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Abstract—Humanoid robots have complex bodies and kine-
matic chains with several Degrees-of-Freedom (DoF) which are
difficult to model. Learning the parameters of a kinematic model
can be achieved by observing the pose of the robot links during
prospective motions and minimising the prediction errors. This
thesis proposes a movement efficient approach for estimating
online the body-schema of a humanoid robot arm in the form
of Denavit-Hartenberg (DH) parameters. A cost-sensitive active
learning approach based on the A-Optimality criterion is used to
select optimal joint configurations. The chosen joint configura-
tions simultaneously minimise the error in the estimation of the
body schema and minimise the movement between samples. This
reduces energy consumption, along with mechanical fatigue and
wear, while not compromising the learning accuracy. The work
was implemented in a simulation environment, using the 7 DoF
arm of the iCub robot simulator. The hand pose is measured
with a single camera via markers placed in the palm and back
of the robot’s hand. It is proposed a pose dependent noise
model, to reduce the impact of non-uniform measurement noise,
and a non-parametric occlusion model, to avoid choosing joint
configurations where the markers are not visible, thus preventing
worthless attempts. The results show cost-sensitive active learning
has similar accuracy to the standard active learning approach,
while reducing in about half the executed movement.

Index Terms—cost-sensitive active learning, body-schema, cal-
ibration, humanoid, robotics

I. INTRODUCTION

Robots are generally deployed to have a fixed behaviour
in low uncertainty environments (e.g. factories) and they rely
on their body-schema to accomplish many of their tasks.
[1] defines body-schema as an ”implicit knowledge structure
that encodes the body’s form, the constraints on how the
body’s parts can be configured, and the consequences of this
configuration on touch, vision and movement” and it is how
the term is used in this thesis. In [2] several approaches
are shown on how to represent the body-schema, as well
as an interesting discussion about what is still missing in
modern robots to be as robust as animals or human beings.
Generally, robots require expensive and time consuming cal-
ibrations performed by experts since body parts: i) may not
have the exact dimensions they should and ii) they may be
affected by material wear and fatigue. Even with these offline
calibration procedures, the presence of abnormal conditions
or disturbances, such as changes in room temperature causing
materials to expand or contract, may affect their performance
if they lack the ability to adapt their models online.

Fig. 1: iCub Computer Aided Design (CAD) model.

Humans are able to learn their own body-schema, which
is a process started at a very young age, as stated in [3], by
using information from the senses. This continuous learning
and adaptation is what allows humans to be able to adapt to
different conditions, and producing robots possessing similar
behaviours is essential for many areas of robotics where an
extended period of autonomous behaviour is required, such as
exploration robots in inaccessible areas, rescue robots, social
robots and for human-robot cooperation.

Online body-schema adaptation requires the use of machine
learning algorithms, which require significant amounts of data,
often provided by humans or, in the context of body-schema
learning, by performing random movements and obtaining
measurements. This may result in acquiring irrelevant data
or data which does not improve the models, wasting human,
computing and time resources. Active learning is a sub-field of
machine learning which aims to reduce the amount of training
data required to build a model, with a certain precision. This
is done by having the learning algorithm decide which data
it wants to label or sample next. A general introduction for
this area of research can be found in [4]. Cost-sensitive active
learning is a concept also explored in [4]. The main idea is
that the learning task may be associated with other costs which
do not decrease necessarily if the amount of training data
reduces. As an example, robots designed to perform chemical
experiments, such as [5], use optimisation algorithms to decide
the next experiment to perform based on the learning potential,
as well as the monetary costs. Active learning has been used
in several works and, empirically, seems to succeed. In the



context of robotics and body-schema learning, requiring less
data means the robot is able to adapt faster to whichever
unpredictable conditions it has to face.

The calibration problem consists of the estimation of a set of
parameters associated with the arm’s physical characteristics.
The parameter estimation (i.e. calibration routine) requires
samples obtained from arm movement.

The calibration routine should make use of samples from
the position and orientation of the hand, i.e. the hand pose,
while knowing the readings of proprioceptive sensors (joint
encoders). An active learning approach chooses the best joint
configurations in order to reduce the number of samples, as
well as reduce the amount of movement needed which would
improve time and energy efficiency as a consequence.

The proposed method will be compared with random se-
lection of values for the joints and with a conventional active
learning approach, which only aims to reduce the number of
samples. The comparison will be made by assessing the ability
of the methods to reduce error in the body-schema, the number
of samples needed and the amount of movement needed.

II. RELATED WORK

Recent works have succeeded in employing different strate-
gies for body-schema adaptation, such as [6], [7] and [8]. All
these works successfully adapt their body models to account
for the robot’s body errors, but they fail at choosing the most
informative samples to do so. Using active learning could
improve results and reduce the number of samples.

Active learning methods have been employed and have
shown empirical success in multiple areas of robotics, such
as [9], [10], [11] and [12]. In the context of body-schema
learning, [13] used active learning to estimate a kinematic
model of a serial robot and [14] used an intrinsically motivated
goal exploration mechanism to learn inverse models in high-
dimensional redundant robots. All these works have shown
the advantages of using active learning, since less iterations
of the learning algorithms were needed to achieve a certain
error threshold. However, the main focus was to minimise the
number of samples, instead of focusing on minimising the
actual effort or movement needed, since the computation time
is only part of the learning tasks for robots.

In [15] and [16], the authors proposed criteria for active
touch point selection to estimate object shapes which consider
both error reduction and exploration costs. These works ex-
ploited cost-sensitive active learning, being able to minimise
the accumulated path length needed for accurate estimation
with low impact on the number of touches necessary. This
is similar to what is desired on this work on body schema
adaptation. Indeed, the cost of an exploration action is related
to the required movement to perform it.

A. Contributions

This work aims to create a calibration routine which can be
performed autonomously by the robot, with no human inter-
vention, using active learning for sampling and movement effi-
ciency. The purpose of the calibration routine is to improve the

Fig. 2: Key steps in the structure of the required program to
use active learning for joint value selection and observations
of the hand pose to estimate the robot’s physical parameters,
xxx. The subscript k indicates the algorithm’s iteration and θθθ∗

is the selected joint configuration.

robot’s knowledge about its own body-schema. This consists
of estimating a set of parameters associated with the physical
properties of its body, such as the length of the forearm or the
length of the upper arm, called the Denavit-Hartenberg (DH)
parameters. The estimation of these parameters will be done
using observations of the pose (position and orientation) of the
hand, using visual input. This will be tested using the iCub
arm, shown in Fig. 1, which has seven rotational joints.

Similarly to [15] and [16], we argue that using active learn-
ing to reduce the number of samples taken may not be the best
approach, since some of the best samples may require unnec-
essary long movements, increasing execution time and energy
spent. The main contribution of this work is a cost-sensitive
active learning approach for body-schema learning, which
chooses the best joint angles, θθθ =

[
θ(0) θ(1) · · · θ(n)

]
, to

sample the hand pose, aiming to reduce the number of samples
required and the required movement. The proposed calibration
routine is composed of the key steps shown in Fig. 2.

III. METHODS

This Section presents the main methods used to build a
system capable of performing the steps in Fig. 2.

This system requires a recursive estimator to update the
estimation of the DH parameters after each sample, for which
it is used an Extended Kalman Filter (EKF), explained in Sec-
tion III-A. To guarantee sampling and movement efficiency, a
cost-sensitive active learning criterion must be defined, which
is presented in Sections III-B and III-C. As already mentioned,
this thesis proposes acquiring samples of the hand pose for the
calibration procedure using visual input. Since the hand may
not be detected by the cameras, in Section 3.6 an occlusion
model is explained used to predict whether the hand should
be visible or not, based on previous attempts, using non-
parametric smoothed beta distributions.

A. Extended Kalman Filter

The EKF, explained in detail in [17], allows recursive
parameter estimation of systems represented by a nonlinear



model, which is the case for the relation between the DH
parameters, xxx, and the hand pose, zzz, given by the forward
kinematics at a particular joint configuration, θθθ, h(xxx,θθθ). For
more information regarding the computation of the forward
kinematics using the DH parameters, see [18]. A measurement
of the hand pose, zzzk, is modelled by

zzzk = h(xxxk, θθθk) + vvvk, (1)

where θθθk represents the joint encoder values, vvvk represents
the measurement noise and k is the time-step. In the EKF,
it is also considered a non-linear state transition function, f ,
xxxk+1 = f(xxxk, uk)+wwwk, where uk is a control input of xxxk and
wwwk is the associated process noise. Since in this work xxx are
the DH parameters of the iCub’s arm, they are approximately
constant in time, only affected by the process noise

xxxk+1 = xxxk +wwwk. (2)

It is assumed the measurement and process noises are Gaus-
sian, uncorrelated and zero-mean, have no cross-correlation,
and have known co-variance matrices, RRRk and QQQk. Therefore,

E[vvvkvvv
T
k ] = RRRk (3)

E[wwwkwww
T
k ] = QQQk (4)

E[wwwkvvv
T
l ] = 0, ∀ k, l. (5)

The EKF is divided in two steps: 1) Predict and 2) Update.
1) Predict: This step predicts the state xxx and the prediction

variance PPP k+1|k at time k+1, using only information available
at time k. These predictions are given by

x̂̂x̂xk+1|k = x̂̂x̂xk|k (6)

and
P̂̂P̂P k+1|k = P̂̂P̂P k|k +QQQk. (7)

2) Update: This step updates the state, xxx, and co-variance,
P , using a combination of the prediction and the new obser-
vation obtained of the hand pose, zzzk. They are given by

x̂̂x̂xk+1|k+1 = x̂̂x̂xk+1|k +KKKk+1[zzzk − h(x̂̂x̂xk+1|k, θθθk)] (8)

and
PPP k+1|k+1 = PPP k+1|k −KKKk+1SSSk+1KKK

T
k+1, (9)

where KKKk+1 = PPP k+1|kHHH
T
k+1SSS

−1
k+1 is the Kalman gain with

SSSk+1 = HHHkPPP k+1|kHHH
T
k +RRRk+1, and HHH is the jacobian matrix

of the observation function in (1), with respect to xxx, HHH = ∂h
∂xxx .

B. Active Learning

An active learning problem is one where the learner has the
ability to select its own training data, either from i) a limited
pool of unlabelled data (pool-based sampling), ii) by looking
at a stream of input data and deciding whether to query or
discard it (selective sampling) or iii) by generating its own
queries (query synthesis) [4]. This Section will focus on query
synthesis, since this work is a regression problem, and this
approach has been shown to work when the measurements do
not depend on human interpretation [19].

The goal of an active learner is to identify what is the
optimal instance to query or action to perform. There are
several criteria to achieve this. For instance, expected en-
tropy reduction, expected error reduction, expected variance
reduction or expected model change. As shown in [19], the
right criterion may depend on the problem itself and if the
wrong one is chosen, it may even perform worse than querying
randomly. After choosing the appropriate criterion, one must
choose an appropriate cost function, C(·), and then the next
instance to query, θθθ, is given by

θθθ∗ = argmin
θθθ

C(θθθ). (10)

We want to choose, θθθ, for the next action, which will most
reduce the expected error in the estimation model.

1) A-optimality Criterion: The A-optimality criterion is
proposed by [13] for active selection of the joint angles, θθθ. This
criterion can be used, since the EKF linearises the observation
function around x̂̂x̂xk. It consists of defining the cost function
as the expected mean squared error of the robot parameters,
xxx. Since the observation noise from (1) is considered to be
Gaussian, the cost function is given by the expected trace of
the covariance matrix of xxx, given the previous observations,
zzz1:k, for joint configurations θθθ1:k,

C0(θθθ) = E
[
(x̂̂x̂xk+1 − xxx)T (x̂̂x̂xk+1 − xxx)|zzz1:k, θθθ1:k

]
≈ E [tr(PPP k+1)|zzz1:k, θθθ1:k] .

(11)

Since the robot should estimate the hand pose using visual
input, it needs to find the hand. Some adaptations were made
to (11) to avoid the selection of joint configurations where the
hand is behind the robot’s back or hidden by some other parts
of the body. As seen in Fig. 5b, positive values of xxx for the
hand position are not desirable due to the robot xxx axis pointing
backwards. In order to discourage this, a term was added to
the cost function from (10) to penalise positive values for xxx
in the predicted position, p̂̂p̂p, for a given joint configuration θθθ.
Therefore it was adapted to

C (θθθ) =
C0 (θθθ)

η̄
+ a · arctan (b · p̂̂p̂px) , (12)

where a, b > 0 are tunable, and η̄ is the likelihood of the hand
being detected by the cameras for the given joint configuration
θθθ. This is further explained in Section III-D.

Optimising the cost function (12) requires a global optimi-
sation algorithm, since it is not easily differentiable, for which
it is used the DIRECT algorithm, proposed in [20].

2) Computing C(θθθ): The information used to compute the
co-variance PPP is shown schematically in Fig. 3. The predict
and update steps of the EKF are computed with (7) and (9).
This is possible since the prediction and update of the co-
variance matrix do not depend on the sample taken, only on the
jacobianHHH = ∂h

∂x computed at the selected joint configuration,
θθθ, and on the measurement noise co-variance, RRR.

C. Cost-Sensitive Active Learning

In this work, the sample acquisition cost is related to the
movement performed by the arm, since (10) selects the next



Fig. 3: Steps to compute the expected estimation co-variance, given the current estimation of the DH parameters, xxx, and a
joint configuration, θθθ. φ and r represent the angle and distance of the hand to the camera, respectively, according to Fig. 5a.

configuration to where the arm moves to. This work mitigates
the amount of movement performed in two separate ways.

1) Unconstrained Optimisation: To penalise the amount of
movement in the calibration routine, one can change (10) to

θθθ∗k = argmin
θθθ

C(θθθ) + γd(θθθ,θθθ∗k−1), (13)

where d(θθθ,θθθ∗k−1) is a distance, representing the cost associated
to moving to the next joint configuration, θθθ, accounting for
the previous one, θθθ∗k−1, and γ is a parameter which can be
changed according to the relative weight intended. Increasing
γ will increase the probability of θθθ∗k being closer to θθθ∗k−1, thus
reducing the accumulated movement of the arm.

2) Constrained Optimisation: Reducing the amount of arm
movement during the calibration routine can also be done by
constraining the optimisation problem. The choice of the next
joint configuration is given by

θθθ∗k = argmin
θθθ∈[θθθ∗k−1−∆∆∆,θθθ∗k−1+∆∆∆]

C(θθθ), (14)

where θθθ∗k−1 is the previous joint configuration and ∆∆∆ is a
vector of size equal to the number of joints, n. Considering
normalised joint values in the interval [0, 1], ∆∆∆ is defined as
∆∆∆ = δ · 1n1n1n, where 1n1n1n is a unit vector of size n and δ is a
parameter that defines the relative movement every joint can
perform around the current configuration. This is stricter than
(13), since it is guaranteed that the next joint configuration
will be inside the n-dimensional box

[
θθθ∗k−1 −∆∆∆, θθθ∗k−1 +∆∆∆∆∆∆∆∆∆

]
.

D. Non-parametric Occlusion Model

When a new joint configuration is selected, the hand may
or may not be visible to the cameras. If the hand is not
visible, a sample cannot be obtained to update the EKF.
Consequently, the same joint configuration is selected again
when solving (10), since the cost function from (11) remains
unaltered. Using non-parametric smoothed beta distributions
removes this issue, by having the robot retain the knowledge
about the successful and unsuccessful attempts at sampling the
hand pose and using it to predict the likelihood of a new joint
configuration yielding a successful sample.

In [21], a kernel based non parametric approach is used
to predict the probability of a successful grasp to extrapolate
past data to new unseen features. The same method is applied
in this work to predict the likelihood, η∗, of having a visible
marker to the cameras in a particular joint configuration, θθθ∗,
given the past k observations, YYY = {y1, y2, . . . , yk}, in other
configurations, ΘΘΘ = {θθθ0, θθθ1, . . . , θθθk}, where each yi contains
the number of successful and unsuccessful sampling attempts,
Si and Ui, respectively.

The Bayes rule is used to obtain the posterior

p(η∗|θθθ∗,ΘΘΘ,YYY ) ∝ p(YYY |η∗, θθθ∗,ΘΘΘ)p(η∗|θθθ∗,ΘΘΘ), (15)

where the prior p(η∗|θθθ∗,ΘΘΘ) is a Beta distribution, with param-
eters a0 and b0, Be(a0, b0), and the likelihood term,

p(YYY |η∗, θθθ∗,ΘΘΘ) =

k∏
i=0

p(yi|η∗, θθθ∗, θθθi), (16)

is the likelihood of the observation, yi, at each configuration,
θθθi, given θθθ∗ and the success rate, η∗. For each observation,
[21] models the likelihood as a binomial distribution

p(yi|η∗, θθθ∗, θθθi) = Bin(S∗i; η∗, S∗i + U∗i), (17)

where S∗i = K(θθθ∗, θθθi)Si and U∗i = K(θθθ∗, θθθi)Ui are the
number of successful and failed sampling attempts at the
joint configuration θθθ∗, given the attempts at θθθi, propagated
by a kernel function, K. The books [22] and [23] provide
more information on kernel functions. It was used a squared
exponential kernel so that the diffusion process keeps S∗ = Si
and U∗ = Ui for θθθ∗ = θθθi and decreases as θθθ∗ is farther in the
joint space. Using the deduced posterior in [21],

p(η∗|θθθ∗,ΘΘΘ,YYY )

= Be

(
η∗;

k∑
i=0

S∗i + a0,

k∑
i=0

U∗i + b0

)
. (18)

Finally, the predicted sampling success mean probability is

η̄∗ =

∑k
i=0 S∗i + a0∑k

i=0 S∗i + a0 +
∑k
i=0 U∗i + b0

. (19)

This result is used to select joint configurations more likely to
have a visible marker in the cost function from (12).

IV. EXPERIMENTAL SETTING

This Section describes the implementation and performed
experiments. Sampling the hand pose using visual input is
done using ArUco markers, shown in Section IV-A. These
are placed on the back and palm of the hand, providing a
method to detect its position and orientation. Section IV-B
gives some details regarding the iCub simulator. Section IV-C
establishes the metrics used for comparisons and results.
Finally, the proposed experiments are divided in two settings.
The first one, explained in Section IV-D, assumes the hand
pose can be retrieved, for instance, from an external vision-
based algorithm and the real hand pose is directly retrieved on
the simulation. The second setting, explained in Section IV-E,
is more realistic, since the hand pose is retrieved by using the
iCub eyes (cameras) and fiducial markers placed on the hands.



(a) An ArUco marker. (b) ArUco marker pose estimation.

Fig. 4: ArUco marker and pose detection in the iCub simulator.
The red, green and blue lines represent the x, y and z axes.

A. ArUco Module

The ArUco module is based on the ArUco library [24],
which serves for detection of square fiducial markers (ArUco
markers), like the one in Figure 4a. The ArUco module
provides functions for marker creation, marker detection and
marker pose estimation, in addition to functions to draw the
detected markers and their orientation in the input image for
visualisation, as shown in Figure 4b.

Each ArUco marker encodes a unique ID by a binary code,
given by different patterns, and belongs to a set of markers,
referred to as dictionary. The set of markers in the dictionaries
follow a criterion to maximise inter-marker distance, to avoid
possible errors. Only two markers are used to measure the
hand pose. One for the palm of the hand and one for the
back of the hand, therefore the smallest 4× 4 bits predefined
dictionary is used, to reduce the inter-marker confusion rate.

As stated in [24], the marker pose with respect to the
camera is estimated by minimising the re-projection error of
the corners. This measures how close the real image is to the
2-D projection of the 3-D estimate.

The ArUco module, available in OpenCV1, is responsible
for acquiring observations of the hand pose.

1) Measurement Noise Model: In the research field of esti-
mation and tracking, it is crucial to have knowledge about what
is the expected error for a given sample and if the expected
error is constant for every sample or if it heteroscedastic,
meaning it is not constant in time or in space. This allows to
give more importance to a sample which has a lesser amount
of error expected and vice-versa.

From Section IV-A, it is clear that the accuracy of the pose
obtained depends highly on camera calibration parameters
and on the amount of pixels the marker occupies in the
image. It is of paramount importance to estimate the expected
measurement error for each sample. For instance, a marker
positioned closer to the camera will yield a more reliable
estimate than a marker which is farther away. Having prior
knowledge about this allows estimators, in this case the EKF,
to know how much to rely on a particular sample and change
the measurement co-variance from (3) accordingly.

Measurement error and variance in fiducial markers have
been studied in various works, such as [25] and [26]. They

1A tutorial of how to use the module is at https://docs.opencv.org/trunk/d5/
dae/tutorial aruco detection.html.

(a) ArUco marker pose in
relation to the camera.

(b) ArUco marker placed on the right
hand of the iCub simulator.

Fig. 5: ArUco marker detection by the camera in the iCub
simulator. The distance from the camera to the marker is
represented by r and φ represents the angle between the
perpendicular direction of the marker and the direction defined
by the centre point of the marker and the camera position.

show how measurement error and variance change with the
distance and angle to the camera. This information allowed
building a rough predictor of the error, given a particular
sample. Both the works achieve similar conclusions:
• The closer to the camera the fiducial marker is, the better

is the pose estimation.
• The rotation estimation seems to be worse when the

marker is directly facing the camera and the systematic
error and variance are lower when the marker is angled
30º to 50º from the camera.

We model the measurement noise co-variance matrix as

RRRi = σ2
i III, (20)

where σi represents the standard deviation of the i-th mea-
surement and III represents the identity matrix. Given the
studies in the mentioned works, a very rough approximation
of the expected error can be made as a function of camera
distance and camera angle to the marker, in order to change
σ2
i according to the measurement obtained. The mentioned

works showed the error seemed to have a quadratic relation
with distance and it was lower when the camera is angled
45º from the marker, increasing towards 0º and 90º. Given the
distance, r, and angle, φ, to the camera, as in Figure 5a, an
expression was created to compute a value for σ2

i

σ2
i = ar2 + b (φ− 45)

2
, (21)

where a and b are adjustable coefficients, which were selected
by trial and error, with an initial guess based on the previously
mentioned studies. This is by no means the most accurate error
prediction and improving this prediction could improve the
final results. Nevertheless, it was essential for improving the
performance of the EKF, as will be shown in Section V-C1.

B. iCub Simulator

In order to test the implementation, the open-source simu-
lator for the humanoid robot iCub will be used, presented in



Resolution fxfxfx fyfyfy cxcxcx cycycy
640× 480 514.681 514.681 320.0 240.0

TABLE I: Image resolution and intrinsic parameters of the
cameras of the iCub simulator. These parameters are very
similar to the parameters from the actual iCub cameras.

Link 0 1 2 3 4 5 6
aaa [mm] 0 0 -15 15 0 0 62.5
ddd [mm] -107.74 0 -152.28 0 -137.4 0 16
ααα [°] 90 −90 −90 90 90 90 0
ooo [°] −90 −90 −105 0 −90 90 180

TABLE II: Actual Denavit-Hartenberg parameters of the iCub
right arm in the iCub simulator. These parameters are very
similar to the actual DH parameters of the actual iCub robot.

[27]. This simulator was designed to replicate the physics and
dynamics of the real robot, as close as possible.

The iCub library2 provides interfaces to interact with the
simulator, either by sending commands or reading information.
It allows to send commands to move all joints connecting
the rigid bodies, contains proprioceptive information about the
joint encoders and it possesses 2 cameras to act as eyes. The
properties of the cameras are in Table I.

The Yet Another Robot Platform (YARP) middleware [28]
is used to communicate with the robot, which allows building
a robot control system as a collection of programs communi-
cating in a peer-to-peer way.

C. Comparison Metrics

In this Section, a few metrics will be defined for perfor-
mance evaluation of the different methods, regarding predic-
tion errors and the amount of movement done by the arm.

In order to measure prediction errors, both for position
and orientation, a set of N points are generated in the joint
space, using a uniform distribution, at each iteration. The
forward kinematics is computed and, from the resulting matrix,
both the predicted 3D position in the Cartesian space, p̂̂p̂p, and
rotation matrix, R̂̂R̂R, are obtained. The respective errors are
evaluated at each of these joint configurations. To obtain an
overall error estimate of the calibration, the arithmetic mean
of both position and orientation errors is computed.

1) Average Position Error: For each of the N configura-
tions, the position error is computed using the euclidean norm
and the expression for the average position error results in

1

N

N∑
i=1

‖pppi − p̂̂p̂pi‖. (22)

2) Average Orientation Error: For each of the N configu-
rations, the orientation error is computed using,

d(RRRA,RRRB) =

√
‖logm(RRRTARRRB)‖2F

2
· 180

π
[°] , (23)

2The library is available in the git-hub repository https://github.com/
robotology/icub-main.

Position Orientation
Unitary axis Angle

2 mm 8% 5°

TABLE III: Standard deviations of the added Gaussian noise
to the simulated samples for the geometric simulation setting.
After the error is added to the 3 components of the unitary
axis, the axis is re-normalised.

where logm is the principal matrix logarithm and ‖ · ‖F is the
Frobenius norm. The average error results in

1

N

N∑
i=1

d(RRRi, R̂̂R̂Ri) [°] . (24)

3) Accumulated Joint Movement: For each iteration of the
algorithm, the accumulated joint movement is given by the
sum of the movements of each individual joint up to the current
iteration. So, at iteration K, the accumulated joint movement
is given by

K∑
i=1

‖θθθi − θθθi−1‖1 [°] , (25)

where ‖ ·‖1 represents the l1 norm and θθθ0 is the known initial
joint configuration.

D. Geometric Simulation Setting

In the iCub Simulator, the DH parameters of the robot are
known exactly. This provides a reliable way to sample the hand
pose. It removes the error associated with the use of the ArUco
markers, so it allows a quicker way to test the initial system
implementation composed of the EKF, the cost-sensitive active
learning methods, the DIRECT algorithm, connection to the
YARP server and use of the iCub interface. It can also serve
as validation for the use of the cost-sensitive active learning
methods and it can be thought of as a setting where a more
reliable way of sampling is available.

1) Sampling the hand pose: As already mentioned, the DH
parameters of the iCub robot in the simulation environment
are known exactly and are in Table II. In order to obtain
measurements of the pose of the hand without relying on
its visual sensors, these values can be used to compute the
exact pose, by computing the forward kinematics. Random
Gaussian noise is added to each sample, after the exact pose
is computed, with standard deviations according to Table III.

E. Graphical Simulation Setting

In order to test the system in a more realistic setting, a
camera of the iCub Simulator will be used to acquire the hand
pose, using the Aruco markers, described in Section IV-A.

The YARP middleware provides interfaces to interact with
the environment of the simulator, including adding and moving
custom objects with custom textures. By adding planes to the
environment with the ArUco markers as textures, one can write
a small script to move and rotate the markers to be placed on
the palm and on the back of the hand, since the kinematics of
the arm are known exactly, as can be seen in Fig. 5b.



Method Joint Selection
Random (R) Uniform random selection

Active Learning (AL) Solves (10)
Unconstrained Cost-Sensitive
Active Learning (UCSAL) Solves (13)

Constrained Cost-Sensitive
Active Learning (CCSAL) Solves (14)

TABLE IV: Summary of the different used joint selection
methods.

# of samples
per experiment

# of
experiments

Uniform
distribution width Initial

arm poseLinear Angular
50 50 46 mm 54° Random

TABLE V: Conditions of the performed experiments with and
without fiducial markers. The uniform distribution width is
regarding the random initialisation of the DH parameters.

V. RESULTS

This Section shows the results obtained by the cost-sensitive
active learning methods and the comparison with random
exploration and with the standard active learning method.
The results from Section V-B were obtained with simulated
samples and the results from Section V-C were obtained using
the ArUco markers for sampling.

A. Experimental Conditions

The calibration routine from Fig. 2 was performed using
four different methods for the selection of the joint values of
the iCub arm, which are summarised in Table IV. The first
method is Random (R), which selects random joint configu-
ration uniformly distributed, which usually serves as a base
line for comparison with active learning. The second method
is the Active Learning (AL) method, which does not consider
movement costs. The third and fourth methods are the cost-
sensitive approaches proposed in this work, Unconstrained
Cost-Sensitive Active Learning (UCSAL) and Constrained
Cost-Sensitive Active Learning (CCSAL).

A random initial joint configuration for the right arm of
the robot is set and the algorithm from Fig. 2 executes for
all different methods. The main loop of Fig. 2 runs 50 times,
which means 50 samples are taken of the hand pose. At each
new run, the DH parameters of the robot are initialised with
values from a uniform distribution, where the means are the
actual values of the DH parameters from Table II and the width
of the distribution is according to Table V. In order to obtain
solid conclusions, the results displayed are the average of 50
repetitions of each experiment.

B. Geometric Simulation Results

By observing Fig. 6, the first relevant observation is the
improved performance of active exploration, comparing to
random exploration. R often leads to uninformative samples,
resulting in small error decrements. Looking at Fig. 7, it shows
the AL method does, roughly, double the movement of R and
it is more efficient in the amount of movement performed. For
instance, after moving the arm for 2× 105 deg, the R method

has a lower error than the AL method. However, for the
same number of iterations (assuming a constant cost for each
sample) the AL is more efficient. This is not desirable when
trying to sample efficiently since, even if the R method would
require more samples, it may have needed less movement to
achieve the same results.

When considering the number of samples taken in Fig. 6,
both the cost-sensitive methods, UCSAL and CCSAL, can
perform very similarly to the AL method, with the selected
values for γ and δ, regarding (13) and (14), which were
γ = 10−5 and δ = 0.4, respectively. In the results from
Fig. 7, they reveal to be much more advantageous since it
took less than half the movement and the same amount of
iterations to achieve similar results. When comparing the two
cost-sensitive methods, their lines almost overlap in the error
plots from Figs. 6 and 7, indicating that both methods allow
similar amounts of exploration and exploitation.

C. Graphical Simulation Results

The results in Figs. 8 and 9 were taken using the same
methods from Section V-B.

By observing the plots from Fig. 8, there are two major
differences, when comparing them to the results without the
use of fiducial markers for sampling, in Fig. 6. Firstly, the
final errors obtained for the position and orientation errors
are much larger. The pose measurement method using fiducial
markers introduces a significantly larger amount of noise into
the system, resulting in worse estimations. This could be
improved by using cameras with a better resolution, which
are not available in the iCub simulator. The second difference
is regarding the position errors. In Fig. 8a, the random method
seems to perform much closer to the active learning methods
than in Fig. 6a. This may be, again, due to the limitations
imposed by the pose measurement method. When using the
fiducial markers, it seems there is not much of a margin to
improve after a few samples and the random method catches
up rather quickly. Oppositely, in Fig. 8b, the random method
is significantly worse at estimating the hand orientation than
the active learning methods. This may mean that choosing a
joint configuration more likely to have a visible marker in
a favourable pose, as explained in Section IV-A1, is more
important for estimating orientation than position.

The efficiency of the cost-sensitive methods, UCSAL and
CCSAL, seems to be less noticed in Fig. 9 than in Fig. 7,
but it is still fairly noticeable regarding the evolution of the
orientation errors. The selected values for γ and δ, regarding
(13) and (14), were γ = 10−5 and δ = 0.5, respectively.
Both cost-sensitive methods require less movement than the
standard active learning method, AL, to achieve the same
results in the same number of iterations, meaning they are
still advantageous with a non ideal measurement system.

1) Predicting Measurement Noise: This Section shows the
impact of the noise model from (21) on the EKF.

Three different methods are used to test the noise model:
Naive EKF, Naive AL, and AL. All three methods use active
learning, but they are not cost-sensitive. The results still apply
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(a) Mean position error in millimetres with respect to the loop
iterations of the calibration routine.
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(b) Mean orientation error in degrees with respect to the loop
iterations of the calibration routine.

Fig. 6: Geometric simulation results of the different joint selection methods regarding the mean position and orientation errors,
with respect to the loop iterations of the calibration routine.
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(a) Mean position error in millimetres with respect to the accumulated
joint movement during the calibration routine.
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(b) Mean orientation error in degrees with respect to the accumulated
joint movement during the calibration routine.

Fig. 7: Geometric simulation results of the different joint selection methods regarding the mean position and orientation errors,
with respect to the accumulated joint movement during the calibration routine.
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(a) Mean position error in millimetres with respect to the loop
iterations of the calibration routine.
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(b) Mean orientation error in degrees with respect to the loop
iterations of the calibration routine.

Fig. 8: Graphical simulation results of the different joint selection methods regarding the mean position and orientation errors,
with respect to the loop iterations of the calibration routine.

Method Measurement Noise Model
EKF Joint Value Selection

Naive EKF No No
Naive AL Yes No
AL Yes Yes

TABLE VI: Summary of the different experiments performed
to evaluate the impact of the measurement noise model.

to the general case, since all methods are using the same active
learning approach of solving (10).

All the tested methods follow the initial conditions sum-

marised in Table V. The results are an average of 50 runs,
where in each run the robot samples the hand pose 50 times.
At each run, the DH parameters are initialised from a uniform
random distribution, with widths as described in Table V.

In Naive EKF, the measurement noise co-variance matrix is
constant through the entirety of the run, RRR = σ2III . The Naive
AL method uses the noise model from (21) to change RRR only
for the update step of the EKF. The AL method uses the noise
model from (21) to change RRR for the update step of the EKF
and to predict the best sample in the active learning step. All
the methods are summarised in Table VI. The average position
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(a) Mean position error in millimetres with respect to the accumulated
joint movement during the calibration routine.
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(b) Mean orientation error in degrees with respect to the accumulated
joint movement during the calibration routine.

Fig. 9: Graphical simulation results of the different joint selection methods regarding the mean position and orientation errors,
with respect to the accumulated joint movement during the calibration routine.

and orientation errors are plotted in Fig 10.
In Fig. 10, it is possible to see the differences in perfor-

mance for both conditions. The Naive EKF approach achieves
the least performance, since it is not capable of reducing the
impact of measurements more likely to be wrong. The Naive
AL approach performs slightly better, but by not predicting
the expected error in a sample before selecting the next joint
configuration, the EKF converges slower, since the samples
obtained are more likely to be less reliable.

2) Marker Occlusion: Some statistics were obtained re-
garding the number of discarded samples in the 50 iterations
of the calibration routine and they are shown in Figure 11.
These are discarded due to occlusion of the marker or due to
the ArUco module not being able to locate the marker in the
camera images. Every time this happens, it means movement
is performed, yet no sample is obtained. The statistics obtained
are regarding the main results from Figures 8 and 9.

Figure 11 shows the active learning methods tend to suggest
fewer arm configurations where the marker is hidden by its
own body. This shows the impact of the smooth beta distribu-
tions, explained in Section III-D. It is crucial to avoid failed
sampling attempts, since, after a few failed attempts, it is able
to discourage those and the surrounding joint configurations in
the joint selection step. The CCSAL method seems to discard
slightly more samples than the other active learning methods.
Since the CCSAL method reduces the search bounds to reduce
movement, occasionally, the search space may be reduced to
one where it is harder to find the markers, while the other
methods are allowed to leave those regions quickly. Even
though the CCSAL method discards more samples on average,
the results from Figure 9 showed it is as efficient as the
UCSAL method and even has lower standard deviation values.
Reducing search space creates a trade-off between being able
to search it more thoroughly, but increasing the chance of
being in a region where it is hard to spot the markers.

Improving these results would be difficult without more
prior knowledge. The smooth beta distribution could be trained
before the calibration routine instead of starting with no prior
knowledge, as done in this work, but having too many training
data could increase the computation time significantly, since

(15) has complexity O(n) and the DIRECT algorithm must
compute it for every point it evaluates.

VI. CONCLUSIONS

This work proposed a cost-sensitive active learning ap-
proach to estimate the DH parameters of 7 joints of the iCub
arm in order to prioritise movement efficiency.

The results show there is an advantage in discouraging
or restricting movement during the optimisation stage. It is
possible to reduce the movement performed by roughly half
and still maintain the iteration wise performance. If movement
efficiency is a priority, one can restrict the movement even
more, at the cost of more iterations. It is worth mentioning,
more iterations does not mean lower time-efficiency, since
reducing the amount of time spent moving may make up
for the extra computing time. Indeed, it will depend on the
computing power and the speed at which the arm moves.

Using ArUco markers provided an insight to a more realistic
setting, where the samples obtained are impacted by mea-
surement error. Even in these conditions, the active learning
showed robustness, still performing better than random ex-
ploration. The cost-sensitive methods were still more efficient
than the standard active learning method and maintained a
similar performance regarding the number of samples.

For future work, it would be interesting to proceed to an
implementation on the actual iCub robot to evaluate how the
methods perform in the real world. It could also be built a
better model to predict the observation error to check if it
could improve the results significantly.
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