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Resumo

Este trabalho foca-se no problema de estabilidade de estruturas construı́das a partir de materiais

celulares periódicos e no problema de obtenção de estruturas ótimas para maximização da carga crı́tica.

O problema de estabilidade é abordado em escalas micro, macro e mistas através de uma teoria

de estabilidade linear. No problema à macroescala, as propriedades efetivas são obtidas a partir da

teoria da homogeneização. Para resolver o problema considerando o acoplamento macro-micro, a

metodologia proposta aplica a mesma discretização de elementos finitos para ambos os domı́nios, com

o objetivo de implementar e verificar a equação de acoplamento das duas escalas.

A solução para a maximização da carga crı́tica de estruturas é obtida pela otimização da topologia

com uma abordagem baseada na densidade material, onde se optou não incluir o caso de não difer-

enciabilidade da carga critica quando existem cargas de instabilidade repetidas. O esquema utilizado

para a atualização das variáveis de projeto é o Método das Assı́ntotas Móveis.

As implementações desenvolvidas foram aplicadas a casos tipos e os resultados comparados com

exemplos similares encontrados na literatura. A implementação do problema de estabilidade com

acoplamento macro-micro permitiu testar a aplicação da equação de acoplamento. Os resultados obti-

dos foram analisados em relação aos valores limite (macro e micro). Tanto quanto é conhecimento da

autora, não existem na literatura resultados semelhantes.

Palavras-chave: Estabilidade, Materiais Celulares, Homogeneização, Estabilidade Multi-

escala, Otimização de Topologia, Elementos Finitos
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Abstract

This work focuses on the stability problem of structures built from periodic cellular materials and on

the problem of obtaining optimal structures with maximized buckling strength.

The stability problem is addressed at micro-, macro- and mixed-scales by means of a linearized

buckling theory. When considering the macro-scale problem, the effective properties are obtained from

the homogenization theory. To solve the problem of macro-scale and micro-scale coupling, the proposed

methodology is obtained by applying the same finite element discretization to macro-scale and micro-

scale domains in order to implement and verify the coupling equation of the two scales.

The solution for maximum buckling strength of structures is obtained by topology optimization with a

material density based approach, where it was decided not to include the case of non-differentiability of

the critical load when repeated buckling loads exist. The used design variables updating scheme is the

Method of Moving Asymptotes.

The computational implementations are applied to benchmark examples and the results are com-

pared with similar ones found in the literature. The implementation of the macro- and micro- coupled

instability problem enables the application of the coupled instability equation. Similar results, as far as

the author knows, do not exist in the literature.

Keywords: Stability, Cellular Materials, Homogenization, Multi-scale Buckling, Topology Opti-

mization, Finite Elements
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Chapter 1

Introduction

1.1 Motivation

Buckling occurs when a structure is subjected to an increasing load that, after reaching some critical

value, results in a sudden change of its equilibrium configuration. In the case of gradually increased load,

this static equilibrium position modification (which can be described as a sideways deflection) causes

the vanishing of the structure’s stiffness and may occur before the structure starts to yield or fails. This

means that when a component of a given assembly buckles, the remaining ones need to support the

load beyond this critical value (the one that caused the buckling).

This makes the buckling phenomena an important factor when assessing the design of a struc-

ture. Particularly in the aerospace sector, since weight plays a crucial role, lightweight structures are

widely used and their inherent slenderness makes stability one of the key requirements when designing

aerospace structures.

Lightweight structures are typically built from low density cellular materials, which have found a wide

range of applicability, including, for instance, infill structures for additive manufacturing. However, the

strength capacity of these materials is also limited by micro-structural instabilities which may occur when

their slender structural members are subjected to compressing loads [1].

This means that structures built with periodic cellular materials can buckle on multi spacial scale

levels (macro-scale, micro-scale and mixed-scale levels).

There is, therefore, the need to design structures as well as materials for improved buckling perfor-

mance. One of the most attractive ways of finding optimal designs for a given set of constraints on it is

topology optimization, since it doesn’t rely on any preconceived shape of the structure. In fact, topology

optimization ”has been recognized as one of the most effective approaches at the conceptual design

phase of most engineering applications” [2].

In the aerospace field, one of the first studies regarding this method was the optimal design of the

internal structure of a wing for a supersonic aircraft, where the purpose was to determine the arrange-

ment of ribs and spars that minimizes the structure’s compliance (deformation) [3]. Following that, the

method has been applied to other aerostructures optimization for minimum compliance such as a fuse-
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lage structure [4], a wing with an outboard X-stabilizer [5] and non-conventional aircraft configurations,

namely a Blended-Wing-Body commercial passenger aircraft and an Unmanned Air Vehicle structure

[6].

Moreover, the use of topology optimization combined with other techniques has also drawn some

attention. For instance, Oktay et al. [7] presented a methodology for the parallel use of topology op-

timization for compliance minimization and Computational Fluid Dynamics and applied it to a wing’s

cross-section. Another example is the framework presented in [8], where a wing is optimized for min-

imum lift-induced drag using simultaneously structural topology optimization and aerodynamic shape

optimization.

However, in the aerospace industry, the number of real-world design problems where topology opti-

mization was applied is still not very significant [9]. These include, for instance, the redesign of the wing

box ribs for weight reduction of the A380 using topology optimization techniques [10].

Regarding structural topology optimization where buckling is considered, fewer studies have been

found, even though stability problems have been addressed since the early times of structural optimiza-

tion [11].

In the context of buckling strength of periodic materials, Neves et al. [12] proposed a methodology

for the maximization of the critical load for micro-structures exhibiting micro-scale buckling modes with

the same periodicity of the cellular material. Later, this work was extend to include buckling modes of

different wave-lengths by means of the Bloch-wave theory [13] and recently a further extension, which

includes the complete Bloch wave analysis, is provided in [1].

As for the macro-scale buckling strength of structures based on continuum models, optimality condi-

tions for single and multiple eigenvalues are presented in [14] and a methodology for the maximization

of the linearized buckling load using topology optimization is presented in [15]. A recent review on the

topic of topology optimization addressing buckling can be found in [11].

Regarding the problem of obtaining optimal aerostructures using topology optimization including lin-

earized buckling behaviour, only a recent study was found, where topology optimization techniques with

buckling constraints are applied to the Common Research Wing Model for the optimization of the skin of

the wing box [2].

By these considerations, it can be understood that the application of topology optimization in the

industrial environment is still quite an open topic and that that is even more evident when addressing the

stability of structures. Furthermore, while computational models as well as studies have been developed

for the calculation and optimization of linearized buckling loads at macro- and micro-scale levels (even

though not very extensively), no such implementations were found for the mixed-scale buckling case.

1.2 Topic and Methods Overview

Buckling is essentially a non-linear phenomenon. However, in this work, only linearized theories are

used to describe it. This is done, since full non-linear analysis are more computationally demanding

and linearized theories can predict buckling behaviour correctly in the considered cases, where before
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instability occurs the structural response is linear elastic.

Here, the instability phenomena of structures built from solids with periodic micro-structures is ad-

dressed by means of a linearized elasticity theory based on a double-scale asymptotic technique [16]. In

[16], equations describing buckling at macro-scale and micro-scale levels and a new equation regarding

mixed-scale buckling behaviour are obtained.

When considering the macro-scale level buckling behaviour, one needs information on the material

constants. Since for this type of solids, the material properties are not constant throughout the entire

domain and because they are built as a periodic repetition of a micro-structure, the averaged/effective

material properties can be calculated by considering one of these cells. These are referred to as RVE

based methods. Here, and as also obtained in [16], the homogenization theory, which is a result of the

application of asymptotic techniques, is used to obtain such properties.

There exist in the literature other methods for calculating such constants, namely standard mechanics

procedures. Comparison between some of these methods is presented in [17], where both the homoge-

nization and standard mechanics RVE based approaches are addressed, concluding that ”homogeniza-

tion theory is preferable over standard mechanics of materials approaches for periodic composites even

when the material is only locally periodic”.

Concerning the micro-scale buckling behaviour, the implementation here given is limited to instability

modes having the same periodicity of the unit cell, which is known not to be the only scenario. However,

and although out of scope of this work, the implemented theory can be generalized for non-periodic

conditions by means of the Floquet-Bloch wave theory, as done in [1].

Implementations and methods to address the coupled instability problem based on the equation

provided in the used bifurcation theory from [16] were not found. However, and although not used in this

dissertation, scale-coupling methods in solid mechanics are available, such as the Schwarz alternating

method, developed for the multiscale coupling in the finite deformation range [18].

In this work, as already mentioned, optimal structures are obtained by means of topology optimiza-

tion. The general idea of the method is to find black-and-white designs (solid-and-void designs) where

no preconceived shape was assigned to the considered structure. Its classic formulation, also known as

binary problem, is ill-posed, as a series of feasible and non-convergent designs can be obtained [19].

One of the ways of overcoming this problem is the use of the aforementioned homogenization

method, which enables the inclusion of intermediate material density values in the formulation. Many

authors have used it in the context of topology optimization (see, for instance [20], [21] and [22]). How-

ever, this approach poses some drawbacks, including the sometimes difficult manufacturability of the

final structure and the fact that the optimal micro-structure is not always known [19].

In this dissertation and as commonly done in topology optimization, a density-based approach is

used to relax the binary problem, since it doesn’t present the difficulties from the homogenization method

and requires less effort in its implementation.

To solve the optimization problem, several sequential explicit, convex approximation techniques are

available, such as Sequential Linear Programming, Sequential Quadratic Programing, Convex Lineariza-

tion and the Method of Moving Asymptotes (MMA) [23]. In this work, and since it has proven to be the
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one that provides converged solutions for a wider range of problems, the MMA is used.

When considering buckling in the optimization process, some difficulties arise, namely the appear-

ance of artificial buckling modes present in low density regions and repeated buckling loads, which may

lead to numerical instabilities.

To overcome the issue of buckling modes in low density regions, Neves et al. [15] suggested that,

when assembling the geometric stiffness matrix, the elemental matrices corresponding to elements with

densities smaller than a predefined value should be assigned a null stress value, which corresponds to

being ignored in the calculations. This method, however, causes oscillations in the solution, since abrupt

changes in the objective function and sensitivities occur [24]. The method proposed in [24], which

is based on different interpolations of the Young’s modulus for the stiffness and geometric stiffness

matrices, is here followed. This method has been used in some works (for instance in [25], where a

large-scale topology optimization approach with linearized buckling criteria is presented) and proven to

be efficient in mitigating this problem.

Although out of scope of this work, solutions on overcoming the problem of non-diferentiability of the

objective function in the case of repeated buckling loads can be found in [25] or [26].

1.3 Objectives

This dissertation aims, then, to answer to the question of how to calculate and implement the buckling

response of a structure built from solids with periodic micro-structure based on a linearized stability

theory. This includes a review of the existing methods for addressing buckling at separated macro-

and micro-scales as well as the study of the mixed-scale problem with the objective of providing a

computational implementation capable of calculating coupled instability loads and modes.

Furthermore, this work seeks to provide a simple numerical implementation for the maximization of

the macro-scale critical buckling load of structures. For that purpose, a review of existing implementa-

tions for the compliance minimization of structures (including the use of existing commercial codes) is

here done, which is further extended to address linearized buckling behavior in the optimization process.

The main objective of this work is, however, to provide relatively simple numerical implementations on

the topic of buckling at multiple-scale levels and its connection with topology optimization of structures,

as a way of smoothing out the inherent difficulties of the problems.

1.4 Thesis Outline

For the sake of readability and understanding of the involved topics, this work is divided into four

main sections.

In chapter 2, the necessary theoretical background to the proposed implementations is given. This

includes the layout of the used theories along with references for further details on the discussed topics.

Chapter 3 is focused on the description of the carried-out studies and numerical implementations.

These include a brief review on the development of symbolic computation scripts for the derivation of
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the used linearized stability theory, the extension of an existing code for the calculation of homogenized

material properties, the development of computational models to obtain buckling responses at micro-,

macro- and mixed-scales, the review and modification of existing codes for the compliance minimization

problem with the MMA as the updating scheme for the design variables and the numerical implementa-

tion of topology optimization problems for the maximization of the linearized critical buckling load without

considering the case of multiple eigenvalues.

The results from the implementations in chapter 3 are presented in chapter 4, together with some

verification examples.

In chapter 5, the main conclusions of this work are summarized and some comments and reflections

on futures works to be addressed are made.
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Chapter 2

Theoretical Background

In this chapter, a theoretical overview of the discussed topics is given. The necessary concepts

and equations for the carried-out methodology are presented, where the reader is referred to the given

references for more details on the discussed subjects.

2.1 Linear elasticity equations for isotropic solids

A continuum body is said to be a linear elastic solid when, in the presence of an external force, the

resultant deformation disappears as the force is removed. In the words of the elasticity theory, the stress

at any material point of a linear elastic solid is only linearly dependent on the strain at that point and at

that moment (here assumed independent of the history and rate of strain).

The classic equations of linear elasticity result from the following simplifications:

• Only the macroscopic structure of the body is considered - the other scales of the structure are not

taken into account;

• The solid is assumed to be a continuously distributed mass over its volume, which implies that all

portions of the body are assumed free of imperfections;

• The displacements and velocities are infinitesimal (small deformations) and sufficiently smooth.

In what follows, only isotropic materials - materials for which the elastic properties are the same in

every direction - are treated and no thermal or viscous effects are considered.

In a linear elasticity theory, the small strain tensor is defined as

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.1)

where ui(x1, x2, x3, t) with i = 1, 2, 3 is the displacement component i of a point from its position in the

zero-stress state (undeformed configuration) to the x1, x2, x3 position at time t (deformed configuration).
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The particle velocity and acceleration are, respectively,

vi =
∂ui
∂t

, αi =
∂vi
∂t
. (2.2)

From the principle of mass conservation, one can obtain the continuity equation,

∂ρ

∂t
+
∂(ρvi)

∂xi
= 0. (2.3)

The conservation of momentum law, or simply equation of motion, expressing the system’s equilib-

rium of forces can be written as

ραi =
∂σij
∂xj

+ fi. (2.4)

Furthermore, linear elastic bodies (Cauchy or Green) obey Hooke’s law - the strains and displace-

ments are measured from a zero value, to which a unique zero-stress state is associated. The general-

ized Hooke’s law is σij = Eijkmekm and for a homogeneous and isotropic material, it can be particular-

ized to σij = λekkδij + 2µeij , where λ and µ are the Lamé parameters.

The so far presented equations represent 22 equations for 22 unknowns, namely ρ, ui, vi, αi, eij and

σij with i, j=1,2,3 or, alternatively, i, j = x, y, z [27] .

Using equations (2.1), (2.4) and the Hooke’s law for isotropic materials, σij and eij can be eliminated

and the Navier equation is obtained,

µ∇2ui + (λ+ µ)
∂e

∂xi
+ fi = ρ

∂2ui
∂t2

, (2.5)

where ∇2 is the Laplace operator and e is the divergence of the displacement vector.

For static problems, the previous equation is reduced to

µ∇2ui + (λ+ µ)
∂e

∂xi
+ fi = 0. (2.6)

To solve the previous field equation, the specification of boundary conditions is necessary, which

may be (usually) either displacements or surface tractions.

The demonstrations of the given relations and further details on the elasticity theory can be found in

[27] or [28].

Because the developed work refers to situations that can be modeled as two-dimensional (either due

to the system’s geometry, boundary conditions or applied loads), only plane elasticity equations of two

types are now considered:

• Plane strain in xy-plane: State of strain in which the strain normal to the xy-plane as well as the

shear strains involving angles normal to the xy-plane are assumed to be zero. These assumptions

are appropriate for thick structures (in the z direction) with constant cross-sectional area where the

applied loads act only in the xy-plane and do not vary in the z direction.

• Plane stress in xy-plane: State of stress in which the stresses normal to the xy-plane are assumed
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to be zero. This model is realistic for thin bodies (in the z direction) where external loads are only

applied in the xy-plane.

Plane strain equations

For a plane strain problem, the displacement field is characterized as

u1 = u1(x1, x2), u2 = u2(x1, x2), u3 = 0. (2.7)

From the Green tensor defined above and introducing the plane strain simplifications, the strain

components are

e13 = e23 = e33 = 0, e11 =
∂u1

∂x1
, 2e12 =

∂u1

∂x2
+
∂u2

∂x1
, e22 =

∂u2

∂x2
. (2.8)

As for the stress components (recalling that here only isotropic materials are treated),

σ13 = σ23 = 0, σ33 = ν (σ11 + σ22) (2.9)

and the constitutive equation (Hooke’s law) becomes, using a matrix notation,
σ11

σ22

σ12

 =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0 1−2ν
2



e11

e22

2e12

 . (2.10)

As for the equation of motion (2.6) for static conditions, the following system of 2 equations, written

in terms of the stress components, is obtained.

∂σ11

∂x1
+
∂σ12

∂x2
+ f1 = 0 (2.11)

∂σ12

∂x1
+
∂σ22

∂x2
+ f2 = 0 (2.12)

The boundary conditions for solving the previous problem take the form of:

Essential (displacements): u1 = û1, u2 = û2 on Γu (2.13)

Natural (tractions): t1 ≡ σ11n1 + σ12n2 = t̂1, t2 ≡ σ12n1 + σ22n2 = t̂2 on Γt, (2.14)

where (n1, n2) represent the direction cosines of the unit normal vector on the system’s boundary Γ and

Γu and Γt are disjoint portions of Γ, where displacements and tractions are prescribed, respectively.
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Plane stress equations

Regarding plane stress situations, only the differences between this state and the plane strain state

will be outlined.

In a plane stress case, the stress field is characterized by

σ13 = σ23 = σ33 = 0, (2.15)

with the remaining stress components given by the following constitutive equation.
σ11

σ22

σ12

 =
E

(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2



e11

e22

2e12

 (2.16)

Although not yet mentioned, particular attention is now given to the equations of motion, which are

the same as in the plane strain case when written in terms of the stresses and not the displacements.

In fact, when expressed in terms of the components of the displacement field, the inequality of the

equations is a result of the difference in the constitutive equations for both cases.

Finite element formulation - plane elasticity problems

The equilibrium equations (2.11) and (2.12) describe the system’s behaviour as a continuous body

and therefore require a solution in every material point of the system. These equations, together with

the boundary conditions, are usually referred to as the strong formulation of the problem.

The so called weak formulation is the starting point for obtaining the system’s finite element model.

It can be obtained by performing the integration of the equilibrium equation over each element and

introducing weight/test functions v. For a given element e,

∫
Ωe

(
∂σij
∂xj

+ fi

)
vidΩ = 0, (2.17)

which leads to (see [29])

∫
Ωe

Eijkm
∂uk
∂xm

∂vi
∂xj

dΩ =

∫
Ωe

fividΩ +

∫
Γt

tividΓ. (2.18)

Since the primary variables are the displacements, the model is constructed by introducing the ap-

propriate interpolation functions to approximate the displacement field. Mathematically,

u1 ≈
n∑
j=1

uj1Nj(x1, x2), u2 ≈
n∑
j=1

uj2Nj(x1, x2), (2.19)

where n indicates the number of nodes per element, N the shape functions and uji the nodal displace-

ments values.

The linear equations describing the finite element model for static problems are then obtained by
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the introduction of the previous approximation into the weak formulation. Using a matrix notation, these

equations are outlined bellow.

Displacement field: uh = {u1 u2}T = Nu. (2.20)

Strain field: e = Bu. (2.21)

Stress field: σ = EBu. (2.22)

Governing equation: Ku = F . (2.23)

The displacement field uh is obtained by means of the nodal displacement vector

u = {u1
1 u

1
2 u

2
1 u

2
2 ... u

n
1 u

n
2}T (2.24)

and the shape function matrix

N =

N1 0 N2 0 ... Nn 0

0 N1 0 N2 ... 0 Nn

 , (2.25)

where n is the number of nodes per element.

The strain field is obtained using the strain-displacement matrix

B =


∂N1

∂x1
0 ∂N2

∂x1
0 ... ∂Nn

∂x1
0

0 ∂N1

∂x2
0 ∂N2

∂x2
... 0 ∂Nn

∂x2

∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1
... ∂Nn

∂x2

∂Nn

∂x1

 (2.26)

and the stress field, recalling Hooke’s law, is obtained by means of the strain field and the constitutive

matrix E, which for the considered elasticity problems is either the one defined in equation (2.10) or in

equation (2.16).

As for the governing equation, the global stiffness matrix K and the global force vector F are ob-

tained from the assemblage of its elemental correspondents given, respectively, by

Ke =

∫
Ωe

BTEB dΩ, (2.27)

F e =

∫
Ωe

NTf dΩ +

∫
Γt

NT t dΓ (2.28)

Further details on plane elasticity problems and their finite element formulation can be found, for

instance, in [29] and [30].
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2.2 Linear elastic buckling theory for solids with periodic micro-

structure

The stability problem is here analyzed as a bifurcation in the static equilibrium displacement path

of some body, where it is assumed that the only possible failing mechanism of the structure is linear

elastic buckling. Furthermore, it will be also assumed that, before instability occurs, the material and

geometrical behavior of the component is linear-elastic and that the sideways deflections (deflections

perpendicular to the direction of the load application) are null. These hypothesis reduce the stability

problem to an eigenvalue problem, also known as Euler Buckling problem.

The linear-elastic buckling theory here presented is based on [16] and [26] and the references

therein.

2.2.1 Problem formulation

Let a linear-elastic body be defined by a domain Ωε and a boundary Γ, being quasi-statically loaded

with: prescribed displacements in Γu, surface tractions t in Γt and body forces f in Ωε. The superscript

ε, which will also be of further use in this text, indicates a dependency on the micro-structure, as it is

defined as the unit cell scale parameter,

ε =
d

D
� 1, (2.29)

where d is a characteristic dimension of the unit cell and D a characteristic dimension of the structure at

the macro-scale level.

The loading is gradually increased, only applied at the macro-scale level and also considered pro-

portional to some reference loading, t = λtref and f = λfref .

Assuming the body has a uniform micro-structural shape, the solid can be represented by a periodic

repetition of a unit cell, also know in the literature as RVE. The RVE is defined by the domain Y =

]0, Y1[x]0, Y2[x]0, Y3[ and, here, built from a base material with holes in it. Furthermore, this base material

is homogeneous, linear-elastic and isotropic.

The buckling problem consists, then, on the determination of the critical loads and the displacement

field for which instability occurs. However, because this is a linearized model, it is not possible to obtain

the displacements; instead only the instability modes can be identified.

2.2.2 Obtaining a governing equation

Using the minimization of the potential energy approach to obtain the problem’s governing equation,

the critical load factor λ = λcr as well as the instability modes can be determined.

The total potential energy is defined as

Π(uε) = A(uε)−R(uε), (2.30)
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where A(uε) is the total elastic strain energy and R(uε) is the applied forces potential given by

A(uε) =
1

2

∫
Ω

σij(u
ε)eij(u

ε)dΩ =
1

2

∫
Ω

Eijkmekm(uε)eij(u
ε)dΩ, (2.31)

R(uε) = λ

∫
Ω

frefi uεidΩ + λ

∫
Γt

trefi uεidΓ. (2.32)

In obtaining the final expression for the elastic strain energy, the material behavior was, as stated

before, presumed elastic, not excluding geometric nonlinearities. Therefore, the stress-strain relation

can be given by the generalized Hooke’s law σij(u
ε) = Eijkmekm(uε).

In contrast with the linear elasticity theory, the second order terms in the Green strain tensor (ge-

ometric terms) cannot be neglected, as these are the ones that cause the vanishing of the structure’s

stiffness as it buckles. The Green strain tensor is then expressed as

eij(u
ε) =

1

2

(
∂uεi
∂xj

+
∂uεj
∂xi

)
+

1

2

(
∂uεk
∂xi

∂uεk
∂xj

)
. (2.33)

The displacement field, which is a function of both the macro-spatial, x, and micro-spatial, y, vari-

ables, is represented using an infinitesimal real displacement parameter α:

uε = u0ε + αu1ε. (2.34)

In the previous expression, u0ε is the displacement related with the primary equilibrium configuration

(unique solution of the linear elastic problem before bifurcation and assumed known) and u1ε is a relative

displacement which, when multiplied by α, represents the possible ”jump” to the secondary equilibrium

position that occurs when bifurcation takes place.

Introducing the above displacement representation (2.34) in the strain tensor (2.33) yields

eij(u
ε) =

1

2

(
∂u0ε

i

∂xj
+
∂u0ε

j

∂xi

)
+

1

2

(
∂u0ε

k

∂xi

∂u0ε
k

∂xj

)
+

+ α

{
1

2

(
∂u1ε

i

∂xj
+
∂u1ε

j

∂xi

)
+

1

2

(
∂u0ε

k

∂xi

∂u1ε
k

∂xj
+
∂u1ε

k

∂xi

∂u0ε
k

∂xj

)}
+ α2

{
1

2

∂u1ε
k

∂xi

∂u1ε
k

∂xj

}
. (2.35)

Given the assumption that the deformations occurring before the bifurcation u0ε are infinitesimal,

the second order term
(
∂u0ε

k

∂xi

∂u0ε
k

∂xj

)
can be neglected when compared to its first order correspondent.

The nonlinear crossed terms
(
∂u0ε

k

∂xi

∂u1ε
k

∂xj
+

∂u1ε
k

∂xi

∂u0ε
k

∂xj

)
are also negligible, since u0ε and u1ε do not co-

exist in any of the equilibrium configurations. The small deformations assumption and its mentioned

consequences is what linearizes the buckling problem, reducing it to a eigenvalue problem.

With these simplifications, the Green strain tensor becomes

eij(u
ε) =

1

2

(
∂u0ε

i

∂xj
+
∂u0ε

j

∂xi

)
+ α

{
1

2

(
∂u1ε

i

∂xj
+
∂u1ε

j

∂xi

)}
+ α2

{
1

2

∂u1ε
k

∂xi

∂u1ε
k

∂xj

}
. (2.36)

As in many other problems in mechanics, the bifurcation problem is here addressed by means of an
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asymptotic technique, which allows to obtain:

• A two-scale linear-elastic buckling theory;

• Homogenized elastic material properties, which can be used when treating the macro-scale insta-

bility problem, assuming that periodicity exists at the microscopic level.

Expanding the displacement field terms defined in (2.34) yields

u0ε(x,y) = u00(x,y) + εu01(x,y) + ε2u02(x,y) + ..., y =
x

ε
, (2.37)

u1ε(x,y) = u10(x,y) + εu11(x,y) + ε2u12(x,y) + ..., y =
x

ε
, (2.38)

where the functions uab with indices a=0,1 and b=0,1,2,... are Y-periodic (have the same periodicity as

the unit cell).

Given that the differentiation of Y-periodic functions F (x,y) can be performed as [26]

d

dxj
F (x,y) =

∂F (x,y)

∂xj
+

1

ε

∂F (x,y)

∂yj
(2.39)

and presenting the results writing only the first two terms of the asymptotic expansions (2.37) and (2.38)

(which is reasonable, when recalling that the scale parameter ε is much lower than unity), the strain-

displacement relation becomes

eij(u
ε) = e0

ij(u
ε) + αeIij(u

ε) + α2eIIij (uε), (2.40)

where

e0
ij(u

ε) =
1

2ε

(
∂u00

i

∂yj
+
∂u00

j

∂yi

)
+

[
1

2

(
∂u00

i

∂xj
+
∂u00

j

∂xi

)
+

1

2

(
∂u01

i

∂yj
+
∂u01

j

∂yi

)]
+
ε

2

(
∂u01

i

∂xj
+
∂u01

j

∂xi

)
+ ...,

(2.41)

eIij(u
ε) =

1

2ε

(
∂u10

i

∂yj
+
∂u10

j

∂yi

)
+

[
1

2

(
∂u10

i

∂xj
+
∂u10

j

∂xi

)
+

1

2

(
∂u11

i

∂yj
+
∂u11

j

∂yi

)]
+
ε

2

(
∂u11

i

∂xj
+
∂u11

j

∂xi

)
+ ...,

(2.42)

eIIij (uε) =
1

2ε2

(
∂u10

k

∂yi

∂u10
k

∂yj

)
+

1

2ε

(
∂u10

k

∂xi

∂u10
k

∂yj
+
∂u10

k

∂yi

∂u10
k

∂xj
+
∂u10

k

∂yi

∂u11
k

∂yj
+
∂u11

k

∂yi

∂u10
k

∂yj

)
+

+
1

2

(
∂u10

k

∂xi

∂u10
k

∂xj
+
∂u10

k

∂xi

∂u11
k

∂yj
+
∂u11

k

∂yi

∂u10
k

∂xj
+
∂u10

k

∂yi

∂u11
k

∂xj
+
∂u11

k

∂xi

∂u10
k

∂yj
+
∂u11

k

∂yi

∂u11
k

∂yj

)
+

+
ε

2

(
∂u11

k

∂yi

∂u11
k

∂xj
+
∂u11

k

∂xi

∂u11
k

∂yj
+
∂u11

k

∂xi

∂u10
k

∂xj
+
∂u10

k

∂xi

∂u11
k

∂xj

)
+
ε2

2

(
∂u11

k

∂xi

∂u11
k

∂xj

)
+ ... . (2.43)

The minimization of the total potential energy, which is related with the equilibrium configurations, is

expressed by its stationary points,

δΠ(uε) = δA(uε)− δR(uε) = 0. (2.44)

Introducing a perturbation δuε = α{v10(x,y) + εv11(x,y) + ...}, where v10 and v11 ∈ VΩ×Y =

{v(x,y) : v|Γu = 0 and v is Y-periodic} and using the so far obtained strain tensor, the previous equation
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can be separated in terms of α powers:

α

∫
Ωε

Eijkm{e0
ij(u

ε)eIkm(vε)}dΩ− αλ
∫

Γt

tiv
ε
idΓ− αλ

∫
Ωε

f iv
ε
idΩ = 0 ∀ v ∈ VΩ×Y , (2.45)

α2

∫
Ωε

Eijkm{e0
ij(u

ε)eIIkm(vε) + e0
ij(v

ε)eIIkm(uε) + eIck(uε)eIcm(vε) + eIck(vε)eIcm(uε)}dΩ = 0 ∀ v ∈ VΩ×Y .

(2.46)

Note: In equations (2.45) and (2.46) some terms were omitted as e0
ij(v

ε) = 0, because the solution

is unique before the bifurcation, and e0
ij(u

ε)eIkm(uε) = 0 due to the fact that the displacements u0ε and

u1ε do not coexist at bifurcation.

2.2.3 Pre-buckling response

The equations that characterize the small elastic deformations occurring before buckling of a solid

built from a periodic micro-structure are obtained from the analysis of equation (2.45) - the α term of the

total potential energy stationary condition. The analysis is performed by grouping the terms in ε powers

and setting each of them to zero. With this approach, three sets of equations are obtained:

• The equations describing the linear-elastic fundamental equilibrium configuration at the micro-

scale level;

• The equations describing the linear-elastic fundamental equilibrium configuration at the macro-

scale level;

• The equations for determining the effective elastic material properties.

These equations are outlined in what follows.

From the term in ε−2, it can be shown that

u00(x,y) = u00(x), (2.47)

meaning that the first term of the asymptotic expansion of the displacement u0ε is a function of only the

macro-scale spatial variable x.

Analysing the term in ε−1 and acknowledging that v are independent variations that can assume any

value, it can be obtained

1

ε

∫
Ωε

Eijkm

(
∂u00

i

∂xj
+
∂u01

i

∂yj

)
∂v10

k

∂ym
dΩ = 0, ∀ v10 ∈ VΩ×Y . (2.48)

Recalling that ε is very small and also that u00, u01 and v10 are periodic functions in y, equation

(2.48) can be written as

∫
Ωε

[
1

|Y |

∫
Y

Eijkm

(
∂u00

i

∂xj
+
∂u01

i

∂yj

)
∂v10

k

∂ym
dY

]
dΩ = 0, ∀ v10 ∈ VΩ×Y . (2.49)

where |Y | represents the geometrical volume of the RVE.
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Using (2.47) together with the previous result,

u01
i (x,y) = −χkmi (y)

∂u00
k (x)

∂xm
. (2.50)

To satisfy the previous equation, the characteristic displacements χkmi must be the solution of the

km static problems at micro-scale level,

∫
Y

Eijpq
∂χkmi
∂yq

∂vi
∂yj

dY =

∫
Y

Eijkm
∂vi
∂yj

dY, ∀ v ∈ VY = {v is Y-periodic}, (2.51)

where periodic displacements at the RVE boundary are prescribed. Because χkmp takes the meaning

of characteristic displacements, then the previous equation is referred to as the characteristic equation

of the unit cell.

As for the term in ε0, using the result from equation (2.50) and keeping in mind that v are arbitrary

variations, ε is infinitesimal and that the functions being integrated are Y-periodic, the equation express-

ing macroscopic static equilibrium is obtained,

∫
Ωε

1

|Y |

∫
Y

(
Eijkm − Eijpq

∂χkmp
∂yq

)
dY

∂u00
k

∂xm

∂v10
i

∂xj
dΩ = λ

∫
Γt

trefi v10
i dΓ+λ

∫
Ωε

frefi v10
i dΩ, ∀ v10 ∈ VΩ,

(2.52)

from where the macroscopic displacements u00 can be determined.

From 2.52, the homogenized elastic material properties can be defined as

EHijkm =
1

|Y |

∫
Y

(
Eijkm − Eijpq

∂χkmp
∂yq

)
dY. (2.53)

One can see that for the determination of the effective properties, the micro-scale equilibrium problem

must be first solved. Therefore, the macroscopic static problem must be addressed after the microscopic

one. Furthermore, it is clear that the solution for both the static problems does not involve the coupling

of them, allowing them to be solved separately.

From the term in ε, it is possible to realize that the second term in the asymptotic expansion of u00,

u01, is a function of only y,

u01(x,y) = u01(y). (2.54)

This concludes the characterization of the body behavior prior to buckling at both scale levels, which

can also be identified as the solution of the homogenization problem at the micro-scale level and the

solution of the static-elastic problem at the macro-scale level.

Some notes on the homogenization theory

Although the equations for the application of the homogenization theory are naturally obtained with

this linear elastic buckling theory for solids with periodic micro-structure, further details and comments
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on it seem appropriate.

The homogenization theory is a RVE-based method that can be used to compute effective elastic

properties of composite materials. The behaviour of these materials depends on their micro-structure,

which requires their analysis on a micro-scale level. The goal of the RVE-based methods is, then, to

obtain valid macro-scale material properties (effective properties), based on information of a volume that

represents the material (due to periodicity, etc.).

The homogenization theory is built from two main assumptions:

• Given the presence of a micro-structure, the fields of interest vary on multi-spatial levels;

• A periodic spatial repetition of a micro-structure exists.

Furthermore, it has been shown that the accuracy of the homogenization procedure depends on ε -

as ε decreases, the resultant effective material behavior is closer to the one of the ”true” material [17].

The common use of periodic boundary conditions when applying this method is also justified by being

the ones that enable the best agreement with experimental results [17].

In this theory, the relevant field variables are represented by their asymptotic expansions, as done in

equations (2.37) and (2.38), resulting in an asymptotic representation of the governing equations. This

technique is what allows the spatial scale separation of the problem where homogenization is applied.

When applied to elasticity problems, this analysis enables the calculation of the effective macroscopic

elasticity tensor from

EHijkl =
1

|Y |

∫
Y

Epqrs
(
ε̃ijpq − εijpq

) (
ε̃klrs − εklrs

)
dY, (2.55)

where ε̃ijpq are the macroscopic strain fields (three in two-dimensional analysis) to which the unit cell is

subjected and εijpq are denoted as the locally varying strain fields defined as εijpq =
(
∂χij

p

∂yq
+

∂χij
q

∂yp

)
[1].

Note: Equation (2.55) is the equivalent energy based form of equation 2.53 and they both provide

the same results [1].

The prescribed macroscopic strain fields are usually applied as unit independent strain fields (al-

though any independent strain fields would also be applicable), since their linear combination can result

in the macroscopic/average strain tensor. This is done, because the macroscopic strain field is not

known and it is valid, since the homogenization analysis represents a linear problem [17].

The characteristic displacement fields χijq are the solution of the microscopic static problem (equation

(2.51)), also expressed by

∫
Y

Eijpqεij(v)εpq(χ
kl)dY =

∫
Y

Eijpqεij(v)ε̃klpqdY, ∀v ∈ VY . (2.56)

Further theoretical details on the homogenization theory can be found, for instance, in [31] and,

as a final note, it is important to mention that due to the periodicity assumption, the obtained material

properties are independent of the unit cell’s size.
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Finite element formulation

In problem (2.52), u00 depends linearly of the load factor λ. Then, one can write u00 = λu, where u is

the displacement field associated with the reference loading that solves the linear system of equilibrium

equations [26] ∫
Ωε

EHijkm
∂uk
∂xm

∂vi
∂xj

dΩ =

∫
Γt

trefi vidΓ +

∫
Ωε

frefi vidΩ, ∀ v ∈ VΩ, (2.57)

The use of the finite element method to solve the equilibrium equation (2.57) for u requires the

discretization of the domain Ωε in some type of finite elements and the introduction of approximation

functions so that the displacement field in each element is interpolated using its nodal values.

Introducing this approximation in the governing equation, yields the following system of linear equa-

tions

Kxu = Fx, (2.58)

where Kx is the macro-scale stiffness matrix of the structure with homogenized material properties and

Fx is the applied loads vector at macroscopic level.

In a practical way, this is the same approach (and the same problem) as the one presented in the

linear-elasticity chapter, taking only into consideration that the constitutive matrix is now a homogenized

one. This means that the stiffness matrix, the strains and stresses can be calculated by the same matrix

products there outlined, substituting only the elastic constants by the homogenized ones.

The same goes for the micro-structure elastic-static problem, where the characteristic displacements,

are obtained by solving the km linear systems

Kyχ
km = F kmy , (2.59)

with Ky being the stiffness matrix related with the RVE and Fykm the characteristic loading at micro-

scale level. Here, the constitutive matrix is the one of the base material for elements not corresponding

to the micro-structure holes. This equation represents 3 systems of equations (km = 11, 12, 22) in two-

dimensional situations (with 3 different loadings) and, as mentioned before, they are solved considering

periodic displacement boundary conditions.

From the solution of the previous equation, the homogenized constitutive matrix can be obtained as

follows [1]

EH
ij =

1

|Y |

N∑
e=1

∫
Ye

(
ε̃i −Beχ

i
e

)T
Ee

(
ε̃j −Beχ

j
e

)
dY, (2.60)

where Ee is the constitutive matrix of the material to which the element refers to, ε̃ji = δij are 3 indepen-

dent macroscopic strain fields and χe are the correspondent 3 characteristic displacement fields. Here,

the sum has the meaning of a finite element assembly procedure, where e refers to some element and

N denotes the total number of elements used to discretize the unit cell.

For a comprehensive discussion on the application of finite element formulations to the homogeniza-

tion problem see [32].
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2.2.4 Linearized elastic buckling response

In this subsection, the second equation regarding the minimization of the total potential energy (the

one in α2 power) is addressed. The analysis of the α2 term (2.46) is performed in the same fashion as

in the previous subsection - analysing the terms in different ε powers.

Here, it will be obtained:

• The equations describing the elastic stability problem at the microscopic level;

• The equations that characterize coupled macroscopic and microscopic instabilities;

• The equations addressing the macroscopic buckling problem.

Starting with the term in ε−2, an expression relating the displacement terms appearing after bifurca-

tion and the ones that solve the linear static problem is obtained. Considering u10(x,y) = u10(y) and

taking into account the periodicity of the displacements, the elastic stability problem at the micro-scale

level can be obtained:

∫
#Y

Eijkm
∂u10

i

∂yj

∂v10
k

∂ym
dY +

∫
#Y

σ0
km

∂u10
c

∂yk

∂v10
c

∂ym
dY = 0, ∀ v10 ∈ VΩ×#Y , (2.61)

where σ0
km = σ0

km(x,y) is the initial stress at micro-scale level resulting from the macroscopic strain

field prior to bifurcation and is defined as [1]

σ0
ij =

(
Eijkm − Eijpq

∂χkmp
∂yq

)
∂u00

i

∂xj
. (2.62)

Note: The symbol # denotes periodicity in #x# RVE’s, which can still be seen as Y-periodicity.

Equating the term in ε−1, given that the variations v are arbitrary, a new expression of the connection

between the macroscopic and microscopic instabilities is obtained:

1

ε

∫
Ωε

Eijkm

(
∂u10

i

∂yj

∂v10
k

∂xm

)
dΩ +

1

ε

∫
Ωε

σ0
km

(
∂u10

c

∂ym

∂v10
c

∂xk

)
dΩ+

+
1

ε

∫
Ωε

Eijkm

(
∂u10

i

∂xj

∂v10
k

∂ym

)
dΩ +

1

ε

∫
Ωε

σ0
km

(
∂u10

c

∂xk

∂v10
c

∂ym

)
dΩ = 0, ∀ v10 ∈ VΩ×Y , (2.63)

meaning, in this case, that u10 = u10(x,y), i.e. a function of the macro-scale space x and micro-scale

space y.

As for the term in ε0, taking into consideration the arbitrariness of v, u01 = u01(y) and that ε → 0

and assuming u10 = u10(x) and that terms involving the product of three displacement derivatives may

be neglected, one concludes that

u11
i (x,y) = −χkmi (y)

∂u10
k (x)

∂xm
. (2.64)
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Making use of another variation in ε0 and considering the same results and assumptions as in the

previous paragraph, the macroscopic instability problem is obtained

∫
Ωε

EHijkm
∂u10

i

∂xj

∂v10
k

∂xm
dΩ +

∫
Ωε

σ0H
km

∂u10
c

∂xk

∂v10
c

∂xm
dΩ = 0 ∀ v10 ∈ VΩ×Y , (2.65)

where

σ0H
ij =

1

|Y |

∫
Y

(
Eijkm − Eijpq

∂χkmp
∂yq

)
dY

∂u00
i

∂xj
= EHijkm

∂u00
i

∂xj
. (2.66)

Finite element formulation

As already mentioned, one can write u00 = λu, where u solves equation (2.57). Therefore, and

since u10 = cteφ and v10 = cteψ, where φ denotes the instability modes and ψ the virtual instability

modes (test functions), equations (2.61), (2.62), (2.65) and (2.66) can be rewritten, respectively, as

∫
#Y

Eijkm
∂φi
∂yj

∂ψk
∂ym

dY + λy

∫
#Y

σ0
km

∂φc
∂yk

∂ψc
∂ym

dY = 0, ∀ ψ ∈ VΩ×#Y , (2.67)

σ0
ij =

(
Eijkm − Eijpq

∂χkmp
∂yq

)
∂ui
∂xj

, (2.68)

∫
Ωε

EHijkm
∂φi
∂xj

∂ψk
∂xm

dΩ + λx

∫
Ωε

σ0H
km

∂φc
∂xk

∂ψc
∂xm

dΩ = 0 ∀ ψ ∈ VΩ×Y . (2.69)

σ0H
ij = EHijkm

∂ui
∂xj

, (2.70)

where λy and λx denote the load factors (eigenvalues) at the micro- and macro-scales, respectively.

The finite element formulation for the calculation of u, including the one for obtaining the necessary

homogenized material properties and characteristic displacements, have already been provided in the

previous section.

For the stability problem of the micro-structure, the application of the finite element approximation to

the instability modes leads to the system of equations

(Ky + λyGy)φ = 0, (2.71)

where Gy is the geometric stiffness matrix (also referred to as the initial stress stiffness matrix) for the

unit cell. Gy is obtained from the second integral in equation (2.67) and further details on obtaining it

can be found in Appendix A.

In the same way, for the macro-scale case, it is obtained

(Kx + λxGx)φ = 0, (2.72)

where Gx is the geometric stiffness matrix at the macro-scale level, obtained from the second integral

in equation (2.69) and also further explained in Appendix A.
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2.3 Topology optimization

The topology optimization method acts on the material distribution (within a prescribed design do-

main) to generate structures without assuming any preconceived shape [19]. This optimization approach

makes use of the Finite Element Method to express the objective function (function used to classify the

design [23]) as well as the constraint functions (such as design constraints, equilibrium equation, etc.),

discretizing the design domain into finite elements.

Here, the theoretical background behind the application of the referred method to the compliance

minimization problem of statically loaded structures is first considered, followed by its application for

structural maximization of the (macro-scale) buckling strength. As in the previous chapters, only struc-

tures built from linear-elastic materials are discussed.

2.3.1 Topology optimization for compliance minimization of static problems

The application of topology optimization to statically loaded structures is usually formulated as the

problem of finding the material distribution that minimizes the deformation of a structure subjected to

a certain static loading condition. Typically, the work done by the external forces, also known in the

literature as compliance, is used as a measure of deformation.

The minimum compliance optimization problem (with constraints on the material volume and equilib-

rium equation) can then be formulated as [33]

find : x (design variables)

minimize : c(x) = F TU(x) (objective function) (2.73)

subject to : g(x) =
V (x)

V0
− f ′ ≤ 0 (constraint function - volume)

K(x)U(x) = F (constraint function - equilibrium equation)

xmin ≤ x ≤ 1 (constraint on the design) ,

where x is the vector containing the elemental design variables, c is the compliance, V is the material

volume, V0 is the design domain volume, f ′ is the maximum allowed total volume fraction, K is the

global stiffness matrix, F is the global force vector (independent of the design variables) and U is the

global displacement vector. The system KU = F includes boundary conditions.

Here, a density-based approach, namely a modified version of the Solid Isotropic Material with Pe-

nalization (SIMP) method [34] is used, where the design variables are the elemental material densities

xe and the element e Young’s modulus is determined by xe.

This modified SIMP curve is given by

Ee = Ee(xe) = E0 + xpe(E1 − E0), xe ∈ [0, 1], (2.74)

where E1 is the Young’s modulus of the solid material, E0 is the ”void’s” Young’s modulus (very small

quantity in order to prevent the singularity of the stiffness matrix) and p is the penalization factor (p > 1
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and typically p = 3 [35]).

Taking into account the SIMP interpolation, the elemental constitutive matrix, from the generalized

Hooke’s law, for isotropic materials and expressed in terms of the plane stress equations becomes

Ee(xe) = Ee(xe)E0e, (2.75)

where E0e is the constitutive matrix for an element with unitary Young’s modulus given by

E0e =
1

(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2

 . (2.76)

From this, one concludes that the stiffness matrix of element e is obtained by

Ke(xe) = Ee(xe)K0e, (2.77)

where K0e is the stiffness matrix for an element with unit Young’s modulus, which can still be calculated

by equation (2.27), provided that the constitutive matrix is, in this case, E0e.

As usually done when using the Finite Element Method, the global stiffness matrix K is obtained by

the assembly of the elemental matrices Ke(xe).

As in many structural optimization problems where the objective function is not an explicit function of

the design variables, the problem stated in (2.73) can be solved by generating a sequence of subprob-

lems that are explicit convex approximations of (2.73) [23].

To obtain such approximation of (2.73) and, therefore, a solution for it, the MMA [36] is here used.

This method is a first order algorithm, since it requires information on the values of the objective and

constraint functions, as well as on the values of their first derivative with respect to the design variables.

Such derivatives, also called sensitivities, can be obtained analytically as follows.

The derivative of the compliance with respect to xe is

∂c(x)

∂xe
= F T

∂U(x)

∂xe
= U(x)TK(x)

∂U(x)

∂xe
, (2.78)

where the derivative of the displacement vector can be obtained by the differentiation with respect to xe

of the equilibrium equation, which yields

∂U(x)

∂xe
= −K(x)−1 ∂K(x)

∂xe
U(x). (2.79)

As for the derivative of the stiffness matrix, using equation (2.77),

∂K(x)

∂xe
= pxp−1

e (E1 − E0)K0e. (2.80)

From equations (2.78), (2.79) and (2.80), and recalling thatK0e is an elemental matrix, the sensitivity
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of the compliance can be given on element level by

∂c(x)

∂xe
= −pxp−1

e (E1 − E0)ue(x)TK0eue(x). (2.81)

The derivative of the volume constraint function with respect to xe, g(x) = V (x)
V0
− f ′ is, when all finite

elements are equal,
∂g(x)

∂xe
=

1

n
, (2.82)

where n denotes the number of elements used to discretize the design domain.

Note: The formulation here laid out assumes that all elements in the design domain are active,

meaning that all of them are part of the domain which can be subjected to changes in the material

distribution during the optimization process. For formulations including passive elements, either solid or

void elements, see, for instance [37].

Filtering techniques

Topology optimization schemes to the design of optimal structures come typically with numerical in-

stabilities, such as mesh-dependency, local minima and checkerboard patterns [19]. To overcome these

issues and to ensure the existence of solutions, a wide number of filtering/regularization techniques has

been proposed and is well described in the literature (see, for instance, [34]).

A common approach, and the one used in this work, is the application of a filter to the density field.

The filtered densities x̃e can be obtained by [38], [39]

x̃e =
1∑

i∈Ne
Heivi

∑
i∈Ne

Heivixi, (2.83)

where Ne is the set of elements i for which the center-to-center distance ∆(e, i) to element e is smaller

than the filter radius rmin, Hei is a weight factor defined by Hei = max(0,∆(e, i)) and vi is the volume of

element i.

When using this approach, the filtered densities x̃e are usually referred to as the physical densities,

since these are now the ones used in the SIMP curve and therefore in the equilibrium equation and in the

objective and volume constraint functions. The densities (design variables) should then be considered

as ”intermediate mathematical values” and, when showing the optimized results, one should always use

the physical density field x̃e [34].

Furthermore, the application of this regularization requires the modification of the sensitivities by

means of the chain rule [35],

∂θ

∂xj
=
∑
e∈Nj

∂θ

∂x̃e

∂x̃e
∂xj

=
∑
e∈Nj

1∑
i∈Ne

Heivi
Hejvj

∂θ

∂x̃e
, (2.84)

where θ represents either the compliance c or the volume constraint function g and ∂θ
∂x̃e

is, depending on

the sensitivity, still given by equation (2.81) or equation (2.82), replacing only the design variables xe by
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the physical densities x̃e.

A note on the Method of Moving Asymptotes

The MMA is a nonlinear optimization method developed by Svanberg [36] that has been widely used

in the context of topology optimization, since it has proven to work very well even in more demanding

structural problems, such as buckling maximization.

When compared to similar methods, such as the Sequential Quadratic Programming or the Convex

Linearization methods, the MMA presents great advantages, since it is capable of controlling the degree

of ”conservatism” of the convex approximation. This either makes the optimization process faster or

solvable (meaning that the method converges to a solution). This is accomplished by the so called

moving asymptotes that are allowed to change during the optimization process, based on a heuristic

approach.

For further details, a comprehensive mathematical description of the method can be found in [36].

2.3.2 Topology optimization for maximization of buckling strength

Buckling can be taken into account when generating optimal structures either by introducing a lower

bound on the critical load factor (which means that buckling is in this case addressed as a constraint)

or by considering it in the objective function, meaning that the optimized structure is expected to be the

best one in terms of buckling strength.

Here, buckling is introduced in the context of topology optimization in the second way mentioned

above. The problem, can then be stated as the on of finding the material distribution that maximizes the

structure’s buckling strength.

The buckling strength of a body is measured by its critical buckling factor, which causes the vanishing

of the classical stiffness by geometric stiffness (i.e. the greater this load factor, the greater the buckling

strength) and the maximization of it is equivalent to the minimization of the inverse of the critical load

factor.

Mathematically, considering a constraint on the material volume and recalling the inherent equilibrium

equations, the problem can be formulated as follows [14].

find : x (design variables)

minimize :
1

λcr
(objective function) (2.85)

subject to : g(x) =
V (x)

V0
− f ′ ≤ 0 (constraint function - volume)

K(x)U(x) = F (constraint function - fundamental equilibrium equation)

(K(x) + λcrG(x,U(x)))φ = 0 (constraint function - secondary equilibrium equation)

xmin ≤ x ≤ 1 (constraint on the design) ,

where G denotes the geometric stiffness matrix, λcr the critical buckling load factor and the remaining
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quantities are defined as before.

The SIMP material model described in the previous section cannot be used in this case, since it

causes the appearance of artificial buckling modes in the low-density regions [40].

To overcome this issue, a method proposed in [24] is here employed. This model uses different inter-

polations of the Young’s modulus for the construction of the elemental stiffness and geometric stiffness

matrices,

Ek(xe) = E0 + xpe(E1 − E0), (2.86)

Eσ(xe) = xpeE1, (2.87)

where Ek(xe) and Eσ(xe) are the interpolations used when building the element stiffness matrices and

the geometric stiffness matrices, respectively, E0 can be interpreted as the Young’s modulus assigned

to void regions and E1 the one of the solid material. As it can be seen from the equations above,

the interpolation for the stiffness matrix corresponds to the modified SIMP approach presented in the

previous section.

These interpolations lead to two different constitutive matrices, which can be obtained, for plane

stress problems, by equations (2.75) and (2.76), substituting only the modified SIMP curve by the re-

spective interpolation.

From this, the element stiffness and geometric stiffness matrices are given, respectively, by

Ke(xe) = Ek(xe)K0e, (2.88)

Ge = Eσ(xe)G0e [ue(xe)] , (2.89)

where K0e is defined as before and G0e is the geometric stiffness matrix for an element with unitary

Young’s modulus, which can still be obtained from the equations in Appendix A, provided that the con-

stitutive matrix is the one explained in the previous section.

To obtain suitable expressions for the calculation of the sensitivities, one can use the Rayleigh quo-

tient as an approximation of the buckling load factors [14]. By doing so, the inverse of the critical load

factor becomes
1

λcr
= max
φ∈Rn,φ6=0

φTG(x,U(x)))φ

φTK(x)φ
, (2.90)

where n is the total number of eigenvalues, assumed positive and λ1 = λcr < λ2 < ... < λn.

With this in mind, the sensitivity of the objective function is [14]

∂

∂xe

(
1

λcr

)
= φTcr

(
∂G

∂xe
− 1

λcr

∂K

∂xe

)
φcr − V

T
adj

∂K

∂xe
U , (2.91)

where the critical buckling modes are orthonormalized with respect to the stiffness matrix, i.e. φTcrKφcr =
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1, and V adj is the adjoint displacement field, solution of the adjoint system [40]

KV adj = φTcr
∂G

∂U
φcr =


φTcr

∂G
∂u1
φcr

...

φTcr
∂G
∂ud
φcr

 , (2.92)

where d is the number of degrees of freedom of the structure. Further details on calculating the adjoint

force φTcr
∂G
∂Uφcr are presented in Appendix B.

The first term in equation (2.91) is the generalized gradient of the inverse of the critical load as a

function of the design variables only [14]. Therefore, the derivative of the geometric stiffness matrix

term should be understood as the explicit derivative, not taking into account the fact that this matrix also

depends on the displacement field prior to buckling. This is accounted for by the adjoint term, which is

obtained from

(
∂G

∂xe

)
total

=

(
∂G

∂xe

)
explicit

+
∂G

∂U

∂U

∂xe
=

(
∂G

∂xe

)
explicit

−K−1 ∂G

∂U

∂K

∂xe
U , (2.93)

where equation (2.79) was used. The terms total and explicit are used to stress the fact thatG depends

implicitly and explicitly on the design variables.

Details on the solution of the of the adjoint system can be found in Appendix B. The remaining

quantities in equation (2.91) are obtained in the same way as done in the previous section and are given

by
∂K

∂xe
= pxp−1

e (E1 − E0)Ke0, (2.94)

∂G

∂xe
= pxp−1

e E1Ge0. (2.95)

As in the compliance minimization problem, the MMA is here referred to as the updating scheme for

the design variables as well as the the density filter there presented as a way of overcoming numerical

instabilities.
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Chapter 3

Methodology and Implementation

In this section, a description of the carried-out methods and its computational implementation is

given by brief indication of the sources when the consulted papers are considered enough, or with more

detail when their modification or development was not found in the literature.

3.1 Elastic buckling at separated macro- and micro-scale prob-

lems and study of equation on simultaneous macro/micro modes

In what follows, and in contrast to the presented in the previous section, the body forces f are not

considered, making the external loading to be only applied surface tractions.

3.1.1 Derivation of governing equations

Before the implementation of the equations presented in chapter 2.2 and in a similar way to that

shown in [16], the expressions describing the buckling phenomena at macro- and micro-scale levels

where derived by means of the Symbolic Toolbox from Matlab and then compared to the ones presented

in [16], where Maple scripts were used. The developed scripts are presented Appendix C. For a better

understanding, the scripts’ names were kept from [16] and the outlined inputs and outputs refer to the

equations and results there presented.

3.1.2 Homogenization - obtaining effective material properties

Much of the work done in this dissertation for obtaining the homogenized material properties was

based in [41], where a Matlab implementation of the method is given. Here, the unit cell’s domain is

discretized using four node isoparametric plane elasticity elements Q4.

In this approach, the calculations of the constitutive matrix, stiffness matrix and force vector are

carried-out in terms of the Lamé parameters.

According to the indications provided in the referred paper, the code was adapted to calculate the

homogenized elastic material properties of a solid in plane strain state and containing one material and
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void (e.g. a micro-structure built from a base linear-elastic isotropic material with holes in it). This is

done by ignoring the elements representing the holes when solving the system’s equations, requiring

only that the base material is ”connected” and that the void’s material parameters are set to zero. The

application to plane stress situations is straight-forward, by the modification of only the definition of the

first Lamé parameter, as described in [41].

This function, named homogenize, was modified for this thesis to have five user specified inputs

(instead of the original six, as the angle φ is not needed, since only squared or rectangular elements

- and therefore unit cells - are here considered). The user may then specify the lengths of the RVE

in x− and y−directions, the two Lamé parameters for both the materials (which are set to null when

referring to void) and the material indicator matrix x. The last input is used to discretize the unit cell. By

specifying this matrix, the user chooses which elements of the unit cell refer to the base material and

which ones refer to void - the user can then choose a wide number of shapes for the unit cell. For a better

understanding, the flowchart in figure 3.1 presents the main steps of the computational implementation

of the model.

Figure 3.1: Homogenization - a flowchart of its computational implementation.

Furthermore, to make it easier to understand the behavior of the unit cell, some code lines (see

Appendix D) that enable the visualization of the RVE’s configuration resulting from the characteristic

displacements were added to the previous program.
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3.1.3 Elastic buckling at macro-scale problems

Recalling section 2, to obtain the macroscopic buckling response it is necessary to calculate the

stress resulting from the macroscopic strain field at the fundamental equilibrium state, for which the

calculation of the unit cell’s homogenized material properties is required.

The eigenvalue problem to be solved for the critical load factor (either at macro-scale or micro-

scale cases) requires the calculation of both the stiffness and the geometric stiffness matrices. These

matrices, apart from the used element type, are built in the same way for micro- and macroscopic cases

- they involve products of components of the stress field existing on the structure prior to buckling and

derivatives of the instability modes with respect to the spatial variables.

It can then be understood that the difference in building these matrices for different scale problems

resides only in the calculation of the referred stress tensor. So, and as way of obtaining a correct imple-

mentation of the geometric stiffness matrix, the Matlab function Macro nm was developed to calculate

the critical load for a structure built from a homogeneous solid, that is, no microscopic unit cell periodicity

was included in this model. This model was tested and its results were compared with the classical (and

analytical) Euler stability theory results.

To treat the macroscopic instability problem for solids with periodic micro-structure, the code for ob-

taining the effective material properties discussed in the previous section was extended. This function,

Macro ms, has nine user inputs: the same five inputs from the homogenize function plus the lengths

of the macro-structure in both x− and y− directions and the number of macroscopic elements along

x− and y− directions that the function uses to discretize the structure. The calculations are also per-

formed for Q4 isoparametric plane elasticity elements using plane stress to express the material elastic

properties. The sequence of operations shown in figure 3.2 is carried-out within the developed program.
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Figure 3.2: Macroscopic instability problem - a flowchart of its computational implementation.

30



3.1.4 Elastic buckling at micro-scale problems

As mentioned in chapter 2, to address the micro-scale buckling problem, one must first solve the

static-elastic problems at the microscopic level. From it, the characteristic displacements of the unit cell,

resulting from the imposition of some macroscopic strain field, are obtained, which are then used to

compute the microscopic stress field, enabling the construction of the geometric stiffness matrix.

With this in mind, the Matlab function micro-buckles was developed, where the computational imple-

mentation of the homogenization theory discussed above was used to obtain the referred characteristic

displacements. This function, has the same inputs as homogenize and performs the calculations using

also Q4 plane elasticity elements and plane stress to express the constitutive matrix.

The stiffness matrix used to solve the eigenvalue problem is the same as the one used to solve

the static-elastic problem and, therefore, there is is only the need to further implement the geometric

stiffness matrix according to Appendix A.

In the same fashion as before, the flowchart in figure 3.3 enables a better understanding of how the

computational implementation of the micro-scale instability problem was performed.

Figure 3.3: Microscopic instability problem - a flowchart of its computational implementation.
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3.1.5 Simultaneous macro/micro elastic buckling

To implement the coupled instability problem, equation (2.63) must first be studied.

Recalling that the static solution u00 = λu, u10 = cteφ and v10 = cteψ, equation (2.63) can be

rewritten as

∫
Ωε

[
Eijkm

(
∂φi
∂yj

∂ψk
∂xm

)
+ Eijkm

(
∂φi
∂xj

∂ψk
∂ym

)]
dΩ+λxy

∫
Ωε

[
σ0
km

(
∂φc
∂ym

∂ψc
∂xk

)
+ σ0

km

(
∂φc
∂xk

∂ψc
∂ym

)]
dΩ = 0,

(3.1)

where

σ0
ij =

(
Eijkm − Eijpq

∂χkmp
∂yq

)
∂ui
∂xj

(3.2)

and λxy denotes the coupled instability load factor. The mode φ is the solution of the eigenvalue problem

and ψ is the test function.

Expanding each term inside the integrals in equation (3.1) and writing them in matrix notation yields

Eijkm

(
∂φi
∂yj

∂ψk
∂xm

)
=
[
∂ψ1

∂x1

∂ψ2

∂x2

∂ψ1

∂x2
+ ∂ψ2

∂x1

]
E1111 E1122 E1112

E2211 E2222 E2212

E1211 E1222 E1212




∂φ1

∂y1

∂φ2

∂y2

∂φ1

∂y2
+ ∂φ2

∂y1

 (3.3)

Eijkm

(
∂φi
∂xj

∂ψk
∂ym

)
=
[
∂ψ1

∂y1

∂ψ2

∂y2

∂ψ1

∂y2
+ ∂ψ2

∂y1

]
E1111 E1122 E1112

E2211 E2222 E2212

E1211 E1222 E1212




∂φ1

∂x1

∂φ2

∂x2

∂φ1

∂x2
+ ∂φ2

∂x1

 (3.4)

σ0
km

(
∂φc
∂ym

∂ψc
∂xk

)
=
[
∂ψ1

∂x1

∂ψ1

∂x2

∂ψ2

∂x1

∂ψ2

∂x2

]

σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ11 σ12

0 0 σ12 σ22




∂φ1

∂y1

∂φ1

∂y2

∂φ2

∂y1

∂φ2

∂y2

 (3.5)

σ0
km

(
∂φc
∂xk

∂ψc
∂ym

)
=
[
∂ψ1

∂y1

∂ψ1

∂y2

∂ψ2

∂y1

∂ψ2

∂y2

]

σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ11 σ12

0 0 σ12 σ22




∂φ1

∂x1

∂φ1

∂x2

∂φ2

∂x1

∂φ2

∂x2

 (3.6)

Given a double discretization of the model (one at the macro-scale and another at the micro-scale

levels) and since in equation (3.1) the integrations are performed in the macroscopic domain, the re-

sultant global matrices can be obtained by the assemblage of macro-elemental corresponding ones.

Furthermore, a macroscopic element can be seen as a domain discretized by microscopic elements.

Following this line of thought, the global matrices can be obtained by individual assemblies of micro-

scopic matrices corresponding to micro-elements within a macro-element followed by the assembly of

the obtained macroscopic matrices. Mathematically, for a given macro-scale element E, the integrals in

equation (3.1) become, by the some order they appear in equation (3.1),
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∫
ΩE

n∑
e=1

[∫
Y e

Eijkm

(
∂φi
∂yj

∂ψk
∂xm

)
dY +

∫
Y e

Eijkm

(
∂φi
∂xj

∂ψk
∂ym

)
dY

]
dΩ and (3.7)

∫
ΩE

n∑
e=1

[∫
Y e

σ0
km

(
∂φc
∂ym

∂ψc
∂xk

)
dY +

∫
Y e

σ0
km

(
∂φc
∂xk

∂ψc
∂ym

)
dY

]
dΩ, (3.8)

where n refers to the number of microscopic elements present in a macroscopic element. The summa-

tion has the meaning of a finite element assembly operation (to obtain a macro-elemental matrix).

If elements of the same type (including same number of nodes and shape) are used for macro- and

micro-scales and if the discretization is the same at both levels, then the nodes of macro- and micro-

elements will be the same and the assembly operations within each macro-scale element drop out.

From a double discretization of the model, the instability modes are then given by the interpolation of

their nodal values:

φ1(x1, y1) ≈
NN∑
I=1

φI1N
I
x +

nn∑
i=1

φi1N
i
y, φ2(x2, y2) ≈

NN∑
J=1

φJ2N
J
x +

nn∑
j=1

φj2N
j
y , (3.9)

ψ1(x1, y1) ≈
NN∑
I=1

ψI1N
I
x +

nn∑
i=1

ψi1N
i
y, ψ2(x2, y2) ≈

NN∑
J=1

ψJ2N
J
x +

nn∑
j=1

ψj2N
j
y , (3.10)

where NN denotes the number of nodal points per macroscopic element, nn the number of nodes per

microscopic element and Nx and Ny the shape functions for a macro-element and for a micro-element,

respectively. φI1 and φJ2 are the nodal modes of a macro-scale element in directions 1 and 2, respectively,

and φi1 and φj2 the nodal modes of a micro-scale element in directions 1 and 2.

It should be noted that, in the given approximations, the exact ratio between each sum of the product

of nodal modes and shape functions is irrelevant, since all terms in equation (3.1) involve the product

between two derivatives, one of each scale.

By the application of these approximations,
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...
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gyφy, (3.12)

and the same goes for the other derivative vectors in equations (3.3), (3.4), (3.5) and (3.6).

Furthermore, since the discretization is the same at both scale-levels, the introduction of the approx-

33



imations (3.9) and (3.10) yields Nx = Ny, Bx = By, gx = gy, φx = φy and ψx = ψy, which, as

suggested by [16], results in the following system of equations

(Kxy + λxyGxy)φ = 0. (3.13)

The global coupled stiffness matrix,Kxy, is obtained by the assembly of the corresponding elemental

ones given by

KE
xy =

∫
ΩE

∫
Y e

[
BT
EEeBe +BT

e EeBE

]
dY dΩ (3.14)

and the global coupled geometric stiffness matrix,Gxy, by the assembly of

GExy =

∫
ΩE

∫
Y e

[
gTEσ

0
ege + gTe σ

0
egE

]
dY dΩ, (3.15)

where e refers to a micro-scale element and σ0 is defined in Appendix A.

Applying numerical integration to evaluate the integrals by means of the Gauss quadrature rule yields

KE
xy =

NPG1∑
a=1

NPG2∑
b=1

[
npg1∑
c=1

npg2∑
d=1

(
BT
EEeBe +BT

e EeBE

)
detJywdwc

]
detJxwbwa and (3.16)

GExy =

NPG1∑
a=1

NPG2∑
b=1

[
npg1∑
c=1

npg2∑
d=1

(
gTEσ

0
ege + gTe σ

0
egE

)
detJywdwc

]
detJxwbwa, (3.17)

where NPG1 and NPG2 refers to the number of Gauss points in both directions for the macroscopic

elements, npg1 and npg2 to the number of Gauss points for the microscopic elements, wi the weight

factor for the respective Gauss point and detJi the determinant of the Jacobian matrix related with the

element mapping with a master element. It should be, again, noted that BE and Be are the same

matrices, since the shape functions for both scales are the same as a result of choosing the same

discretization for both domains.

The application of the same discretization for both domains will, of course, generate an ”excessively

refined” mesh for the macroscopic domain. However, it does not make the solution any worse (if any-

thing, only better, as it is known from the convergence of the finite element method) and it is assumed

that it does not make the two domains the same - y ≈ x
ε still holds.

Moreover, it should be noted that for the construction of the geometric stiffness matrix, the calculation

of the initial stress components is required. For it, the macroscopic static-elastic equations must be

solved for the fundamental equilibrium position for which, as discussed before, the homogenized material

properties must be obtained. Recalling previous sections, to perform the homogenization of the unit cell,

the characteristic displacements, solution of the static-elastic problems at the micro-scale level, must be

found. This means that, before addressing the coupled instability problem, it is necessary to, by this

order:

• Solve the static-elastic problems at the micro-scale level;

• Calculate the homogenized material properties;
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• Solve the static-elastic problem at the macro-scale level.

The proposed computational implementation makes use of the previous considerations and has

seven user specified inputs: the lengths in x− and y− directions of the structure, the lengths in x−

and y− directions of the unit cell, the two Lamé parameters (each of them has two entries: one for the

base material and one for void; when referred to void these parameters should be set to zero) and the

material indicator matrix x, which works in the same way has in the homogenize function. As in the case

of the homogenization computational model, x is used to discretize the RVE and, by means of the ratios

between the lengths in each direction of the unit cell and the structure, the macroscopic discretization is

deduced, so that both discretizations are the same in both domains.

Here, and as in the previous implementations, Q4 plane elasticity elements are used and the material

constitutive relations are expressed by the plane stress equations. The steps in figure 3.4 are carried

out in the developed Matlab function Coupleds.
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Figure 3.4: Coupled instability problem - a flowchart of its computational implementation.
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3.2 Topology optimization – structures built from linear-elastic ma-

terials

3.2.1 Compliance minimization problem

Here, the Matlab implementation given in [35] is modified to address the compliance minimization

with a volume constraint problem (2.73) using the MMA as an updating scheme for the design variables.

In [35], to solve the optimization problem, a density-based approach is followed, where the modified

SIMP curve presented in the previous chapter is used. Furthermore, two filtering techniques are avail-

able – sensitivity filter and the density filter described in the previous chapeter. To solve the compliance

optimization problem, a ”standard” Optimality Criteria method is there used.

This function, named top88 [35] has six user inputs: the number of elements is x− and y−direction,

the maximum allowed total volume fraction, the value of the penalization factor to be used in the SIMP

curve, the filter radius and a parameter ft for selecting the desired filtering method (ft=1 corresponds to

the sensitivity filter and ft=2 to the density filter).

To include the MMA algorithm as the solver of the optimization problem and using the MMA Matlab

implementation provided by Prof. Svanberg, the recommendations provided in [42] regarding the type

of problem to which the MMA is applied to as well as the recommendations in [19] regarding specifically

the compliance minimization problem were followed.

Before the iteration process begins, the following code lines were added.
1 %% INITIALIZE MMA OPTIMIZER
2 m = 1;
3 n = nelx*nely;
4 xmin = zeros(n,1);
5 xmax = ones(n,1);
6 xold1 = x(:);
7 xold2 = x(:);
8 low = ones(n,1);
9 upp = ones(n,1);

10 a0 = 1;
11 a = zeros(m,1);
12 ccc = 10000* ones(m,1);
13 d = zeros(m,1);

Then, the code lines referring to the Optimatity Criteria method were replaced by the following ones.
1 %% METHOD OF MOVING ASYMPTOTES
2 xval = x(:);
3 f0val = c;
4 df0dx = dc(:);
5 fval = sum(xPhys (:))/( volfrac*nelx*nely) - 1;
6 dfdx = dv(:)’ / (volfrac*nelx*nely);
7 [xmma , ~, ~, ~, ~, ~, ~, ~, ~, low ,upp] = ...
8 mmasub(m, n, loop , xval , xmin , xmax , xold1 , xold2 , ...
9 f0val ,df0dx ,fval ,dfdx ,low ,upp ,a0,a,ccc ,d);

10 % Update MMA Variables
11 xnew = reshape(xmma ,nely ,nelx);
12 xPhys (:) = (H*xnew (:))./Hs;
13 xold2 = xold1 (:);
14 xold1 = x(:);
15 change = max(abs(xnew (:)-x(:)));
16 x = xnew;

The remaining code lines of the original implementation from [35] were kept and the resultant Matlab

function was tested for some benchmark examples.
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3.2.2 Buckling strength maximization problem

To address the topology optimization for maximum buckling strength of structures problem, a Matlab

function, named TopOptBuckling, was developed, based on the previous implementation of the compli-

ance minimization problem. Here, as already mentioned, the calculations are performed only for simple

eigenvalues (no multiplicity of eigenvalues is considered).

This function has eight user inputs: the lengths of the structure in the x− and y−directions, the

number of elements along the x− and y−directions, the maximum allowed total volume fraction, the

value of penalization factor, the filter radius and the tolerance value used to end the optimization process.

Furthermore, the proposed numerical implementation uses Q4 isoparametric plane elasticity ele-

ments and the material properties are expressed by means of the plane stress equations.

For a better understanding of the implementation itself, all the finite element calculations, which

include the computation of the stiffness matrix and the geometric stiffness matrix, the solution of the

equilibrium equations, and the majority of the quantities required for the calculation of the sensitivities,

were performed by means of the developed Matlab function FE analysis and then returned to the main

function TopOptBuckling. The flowchart in figure 3.5 provides a better insight into the developed compu-

tational model.
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Figure 3.5: Topology optimization for maximum buckling strength - a flowchart of its computational im-
plementation.
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Chapter 4

Results

In this section, the most meaningful results are summarized, together with the respective problems

descriptions. Verification examples are used to apply the developed or analysed model implementations,

whenever such operations are possible. With that in mind, some problems found in the literature are

reproduced using the developed computational models and the results of both analysis are compared.

When such problems are not found and when considered necessary, test cases to verify the numerical

implementations are elaborated. Some comments regarding the obtained solutions are also made.

4.1 Homogenized material properties

Although the numerical implementation of the homogenization theory was purely based on the one

presented in [41] (only an extension to enable the visualization of the deformed shape of the unit cell

was here made), an example found in [43] was reproduced using the extended homogenize function

and plotted against the results there presented.

From [43], the example regarding a square unit cell with a rectangular hole was addressed. Here,

only the initial mesh was reproduced. This mesh discretizes the unit cell in 20x20 four node isopara-

metric elements for plane elasticity. The base material’s constitutive relations are expressed using the

plane stress relations, where E11 = E22 = 30 and E12 = E66 = 10. The RVE side has a unitary length

and the hole’s dimensions are 0.6 and 0.4 (all quantities used are assumed to have consistent units).

The undeformed configuration and the deformed configurations of the unit cell resulting from each of

the applied independent unit strain fields and given by homogenize can be seen in figure 4.1. A com-

parison between the results of the components of the homogenized elasticity tensor given by [43] and

homogenize is shown in table 4.1.

Table 4.1: Homogenized elastic properties - results comparison from [43] and homogenize.

Results EH11 EH12 EH22 EH66

From [43] 13.015 3.241 17.552 2.785
From homogenize 13.015 3.241 17.552 2.785
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(a) Undeformed shape (b) Deformed shape from the application of a unit strain field in
x− direction

(c) Deformed shape from the application of a unit strain field in
y− direction

(d) Deformed shape from the application of a unit shear strain
field in xy− plane

Figure 4.1: Squared cell with a rectangular hole: undeformed vs. deformed shapes corresponding to
the application of three independent unit strains.

As expected, given that the conditions used in [43] were exactly kept when using the homogenize

function, both results were exactly the same. The deformed shapes also agree with the ones found

for squared cells with rectangular holes in the literature (see, for instance, the examples presented in

[16]). Therefore, the used implementation given by [41] provides, as expected, accurate results for the

homogenized properties of cells built by a base material with holes. Moreover, the developed homoge-

nize extension to enable the visualization of the deformed shapes of the RVE was also verified by this

example.

4.2 Implementation of the macro-scale geometric stiffness matrix

As mentioned in section 3.1, a numerical model for the calculation of the critical load of a homoge-

neous body without a periodic micro-structure was made. This enables a much easier verification of the

implementation of the geometric stiffness matrix that still applies to the other mentioned buckling cases.

With that in mind, a Matlab function Macro nm was developed to calculate the critical load of a
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column to be compared with the known solution given by the Euler’s Column Formula. Details on this

analytical theory for the calculation of buckling loads in beams and frames can be found in [44].

Here, a beam subjected to a compressing axial load is considered. The left end of the beam is

constricted in such a way that movements along the beam’s direction are not allowed; the right end of

the beam is free and a central compressing load is there applied. The mentioned analytical solution for

this specific instability case is

Pcr =
π2EI

4L2
, (4.1)

where L denotes the beam’s length, E the Young’s modulus of the beam’s material and I the moment

of inertia of the beam’s cross-sectional area. Using Macro nm, this structure was discretized using

Q4 isoparametric plane elasticity elements for plane stress. The load was applied as a uniform stress

distribution of −1MPa in the x− direction at the beams’s right end and all nodes referring to the left end

were constricted in the x− direction. The modelled beam has a length L = 40m, a height h = 5m and

a thickness b = 1m. The material is described by a Young’s modulus E = 2.1MPa and a Poisson’s ratio

ν = 0.3.

The body was initially discretized using 16 finite elements and the mesh was progressively refined up

to a final value of 800 elements. The convergence history of the analysis with the performed refinement

of the mesh can be seen in figure 4.2.

Figure 4.2: Convergence analysis for Macro nm results of the critical load.

Taking the final mesh, the result of Macro nm for the first (critical) and second instability modes are

shown in figure 4.3 and a comparison between the critical loads given by the developed function and the

Euler’s Comumn Formula is given in table 4.2.

From table 4.2, it can be seen that as the the mesh is refined, the critical load value from the

Macro nm function approaches the analytical value given by the Euler’s formula. Furthermore, the

presented instability modes in figure 4.3 agree with the ones known from the literature (see, for instance

[44]). Thus, the implementation of this particular stability problem and therefore, the implementation of

the geometric stiffness matrix, is, to some extent, verified.
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(a) Critical instability mode shape (b) Second instability mode shape

Figure 4.3: First two macro-scale instability modes: undeformed vs. deformed shapes.

Table 4.2: Comparison of the results from Macro nm and the analytical Euler’s formula.

Macro nm Euler’s formula (4.1)

Nº finite elements 16 40 120 240 400 800
Pcr [kN] 47.000 42.000 35.500 34.500 34.000 33.500 33.734
Error [%] 39.325 24.503 5.235 2.271 0.788 0.694

4.3 Y-Periodic micro-scale critical load for structures built from a

solid with periodic micro-structure

Here, example 2 from [12] is presented and reproduced using the micro buckles function. In this

example, the authors compare the performance regarding microscopic buckling strength of different

unit cells having the same material density and differing only in the material’s distribution in the RVE’s

domain. There, the unit cells are discretized using 10x10 four node isoparametric elements for plane

elasticity and are all subjected to the same macroscopic strain field of ε0 = Cte{−1 0 0}. All the con-

ditions used in [12] to perform the comparison between different unit cells can be replicated exactly by

micro buckles - same number and type of elements and same material densities and distributions.

The tested material distributions and their critical instability modes obtained with micro buckles can

be seen in figures 4.4, 4.5, 4.6, 4.7 and 4.8 and the results for the critical load together with the ones

presented in [12] are outlined in table 4.3.

Both the values of the microscopic critical loads and the critical mode shapes were obtained very

identically to the ones presented in [12], which enables the validation of the micro buckles function, at

least in the presented cases.
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(a) Undeformed shape (b) Critical instability mode shape

Figure 4.4: Initial material distribution.

(a) Undeformed shape (b) Critical instability mode shape

Figure 4.5: Material distribution 1.

(a) Undeformed shape (b) Critical instability mode shape

Figure 4.6: Material distribution 2.

Table 4.3: Results comparison from [12] and micro buckles.

Distribution case ρ λcr from [12] λcr from microbuckles

Initial 0.3600 0.1170 0.1177
1 0.5200 0.2080 0.2087
2 0.5200 0.0520 0.0528
3 0.5200 0.0000 0.0000
4 0.5200 0.0000 0.0000
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(a) Undeformed shape (b) Critical instability mode shape

Figure 4.7: Material distribution 3.

(a) Undeformed shape (b) Critical instability mode shape

Figure 4.8: Material distribution 4.

The same conclusions as in [12] can be here drawn - the best material distribution regarding buckling

is the material distribution 1, which corresponds to a concentration of the additional material (additional

when compared to the initial material distribution) ”at the members aligned with the direction of the

non-zero strain component”.

4.4 Macroscopic instability problem – structures built from solids

with periodic micro-structure

In this section, the implementation given in 3.1.3 from chapter 3 is applied to the same problem

as in 4.2 for a column subjected to a compressing load. Here, the column is built from a solid having a

periodic repetition of a micro-structure - a squared cell with a squared hole. The RVE has the same base

material as in 4.2, a material density of 0.64 and an exterior side measuring 0.01m. The homogenized

material properties are obtained by the discretization of the unit cell in 10x10 finite elements.

The results for the critical load are shown in figure 4.9, where a convergence analysis of the problem

is presented. Recalling the results for the same problem where the structure didn’t have a specific micro-

structure shown in figure 4.2, it can be seen, that the critical load value decreases more than 50% when

a unit cell of this type is considered. This result was expected, since the reduction of material density

results in a structure with a lower buckling strength. Furthermore, the obtained critical and second

instability modes were, as also expected, identical to those presented in section 4.2.
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Figure 4.9: Convergence analysis for Macro ms results of the critical load.

4.5 Coupled instability problem – structures built from solids with

periodic micro-structure

In this section, some test cases are carried-out for testing the implementation given in chapter 3.1.5.

First, the variation of the critical load with the unit cell’s material density (for a given structure and

RVE) is studied and compared with the same variation for the macroscopic buckling case. Then, the

method is applied to a column with a honeycomb micro-structure.

4.5.1 Critical load factor vs. material density

Here, the variation of the critical load with the unit cell’s material density for the coupled instability

problem is studied and compared with the same variation for the macroscopic buckling case.

For that purpose, the previous example of a column constrained in both directions on the left side,

free on the other side and subjected to a compressing load is considered. This beam has a length

L = 30m, a height h = 2m, a thickness b = 1m and it is built from a periodic material characterized by

a square RVE of side measuring 0.5m. The unit cell is built from a base material with Young’s modulus

E = 2.1MPa and a Poisson’s ratio ν = 0.3. The variation in density for the structure is achieved by

varying all RVE’s density in the same way: starting from a uniform unit cell (density=1), the density is

decreased by introducing a hole in the micro-structure and by progressively increasing the hole’s size.

The macroscopic buckling response is obtained by means of the Matlab function Macro ms and the

buckling response considering both scales of the problem using the Matlab function Coupleds. In both

cases, the structure is discretized by the same number of finite elements.

For the macro-scale problem, to obtain the effective material properties, the unit cell is discretized in

10x10 finite elements. Taking this into account, and because the given implementation of the coupled

case relies on an equal discretization of both the structures domains, the column is discretized in 24000
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finite elements. The density was varied from an initial value of 0.36 up to a final value of 1 and the results

of both functions are shown if figure 4.10.

Figure 4.10: Critical load vs. material density – results from Coupleds and Macro ms.

For both cases, the decrease of the critical load with decreasing densities is in agreement with the

expected decrease in buckling strength as density is reduced.

The case were density is equal to one, corresponds to the case of an homogeneous beam. There-

fore, it makes sense that the results from both functions are exactly the same - there is no representative

micro-structure to account for. Furthermore, since the used mesh is sufficiently refined, the correspon-

dent buckling load should be, with a small error, the theoretical one given by equation (4.1). This formula

gives a theoretical value of 3838.179N, whereas Coupleds and Macro ms give 3800N, resulting in an

error of less than 1%.

As the density decreases, it is expected, for ”high” values of density, that the buckling response

when considering both scales still captures the macro-scale behaviour, since the model still resembles

to a homogeneous macro-scale one. In this test, that only happens for density values of 1 and 0.95.

For values lower than that, the Coupleds function gives a buckling load lower than the one given by

Macro ms. This difference in the results from both models is justified, since the elastic properties for

elements corresponding to void are null in Coupleds, whereas in Marco ms these are homogenized

ones.

For all the tested density values, the obtained first and second instability modes are represented in

figure 4.11.

As it can be seen, these instability modes are identical to the ones obtained from a macro-scale

analysis.
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(a) First instability mode (b) Second instability mode

Figure 4.11: Instability modes’ shapes vs. undeformed shape - results from Coupleds.

4.5.2 Column with a honeycomb micro-structure

Here, a test case is developed in order to verify if the carried-out implementation of the coupled

instability problem can capture micro-scale buckling modes.

Instability phenomena is more likely to happen for cellular materials with lower relative density. There-

fore, if the considered implementation can capture instabilities at the micro-scale level, it will do it more

easily for materials of this nature, since higher density ones will have a higher buckling strength. As a

”low material density” micro-structure, the hexagonal honeycomb is here considered.

To obtain the Y-periodic micro-scale instability behaviour of the honeycomb, the previously men-

tioned micro buckles function is used. The honeycomb is discretized in 21x12 finite elements and its

dimensions are assigned so that the area of the unit cell is one [45]. The base material of this RVE

has a Young’s molulus E = 2.1MPa and a Poisson’s ratio ν =0.3 and the void regions are, once

again, assigned with null material properties. The unit cell is subjected to a macroscopic strain field

of ε0 = Cte{−1 0 0}.

The honeycomb micro-structure and its critical and second buckling modes given by micro buckles

can be visualized in figures 4.12 and 4.13, respectively. The results from the micro buckles function

showed a critical buckling load factor of 0.0371 (and the corresponding critical load Pcr = 77910N). This

value is much lower than that of any of the feasible micro-structures addressed in section 4.3, meaning

that the honeycomb is more suitable than these for the current test case.

Figure 4.12: Honeycomb micro-structure.

To address the coupled instability problem on a structure with a honeycomb unit cell, a beam con-

strained in both directions on the left side and subjected to a uniformly distributed loading on the right

side, is again considered. The material properties and unit cell’s dimensions were kept from the previous
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(a) First instability mode for the honeycomb
micro-structure

(b) Second instability mode for the honey-
comb micro-structure

Figure 4.13: Honeycomb – micro-scale buckling analysis using micro buckles.

micro-scale analysis and the beam’s dimensions are L =10.53m, h =3.04m and b =1m.

The structure is discretized in 168x48 finite elements and the analysis is performed by the Coupleds

function.

As a first analysis, the two first buckling modes/loads are considered. Using Coupleds, the obtained

values are Pcr = P1 = 1215.74N and P2 = 3951.15N, which are much lower than the micro-scale one,

indicating that the obtained structure’s behaviour at these bifurcation points doesn’t exhibit, at least for

the entire domain, instabilities on the micro-scale level.

The corresponding mode shapes can be seen in figures 4.14 and 4.15.

Figure 4.14: Undeformed shape vs. first instability mode shape - beam with honeycomb micro-structure.

The ”general” shapes of the two modes are very identical to the ones obtained in the previous anal-

ysis concerning the buckling of beams.

In the critical mode shape one cannot identify any buckled unit cell, although it can clearly be seen,

specially in the vicinity of the fixed left side, the compressing of the lower cells and the stretching of the

upper ones.

For the second instability mode, the previous considerations also apply. However, on the right hand

side, where the loading is applied, some unit cells start to buckle (see detail on figure 4.15). While

the majority of them resembles the first honeycomb instability mode, the lowest one seems to be on its

second one.
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Figure 4.15: Undeformed shape vs. second instability mode shape - beam with honeycomb micro-
structure.

Since the so far obtained bifurcation points cause the instability of non or very few unit cells and

since the corresponding buckling loads are low when compared to the one obtained from a micro-scale

analysis of the honeycomb, it can be expected (or at least worthy of verification), that more cells will

become unstable for higher buckling modes.

With that in mind, the calculations from Coupleds were extended to obtain the first thirty instability

load factors and shapes.

From one bifurcation point to the next, the increase in buckling strength was approximately 300N

and the structure exhibited some repeated buckling loads. From this set of buckling loads, none of

them exceeded the micro-scale instability load of the honeycomb. However, some of these instability

configurations are discussed next, namely P13 = P14 = P15 = 6382, 62N, P28 = P29 = 7902.291N and

P30 = 8206.23N.

Analyzing the thirteenth instability mode shape (see figure 4.16) , one can see a significant increase

in the number of buckled unit cells. These seem to be arranged in columns and subsequent unstable

columns seem to be present in the structure in a mirror-like position, resulting in a deformed but not

unstable shape for the remaining cells.

Figure 4.16: Undeformed shape vs. thirteenth instability mode shape - beam with honeycomb micro-
structure.

As for the twenty-eightieth buckling configuration in figure 4.17, one can see the appearance of

more unit cells exhibiting micro-scale second instability mode shapes, along with some micro-scale first
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instability ones as well as with completely stable ones.

Figure 4.17: Undeformed shape vs. twenty-eightieth instability mode shape - beam with honeycomb
micro-structure.

Regarding the thirtieth mode (figure 4.18), it can be observed that no stable cells are present. The

majority of them are on their second instability configuration.

Figure 4.18: Undeformed shape vs. thirtieth instability mode shape - beam with honeycomb micro-
structure.

From this test, it can then be concluded that the implementation given by the Coupleds function

can capture macro-scale as well as micro-scale instabilities. For the analysed structure, the unit cells

become unstable, but not in a periodic way and the resultant buckling load never reaches the value of the

micro-scale analysis. This last fact is justified, since there is no imposition of periodicity in the boundary

conditions.

4.6 Topology optimization for compliance minimization

Here, the default topology optimization for minimum compliance of the MBB beam example presented

in [35] is reproduced, using the modified implementation described in section 3.2.1. This is done with

the objective of verifying if the insertion of the MMA routines, provided by Prof. Krister Svanberg, into

the implementation from [35] was, in this work, done correctly and examining the convergence of the

solution.

In [35], using boundary conditions to account for the symmetry of the structure, only half of the MBB

beam is optimized. Furthermore, the load, pointing downwards and vertically, is applied to the upper left
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corner and the beam is horizontally supported in the lower right corner.

The used inputs correspond to the ones of the first presented mesh in [35]: 60 elements in the x−

direction, 20 elements in the y− direction, a volume fraction of 0.50, a filter radius of 2.4, a penalization

factor of 3 and the density filter was chosen as the filtering technique (ft=2).

The results for the topology of the optimized MBB beam as well as the compliance history during the

optimization process are shown in figures 4.19 and 4.20, respectively.

Figure 4.19: Obtained optimal solution for minimum compliance of the MBB beam.

Figure 4.20: Compliance history for the optimization of the MBB beam.

The obtained topology agrees very well with the corresponding one presented in [35], from a direct

comparison between the two. Furthermore, the value of the compliance converges to a minimum value

throughout the optimization process. As it can be seen in figure 4.20, the solution was obtained after ap-

proximately 60 iterations, although it converges to its final value sooner than that (around 40 iterations).

The criterion to end the optimization process, which is based on the maximum difference in consecutive

design variables and assigned a value of 0.01, could then be assigned a higher value in order to stop

the process at a lower iteration number with a still converged result.

This simple test indicates, then, that the MMA method was successfully included as the updating

scheme for the design variables.
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4.7 Topology optimization for buckling strength maximization

In this section, a simple example of beam, fixed in left hand side and subjected to a horizontally

distributed compressing load on the right hand side, is optimized for maximum buckling strength using

the developed Matlab function TopOptBuckling. The beam’s dimensions are L=20m, h=5m and b=1m

and the applied load has a value of 1Pa. The structure is discretized into 30x8 finite elements and the

material parameters, following the notation in chapter 2.3.2, are E1=1Pa, E0 = 10−6Pa and the Poisson’s

ratio is ν=0.3.

The structure is optimized for a maximum allowed total volume fraction of 0.6. The penalization

factor used in the SIMP curves is p=3 and filter radius has a value of 0.2m. The tolerance parameter

regarding the convergence criterion (which is based on consecutive changes of the design variables)

was assigned to be 0.01.

The results for the optimized topology of the beam as well as the objective function’s history during

the optimization iterations are shown in figures 4.21 and 4.22, respectively,

Figure 4.21: Obtained optimal solution for maximum buckling strength of the column after 49 iterations.

Figure 4.22: Objective function history for the optimization of the column.

From figure 4.22, it can be seen that the objective function converges to a solution throughout the

optimization process with only one oscillation. Furthermore, the critical buckling load is raised from

2.66 × 10−3N up to a final value of 9.63 × 10−3N, which represents a raise of 266% from the uniform
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material distribution case.

The final topology (see figure 4.21) presents some areas that can be identified as the so called (and

to be avoided) checker-board patterns. However, the solid areas of these regions seem to be aligned

with each other, suggesting that these patterns are present due to the poor refinement of the mesh.
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Chapter 5

Conclusions

Structural topology optimization has been a hot topic over the last decades in the research com-

munity. In recent years a renewed interest on topology optimization addressing buckling behavior has

been observed, due to the inherent difficulties of the problem. These problems have, although not very

extensively, already been studied at separated macro- and micro- scales. However, as this dissertation

shows, structures can, in some cases, exhibit simultaneous-scale buckling modes, which has not been

addressed in topology optimization of structures.

This work provides, then, some investigations in numerical implementations to be used in topology

optimization of structures (macro-scale) and micro-structures (micro-scale) for linearized buckling per-

formance maximization as well as the first implementation steps to be carried-out when performing this

type of optimization procedure.

5.1 Achievements

The finite element approximations to treat the linearized stability problem at macro-scale, micro-scale

as well as mixed-scale are here reviewed.

For the case of structures built from cellular periodic materials, the implementations of the stability

problems at separated macro- and micro-scales were verified with simple yet illustrative examples from

the literature, including the necessary implementation of the homogenization method.

Furthermore, it is proposed, in this work, a model for the coupled-scale stability problem, which

seems to be able to capture macro-scale as well as micro-scale behaviours, at least for the presented

examples. This is the first attempt to implement and analyze this coupled scale model, as far as the

author knows.

Moreover, the developed implementation for the maximization of the buckling strength of structures

converges to an optimal solution.
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5.2 Future Work

The implementations to solve the stability problem at separated macro-scale and micro-scale are

suitable and can be extended to perform homogenization based topology optimization of structures

(macro-scale) and micro-structures (micro-scale) for maximum buckling strength.

For the case of the micro-scale buckling response, the implementation here given is limited to the

assumption of Y-periodicity of the buckling modes, which can be further generalized for modes with other

wave-lengths using the Bloch-wave theory.

Furthermore, in resultant applications of the methods (3D prints, infill structures,...), investigations

on scale and boundary effects due to the presence of a finite repetition of a periodic unit cell could be

made.

The given implementation of the coupled-scale instability problem can be further reviewed, namely

regarding the validity of using the same discretization for the macro- and micro- domains and the com-

putational efficiency. Furthermore, if this implementation is proven to be valid, since it relies on an equal

discretization of the micro- and macro-domains, it could, perhaps, be used in a topology optimization

problem to maximize the critical coupled-buckling load of structures. However, since it is developed

for structures built from periodic cellular materials, this would possibly require the addition of further

constraints on the design variables to ensure the periodicity of the unit cell’s topology.

Moreover, the simplified implementation given for the density based topology optimization for max-

imized buckling strength yields a basis for including the problem of non-differentiability of the objective

function for repeated buckling loads.
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Appendix A

Geometric stiffness matrices for plane

elasticity problems

A.1 Micro-scale geometric stiffness matrix

In matrix form, given the approximation of the instability modes by means their nodal values and the

nodal shape functions, the second integral in equation 2.67

∫
#Y

σ0
km

∂φc
∂yk

∂ψc
∂ym

dY becomes φTGyφ, (A.1)

where the geometric stiffness matrix Gy results from the assembly of the elemental ones given by

Gy
e =

∫
Ωe

gTe σ
0
egedΩ. (A.2)

The matrix ge is defined by [40]

ge =


∂N1

∂y1
0 ... ∂Nn

∂y1
0

∂N1

∂y2
0 ... ∂Nn

∂y2
0

0 ∂N1

∂y1
... 0 ∂Nn

∂y1

0 ∂N1

∂y2
... 0 ∂Nn

∂y2

 , (A.3)

with n denoting the number of nodes per element.

The initial stress matrix is

σ0
e =


σ11 σ12 0 0

σ12 σ22 0 0

0 0 σ11 σ12

0 0 σ12 σ22

 , (A.4)
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where the initial stress components, from equation 2.68 are given by [1]
σ11

σ22

σ12


e

= Ee(I −Beχe)ee (A.5)

In the previous equation I is the identity matrix, χe = [χ1
e χ

2
e χ

3
e] is a 3 × n matrix containing the

characteristic displacement fields and ee is the macroscopic strain field.

A.2 Macro-scale geometric stiffness matrix

The macro-scale geometric stiffness matrix is obtained in the same fashion as the previous case,

taking only into considerations that the initial stress components, from equation 2.70, are now given by
σ11

σ22

σ12


e

= EH
e ee. (A.6)
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Appendix B

Calculation of the adjoint force

The component i of the adjoint force 
φTcr

∂G
∂u1
φcr

...

φTcr
∂G
∂ud
φcr

 (B.1)

is obtained from the global nodal instability vector φcr the assemblage of ∂Ge

∂ui
.

From the equations for the calculation of the stiffness matrices in Appendix A,

Ge =

∫
Ωe

gTe σ
0
egedΩ, (B.2)

where σ0
e is obtained by a rearrangement of the components of the stress tensor σe = EeBeue.

Therefore, for the i-th global degree of freedom, ∂Ge

∂ui
is

∂Ge

∂ui
=

∫
Ωe

gTe
∂σ0

e

∂ui
gedΩ, (B.3)

where ∂σ0
e

∂ui
is obtained by the rearrangement of

∂σ0
e

∂ui
= EeBe

∂ue
∂ui

. (B.4)

Thus, when i is a degree of freedom of element e, then the corresponding entry of ∂ue

∂ui
, given by the

correspondent node number of the master element, is 1 and the remaining ones are zero.
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Appendix C

Scripts: equations for elastic buckling
The following symbolic computation scripts were used to review the equations obtained in [16] for

the static elastic buckling model for structures with periodic micro-structure.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %Script 01: input is (1) and (7) and output is (8)
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 syms duxyij duxyji duxyki duxykj
5 syms alpha du0xyij du1xyij du0xyji du1xyji du0xyki du1xyki du0xykj du1xykj
6 syms epson
7 syms du00xyij du00xyiJ du10xyij du10xyiJ du00xyji du00xyjI du10xyji du10xyjI
8 syms du00xyki du00xykI du10xyki du10xykI du00xykj du00xykJ du10xykj du10xykJ
9 syms du01xyij du01xyiJ du11xyij du11xyiJ du01xyji du01xyjI du11xyji du11xyjI

10 syms du01xyki du01xykI du11xyki du11xykI du01xykj du01xykJ du11xykj du11xykJ
11 %Note: when indices are represented with capital letters , the derivative is
12 %with respect to y; when they are not , they are with respect to x
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 %Buckling requires 2nd order term of strain
15 eij =1/2*( duxyij+duxyji)+1/2*( duxyki*duxykj);
16 %The bifurcation is characterized by u=u0+alfa*u1
17 eij2=subs(eij , {duxyij ,duxyji ,duxyki ,duxykj },...
18 {du0xyij+alpha*du1xyij , du0xyji+alpha*du1xyji ,...
19 du0xyki+alpha*du1xyki ,du0xykj+alpha*du1xykj });
20 eij3=expand(eij2);
21 eij4=collect(eij3 ,alpha);
22 eija=sort(eij4);
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %Script 02: input is (9-12) and output is (13 -14)
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 eijs=simplify(eij3 -1/2* du0xyki*du0xykj -alpha /2*( du0xykj*du1xyki+du1xykj*du0xyki)

); %(9)
27 %Introducing (10), (11) and (12)
28 eijsB=expand(subs(eijs , {du0xyij , ...
29 du1xyij , ...
30 du0xyji , ...
31 du1xyji , ...
32 du1xyki , ...
33 du1xykj },...
34 {du00xyij +1/ epson*du00xyiJ+epson*( du01xyij +1/ epson*du01xyiJ)

,...
35 du10xyij +1/ epson*du10xyiJ+epson *( du11xyij +1/ epson*du11xyiJ)

,...
36 du00xyji +1/ epson*du00xyjI+epson *( du01xyji +1/ epson*du01xyjI)

,...
37 du10xyji +1/ epson*du10xyjI+epson *( du11xyji +1/ epson*du11xyjI)

,...
38 du10xyki +1/ epson*du10xykI+epson *( du11xyki +1/ epson*du11xykI)

,...
39 du10xykj +1/ epson*du10xykJ+epson *( du11xykj +1/ epson*du11xykJ)})

);
40 [eijsBB ,terms]= coeffs(eijsB , alpha);
41 %Obtaining equations (14)
42 eijsB0=sort(collect(expand(eijsBB(terms == 1)),epson));
43 eijsB1=sort(collect(expand(eijsBB(terms == alpha)),epson));
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44 eijsB2=sort(collect(expand(eijsBB(terms == alpha ^2)),epson));

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %Script 03: input is (14.1) , (14.2) and (16) and output is integrFxy1
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 syms epson Eijkm
5 syms du00xyiJ du00xyjI du00xyij du00xyji du01xyiJ du01xyjI du01xyij du01xyji
6 syms du10xyiJ du10xyjI du10xyij du10xyji du11xyiJ du11xyjI du11xyij du11xyji
7 syms dv00xyiJ dv00xyjI dv00xyij dv00xyji dv01xyiJ dv01xyjI dv01xyij dv01xyji
8 syms dv10xyiJ dv10xyjI dv10xyij dv10xyji dv11xyiJ dv11xyjI dv11xyij dv11xyji
9 syms du00xykM du00xymK du00xykm du00xymk du01xykM du01xymK du01xykm du01xymk

10 syms du10xykM du10xymK du10xykm du10xymk du11xykM du11xymK du11xykm du11xymk
11 syms dv00xykM dv00xymK dv00xykm dv00xymk dv01xykM dv01xymK dv01xykm dv01xymk
12 syms dv10xykM dv10xymK dv10xykm dv10xymk dv11xykM dv11xymK dv11xykm dv11xymk
13 %Note: when indices are represented with capital letters , the derivative is
14 %with respect to y; when they are not , they are with respect to x
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 %Calculation of the integrand of the first integral of eq. (16): integrFxy1
17 eijsB0_sum =2*(( du01xyij)*epson+( du01xyiJ+du00xyij)+( du00xyiJ)/epson)/(2);
18 eijsB0_sumV =0;
19 ekmsB0_sum =2*(( du01xykm)*epson+( du01xykM+du00xykm)+( du00xykM)/epson)/(2);
20 ekmsB0_sumV =0;
21 eijsB1_sum =2*(( du11xyij)*epson+( du11xyiJ+du10xyij)+( du10xyiJ)/epson)/(2);
22 eijsB1_sumV =2*(( dv11xyij)*epson +( dv11xyiJ+dv10xyij)+( dv10xyiJ)/epson)/(2);
23 ekmsB1_sum =2*(( du11xykm)*epson+( du11xykM+du10xykm)+( du10xykM)/epson)/(2);
24 ekmsB1_sumV =2*(( dv11xykm)*epson +( dv11xykM+dv10xykm)+( dv10xykM)/epson)/(2);
25

26 integrFxy1=collect(expand(Eijkm*( eijsB0_sum*ekmsB1_sumV+eijsB0_sumV*ekmsB1_sum))
,epson);

27 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28 %Script 3a: input is (16) and integrFxy1 and output is the integrand of (18) and
(19)

29 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 integrFxy1a=collect(integrFxy1 *(epson ^2),epson); %Needed because integrFxy1
appears devided by epson^2, which

31 [IntFxy1b ,terms]= coeffs(integrFxy1a , epson); %prevents a proper collection
of the coefficients

32 EM2=IntFxy1b(terms == 1); %integrand of (18)
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 %Script 3b: input is (16) and integrFxy1 and output is (20 -22)
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36 EM1=IntFxy1b(terms == epson); %integrand of (20)
37 EM1v11=expand(subs(EM1 ,{dv10xykM ,dv10xykm },{0,0})); %v10=0 => eq.(19)
38 EM1v10=expand(subs(EM1 ,{dv11xykM ,du00xyiJ },{0,0})); %v11=0 + eq.(19) =>

integrand of eq .(21)
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 %Script 3c: input is (16) and integrFxy1 and output is (25 -29)
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 EM0=IntFxy1b(terms == epson ^2); %before using eq .(19) and (32)
43 EM0_25=EM0 -Eijkm*du00xyiJ*dv11xykm -Eijkm*du01xyij*dv10xykM; %integrand of eq

.(25)
44 EM0v10=expand(subs(EM0_25 ,{ dv11xykM },{0})); %eq.26
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46 %Script 3d: input is (16) and integrFxy1 and output is (30 -32)
47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 Ep1=IntFxy1b(terms == epson ^3);
49 Ep1v10=expand(subs(Ep1 ,{dv11xykm ,dv11xykM },{0,0})); %integrand of eq.(31)
50 Ep1v11=expand(subs(Ep1 ,{ dv10xykm },{0})); %returns ~ eq. (26), leading again to

eq.(29)
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 %Script 04: input is script 03, (14.3) and (17) and output is integrFxy2
53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
54 syms du11xyci du11xycj du11xycI du11xycJ du10xycj du10xyci du10xycJ du10xycI
55 syms du11xyck du11xycm du11xycK du11xycM du10xycm du10xyck du10xycM du10xycK
56 syms dv11xyck dv11xycm dv11xycK dv11xycM dv10xycm dv10xyck dv10xycM dv10xycK
57 %Note: when indices are represented with capital letters , the derivative is
58 %with respect to y; when they are not , they are with respect to x
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 %Calculation of the integrand of the integral of eq. (17): integrFxy2
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61 eijsB2 =(1/2)*du11xyci*du11xycj*epson ^2+...
62 (1/2)*du11xycI*du11xycj*epson +...
63 (1/2)*du11xyci*du11xycJ*epson +...
64 (1/2)*du11xyci*du10xycj*epson +...
65 (1/2)*du10xyci*du11xycj*epson +...
66 (1/2)*du10xyci*du10xycJ/epson +...
67 (1/2)*du11xycI*du10xycJ/epson +...
68 (1/2)*du10xycI*du11xycJ/epson +...
69 (1/2)*du10xycI*du10xycj/epson +...
70 (1/2)*du10xycI*du10xycJ/epson ^2+...
71 (1/2)*du10xycI*du11xycj +...
72 (1/2)*du10xyci*du11xycJ +...
73 (1/2)*du11xycI*du10xycj +...
74 (1/2)*du10xyci*du10xycj +...
75 (1/2)*du11xyci*du10xycJ +...
76 (1/2)*du11xycI*du11xycJ;
77

78 ekmsB2_V =(1/2)*du11xyck*du11xycj*epson ^2+(1/2)*dv11xyck*dv11xycm*epson ^2+...
79 (1/2)*du11xycK*dv11xycm*epson +(1/2)*dv11xycK*du11xycm*epson +...
80 (1/2)*du11xyck*dv11xycM*epson +(1/2)*dv11xyck*du11xycM*epson +...
81 (1/2)*du11xyck*dv10xycm*epson +(1/2)*dv11xyck*du10xycm*epson +...
82 (1/2)*du10xyck*dv11xycm*epson +(1/2)*dv10xyck*du11xycm*epson +...
83 (1/2)*du10xyck*dv10xycM/epson +(1/2)*dv10xyck*du10xycM/epson +...
84 (1/2)*du11xycK*dv10xycM/epson +(1/2)*dv11xycK*du10xycM/epson +...
85 (1/2)*du10xycK*dv11xycM/epson +(1/2)*dv10xycK*du11xycM/epson +...
86 (1/2)*du10xycK*dv10xycm/epson +(1/2)*dv10xycK*du10xycm/epson +...
87 (1/2)*du10xycK*dv10xycM/epson ^2+(1/2)*dv10xycK*du10xycM/epson ^2+...
88 (1/2)*du10xycK*dv11xycm +(1/2)*dv10xycK*du11xycm +...
89 (1/2)*du10xyck*dv11xycM +(1/2)*dv10xyck*du11xycM +...
90 (1/2)*du11xycK*dv10xycm +(1/2)*dv11xycK*du10xycm +...
91 (1/2)*du10xyck*dv10xycm +(1/2)*dv10xyck*du10xycm +...
92 (1/2)*du11xyck*dv10xycM +(1/2)*dv11xyck*du10xycM +...
93 (1/2)*du11xycK*dv11xycM +(1/2)*dv11xycK*du11xycM;
94

95 integrFxy2=collect(expand(Eijkm*( eijsB0_sum*ekmsB2_V+eijsB0_sumV*eijsB2+
eijsB1_sumV*ekmsB1_sum+eijsB1_sum*ekmsB1_sumV)),epson);

96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97 %Script 4a: input is integrFxy2 and output is (33)
98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
99 integrFxy2a=collect(integrFxy2 *(epson ^3),epson); %Needed because integrFxy2

appears devided by epson^3, which
100 [IntFxy2b ,trms]= coeffs(integrFxy2a , epson); %prevents a proper collection

of the coefficients
101 Em3=IntFxy2b(trms == 1); %integrand of (33)
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103 %Script 4b: input is integrFxy2 and output is (34 -37)
104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105 Em2=IntFxy2b(trms == epson);
106 Em2v10=expand(subs(Em2 ,{dv11xycM ,dv11xycK ,du00xyiJ },{0,0,0})); %v11=0 + eq.(19)

=> integrand of eq. (34)
107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %Script 4c: input is integrFxy2 and output is (38 -40)
109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 Em1=IntFxy2b(trms == epson ^2);
111 Em1a=expand(subs(Em1 ,{ du00xyiJ },{0})); % Aplication of eq. (19) to Em1
112 Em1v11=expand(subs(Em1a ,{dv10xykM ,dv10xyiJ ,dv10xykm ,dv10xyij ,dv10xycM ,dv10xycK ,

dv10xycm ,dv10xyck },...
113 {0,0,0,0,0,0,0,0})); %v10=0 => eq. (38)
114 Em1v10=expand(subs(Em1a ,{dv11xykM ,dv11xyiJ ,dv11xycM ,dv11xycK },{0,0,0,0})); %v11

=0 => eq. (39)
115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
116 %Script 4d: input is integrFxy2 and output is (41 -48)
117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
118 Em0=IntFxy2b(trms == epson ^3);
119 Em0a=expand(subs(Em0 ,{ du00xyiJ },{0})); % Aplication of eq. (19) to Em0
120 Em0v11=expand(subs(Em0a ,{dv10xykm ,dv10xyij ,dv10xykM ,dv10xyiJ ,dv10xycm ,dv10xyck ,

dv10xycM ,dv10xycK },...
121 {0,0,0,0,0,0,0,0})); %v10=0 => eq. (41)
122 Em0v10=expand(subs(Em0a ,{dv11xykM ,dv11xyiJ ,dv11xykm ,dv11xyij ,dv11xycM ,dv11xycK ,

dv11xycm ,dv11xyck },...
123 {0,0,0,0,0,0,0,0})); %v11=0 => eq. (46)
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Appendix D

Extension to the homogenize function

The following code lines enable the visualization of the deformed configuration of the unit cell, result-

ing from each of the three characteristic displacements.
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %Plot initial mesh + final mesh resulting from the displacements fields
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %Coordinates of the nodes of the undeformed shape
5 cc=zeros (2*( nelx +1)*(nely +1) ,1); %vector containing the coordinates (first
6 px=0:dx:lx; %x, then y of each node , respecting the
7 py=ly:-dy:0; %node numeration without periodic bcs
8 kk=1;
9 for aa =1:2*( nely +1) :2*( nelx +1)*(nely +1) -1

10 for bb=aa:2:aa+2*( nely +1) -1
11 cc(bb)=px(kk);
12 end
13 kk=kk+1;
14 end
15 hh=1;
16 for aa =2:2*( nely +1) :2*( nelx +1)*(nely +1)
17 for bb=aa:2:aa+2*( nely +1) -2
18 cc(bb)=py(hh);
19 hh=hh+1;
20 end
21 hh=1;
22 end
23 % Recover characteristic displacements for full mesh
24 chis1=reshape(chi(:,1) ,2*nely ,nelx); chis2=reshape(chi(:,2) ,2*nely ,nelx);
25 chis3=reshape(chi(:,3) ,2*nely ,nelx); chis1(end+1,:)=chis1 (1,:);
26 chis1(end+1,:)=chis1 (2,:); chis1(:,end+1)=chis1 (:,1);
27 chis2(end+1,:)=chis2 (1,:); chis2(end+1,:)=chis2 (2,:);
28 chis2(:,end+1)=chis2 (:,1); chis3(end+1,:)=chis3 (1,:);
29 chis3(end+1,:)=chis3 (2,:); chis3(:,end+1)=chis3 (:,1);
30 chi_n1 =(0.1/ max(chis1 (:)))*chis1 (:); chi_n2 =(0.1/ max(chis2 (:)))*chis2 (:);
31 chi_n12 =(0.1/ max(chis3 (:)))*chis3 (:);
32 %Coordinates of the nodes of the deformed shape
33 cc_d1=cc+chi_n1; cc_d2=cc+chi_n2; cc_d12=cc+chi_n12; %From X11 , X22 , X12
34 %Plot undeformed vs. deformed shapes
35 ccn=[ cc_d1 cc_d2 cc_d12 ];
36 %Plot undeformed vs. deformed shapes
37 %X11
38 fk=2;
39 for gl=1:3
40 figure(fk)
41 for ii=0:dy:ly
42 plot (0:dx:lx,ii,’ro’, ’MarkerSize ’, 5,’linewidth ’ ,2.5,’Color ’ ,...
43 [0 0 0.5]); hold on;
44 plot ([0 lx],[ii ii], ’:’, ’MarkerSize ’, 5,’linewidth ’ ,1.5,...
45 ’Color ’ ,[0 0 0.5]);hold on;
46 for jj=0:dx:lx
47 plot([jj jj],[0 ly], ’:’, ’MarkerSize ’, 5,’linewidth ’ ,1.5,...
48 ’Color ’ ,[0 0 0.5]);hold on;
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49 end
50 end
51 hold on;
52 plot(ccn (1:2:2*( nelx +1)*(nely +1) -1,gl),ccn (2:2:2*( nelx +1)*(nely +1),gl) ,...
53 ’ro’, ’MarkerSize ’, 5,’linewidth ’ ,2.5,’Color ’ ,[0 0.5 0]);
54 hold on;
55 ii=1;
56 for aa =1:2*( nely +1) :2*( nelx +1)*(nely +1)
57 bb=aa+2*( nely +1) -2;
58 if ii~=bb
59 plot([ccn(aa:2:bb -2,gl) ccn(aa+2:2:bb,gl)],...
60 [ccn(aa +1:2:bb -1,gl) ccn(aa +3:2:bb+1,gl)],...
61 ’-’, ’MarkerSize ’, 5,’linewidth ’,2,’Color ’ ,[0 0.5 0]);hold on;
62 end
63 ii=ii+1;
64 hold on;
65 end
66 hold on;
67 for ll =1:2:2* nely -1
68 plot([ccn(ll:2*( nely +1):ll+2*( nely +1)*nelx ,gl) ...
69 ccn(ll +2:2*( nely +1):ll+2*( nely +1)*nelx+2,gl)],...
70 [ccn(ll +1:2*( nely +1):ll+2*( nely +1)*nelx+1,gl) ...
71 ccn(ll +3:2*( nely +1):ll+2*( nely +1)*nelx+3,gl)],...
72 ’-’, ’MarkerSize ’, 5,’linewidth ’,2,’Color ’ ,[0 0.5 0]);hold on;
73 end
74 title(’blue = undeformed shape , green = deformed shape’);
75 fk=fk+1;
76 end
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