressed by asymptotic expansions in terms of the
scale parameter ε,

u0ε(x,y) = u00(x,y)+εu01(x,y)+ε2u02(x,y)+...,
(6)

u1ε(x,y) = u10(x,y)+εu11(x,y)+ε2u12(x,y)+..., ,
(7)

y =
x

ε
,

where the functions uab with indices a=0,1 and
b=0,1,2,... are assumed Y-periodic (have the same
periodicity as the unit cell).

The minimization of the total potential energy is
expressed by

δΠ(uε) = δA(uε)− δR(uε) = 0. (8)

Performing the differentiation of Y-periodic func-
tions as in [8] d

dxj
F (x,y) = ∂F (x,y)

∂xj
+ 1

ε
∂F (x,y)
∂yj

,
considering only the first two terms of the asymp-
totic expansions (6) and (7) and introducing a per-
turbation δuε = α{v10(x,y) + εv11(x,y) + ...},
where v10 and v11 ∈ VΩ×Y = {v(x,y) : v|Γu

=
0 and v is Y-periodic}, equation (8) becomes (sep-
arated in terms of α powers)

α

∫
Ωε

Eijkm{e0
ij(u

ε)eIkm(vε)}dΩ−
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−αλ
∫

Γt

tiv
ε
idΓ− αλ

∫
Ωε

f iv
ε
idΩ = 0 ∀ v ∈ VΩ×Y ,

(9)

α2

∫
Ωε

Eijkm{e0
ij(u

ε)eIIkm(vε) + e0
ij(v

ε)eIIkm(uε)+

+eIck(uε)eIcm(vε) + eIck(vε)eIcm(uε)}dΩ = 0 (10)

∀ v ∈ VΩ×Y .

where e0
ij(u

ε), eIij(u
ε) and eIIij (uε) are the terms in

α0, α1 and α2 of the strain tensor (see [7]).
The equations that characterize the small elastic

deformation before bifurcation are obtained from
the analysis of equation (9). The analysis is per-
formed by grouping the terms in ε powers and set-
ting each of them to zero.

From the term in ε−2, it can be shown that

u00(x,y) = u00(x). (11)

From the term in ε−1, acknowledging that v are
independent variations that can assume any value,
ε is very small and u00, u01, v10 are periodic func-
tions in y and using result (11), one obtains

u01
i (x,y) = −χkmi (y)

∂u00
k (x)

∂xm
. (12)

To satisfy the previous equation, the characteris-
tic displacements χkmi must be the solution of the
km static problems at micro-scale level,∫

Y

Eijpq
∂χkmi
∂yq

∂vi
∂yj

dY =

∫
Y

Eijkm
∂vi
∂yj

dY, (13)

∀ v ∈ VY = {v is Y-periodic},

where periodic displacements at the unit cell’s
boundary are prescribed.

As for the term in ε0, using previous results,
the equation expressing macroscopic static equi-
librium is obtained,∫

Ωε

1

|Y |

∫
Y

(
Eijkm − Eijpq

∂χkmp
∂yq

)
dY

∂u00
k

∂xm

∂v10
i

∂xj
dΩ =

= λ

∫
Γt

trefi v10
i dΓ + λ

∫
Ωε

frefi v10
i dΩ, ∀ v10 ∈ VΩ.

(14)
From (14), the homogenized elastic material

properties can be defined as

EHijkm =
1

|Y |

∫
Y

(
Eijkm − Eijpq

∂χkmp
∂yq

)
dY. (15)

From the term in ε, it is possible to realize that

u01(x,y) = u01(y). (16)

To obtain the linearized elastic buckling re-
sponse, equation (10) is analysed by setting to
zero each of the terms in different ε powers.

Starting with the term in ε−2, considering
u10(x,y) = u10(y) and taking into account the pe-
riodicity of the displacements, the elastic stability
problem at the micro-scale level can be obtained:∫

#Y

Eijkm
∂u10

i

∂yj

∂v10
k

∂ym
dY+

∫
#Y

σ0
km

∂u10
c

∂yk

∂v10
c

∂ym
dY = 0,

(17)
∀ v10 ∈ VΩ×#Y ,

where σ0
km = σ0

km(x,y) is the initial stress at
micro-scale level resulting from the macroscopic
strain field prior to bifurcation and is defined as [1]

σ0
ij =

(
Eijkm − Eijpq

∂χkmp
∂yq

)
∂u00

i

∂xj
. (18)

Equating the term in ε−1, a new expression of
the connection between the macroscopic and mi-
croscopic instabilities is obtained:∫

Ωε

Eijkm

(
∂u10

i

∂yj

∂v10
k

∂xm

)
dΩ+

∫
Ωε

σ0
km

(
∂u10

c

∂ym

∂v10
c

∂xk

)
dΩ+

+

∫
Ωε

Eijkm

(
∂u10

i

∂xj

∂v10
k

∂ym

)
dΩ+

+

∫
Ωε

σ0
km

(
∂u10

c

∂xk

∂v10
c

∂ym

)
dΩ = 0∀ v10 ∈ VΩ×Y .

(19)
As for the term in ε0, assuming u01 = u01(y),

u10 = u10(x) and that terms involving the prod-
uct of three displacement derivatives may be ne-
glected, the macroscopic instability problem is ob-
tained ∫

Ωε

EHijkm
∂u10

i

∂xj

∂v10
k

∂xm
dΩ+

+

∫
Ωε

σ0H
km

∂u10
c

∂xk

∂v10
c

∂xm
dΩ = 0 ∀ v10 ∈ VΩ×Y , (20)

where

σ0H
ij = EHijkm

∂u00
i

∂xj
. (21)

2.1. Finite element formulation
Using the finite element approximation and since

u00 = λu and u10 = cteφ, the macro-scale static
elastic problem becomes

Kxu = Fx, (22)

where Kx is the macro-scale stiffness matrix of
the structure with homogenized material proper-
ties and Fx is the applied reference load vector at
macroscopic level.
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Similarly, for the micro-structure elastic-static
problem, the characteristic displacements are ob-
tained by solving the km linear systems

Kyχ
km = F kmy , (23)

with Ky being the stiffness matrix related with the
unit cell and Fy

km the characteristic loading at
micro-scale level.

From the solution of the previous equation, the
homogenized constitutive matrix can be obtained
as follows [1]

EH
ij =

1

|Y |

N∑
e=1

∫
Ye

(
ε̃i −Beχ

i
e

)T
Ee

(
ε̃j −Beχ

j
e

)
dY,

(24)
where Ee is the element e constitutive matrix, ε̃ji =
δij are 3 independent macroscopic strain fields and
χe are the correspondent 3 characteristic displace-
ment fields. Here, the sum has the meaning of a
finite element assembly procedure, where N de-
notes the total number of elements.

For the stability problem of the micro-structure,
the finite element approximation leads to

(Ky + λyGy)φ = 0, (25)

where Gy is the geometric stiffness matrix and λy
the load factor for the unit cell.

In the same way, for the macro-scale case, it is
obtained

(Kx + λxGx)φ = 0, (26)

where Gx is the geometric stiffness matrix and λx
the load factor at the macro-scale level.

3. Topology optimization for buckling strength max-
imization
Here the optimization problem is stated as the

one of finding the material distribution that maxi-
mizes the structure’s buckling strength. Mathemat-
ically, considering a constraint on the material vol-
ume, the problem can be formulated as follows [4].

find : x

minimize :
1

λcr
(27)

subject to : g(x) =
V (x)

V0
− f ′ ≤ 0

K(x)U(x) = F

(K(x) + λcrG(x,U(x)))φ = 0

xmin ≤ x ≤ 1 ,

where x is the vector of design variables, V is the
material volume, V0 is the design domain volume
and f ′ is the maximum allowed total volume frac-
tion.

Here, a density-based approach is used, mean-
ing that the design variables are the material densi-
ties xe and the element e Young’s modulus is deter-
mined by xe. To avoid the appearance of artificial
buckling modes, a method proposed in [9] is used,

Ek(xe) = E0 + xpe(E1 − E0), (28)

Eσ(xe) = xpeE1, (29)

where Ek(xe) and Eσ(xe) are the interpolations
used to build K and G, respectively, E0 is the
Young’s modulus assigned to void regions, E1 the
one of the solid material and p is the penalization
factor (p > 1 and typically p = 3 [10]).

From this, the element stiffness and geometric
stiffness matrices are given, respectively, by

Ke(xe) = Ek(xe)K0e, (30)

Ge = Eσ(xe)G0e [ue(xe)] , (31)

where K0e and G0e are, respectively, the stiffness
and geometric stiffness matrices for an element
with unitary Young’s modulus.

The optimization problem can be solved by gen-
erating and solving a sequence of subproblems
that are explicit convex approximations of (27) [11].
For that, the MMA [12] is here used, which requires
information on the first derivatives/sensitivities of
both the objective and constraint functions.

To calculate the objective function sensitivity, the
Rayleigh quotient is used to approximate the criti-
cal buckling load factor [4],

1

λcr
= max
φ∈Rn,φ6=0

φTG(x,U(x)))φ

φTK(x)φ
, (32)

where n is the total number of eigenvalues, as-
sumed positive and λ1 = λcr < λ2 < ... < λn.

Then, the sensitivity of the objective function is

∂

∂xe

(
1

λcr

)
= φTcr

(
∂G

∂xe
− 1

λcr

∂K

∂xe

)
φcr−V

T
adj

∂K

∂xe
U ,

(33)
where the critical buckling mode is orthonormal-
ized as φTcrKφcr = 1, V adj is the adjoint displace-
ment field, solution of the adjoint system [13]

KV adj = φTcr
∂G

∂U
φcr (34)

and the remaining quantities are given by

∂K

∂xe
= pxp−1

e (E1 − E0)Ke0, (35)

∂G

∂xe
= pxp−1

e E1Ge0. (36)
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The derivative of the volume constraint function
g(x) with respect to xe, is, when all finite elements
are equal,

∂g(x)

∂xe
=

1

n
, (37)

where n denotes the total number of elements.
To overcome numerical instabilities, a density fil-

ter [14] [15] is here used,

x̃e =
1∑

i∈Ne
Heivi

∑
i∈Ne

Heivixi, (38)

where x̃e are the filtered densities Ne is the set of
elements i for which the center-to-center distance
∆(e, i) to element e is smaller than the filter ra-
dius rmin, Hei is a weight factor defined by Hei =
max(0,∆(e, i)) and vi is the volume of element i.
The application of this regularization requires the
modification of the sensitivities by means of the
chain rule [10] and the results should always be
shown using the filtered density field [16].

4. Methodology and Implementation
The problems discussed in this work, were all im-

plemented by developing Matlab functions, where
four node isoparametric plane elasticity elements
and plane stress relations were used.

4.1. Elastic buckling at separated macro- and micro-
scale problems

Before implementing the buckling problems, the
homogenization method was first addressed. The
used numerical model was based in the homoge-
nize Matlab function presented in [17]. Using the
indications provided in [17], the code was modi-
fied to calculate the effective material properties of
a solid containing one material and void in plane
stress. Furthermore, some code lines that enable
the visualization of the unit cell configuration re-
sulting from the characteristic displacements were
added.

Then, since for plane elasticity buckling eigen-
value problems the required geometric stiffness
matrix is obtained in the same way (considering
the same element type and apart from the calcula-
tion of the initial stress tensor), the Matlab function
Macro nm was developed to calculate the critical
load for the simpler case of a structure built from a
homogeneous solid (with no micro-structure).

To treat the macroscopic instability problem for
solids with periodic micro-structure, a Matlab func-
tion, Macro ms, was developed. It uses the ho-
mogenize function to obtain the effective material
properties for the calculation of the initial stress
tensor, σ0H = EH

e ee, used to obtain the geometric
stiffness matrix.

To address the micro-scale buckling problem,
another Matlab function, micro-buckles was built,

where the homogenize function is used to obtain
the characteristic displacements, from which the
initial stress tensor, σ0 = Ee(I −Beχe)ee, is com-
puted and used to obtain the geometric stiffness
matrix.

4.2. Elastic buckling at coupled-scale problems
To implement the coupled instability problem,

equation (19) must first be studied.
Because in equation (19) the integrations are

performed in the macroscopic domain, the resul-
tant global matrices can be obtained by the as-
semblage of macro-elemental ones. Furthermore,
a macroscopic element can be seen as a do-
main discretized by microscopic elements. Fol-
lowing this line of thought, the macro-scale ele-
ment matrices can be obtained by the assembly
of micro-scale element matrices corresponding to
the micro-elements within the respective macro-
element.

If the same element type and discretization are
used at both scales, which is assumed not to make
the two domains equal, then the nodes of macro-
and micro-elements are the same and the assem-
bly operations within each macro-element drop out.

With a double discretization of the model (one at
the macro-scale and another at the micro-scale),
the instability modes are interpolated by their nodal
values:

φ1(x1, y1) ≈
NN∑
I=1

φI1N
I
x +

nn∑
i=1

φi1N
i
y, (39)

φ2(x2, y2) ≈
NN∑
J=1

φJ2N
J
x +

nn∑
j=1

φj2N
j
y , (40)

where NN denotes the number of nodal points per
macroscopic element, nn the number of nodes per
microscopic element and N the shape functions.

This means that the introduction of the approxi-
mations (39) and (40), as suggested by [7], results
in the following system of equations

(Kxy + λxyGxy)φ = 0. (41)

The coupled stiffness matrix, Kxy, is obtained
by the assembly of the elemental ones given by

KE
xy =

∫
ΩE

∫
Y e

BT
EEeBe +BT

e EeBEdY dΩ (42)

and the coupled geometric stiffness matrix,Gxy, by
the assembly of

GExy =

∫
ΩE

∫
Y e

gTEσ
0
ege + gTe σ

0
egEdY dΩ, (43)

where e or E refers to a micro- or macro- element,
B is the strain-displacement matrix and g is de-
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fined as (for a micro-scale element)

ge =


∂N1

y

∂y1
0 ...

∂Nnn
y

∂y1
0

∂N1
y

∂y2
0 ...

∂Nnn
y

∂y2
0

0
∂N1

y

∂y1
... 0

∂Nnn
y

∂y1

0
∂N1

y

∂y2
... 0

∂Nnn
y

∂y2

 . (44)

Since the discretization of the macro- and micro-
domains is equal, gE = ge and BE = Be.

With the previous considerations, a Matlab func-
tion, named Coupleds, was developed for the cal-
culation of the mixed-scale buckling response.

4.3. Buckling strength maximization problem
To address the topology optimization for maxi-

mum buckling strength of structures problem, an-
other function, named TopOptBuckling, was made.

Here, the objective function is the inverse of the
critical buckling factor (to be minimized) and a con-
straint on the total volume is imposed.

All the finite element calculations, which include
the computation of K and G, the solution of
the equilibrium equations, and the majority of the
quantities required for the calculation of the sensi-
tivities, were performed by means of the developed
function FE analysis and then returned to the main
function TopOptBuckling.

The calculations are performed only for simple
eigenvalues (no multiplicity of eigenvalues is con-
sidered).

5. Results
5.1. Homogenized material properties

Here, an example from [18] of a square unit
cell with a rectangular hole was reproduced us-
ing the extended homogenize function and plotted
against the results there presented. The condi-
tions used in [18] were exactly kept: discretization
of the unit cell in 20x20 Q4 isoparametric plane
elasticity elements, plane stress relations, where
E11 = E22 = 30 and E12 = E66 = 10, unitary
length for the unit cell side and hole’s dimensions
of 0.6 and 0.4 (all quantities used are assumed to
have consistent units).

The results for the deformed shapes of the unit
cell are presented in figure 1 and a comparison be-
tween the results for the components of EH given
by [18] and homogenize is shown in table 1.

Table 1: Results comparison from [18] and homogenize.

Results EH
11 EH

12 EH
22 EH

66

From [18] 13.015 3.241 17.552 2.785
From homogenize 13.015 3.241 17.552 2.785

5.2. Implementation of a geometric stiffness matrix
The Matlab function Macro nm was used to cal-

culate the critical load of a column to be compared

(a) Undeformed shape (b) Deformed shape from a
unit strain field in x− direction

(c) Deformed shape from a
unit strain field in y− direction

(d) Deformed shape from a
unit shear strain field

Figure 1: Squared cell with a rectangular hole: undeformed
vs. deformed shapes corresponding to the application of three
independent unit strains.

with the analytical solution given by the Euler’s Col-
umn Formula. The column is fixed on the left end
and free on the right end, where a compressing
load is applied. The analytical solution for this
case is Pcr = π2EI

4L2 , where L denotes the beam’s
length, E the Young’s modulus of the beam’s ma-
terial and I the moment of inertia of the beam’s
cross-sectional area.

The load was applied as a uniform stress dis-
tribution of −1MPa in the x− direction. The beam
has a length L = 40m, a height h = 5m and a thick-
ness b = 1m. The material has a Young’s modulus
E = 2.1MPa and a Poisson’s ratio ν = 0.3.

The body was initially discretized using 16 finite
elements and the mesh was progressively refined
up to a final value of 800 elements. The conver-
gence tendency of the method with the refinement
of the mesh as well as the comparison between the
critical loads given by the developed function and
the Euler’s Comumn Formula can be seen in table
2. The two first buckling modes are shown in figure
2.

Table 2: Comparison of the results from Macro nm and the an-
alytical Euler’s value (33.734kN).

Macro nm

Nº elements 16 40 120 240 400 800
Pcr [kN] 47.000 42.000 35.500 34.500 34.000 33.500
Error [%] 39.325 24.503 5.235 2.271 0.788 0.694

As it can be seen, the solution converges to the
analytical value and the obtained modes agree with
the ones known from the literature (see, for in-
stance [19]).
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(a) Critical instability mode (b) Second instability mode

Figure 2: First two instability modes: undeformed vs. deformed
shapes.

5.3. Micro-scale buckling problem
Here, example 2 from [3] is reproduced using the

micro buckles function. In this example, the au-
thors compare the buckling performance of differ-
ent unit cells with the same material density. The
unit cells are discretized using 10x10 Q4 isopara-
metric plane elasticity elements and are subjected
to a macroscopic strain field of ε0 = Cte{−1 0 0}.

The results for the critical load together with the
ones presented in [3] are outlined in table 3.

Table 3: Results comparison from [3] and micro buckles.

Case ρ λcr from [3] λcr from microbuckles

Initial 0.3600 0.1170 0.1177
1 0.5200 0.2080 0.2087
2 0.5200 0.0520 0.0528
3 0.5200 0.0000 0.0000
4 0.5200 0.0000 0.0000

Both the values of the microscopic critical loads
and the critical mode shapes were obtained very
identically to the ones presented in [3], which en-
ables the validation of the micro buckles function,
at least in the presented cases.

5.4. Macro-scale buckling problem
The Macro ms function is applied to a column

subjected to a compressing load. Here, the col-
umn is built from a solid having a periodic repetition
of a squared cell with a squared hole. The base
material properties, the column’s dimensions and
discretization, boundary conditions and loading are
the same as in section 4.2.. The unit cell has a ma-
terial density of 0.64 and an exterior side measur-
ing 0.01m. The homogenized material properties
are obtained by discretizing the unit cell in 10x10
Q4 isoparametric finite elements. The results for
the critical load are shown in figure 3, where a con-
vergence analysis of the problem is illustrated.

5.5. Mixed-scale buckling problem
Here, two test cases are developed, where the

implementation of the mixed-scale buckling prob-
lem is applied.

Figure 3: Convergence analysis for Macro ms results of the
critical load.

5.5.1 Critical load vs. material density

First, the variation of the critical load with the
unit cell’s material density for the coupled insta-
bility problem is studied and compared with the
same variation for the macroscopic buckling case.
For that, the previous example of a column (same
boundary conditions and loading) is considered.
The beam’s dimensions are L = 30m, h = 2m,
b = 1m; it is built from a periodic repetition of a
square unit cell of side 0.5m with a hole and the
base material is characterized by E = 2.1MPa and
ν = 0.3. Starting from a uniform unit cell, the den-
sity is decreased by introducing a hole in the micro-
structure and by progressively increasing its size.

The macroscopic response is obtained by
means of the function Macro ms and the double-
scale response using the Coupleds function. In
both cases, the structure is discretized in 24000
finite elements.

The results from both functions are shown if fig-
ure 4.

Figure 4: Critical load vs. material density – results from Cou-
pleds and Macro ms.

For high values of density it is expected that the
results from both functions are equal, since the ma-
terial is ”almost” homogeneous. Particularly, the
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case where density equals to one, the result is
close to the one given by the Euler’s formula (error
of less than 1%). As density decreases, the Cou-
pleds function gives a buckling load lower than that
of the Macro ms implementation, since the elastic
properties for elements corresponding to void are
null in Coupleds, whereas in Marco ms these are
the homogenized ones.

For all the tested density values, the obtained
first and second instability modes were the same
as the ones of a macro-scale analysis.

5.5.2 Column with a honeycomb micro-
structure

Here, the objective is to verify if the implemen-
tation given by Coupleds can capture micro-scale
buckling modes.

For that, a beam built from a cellular mate-
rial with a honeycomb unit cell and subjected to
the same boundary conditions and loading as be-
fore is considered. The beam’s dimensions are
L =10.53m, h =3.04m and b =1m, the base ma-
terial is characterized by E = 2.1MPa and ν =0.3,
the honeycomb’s dimensions are assigned so that
its area is unitary [20] and the structure is dis-
cretized in 168x48 finite elements.

The micro-scale instability behaviour of the
honeycomb is first investigated using the mi-
cro buckles Matlab function. Its critical and sec-
ond buckling modes can be visualized in figure 5.
The results showed a critical buckling load factor of
0.0371 (Pcr = 77910N).

(a) First periodic in-
stability mode for the
honeycomb cell

(b) Second periodic
instability mode for
the honeycomb cell

Figure 5: Honeycomb – micro-scale buckling analysis from mi-
cro buckles.

As for the coupled analysis, the first two buck-
ling modes showed none or few buckled unit cells
with corresponding buckling loads much lower than
the micro-scale critical one. The calculations were
then extended to address higher buckling loads.
Analysing the thirteenth instability mode shape in
figure 6 (P13 = 6382, 62N), one can see a signifi-
cant number of buckled unit cells. These seem to
be arranged in columns and subsequent unstable
columns seem to be present in the structure in a
mirror-like position, resulting in a deformed but not
unstable shape for the remaining cells.

Figure 6: Undeformed shape vs. thirteenth instability mode
shape - beam with honeycomb micro-structure.

Buckling load values higher than the thirteenth
one were considered, where the deformed shape
showed no stable cells.

5.6. Buckling strength maximization problem

In this section, a simple example of beam, fixed
on the left hand side and subjected to a horizon-
tally distributed compressing load on the right hand
side, is optimized for maximum buckling strength
using the developed Matlab function TopOptBuck-
ling. The beam’s dimensions are L=20m, h=5m
and b=1m and the applied load has a value of
1Pa. The structure is discretized into 30x8 finite el-
ements and the material parameters are E1=1Pa,
E0 = 10−6Pa and ν=0.3. The structure is optimized
for a maximum allowed total volume fraction of 0.6.
The penalization factor is p=3 and the filter radius
is 0.2m.

The results for the optimized topology and the
objective function’s history during the optimization
iterations are shown in figures 7 and 8, respec-
tively.

Figure 7: Obtained optimal solution for maximum buckling
strength of the beam after 49 iterations.

The objective function converges to a solution
throughout the optimization process with only one
oscillation. Furthermore, the critical buckling load
is raised from 2.66 × 10−3N up to a final value of
9.63 × 10−3N, which represents a raise of 266%
from the uniform material distribution case.

The final topology presents some areas that can
be identified as the so called (and to be avoided)
checker-board patterns. However, the solid areas
of these regions seem to be aligned with each
other, suggesting that these patterns are present
due to the poor refinement of the mesh.
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Figure 8: Objective function history for the optimization of the
beam.

6. Conclusions
This work provides, numerical implementations

to be used in topology optimization of structures
and micro-structures for linearized buckling perfor-
mance maximization as well as the first implemen-
tation steps to be carried-out when performing this
type of optimization procedure on the macro-scale
level.

These are obtained by the application of the fi-
nite element approximations to treat the linearized
stability problem.

For the case of structures built from cellular pe-
riodic materials, the implementations of the stabil-
ity problems at separated macro- and micro-scales
were verified with simple yet illustrative examples
from the literature, including the necessary imple-
mentation of the homogenization method.

The proposed model of the coupled-scale stabil-
ity problem enables the application of the mixed-
scale instability equation and is capable of captur-
ing macro-scale as well as micro-scale behaviours,
at least for the presented examples.

Moreover, the developed implementation for the
maximization of the buckling strength of structures
converges to a optimal solution.

7. Future work
The given implementation of the coupled-scale

instability problem can be further reviewed, namely
regarding the validity of using the same discretiza-
tion for the macro- and micro- domains and the
computational efficiency. Furthermore, if this im-
plementation is proven to be valid, since it re-
lies on an equal discretization of the micro- and
macro-domains, it could, perhaps, be used in a
topology optimization problem to maximize the crit-
ical coupled-buckling load of structures. However,
since it is developed for structures built from peri-
odic cellular materials, this would possibly require
the addition of further constraints on the design

variables to ensure the periodicity of the unit cell’s
topology.

Furthermore, the implementation given for the
density based topology optimization for maximized
buckling strength yields a basis for including the
problem of non-differentiability of the objective
function for repeated buckling loads.
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