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Resumo

Nesta dissertação, foi desenvolvido um algoritmo computacional para aplicar derivadas de ordem

fracionária ao processamento de imagens de satélite de alta definição.

Um dos objetivos deste trabalho foi avaliar a performance de métodos de deteção de contornos, uti-

lizando derivadas fracionárias. Para isso, seis métodos de deteção em escala de cinza foram utilizados.

Todos os métodos implementados foram também adaptados para executarem deteção usando imagens

de cor. Por fim, foi testada uma possı́vel solução com parâmetros fixos que permitam a segmentação

automática de costas nas mais variadas imagens de satélite.

O estado da arte nesta área conclui que os métodos que usam derivadas fraccionárias melhoram

os resultados ao nivel de deteção de contornos e aumentam os nives de imunidade ao ruı́do do pro-

cessamento de imagem. Também afirma que os métodos que utilizam imagens de cor são melhores.

Contudo, nas aplicações já existentes houve sempre dificuldade em perceber quais os parâmetros que

optimizam a detecção dos contornos pretendidos.

Todos os detectores implementados revelaram boa performance na segmentação pretendida, tendo

a máscara de derivadas fracionárias obtido melhor desempenho geral. Os métodos fracionários igualaram

ou melhoraram a performance dos métodos convencionais inteiros. As versões de cor dos detectores

apresentaram em geral igual ou melhor desempenho do que os métodos em escala de cinza.

Por fim, foram descobertos pares de parâmetros que permitem a detecção de costas automática

com uma média de desempenho acima de 90%, ligeiramente inferior à melhor solução com parâmetros

variados.
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Derivada Fracionária

Deteção Automática
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Abstract

In this dissertation, a computational algorithm was developed in order to apply fractional derivative

image processing to high definition Satellite Images.

One objective of this work was to evaluate the use of fractional derivatives on edge detection in the

aforementioned scope. For that, six grey-scale fractional detection detectors were used. All implemented

methods were also adapted to perform color-based detection. Finally, a search for fixed parameters

that allow the automatic detection of coasts in the broad range of types of satellite images was also

performed.

The state of the art on this matter concludes that the fractional methods enhance the results of

contour detection and improve immunity to noise in image processing. It also states that color based

processing can achieve better results. However, in the already existent applications there is a difficulty

in achieving fixed parameters that optimize the performance in edge detection.

All the implemented detectors presented good performance in the desired segmentation. The Frac-

tional Derivative operator revealed the best overall performance. The fractional methods matched or

enhanced the functioning of the conventional integer ones. The color-based versions of the detectors

worked in general as well or better than the grey-scale ones.

Lastly, pairs of parameters were found which allow the automatic detection of coasts with an average

performance above 90%, slightly inferior than the best solution with varying parameters.

Palavras-chave:
Satellite
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Automatic Detection

Color-Based Detection

Grey-Scale Detection

Fractional Processing
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Chapter 1

Introduction

This first chapter briefly describes the contents of the present dissertation. It includes a small text

explaining the relevance of studying fractional image processing and applying it to the aeronautic field,

an overview of what will be the studied topics, the objectives and its structure.

1.1 Motivation

Throughout the years, image processing has been an essential tool in the field of aerospace engi-

neering, from inspection of aircraft parts until the navigation of these ships. In order to overcome bad

weather’s lack of visibility, pilots use processed images to know where they are and where to go. Also,

the processed images taken by satellites allow to extract relevant information in different fields such as

[1]:

• land monitoring;

• routine mapping;

• surveillance of the marine environment, including oil-spill monitoring;

• ship detection for maritime security;

• mapping to support humanitarian aid and crisis situations.

This list goes on, and everyday appears a new application for this type of images.

Tiago Bento [2] and José Gonçalves [3] already applied fractional edge detection to medical images

and arrived to conclusions that show its great potential. It is now relevant to apply this fractional pro-

cessing to other matters. In this dissertation, this knowledge is applied to the aerospace field by using

satellite images acquired from Copernicus Open Access Hub [4]. Being Prof. Rui Melicio part of IN-

FANTE project [5], it is interesting to apply this knowledge to the aerospace field. INFANTE project is an

R&D project for the development and in-orbit demonstration of technology for a small satellite, precursor

for Earth observation constellations. Thus, this dissertation also aims to help the project with insights

that may benefit and enhance current investigations regarding satellite technology.
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1.2 Objectives

The objectives of this work are the application of fractional derivatives to image processing in the

aeronautical field to:

• Verify if fractional algorithms reveal the same potential in the processing of images outside of the

medical area, namely satellite images;

• Compare grey-scale algorithms against color based methods;

• Check if it is possible to identify sets of parameters that allow an automatic treatment of the images,

since that revealed impossible in medical applications.

1.3 Thesis Outline

This thesis is composed of five chapters and four appendices:

• Chapter 1 is the present chapter and it is the introduction, where the objectives, motivation, outline

and innovation of the investigation are presented.

• In Chapter 2 the state of the art in the subject is handed over. This means that the theoretical

formulations needed to understand the experiments performed are exposed as well as all the

accomplishments in the matter so far.

• Chapter 3 is where all the experimental implementation is explained. In this case, the work is com-

putational so the implementations are the algorithms developed as well as a few considerations.

• In Chapter 4 the results of the algorithms’ testing are briefly presented and analysed. Extended

results are presented in the appendices under the form of tables and plots.

• Finally Chapter 5 presents conclusions on the results and objectives proposed in the introduction.

1.4 Contribution

In this work, the application of fractional processing of images is carried on [2, 3], only this time, the

fractional derivatives are applied to satellite images. This means these are images with a much greater

resolution (10980X10980p) which makes their processing much more heavy computationally, but, at the

same time, due to this, edge gradients are very well defined. In order to detect coasts in the images,

conventional integer algorithms are integrated with fractional derivatives’ formulations.

Besides conventional grey-scale fractional processing, recent algorithms perform edge detection us-

ing color images. An already existent algorithm will be used in this work. Furthermore, its mathematical

formulations will be the base to adapt other detectors to receive as input a color image. A different novel

approach is also tested to adapt a zero-crossing fractional edge detector to color-based edge detection.

This study intends to check if color based processing is useful in the application in question.
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Finally, it is of great interest the automatic detection of coasts for a large and heterogeneous data

set. The search for parameters that may present high performance in the detection of coasts in satellite

images is also carried out in this work. A high performance solution with fixed parameters that almost

matches results with varying parameters is presented. This result allows the algorithm to automatically

detect coasts in different images without having to tune parameters.
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Chapter 2

State of the Art

In this section, the state of the art relevant for this study is presented. The topics covered here are:

• Satellite Image Processing: section 2.1

• Fractional Derivatives: section 2.2

• Image Processing: section 2.3

• Edge Detection Methods: section 2.4

2.1 Satellite Image Processing

Satellite images are taken in digital form by artificial satellites. These images are then processed

by computers to extract information. Statistical methods are applied to them and after processing pixel

values are evaluated.

As mentioned in the introduction, the information retrieved by this processing has many different

applications such as land monitoring or support humanitarian aid and crisis situations. Therefore this

theme has been deeply studied and developed recently.

According to [6], satellite image processing is a kind of remote sensing which works on pixel resolu-

tions to collect coherent information about the earth surface.

There are four types of resolutions related to satellite imagery [7]:

• Spatial resolution: it is determined by the sensors Instantaneous Field of View (IFoV) and is

defined as the pixel size of an image that is visible to the human eye being measured on the

ground;

• Spectral resolution: measures the wavelength internal size and determines the number of wave-

length intervals that the sensor measures;

• Temporal resolution: defined as the time that passes between various imagery cloud periods;

• Radiometric resolution: provides the actual characteristics of the image. It gives the effective bit

depth and records the various levels of brightness of the image.
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On October 24, 1946, the first photo from space was taken. This grainy, black-and-white photo shown

in Figure 2.1 was taken from an altitude of 105 kilometers by a 35-millimeter motion picture camera riding

on a V-2 missile.

Figure 2.1: First Photo taken from Space [8]

Since the 60s, the earth observation field evolved significantly. A film sensitive to wavelengths was

developed. This feature could be used to differentiate for example different types of vegetation.

TIROS 1, the first weather satellite, was put in orbit in 1960 [9]. It supplied the US Weather Bureau

with daily images of cloud formation and represented a milestone in weather forecasting.

Non-photographic remote sensing technology grew rapidly after the first mapping satellite, Landsat

1, was sent into orbit in 1972 [10]. It was geared with a new type of sensor known as a multi spectral

scanner (MSS). With this new technology, data was generated in the form of digital matrices enabling

substantial advances in image processing. Today the scanner is a very important tool in remote sensing.

It is used on land, in aircraft and on board satellites.

Another important tool used nowadays is the radar sensor [11]. A radar sensor system emits the

radiation that it ultimately records and is therefore classified as an active sensor. In simple terms, the

radar sensor releases pulses of energy down towards the surface of the Earth. A fraction of the energy is

reflected and returns as an ’echo’ signal. The power of the returned signal will depend on the roughness

and moisture content of the surface and the degree and orientation of sloping in relation to the radar

beam. The delay of the ’echo’ reveals the distance to the reflecting surface. Radar sensors use energy

emitted at longer wavelengths which can infiltrate clouds and haze effectively, and can therefore acquire

imagery at night. This provides a significant lead over passive satellites that are hampered by clouds

and require sunlight to acquire detailed imagery.
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2.1.1 Sentinel-2

In this dissertation, images from the Copernicus Sentinel-2 mission are used [1]. This mission com-

prises two polar-orbiting satellites placed in the same sun-synchronous orbit, phased at 180◦ in relation

to each other. It aims at monitoring variability in land surface conditions, and its wide swath width (290

km) and high revisit frequency will support monitoring of Earth’s surface changes.

Each of the Sentinel-2 satellites weights approximately 1200 kilograms. Both have been put into

orbit with the European launcher VEGA. The satellite lifespan is approximately 7 years. Batteries and

propellants have been provided to accommodate 12 years of operations, including end of life de-orbiting

operations.

Figure 2.2: Sentinel-2 Satellites [1]

The mission objectives are the following [1]:

• systematic acquisitions of high-resolution, multi spectral images allied to a high revisit frequency;

• continuity of multi spectral imagery provided by the SPOT series of satellites and the USGS LAND-

SAT Thematic Mapper instrument;

• observation data for the next generation of operational products, such as land-cover maps, land-

change detection maps and geophysical variables.

These high-level objectives will ensure that Sentinel-2 makes a significant contribution to Copernicus

themes, such as climate change, land monitoring, emergency management, and security.

2.2 Fractional Derivatives

In this section, theoretical formulations regarding fractional Derivatives will be demonstrated.
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2.2.1 Historic Background

Fractional calculus constitutes an augmentation of the conventional integer calculus that exists for

over than three hundred years. Its study was launched by Leibniz and L‘Hospital as a conclusion of a

written conversation by letters in 1695 [12]. They wondered what would be the derivative if the order

was one half rather than an integer order. That year is considered the birth year of fractional calculus.

The subject introduced by these two gentlemen was object of study during the following decades.

There are reports from Euler (1730), Lagrange (1772), Laplace (1812), Lacroix (1819), Fourier (1822),

Liouville (1832), Riemann (1847), Green (1859), Holmgren (1865), Grunwald (1867), Letnikov (1868),

Sonini (1869), Laurent (1884), Nekrassov (1888), Krug (1890), Weyl (1919), among others.

In 1819 Lacroix [13], answered the problem raised by Leibnitz and L’Hospital for the first time. He

said that d
1/2x
dx1/2 was 2

√
x/π. In [13], Lacroix developed (2.1) for the fractional derivative of y = xβ with

fractional order α :

Dα
xx

β =
Γ(β + 1)

Γ(β − α+ 1)
xβ−α (2.1)

where Γ denotes the gamma function which is defined for z > 0 by:

Γ(z) =

∫ ∞
0

e−xxz−1dx (2.2)

Substituting α = 1/2 and β = 1 in (2.1) Lacroix’s result (2
√
x/π) is obtained.

Using the linearity of fractional derivatives, this method may be applied to polynomials and series.

However, this class of functions is small in order for the method to be considered a general rule. Never-

theless, this was a first development for practical applications on fractional calculus.

In 1823, Abel presented an application for the subject applying fractional calculus to the resolution of

an integral equation of the tautochrone problem [14]. The tautochrone problem is the determination of

a curve in the (x, y) plane such that the time needed for a particle to go down the curve until its lowest

point under the force of gravity is independent of its initial position (xo, yo) on the curve.

The most relevant advances in the fractional calculus field occurred around 1832 when Joseph Liou-

ville began to study fractional calculus after analysing Abel’s solution and managed to apply his inves-

tigation to potential theory [14]. Liouville proposed two formulas for the fractional derivatives. However,

these formulas were not accepted as general formulas for the same reason as Lacroix’s formula. Their

scope was a narrow group of functions.

One of the most useful breakthroughs in the history of fractional calculus might be due to an investi-

gation paper written by Bernhard Riemann [15]. While attempting to generalize a Taylor series, Riemann

obtained the expression that is the most-widely used modern definition of fractional integral.

The formulation that is now called the Riemann-Liouville definition is derived using the Cauchy’s

integral formula as a starting point. Laurent [16] used a contour given as an open circuit (known as

Laurent loop) and arrived to today’s definition.
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At the same time, Grünwald and Letnikov suggested another definition of fractional derivative which

is also frequently used today. Grünwald [17] (1867) adopted the definition of a derivative as the limit

of a difference quotient. He arrived at definite-integral formulations for ordinary derivatives, proved

that Riemann’s integral had to have a finite lower limit and also that Liouville’s definition had a −∞

limit. Letnikov also showed that Grünwald-Letnikov (GL) definition coincides, under certain relatively

soft conditions, with the Riemann-Louville definition. Nowadays, the GL definition is mainly used for

derivation of many numerical methods.

Significant modern advances in fractional calculus were made by Caputo in 1967 [18]. One of the

main disadvantages of the Riemann-Liouville definition was that unpractical initial conditions were re-

quired. Caputo reformulated this classical definition in order to use classical initial conditions, the same

as integer order differential equations. GL, RL and Caputo definitions will be explored in the next sub-

sections.

Fractional calculus has been deeply explored during the last three decades. With the theoretical

formulations developed before, new applications to engineering and science problems were created

using fractional derivatives. Applications such as fractional conservation of mass [19], tuning of PID

controllers [20], groundwater flow problem [21], ultrasonic wave propagation in human cancellous bone

modelling [22], modeling contaminant flow in heterogenous porous media [23], fractional dynamics in

the trajectory control of redundant manipulators [20], time-space fractional diffusion equation modelling

[24], heat diffusion [20], structural damping models [25] or even a variable-order fractional Schrödinger

equation [26].

2.2.2 Grünwald-Letnikov Definition

The first order derivative of a function is given by (2.3):

D1f(x) = lim
h→0

f(x+ h)− f(x)

h
(2.3)

Iterating, it is possible to arrive to the nth derivative of a function. (2.4) can be deduced by induction:

Dnf(x) = lim
h→0

h−n
n∑

m=0

(−1)m

 n

m

 f(x−mh) (2.4)

where,

 n

m

 =
n!

m!(n−m)!
(2.5)

The Grünwald-Letnikov derivative is a generalization of the derivative in (2.4). The idea behind is

that h should approach 0 as n approaches infinity. But before going there, to extend this expression,

binomial coefficients must cope with real numbers. For that, the Euler gamma function is used, instead

of the factorials in (2.5):
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 a

b

 =


Γ(a+1)

Γ(b+1)Γ(a−b+1) , if a, b, a− b /∈ Z−

(−1)bΓ(b−a)
Γ(b+1)Γ(−a) , if a ∈ Z− ∧ b ∈ Z+

0

0, if [(b ∈ Z− ∨ b− a ∈ N) ∧ a /∈ Z−] ∨ (a, b ∈ Z− ∧ |a| > |b|)

(2.6)

Combining (2.4) with (2.6) it is provided the main justification for the following extension (2.7) of the

integer-order derivative to any real order α > 0 which was proposed independently by Grünwald [17]

and Letnikov [27]:

GLDαf(t) = lim
h→0

h−α
∞∑
j=0

(−1)k

 α

k

 f(t− kh), t ∈ R (2.7)

For practical reasons, a truncation of the expression above was introduced. With an initial value c,

the truncated version of the derivative is often preferred since it can be applied to functions that are not

defined (in the interval from -∞ to c):

cD
α
t f(t) = lim

h→0
h−α

N∑
k=0

(−1)k

 α

k

 f(t− kh), N =

⌊
t− c
h

⌋
, t > c (2.8)

Expression (2.8) constitutes the formulation that is going to be applied to the different edge detectors

in order to perform fractional image processing.

2.2.3 Riemann-Liouville Definition

The Riemmann-Liouville fractional definition was obtained computing the direct generalization of

Cauchy’s formula for a nth order integral:

∫ x

a

dx1

∫ x1

a

dx2 . . .

∫ xn−1

a

f (xn) dxn =
1

(n− 1)!

∫ x

a

f(t)

(x− t)1−n dt (2.9)

Since, (n − 1)! = Γ(n), Riemann realized that (2.9) could have a meaning even when n took values

that were not integers. So, by generalization, the Riemann-Liouville fractional integral of order α was

derived:

Iαa+f(x) :=
1

Γ(α)

∫ x

a

f(t)

(x− t)1−α dt (2.10)

Due to the properties of this operator, the Riemann-Louville’s fractional derivative can be defined as

in (2.11) [28]:

cD
α
xf(x) =


∫ x
c

(x−t)−α−1

Γ(−α) f(t)dt, if α ∈ R−

f(x), if α = 0

ddαe

dxdαe c
D
α−dαe
x f(x), if α ∈ R+

(2.11)
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2.2.4 Caputo’s Definition

The Caputo derivative is important to model phenomena using classical initial conditions which are

more practical than the initial conditions required by other definitions . It is stated in (2.12):

CDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α+1−n dτ (2.12)

With α > 0. If needed, an inferior limit for the derivative may be added:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α+1−n dτ (2.13)

In contrast with the Riemann-Liouville’s derivative, Caputo’s derivative of a constant is equal to zero.

Caputo’s definition for all the R domain (2.14) can be found in [28]:

cD
α
t f(t) =


∫ t
c

(t−τ)−α−1

Γ(−α) f(τ)dτ, if α ∈ R−

f(t), if α = 0

cD
α−dαe
t

ddαe

dt(α) f(t), if α ∈ R+

(2.14)

2.3 Image Processing

Image processing is a method in which one carries out some operations on an image, in order to

get an enhanced image or to obtain some useful information from it. It is a type of signal processing in

which input is a picture and output may be a picture or relevant information regarding that image.

But what is an image? In the context of the present dissertation, an image is considered a two-

dimensional function f (x,y), where x and y are the coordinates of the pixels within the area (N × M )

of the picture. The value of f is the intensity of pixel (x,y). Computationally speaking, an image is a 2D

array organized in rows and columns given by:

f =


f(1, 1) f(1, 2) · · · f(1, N)

f(2, 1) f(2, 2) · · · f(2, N)
...

...
...

f(M, 1) f(M, 2) · · · f(M,N)

 (2.15)

The applications of image processing range from medicine to entertainment, passing by geological

processing and the main application for this work: remote sensing.

The processing of digital images can be divided into four categories:

• image enhancement

• image restoration

• image analysis

• image compression
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2.3.1 Image Processing Historic Background

One of the first applications in image processing appeared in the early 1920s in the newspapers

industry: the Bartlane System.

The name of the system comes from its two inventors, Bartholomew and Macfarlane, both from the

Daily Mirror newspaper. This way of transmitting images within long ranges was invented in 1920 and

the first trans-Atlantic cable picture was transmitted in 1921, between London and Halifax [29]. The

cable system employs the telegraphic typewriter to convert the picture values into those that will fit the

standard forms of communication. Figure 2.3 shows a picture transmitted with the Bartlane System [29].

Figure 2.3: Picture Transmitted and Reproduced by the Bartlane System [29].

The following years along the decade of the 20s were spent improving the Bartlane System. At the

end of the decade, the system retrieved higher quality images. New reproduction processes based on

photographic techniques were introduced and the number of tones reproduced in the images increased.

The following image presents a 15 tone digital image retrieved from the system at the end of the decade:

Figure 2.4: Barltlane System’s image at the end of the 1920s(15 tones) [30].

In the 1960s , enhancements in computing technology and the space race led to a great development

of digital image processing. In 1964, image processing techniques were used to improve the quality of

images of the moon taken by the Ranger 7 probe. Later these techniques were continuously used in

other space missions.

In the 70s, the processing of images started to be used in medical applications and in 1979 the

tomography was invented. This invention allowed Sir Godfrey N. Hounsfield and Prof. Allan M. Cormack

to win a shared Nobel Prize in medicine.

Since then, digital image processing has exploded and today is used in many different areas.

12



2.3.2 Image Processing Steps

The processing of digital images can be divided in eleven steps (Figure 2.5) [31]:

• Image Acquisition: It is simply capturing the image. This step may include pre-processing;

• Image Enhancement: Procedure of filtering image to improve quality (e.g. noise removal, contrast

increase);

• Image Restoration:Process of enhancing appearance of an image by mathematical or probabilis-

tic models (e.g. deblurring);

• Color Image Processing: Usage of colors of an image to extract features of interest;

• Wavelets and Multi-Resolution Processing: Representation of the image in different degrees of

resolution;

• Compression: Technique to reduce storage needed to save an image or the bandwidth required

to transmit it;

• Morphological Processing: Methods to extract image features that are useful in the representa-

tion and description of shape;

• Segmentation: Process to divide image components and isolate them. The more accurate the

segmentation, the more likely recognition is to succeed.;

• Representation and Description: It involves representing an image in different ways:

– Boundary Representation: it focuses on the external shape characteristics such as corners

and inflections;

– Regional Representation: it centers on internal properties such as texture and skeletal shape;

– Description: it is also known as Feature Selection and helps extracting relevant information.

• Recognition: Process of allocating labels to an object rooted on its description;

• Knowledge Base: Detailing regions of an image where the relevant information is known to be

located, therefore limiting the search that has to be performed in seeking that figures.
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Figure 2.5: Fundamental Steps of Digital Image Processing [32].

2.3.3 Convolution with Masks

Convolution is the procedure of summing each element of an image to its local neighbors, weighted

by a kernel or mask.

The convolution of an image can be represented by:

g(x, y) = h(x, y) ∗ f(x, y) (2.16)

where f(x, y) and h(x, y) are respectively the image and the kernel. Note that due to the commutative

property these two can be swapped in (2.16).

The mask can be represented by a two-dimensional matrix, generally 1x1, 3x3, 5x5 or 7x7. Note that

the mask has usually odd dimensions. That is due to the fact that being odd, the center of the mask can

be found. This is important because normally the center corresponds to the target pixel that is assigned

with the result of the convolution.

Convolution is composed of the following steps (Figure 2.6):

1. For each pixel in the input image, the mask is placed on top of the image with its origin lying on

that pixel;

2. the values of each pixel under the mask are multiplied by the values of the corresponding kernel

weights;

3. the results are summed to yield a single output value that is placed in the output image at the

location of the pixel being processed on the input.
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Figure 2.6: Convolution with masks (Adapted from [33]).

2.3.4 Derivative Filters

Derivative filters supply a quantitative measurement for the rate of change in pixel value within a

digital figure. When this kind of filters are used, the result can be used to enhance contrast, detect edges

and boundaries and to measure feature orientation. In this work, edge detection will be performed, thus

these filters are of relevant matter.

Convolution of the specimen image with derivative filters is known as derivative filtering operation.

In most of the times, there is a filter to each direction so convolution is performed twice. Using two

dimensions, a gradient can be measured from the combination of the convolutions in x and y:

∇f =

[
∂f

∂x
,
∂f

∂y

]
(2.17)

The gradient presented above points in the direction of most rapid increase in intensity. The magni-

tude (2.18) and orientation (2.19) of this gradient are frequently used to combine the two convolutions in

the processing of images with edges with different orientations.

‖∇f‖ =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

(2.18)

θ = tan−1

(
∂f

∂y
/
∂f

∂x

)
(2.19)

2.3.5 Image Segmentation

According to [34], ”Image segmentation is the process of partitioning an image into multiple seg-

ments”. It is used in image processing to locate objects and boundaries in images. Processing an

entire image can be computationally heavy. Nevertheless, image segmentation may help identifying the

regions of interest.

Image segmentation creates a pixel-wise mask for each object in the image. This technique gives us

a deep understanding of the object(s) present in the scene.
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There are two types of segmentation:

• Semantic Segmentation

• Instance Segmentation

To understand the difference between these two, let one take a look at Figure 2.7 and Figure 2.8:

Figure 2.7: Semantic Segmentation [35]. Figure 2.8: Instance Segmentation [35].

In Figure 2.7, every pixel belongs to one class of the two existent. All the pixels belonging to a

particular class are represented by the same color. This is an example of Semantic Segmentation.

In Figure 2.8 each person is identified individually so the algorithm assigns a unique color for each

individual. This is an example of Instance Segmentation.

One simple way to segment different objects is to use their pixel values. The pixel values will be

different for the objects and the image’s background if there is a sharp contrast between them. In this

case it can be used a technique called thresholding.

2.3.6 Thresholding

In many image processing applications, it is helpful to be able to split the regions of the image

corresponding to objects in which one is interested, from the regions that correspond to the background.

Thresholding frequently provides a simple and appropriate way of performing this segmentation based

on the different intensities of pixels in the foreground and background of an image.

The input of a thresholding operation is typically a gray-scale or color image. In the simplest im-

plementation, the output is a binary image. Usually, black pixels correspond to background and white

pixels correspond to foreground. In elementary applications, the segmentation is determined by a single

parameter known as the intensity threshold. Each pixel in the image is compared with this threshold. If

the pixel’s intensity is higher than the threshold, the pixel is set to white in the output. If it is less than the

threshold, it is set to black.

Therefore, an image f(x, y) that is an output of a thresholding operation is defined mathematically

by (2.20):

f(x, y) =

 0, pixel < threshold

1, pixel ≥ threshold
(2.20)
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2.3.6.1 Otsu Threshold

Otsu’s thresholding method requires iterating through all the possible threshold values and computing

a measure of spread for the pixel levels in each side of the threshold. This means that the pixels that

either fall within two classes: the foreground or the background. The goal of this method is to discover

the threshold value where the sum of foreground and background spreads is at its minimum.

First, the method computes the histogram for the values of the pixels in the input image. Then it

iterates the threshold value in order to find the optimal one. The metrics used to find it are:

• Within-class variance;

• Between-class variance.

From the following mathematical equation, variance (σ2) can be explained as the distribution of the

data. The higher the value of variance, the more dispersed the data is:

σ2 =

∑N
i=1 (xi − µ)

2

N
(2.21)

For two classes, within-class variance is given by the following expression:

Vw = W1 ∗ σ2
1 +W2 ∗ σ2

2 (2.22)

where Wi is the number of pixels of class i over the total of pixels.

In terms of the above mentioned metric (Vw), the lower the value of Vw is, the less dispersed the data

in each class is (background and foreground). In order to get the optimal threshold value one needs to

find the minimal value of Vw.

As it stands, between-class variance is the variance between two classes. In the case of two classes,

this metric is given by:

(Vb) = W1W2 (µ1 − µ2)
2 (2.23)

To get the suitable threshold value one shall find the maximal value of Vb. It is clear that this metric

is computationally faster since it does not require the computation of the variance [36].

Figure 2.9: Otsu’s Thresholding [36].
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2.4 Edge Detection Methods

Edge detection is an image processing technique that aims to find the limits of objects within images.

It works by detecting discontinuities in pixels intensities. It is a crucial tool in segmentation and other

areas of image processing.

An edge consists in a set of pixels with high intensity variations in their neighbourhood. These

variations can be used to resolve the depth, size orientation and surface properties of a digital image.

There are two types of edge detection: Gradient based and Laplacian based.

In the gradient based methods, edges are detected by taking the first order derivative of the image

and computing the gradient as explained in subsection 2.3.4. The gradient magnitude (2.18) is used to

calculate a measure of edge strength. Gradient orientation (2.19) helps to identify local edge orientation.

Sobel, Canny, Prewitt and Roberts are examples of edge detection algorithms that use the gradient.

In the laplacian based methods, the second order derivative of the image which may have zero-

crossings is computed. Generally, edges are found by searching zero-crossings of a non-linear differ-

ential expression. Usually, a Gaussian smoothing is performed before using this type of method. This

is due to the fact that the 2nd derivative is very sensitive to noise. The smoothing operation filters noise

and allows better edge detection. The most relevant relevant second order derivative based detector is

the Laplacian of Gaussian (LoG).

In the following subsections, the above mentioned algorithms for edge detection will be detailed.

2.4.1 Integer Edge Detection Methods

2.4.1.1 Gradient Based operators

2.4.1.1.1 Sobel operator

The Sobel operator performs a 2-D spatial gradient measurement on an image and so it highlights

regions where there are sudden increases of pixel intensity which correspond to edges.

The operator consists of two masks: one for the gradient in x direction (Gx) and other for the gradient

in y direction (Gy). Note that Gy is nothing more than Gx rotated 90 degrees [37].

Figure 2.10: Sobel convolution masks [37].

These kernels are planned to respond maximally to edges that are vertical and horizontal relatively

to the pixel grid, one kernel for each of the two perpendicular orientations. The masks can be applied

separately to the input image, in order to produce different measurements of the gradient component

in each orientation (Gx and Gy ). These can then be combined together to find the magnitude of the

gradient at each point and the orientation of that gradient with respectively (2.18) and (2.19).
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2.4.1.1.2 Roberts Cross operator

The Roberts Cross operator [38] performs a simpler, quick way to compute, 2-D spatial gradient

measurement on an image. It also summits regions with great variations in pixel intensity that correspond

to edges. The input and output of the operator are grey-scale images. Pixel values at each point in the

output represent the estimated absolute magnitude of the spatial gradient of the input image at that

point.

The Roberts operator consists of a pair of 2x2 masks, again one for each direction. Here, the mask to

compute one direction’s gradient is the other one rotated 90 degrees as one can observe in Figure 2.11

[37].

Figure 2.11: Roberts convolution masks [37].

The combination of the two gradients in order to find the magnitude and orientation is once more

performed using the above mentioned expressions.

2.4.1.1.3 Prewitt operator

Prewitt operator is used for edge detection in order to find two types of edges: Horizontal and Vertical

Detection of edges is performed by using the difference between corresponding pixel intensities of an

image. For this, again, a derivative mask is used. Two 3x3 operators, one for each direction (Figure 2.12)

[39].

Figure 2.12: Prewitt convolution masks [39].

When these masks are applied individually on a image it outputs only the horizontal or vertical edges.

As the center column/row is zero, it does not include the original values of an image but rather it cal-

culates the difference of right and left pixel values around that edge. This increases the edge pixels’

intensity and it becomes enhanced comparatively to the original image. Once more these two masks

may be combined in order to try to detect all edges in one image.
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2.4.1.1.4 Canny operator

The Canny edge detector is a very popular edge detection algorithm. It was developed in 1986 by

John F. Canny [40]. The algorithm is composed of the following steps:

1. Noise Reduction;

2. Gradient Calculation;

3. Non-maximum Suppression;

4. Hysteresis Thresholding.

The first step of the Canny algorithm is Noise Reduction. Since image processing is always vulner-

able to noise, it is important before processing to remove or reduce it. This is possible convolving the

image with a Gaussian Filter. Then, a simple 2-D first derivative operator (in the case of the algorithm

used in this work is the derivative of the Gaussian function used to smooth the image) is applied to the

smoothed image to highlight regions of the image with high first spatial derivatives (2.24) and (2.25).

∇g(x, y) = ∇(G(x, y, σ) ∗ f(x, y)) = ∇(G(x, y, σ) ∗ f(x, y) (2.24)

Ex =
∂G(x, y, σ)

∂x
∗ f(x, y) Ey =

∂G(x, y, σ)

∂y
∗ f(x, y) (2.25)

This step of the process is called Gradient Calculation. In (2.24) and (2.25), Ex and Ey are the

gradients in each direction and G(x, y, σ) the Gaussian filter defined as:

G(x, y, σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(2.26)

After computing gradient magnitude and orientation with (2.18) and (2.19) , a full scan is performed

in order to remove any unwanted pixels which may not constitute edges (Non-maximum Suppression).

In order to do this, for every pixel, it is checked if the point is a local maximum in its neighborhood, in the

direction of the gradient. Let one check the following example in Figure 2.13 [41, 42].

Figure 2.13: Canny’s Non Maximum Supression [41].
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Observing Figure 2.13, one can see that point A is on the edge (vertical edge). Gradient orientation

is perpendicular to the edge. Points B and C are in the gradient direction. So the value for the pixel

in point A is compared with the values from points B and C to see if it forms a local maximum. If so,

it is considered for next stage, otherwise, it is suppressed (put to zero). Therefore, in this case all the

points in the direction of A are suppressed, including C and B. In conclusion, the result obtained from

this phase is an intensity image with edges with a thickness of one pixel.

The final step of the algorithm is the Hysteresis Thresholding. In this phase, the algorithm decides

which edges are suitable for the output image. Each edge has an intensity proportional to the magnitude

of the gradient. For this, two threshold values are defined, the minimum and maximum values. All

gradients higher than the maximum threshold are considered ”sure-edges”. In contrast, the gradients

that are lower than the minimum threshold are considered ”non-edges”. For the gradients that are

between the two values two instances may occur [43]:

• if the pixels in question are connected to “sure-edge” pixels, they are considered to be part of

edges;

• otherwise, these pixels are also discarded and considered non-edges.

Figure 2.14: Canny’s Hysteresis Thresholding [42].

This stage also removes small pixels noises on the assumption that edges are long lines. After this,

the algorithm retrieves an output image with the edges identified by the detector.

The effect of the Canny operator is determined mostly by two parameters [44]: the width of the

Gaussian kernel used in the smoothing phase (σ), and the upper and lower thresholds used in the

hysteresis thresholding phase. Augmenting the width of the Gaussian kernel reduces the detector’s

sensitivity to noise, at the expense of losing some of the finer detail in the image. Usually, the maximum

threshold can be set quite high, and the lower threshold quite low for good results. Setting the lower

threshold too high can cause important edges not to be detected. Setting the maximum threshold too

low can lead to detection of edges that are actually residual noise that were not eliminated with the

smoothing operation.
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2.4.1.2 Laplacian Based operators

2.4.1.2.1 Laplacian of Gaussian operator

In image processing, the Laplacian is a measure of the 2nd spatial derivative of an image. It allows the

identification of regions with a rapid change of pixels intensity and is thus often used for edge detection.

The Laplacian is frequently used in an image that has first been smoothed with a Gaussian smoothing

filter in order to reduce noise intensity. The operator generally takes a single grey-scale image as input

and produces another grey-level image as output. The Laplacian of a 2D Image is given by the following

expression:

L(x, y) =
∂2I

∂x2
+
∂2I

∂y2
(2.27)

Since the image is a representation of discrete pixels, we have to find a discrete convolution mask

that can approximate the second derivatives in the formulation of the Laplacian. In the discrete domain,

the simplest approximation to the continuous Laplacian is to compute the difference of slopes along

each axis:

∂2f

∂x2
= f(i, j + 1)− 2f(i, j) + f(i, j − 1) (2.28)

∂2f

∂y2
= f(i+ 1, j)− 2f(i, j) + f(i− 1, j) (2.29)

Substituting (2.28) and (2.29) in (2.27), the first kernel of (2.30) is obtained. The second, a non-

separable eight-neighbor Laplacian defined by the gain-normalized impulse response array, was sug-

gested by Prewitt. The mask on the right is a separable eight-neighbor version of the Laplacian [45].

0 1 0

1 −4 1

0 1 0

1 1 1

1 −8 1

1 1 1

−1 2 −1

2 −4 2

−1 2 −1

(2.30)

Using one of these three kernels, the Laplacian can be calculated convolving them with the image.

Since these kernels are approximating a second derivative on the image, they are very sensitive to

noise. To tackle this, the image is Gaussian smoothed before applying the Laplacian filter reducing high

frequency noise.

The smoothing filter can also be convolved first with the Laplacian kernel and only then convolve the

result with the input image. This process presents two main advantages:

• since both the Gaussian and the Laplacian kernels are normally smaller than the input image, this

method usually requires less arithmetic operations;

• The LoG kernel can be pre-calculated in advance so only one convolution needs to be performed

saving time in processing.
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The Laplacian of Gaussian operator of a 2D Image is defined by (2.31) and is illustrated in Figure 2.15

[37]:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (2.31)

Figure 2.15: 2-D Laplacian of Gaussian operator [37].

2.4.2 Fractional Edge Detection Methods

2.4.2.1 Fractional Roberts Operator

Nowadays, fractional calculus attracts as much attention as the integer-order differential algorithms.

As for the definition of fractional derivatives, there are a few. Three of the most popular definitions are

detailed in section 2.2: G-L, R-L and Caputo’s definitions.

The authors of [46] present the application of Grünwald-Letnikov definition to the integer Roberts

edge detector and arrive to a kernel for a fractional order operator. It is known that the Roberts expres-

sion for the gradients stands:

g(x, y) = |∇f(x, y)| =
{

[f(x, y + 1)− f(x+ 1, y)]2 + [f(x+ 1, y + 1)− f(x, y)]2
} 1

2

(2.32)

Combining (2.8) with (2.6) the authors arrived at expressions for the gradient’s components:

∂αf(x,y)
∂xα ≈ f(x, y) + (−α)f(x− 1, y) + (−α)(−α+1)

2 f(x− 2, y)

+ · · ·+ (−1)n−1Γ(α+1)
(n−1)!Γ(α−n+2)f(x− n, y)

(2.33)

∂αf(x,y)
∂yα ≈ f(x, y) + (−α)f(x, y − 1) + (−α)(−α+1)

2 f(x, y − 2)

+ · · ·+ (−1)n−1Γ(α+1)
(n−1)!Γ(α−n+2)f(x, y − n)

(2.34)
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Referring to (2.33) and (2.34), the 3×3 fractional differential mask can be constructed in the eight cen-

tral symmetric directions, which are negative x-coordinate, negative y-coordinate, positive x-coordinate,

positive y-coordinate, left downward diagonal, right upward diagonal, left upward diagonal, and right

downward diagonal. The sum of the eight directional masks yields:

α2−α+2
2

α2−α+2
2

α2−α+2
2

α2−α+2
2 −8α α2−α+2

2

α2−α+2
2

α2−α+2
2

α2−α+2
2

(2.35)

Note that the mask in (2.35) with α = 1 corresponds to the center Laplacian mask in (2.30).

Combining the fractional mask to the Roberts operator defined by (2.32), the authors arrived at a

solution for edge detection in which the texture of the image is enhanced and small edges are also

detected. (2.36), (2.37) and (2.38) represent the mathematical formulation for this combination:

Dα[g(x, y)] =
∂αg(x, y)

∂xα
+
∂αg(x, y)

∂yα
(2.36)

∂2g(x,y)
∂x2 ≈ g(x, y) + (−α)g(x− 1, y) + (−α)(−α+1)

2 g(x− 2, y)

+ · · ·+ (−1)n−1Γ(α+1)
(n−1)!Γ(α−n+2)g(x− n, y)

=

 [f(x, y + 1)− f(x+ 1, y)]2

+[f(x+ 1, y + 1)− f(x, y)]2


1
2

+

(−α)

 [f(x− 1, y + 1)− f(x, y)]2

+[f(x, y + 1)− f(x− 1, y)]2


1
2

+

(−α)(−α+1)
2

 [f(x− 2, y + 1)− f(x− 1, y)]2

+[f(x− 1, y + 1)− f(x− 2, y)]2


1
2

+ · · ·+

(−1)n−1Γ(α+1)
(n−1)!Γ(α−n+2)

 [f(x− n, y + 1)− f(x− n+ 1, y)]2

+[f(x− n+ 1, y + 1)− f(x− n, y)]2



(2.37)

∂αg(x,y)
∂yα ≈ g(x, y) + (−α)g(x, y − 1) + (−α)(−α+1)

2 g(x, y − 2)

+ · · ·+ (−1)n−1Γ(α+1)
(n−1)!Γ(α−n+2)g(x, y − n)

=

 [f(x, y + 1)− f(x+ 1, y)]2

+[f(x+ 1, y + 1)− f(x, y)]2


1
2

+

(−α)

 [f(x, y)− f(x+ 1, y − 1)]2

+[f(x+ 1, y)− f(x, y − 1)]2


1
2

+

(−α)(−α+1)
2

 [f(x, y − 1)− f(x+ 1, y − 2)]2

+[f(x+ 1, y − 1)− f(x, y − 2)]2
} 1

2 + · · ·+

(−1)n−1Γ(α+1)
(n−1)!Γ(α−n+2)

 [f(x, y − n+ 1)− f(x+ 1, y − n)]2

+[f(x+ 1, y − n+ 1)− f(x, y − n)]2


1
2

(2.38)

where f(x, y) is the the original image, and g(x, y) is the processed image using an integer Roberts

operator.
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From the experimental results in [46], it was concluded that the improved algorithm has the advan-

tages of Roberts, that is, obtaining thinner edges, besides allowing edge enhancement as one can

observe in Figure 2.16.

Figure 2.16: Roberts operator combination with fractional operator [46].

2.4.2.2 Fractional Sobel Operator

Following the same line of thought, Charles Yaacoub [47] presented a fractional Sobel operator.

Sobel’s approximations to the first order numerical derivative applied in two-dimensional space re-

sult in the filter masks shown in Figure 2.10. Thus, the resulting image gradient components can be

expressed as:

Gx = −f(x− 1, y − 1)− 2f(x− 1, y)− f(x− 1, y + 1)

+ f(x+ 1, y − 1) + 2f(x+ 1, y) + f(x+ 1, y + 1)
(2.39)

Gy = −f(x− 1, y − 1)− 2f(x, y − 1)− f(x+ 1, y − 1)

+ f(x− 1, y + 1) + 2f(x, y + 1) + f(x+ 1, y + 1)
(2.40)

By applying the G-L definition (2.8) to Gx expressed in (2.39), the fractional α-th order derivative of

Gx yields:

DαGx =
α(−α+ 1)(−α+ 2)

12
· [f(x− 4, y − 1) + 2f(x− 4, y) + f(x− 4, y + 1)]

+
α(−α+ 1)

4
· [f(x− 3, y − 1) + 2f(x− 3, y) + f(x− 3, y + 1)]

+

[
α

2
− α(−α+ 1)(−α+ 2)

12

]
· [f(x− 2, y − 1) + 2f(x− 2, y) + f(x− 2, y + 1)]

+

[
−1

2
− α(−α+ 1)

4

]
· [f(x− 1, y − 1) + 2f(x− 1, y) + f(x− 1, y + 1)]

− α

2
[f(x, y − 1) + 2f(x, y) + f(x, y + 1)]

+
1

2
[f(x+ 1, y − 1) + 2f(x+ 1, y) + f(x+ 1, y + 1)]

(2.41)

The gradient in (2.41) can be obtained by convolving the image f(x, y) with the filter mask presented

in (2.42):
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α(−α+1)(−α+2)
12

α(−α+1)(−α+2)
6

α(−α+1)(−α+2)
12

α(−α+1)
4

α(−α+1)
2

α(−α+1)
4

α
2 −

α(−α+1)(−α+2)
12 α− α(−α+1)(−α+2)

6
α
2 −

α(−α+1)(−α+2)
12

− 1
2 −

α(−α+1)
4 −1− α(−α+1)

2 − 1
2 −

α(−α+1)
4

−α2 −α α
2

1
2 1 1

2

(2.42)

Since the mask has an even number of rows, the origin is not centered. In the mask above the origin

is considered to be located on the 5th row and 2nd column.

A similar reasoning can be applied to the y-direction and the conclusion that the mask in y is the

mask in x transposed can be withdrawn.

According to the authors, the proposed edge detector was able to reduce the number of false edge

pixels while presenting thinner edges, compared to the conventional Sobel-based edge detection.

2.4.2.3 Fractional LoG Operator

In 2014, the authors of [48] presented a fractional adaptation for the first operator in (2.30) (using the

symetric mask).

In a discrete function (f ), the operator corresponds to the approximation in (2.43):

G(f) = −f(x− 1, y)− f(x, y − 1) + 4f(x, y)− f(x, y + 1)− f(x+ 1, y) (2.43)

Decomposing and noting that for this case h = 1, (2.44) may be derived:

G(f) =
∂f(x, y)

∂x
+
∂f(x, y)

∂y
− ∂f(x, y + 1)

∂y
− ∂f(x+ 1, y)

∂x
= −∂

2f(x+ 1, y)

∂x2
− ∂2f(x, y + 1)

∂y2
(2.44)

By generalizing the order from integer to fractional, a fractional-order differential form of the Laplacian

operator can be obtained:

Gα(f) = −∂
αf(x+ 1, y)

∂xα
− ∂αf(x, y + 1)

∂yα
(2.45)

Using the G-L definition for the fractional order derivative as it was used for the other operators, one

may arrive to (2.46):

Ga(f) = −
K−1∑
k=0

(−1)kCakf(x+ 1− k, y)−
K−1∑
k=0

(−1)kCakf(x, y + 1− k)−

=

[
f(x+ 1, y)− αf(x, y) +

α2 − α
2

f(x− 1, y) + . . .+ (−1)K−1CαK−1f(x+ 2−K, y)

]
−
[
f(x, y + 1)− αf(x, y) +

α2 − α
2

f(x, y − 1) + . . .+ (−1)K−1CαK−1f(x, y + 2−K)

] (2.46)
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With the definition above, the mask that performs the calculation of the fractional laplacian may be

constructed:

0 . . . 0 (−1)κCαK−1 0

...
...

...
...

...

0 . . . 0
(
α− α2

)
/2 0

(−1)κCαK−1 . . .
(
α− α2

)
/2 2α −1

0 . . . 0 −1 0

(2.47)

Experiments with (2.47) show that, the larger the order of differentiation is the better the image

feature is preserved, but the more noise appears too.

2.4.2.4 CRONE Operator

In 2002, Benoı̂t Mathieu wanted to prove that an edge detector based on fractional differentiation

could improve edge detection and detection selectivity in the case of parabolic luminance transitions.

He started by analysing the detection power of fractional differentiation. To do so, a fractional deriva-

tive was applied to a step type parabolic transition and the abscissa of its maximum compared to the

inflexion point of the transition (Figure 2.17) [49].

Figure 2.17: Parabolic Step-type transition and its derivative [49].

The analysis comprises two intervals for the derivative order: initially values between 0 and 1, and

then between 1 and 2. This division is relevant because each of these intervals defines a different shape

for the derivatives of the transition curve.

For α ∈]0, 1[, there is a shift between the inflexion point of the function and its derivative. The closer

α is from zero, the greater the shift is (Figure 2.18) [49]. This means the maximum of the derivative for

these orders is always on the right of the inflexion point.
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Figure 2.18: Normalized modulus of f (n)(x) for α ∈]0, 1[ [49].

For α ∈]1, 2[, the abscissa of the derivative’s maximum corresponds to the inflexion point of the

parabolic step curve. It is also noted that there is an infinite slope to the right of the inflexion point. This

allows not only the detection of the transition inflexion point but also high selectivity.

With the aim of achieving better detection selectivity, an operator which presents an infinite slope in

both sides of the inflexion point was developed. This was achieved by using the derivative with orders of

α ∈]1, 2[. The solution steps are the following:

1. take the opposite of the derivative function calculated with decreasing x (Figure 2.19b);

2. add the derivative function calculated with increasing x (Figure 2.19a).

Figure 2.19: (a) obtained f (n)(x) for increasing x, (b) inverted f (n)(x) for decreasing x, (c) obtained
f (n)(x) for decreasing x [49].

The spatial operator which defines CRONE (”Contour Robuste d’Ordre Non Entier”), therefore sub-

tracts f (n)(x) calculated using decreasing x, from f (n)(x) calculated using increasing x. The operator is

written as D←→
n and is illustrated in Figure 2.20 [49].
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Figure 2.20: (a) obtained f (n)(x) for increasing x, (b) inverted f (n)(x) for decreasing x, (c) CRONE
detector [49].

2.4.2.4.1 Mathematical formulation of D←→
n

The first derivative of a function f(x), calculated with increasing x can be defined by:

D−→
nf(x) =

f(x)− f(x− h)

h
(2.48)

and with decreasing x:

D←−
nf(x) =

f(x)− f(x+ h)

h
(2.49)

being h infinitely small.

It is relevant to introduce a shift operator q which is defined by:

qf(x) = f(x+ h)

q−1f(x) = f(x− h)
(2.50)

Using the shift operator on the directional derivative yields:

D−→f(x) =
1− q−1

h
f(x)

D←−f(x) =
1− q
h

f(x)

(2.51)

From the expressions above it is clear that:

D−→ =
1− q−1

h

D←− =
1− q
h

(2.52)

Generalizing to a order n, D−→
n and D←−

n can be defined as:

D−→
n =

(
1− q−1

h

)n
(2.53)

D←−
n =

(
1− q
h

)n
(2.54)
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As explained before, the bidirectional detector can be constructed by a composition of the two unidi-

rectional operators using the following expression:

D←→
n = D−→

n − D←−
n =

1

hn

[(
1− q−1

)n − (1− q)n
]

(2.55)

Expanding (1 − q−1)n and (1 − q)n using Newton’s binomial formula, the expression above can be

rewritten:

D←→
n =

1

hn

∞∑
k=0

(−1)k
n(n− 1) · · · (n− k + 1)

k!

×
(
q−k − qk

) (2.56)

Applying the operator to a function, for example the transition studied before:

D←→
nf(x) =

1

hn

∞∑
k=0

ak[f(x− kh)− f(x+ kh)] (2.57)

where

ak = (−1)k

 n

k


= (−1)k

n(n− 1) · · · (n− k + 1)

k!

(2.58)

In order to detect edges on images, the formulated detector must be designed in two dimensions.

It must be considered then a vectorial operator consisting in two independent components, x and y.

Each of the components is a truncated single dimension CRONE detector. The horizontal and vertical

component masks are shown respectively in (2.59) and (2.60).

[
+am · · · +a1 0 −a1 · · · am

]
(2.59)



+am
...

+a1

0

−a1

...

−am


(2.60)

The detector was experimented in artificial and real images and performance compared with Prewitt

operator’s. In all cases CRONE detector showed better immunity to noise.

30



2.4.3 Color-Based Edge Detection

Nowadays, the methods using grey-scale images yet described are the ones most often used in edge

detection. Nevertheless, detectors that use as input the color information of images also exist. The main

difference between coloured images and gray-level images is that, in a colour image, a vector (which

generally consists of the three components of the RGB space) is assigned to a pixel, while a scalar

grey-level magnitude is assigned to a pixel of a grey-level image. This means that in color-based image

processing, the image functions are measured as vectors instead of scalar values.

The techniques used in color-based edge detection can be subdivided on the basis of their principle

procedures into two classes [50]:

• Monochromatic-based techniques: treat values from the color channels first separately and then

combine them together;

• Vector-valued techniques: treat the color information as color vectors in a vector space provided

with a vector norm.

Until now, the majority of the existent color edge detection methods are monochromatic-based tech-

niques, which produce, in general, better results than grey-level edge detection [51].

While in grey-level images a great variation in the intensity is considered as an edge, the term “color

edge” has not been permanently defined for color images. Throughout the years few definitions have

been proposed. One of the elder ones is that an edge exists precisely in the color image if the intensity

image contains an edge [52]. However, this definition ignores that discontinuities in the hue and satura-

tion channels may occur. For example, the edges of objects that are next to each other and that have

the same value but different colors (Hue) might not be recognized using this definition. A second defini-

tion for a color edge states that it exists if at least one of the color components contains an edge. But

merging the edge detection results from the different color components may lead to some localization

inaccuracies of edges in the individual color channels. A third monochromatic-based definition for color

edges is rooted on the computation of the sum of absolute values of the gradients for the three channel

components. According to this definition, a color edge exists if the summation of the magnitudes of the

gradients exceeds a threshold value .

All definitions ignore the relationship between vector components. Since a color image represents

a vector-valued function, a discontinuity of chromatic information can and should also be defined in

a vector-valued way [51]. In subsection 2.4.3.1, an adaptation of the Canny algorithm to color image

processing using a vector-valued technique is presented.

2.4.3.1 Canny operator using Color image processing

In 1987, Kanade introduced an extension of the Canny operator [53] for color edge detection. The

operator is based on the same steps as the conventional Canny but the computations are now vector

based. This means that the algorithm determines the first partial derivatives of the smoothed image in

both x and y directions.
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A three-component color image is represented by a function that maps a point in the image plane to

a three-dimensional (3-D) vector in the color space. In the RGB space, the function is C = (R,G,B). It

is possible now to define the Jacobian, which is the matrix that contains the first partial derivatives for

each component of the color vector:

J =


Rx Ry

Gx Gy

Bx By

 = (Cx,Cy) (2.61)

The indexes x and y represent the partial derivatives:

Rx =
∂R

∂x
and Ry =

∂R

∂y
(2.62)

The direction in the image along which the largest variation in the chromatic image function occurs

is represented by the eigenvector of JTJ corresponding to the largest eigenvalue.

JTJ =

 Jx Jxy

Jyx Jy

 (2.63)

Jx = R2
x +G2

x +B2
x

Jy = R2
y +G2

y +B2
y

Jxy = Jyx = RxRy +GxGy +BxBy

(2.64)

In order to calculate the magnitude one has to compute det(JTJ − λI) = 0 which yields:

λ =
Jy + Jx ±

√
(Jy + Jx)2 − 4(JxJy − J2

xy)

2
(2.65)

The orientation θ of a color edge is determined in an image by:

tan(2θ) =
2 · Cx · Cy

‖Cx‖2 − ‖Cy‖2
(2.66)

After the magnitude is determined for each edge, non-maximum suppression is used, based on a

threshold value in order to eliminate broad edges.

According to experiments in Carnegie Mellon University [51], the color edges describe object geom-

etry in the scene better than the intensity edges, although over 90% of the edges are identical.
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Chapter 3

Implementation

In this chapter, the implementation of the algorithms for edge detection in satellite images is pre-

sented. This work was developed in a Windows environment using MATLAB as programming workspace

and Excel as data analysis assistant. The detectors implemented for grey-scale edge detection were

Fractional Canny, Roberts, Sobel, LoG, CRONE and the Fractional Derivatives Mask in (2.35) . Versions

of each operator using color-based image processing were also implemented. All the detectors were

introduced in the same code that loads the images, performs pre and post-processing and performance

analysis. MATLAB custom functions were used, as well as functions adapted from colleagues’ work in

medical images [2] [3].

3.1 Introduction

In order to check fractional derivatives’ power in the processing of satellite images, more specifi-

cally the identification of coasts in satellite images, the conventional edge detectors were adapted to

perform fractional detection. The implementation was totally performed using MATLAB in a Windows

environment.

In the main script, basic sections of code were written for the natural processing of images including

the loading, pre-processing, edge detection , post-processing (which includes morphological operations

on the processed image) and finally performance assessment.

Two types of detectors were used:

• Grey-scale image edge detectors: Five fractional state-of-the-art detectors (Canny, Sobel, Roberts,

CRONE and LoG) were used and one Fractional Derivative mask introduced in [46] but not used

in that study as direct edge detector;

• Color-based image edge detectors: One already existent color-based Canny adapted to perform

fractional processing, four novel color-based fractional detectors (Sobel,Roberts,Fractional Mask

and CRONE) adapted with the already existent canny formulations and one novel zero-crossing

color-based fractional detector (LoG).
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In this study, 43 random images with low nebulosity from the Sentinel-2 satellite retrieved from ESA’s

”Copernicus Open Access Hub” [4] were used. The images retrieved from the website were analysed

and a ground truth was manually taken using GIMP [54].

3.2 Ground Truth Definition

The HQ satellite pictures collected from ESA with a JPEG2000 format were stored and filtered to

check if there were no anomalies within. In order to perform the identification of coasts in the images,

a manual segmentation was made in advance. Using an open-source software called GIMP and its

intelligent selection tools, it was possible to go through all images and select all coasts within them.

The process to obtain the ground truth for an image was selecting the areas of the image along the

shores and then apply a threshold in which the land became white and the water black. The result was

stored in the .jpg format in the same folder as the original images.

(a) Coast D(1).jpg (b) Ground truth

Figure 3.1: Original image and Ground Truth of Coast D(1).jpg.

3.3 Main Algorithm

In this section, the main algorithm will be presented. This code is presented in the form of a script of

written code (IdentCoastWithoutNeb.m) and it includes the following steps:

• The image to be processed is read from the images folder;

• A pre-processing step is performed where the figure is scanned for blue color pixels. A mask is

formed attributing value zero to all blue pixels found. This mask is later used in post-processing

(Figure 3.2);
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(a) Coast23 (b) Blue Mask

Figure 3.2: Original image and Blue Mask of Coast D(23).jpg.

• The fractional edge detection operator is applied to the image. If it is a grey-scale detection, before

using the operator, the RGB picture is converted to intensity (Figure 3.3);

(a) Edge detection result (b) Detail

Figure 3.3: Output of an edge detection operation.

• After contour detection it is necessary to close the image, so that in the end segmentation of land

and water is evident. For that, several closing morphological operations are performed. Firstly,

using lines in 0, 45, 90 and 135 degrees directions a closing operation is carried out in order to

close pixel gaps between nearby edges that the detector did not encounter;

• Next, in order to fill the parts of land that were not yet detected by the operator and the closing

operations, the custom function imfill is used;
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• The blue mask obtained in the pre-processing is then applied to the result of the previous opera-

tions. As one can see in Figure 3.3, after the edge detection there is still a lot of noise in the water.

The blue mask serves as a filter that eliminates this noise and guarantees better performance in

segmentation;

• One last closing operation is performed. This is due to the fact that sometimes the color filter

identifies small areas of land as blue. Using this closing operation, these small areas are set to

white and are correctly identified. This step finalizes the processing part of the algorithm. An

example of a processed image is shown in Figure 3.4;

• After post-processing, performance analysis is done. For this, the ground truth .jpg image is read

and converted to a logical array. Then, by comparison between the resultant processed image and

the ground truth, four metrics of performance are computed. The results of this analysis are stored

in an array and are ready for analysis.

Figure 3.4: Totally Processed Image
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3.4 Grey-Scale Detectors Adaptation

It is important now to detail the implementation of the featured grey-scale edge detectors. For the

Canny, Sobel, Roberts and LoG detectors, the MATLAB custom function edge() was adapted. The

CRONE detector was implemented adapting the CRONE function featured in [2]. The Fractional Deriva-

tive mask was implemented by substituting the Roberts core in the custom function by the desired

one. The different detectors that relied on integer derivatives were substituted by the fractional ver-

sions introduced in subsection 2.4.2. The following subsections present relevant specifications on the

implementation of the above mentioned detectors.

3.4.1 Fractional Canny detector

The fractional Canny operator as said above is an adaptation of the integer canny presented in

subsection 2.4.1.1.4.

When adapting the edge function, the only change was that instead of calculating the first order

gradient of the Gaussian kernel, a function was introduced that applies Grunwald-Letnikov derivatives

to the Gaussian function with the desired α order. This means that for each point of the Gaussian mask

its fractional derivative is obtained:

cD
α
t fG(t) = lim

h→0
h−α

N∑
k=0

(−1)k

 α

k

 fG(t− kh), N =

[
t− c
h

]
, t > c (3.1)

where

 α

k

 was programmed as a separated function using Equation 2.6.

After computing the fractional derivative, the algorithm follows the same steps of the conventional

Canny including non-maximum suppression and hysteresis thresholding.

3.4.2 Fractional Roberts, Sobel and LoG detectors

In subsections 2.4.2.1 and 2.4.2.2, the already existent formulations of the Roberts and Sobel frac-

tional operators are presented. The masks that find the derivative of order α of a figure are also exhibited.

The original function edge performed this operation by using the conventional masks of these oper-

ators. Here, the only change applied to the edge function was the introduction of the fractional masks

where the integer ones took place. The original magnitude computation and post-processing of the

integer method was kept.

The LoG fractional operator presented in subsection 2.4.2.3 was implemented using the same logic.

An instance where α is not integer was created and the fractional mask added to the featured function.

The rest of the algorithm was maintained where edges are found searching for zero-crossings of the

second order derivative obtained by convolving the image with the fractional LoG mask.
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3.4.3 Fractional CRONE detector

An adaptation of the CRONE detector mathematically formulated in subsection 2.4.2.4.1 was per-

formed using a function implemented in [2]. Some minor modifications had to be made in order to

integrate the function in the main algorithm. The function that implements combinations (2.6) used in

the definition of fractional derivative was substituted and some extra simplifications were performed.

Note that the Otsu method presented in subsection 2.3.6.1 is used in this function to transform the

input image to binary using the normalized gradients obtained convolving the figure with the CRONE

detector.

3.4.4 Fractional Derivative detector

The mask formulated in subsection 2.4.2.1 was already used in the fractional Roberts. The image

was convolved with a Roberts operator and consecutively with the fractional mask in (2.35). It was

implemented also this mask convolving directly the images in the database instead of using a Roberts

convolution prior to the fractional derivative operation.

3.5 Color Image Edge Detection Algorithms

Since it was clear that great color variations were present in the satellite images, the good perfor-

mance that color image processing techniques had been showing [51] could be useful. For that, the

Canny algorithm using RGB images presented in subsection 2.4.3.1 was implemented. Moreover, color

versions for the other gradient based operators were developed based on the same concepts.

The edge function was again the basis for this implementation. The function was modified in order

to accept as input an RGB image and proceed accordingly.

In the gradient-based color algorithms, the only difference is in the computation of the gradient. Each

of the color channels of the image is convolved with the respective kernel in order to obtain the derivative

of each component. Then the problem reduces to find the greatest eigenvalue of the jacobian transposed

times the jacobian itself. The already formulated expressions for this were copied to the function and the

algorithm tested. The last steps of the algorithm are maintained as in the original one.

For the Laplacian of Gaussian color-based detector, the same algorithm could not be applied since

this second order operator, in the edge function, detects edges based on the search for zero-crossings

in the result of the convolution. In order to find edges in color images, the definition from [55] was

considered in which a pixel of a colored image is considered part of an edge if zero-crossings are found

in any of the color channels. The function used for the grey-scale LoG was therefore transformed into

three convolutions of the LoG fractional mask with the respective color channels and search for zero-

crossings in each convolution result. The pixels identified as zero-crossings are considered part of

edges and the final result is a logical array in which every pixel identified as zero-crossing in at least one

channel is set to one (white).
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3.6 Performance Assessment

In this section the metrics that measure the performance of the segmentation algorithm will be pre-

sented. In order to check how well the algorithm can differentiate land from water, quantification has to

be made. For that, the ground truth extracted as explained on section 3.2 is compared to the output of

the algorithm by scanning all pixels within the figure. One of four instances may occur when pixels are

compared:

• True Positive: When both the processed image pixel and the ground truth’s are both set to white.

Corresponds to a part of land correctly identified;

• False Positive: When the processed image pixel is set to white but in the ground truth it is set to

black. Corresponds to a part of water wrongly identified by the algorithm as land;

• True Negative: When both the processed image pixel and the ground truth’s are set to black.

Corresponds to a part of water correctly identified by the algorithm as water;

• False Negative: When the processed image pixel is set to black but in the ground truth it is set to

white. Corresponds to a part of land erroneously identified by the algorithm as water;

Table 3.1 summarizes the above presented instances. In the following subsections, the different

metrics used in the algorithm for performance assessment are presented.

Processed Image
0 1

Ground Truth
0 TN FP

1 FN TP

Table 3.1: Performance Instances.

3.6.1 Jaccard similarity coefficient

The Jaccard similarity coefficient, introduced by Paul Jaccard in 1901 [56], is a standard used for

measuring the similarity of sets. It is defined as the size of the intersection divided by the size of the

union of the sample sets (3.2):

J(A,B) =
|A ∩B|
|A ∪B|

(3.2)

Being A the set of pixels in the processed image, and B the set of pixels in the ground truth, the

intersection is given by the pixels that are one (white) in both sets. The union is the set of pixels that

yields one at least in one set. The expression above can be substituted with the instances presented

before as demonstrated in (3.3):

J(A,B) =
TP

FP + TP + FN
(3.3)
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This metric is very important because it will be the main performance indicator that will be used in

the results analysis.

3.6.2 Dice similarity coefficient

A simple spatial overlap index is the Dice similarity coefficient (DSC), first proposed by Dice. Dice

similarity coefficient is a spatial overlap index and a reproducibility validation metric. The original formula

was supposed to be applied to discrete groups. Given two sets, X and Y, it is defined as:

DSC =
2× |X ∩ Y |
|X|+ |Y |

(3.4)

where |X| and |Y | represent the number of elements in each set. So the coefficient yields twice the

number of elements in common to both sets divided by the sum of the number of elements in each set.

Translating this expression to Boolean data it becomes:

DSC =
2× TP

2× TP + FP + FN
(3.5)

3.6.3 Sensitivity

Sensitivity is a measure that checks whether the algorithm is valid or not. In this work, it corresponds

to the probability of the algorithm correctly classify a pixel as land. The formula for this index holds:

Sensitivity =
TP

TP + FN
(3.6)

If the sensitivity is 1 it means that every pixel identified as land is for sure land.

3.6.4 Specificity

Specificity also measures the validity of the algorithm. The ability of the algorithm to correctly classify

a pixel as water (black pixel) is called the algorithm’s specificity. It is given by (3.7):

Specificity =
TN

FP + TN
(3.7)

If the specificity is 1 it means that every pixel identified as water is indeed water.

One should always use both sensitivity and specificity metrics in order to ensure that both water and

land pixels are well identified.
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Chapter 4

Results and Analysis

In this chapter, the results of the implementation of the algorithm using the different edge detectors

are presented and its analysis conducted. Comparison between methods and between integer and frac-

tional orders is also carried out. In addition, the processing of images using color detection is analysed

in order to check if it is an upgrade to the conventional grey-scale edge detection. An overall analysis

of the detectors performance will be performed. Finally, results that aim to understand if it is possible to

find optimal parameters that allow automatic detection will be presented. All these steps are filled in the

following sections with the aim of understanding the impact of using fractional derivatives in the contour

detection in satellite images.

4.1 Image Database

In this study, 43 HQ satellite JPEG 2000 images were processed. These images were collected from

ESA’s Copernicus Open Access Hub [4]. All these images present coasts where land and water are well

defined areas and there is very low nebulosity.

4.2 Performance Analysis of Fractional vs Integer Edge Detection

The first step of performance analysis is to understand in each edge detection algorithm, if a frac-

tional order based adaptation thereof outperforms the conventional integer version. Therefore, all the

algorithms formulated in chapter 3 were tested for a set of parameters and the results will be presented

in the following subsections. The performance was evaluated for all 43 images in the database using

the metrics introduced in section 3.6. For space reasons, from the forty three figures, four were chosen

to carry out individual performance assessment in this document. The selected figures were number

12, 18, 27 and 38 presented with their corresponding ground truth respectively in Figure 4.1, Figure 4.2,

Figure 4.3, Figure 4.4. These figures were selected because they present different levels of performance

when processed with the algorithm.

Appendix A presents plots of the Jaccard coefficient with varying parameters for the selected images.

The extended results of all methods for all images are available online in [57]
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(a) Coast D(12) (b) Ground Truth defined for Coast D(12)

Figure 4.1: Figure number 12 to be evaluated with corresponding ground truth.

(a) Coast D(18) (b) Ground Truth defined for Coast D(18)

Figure 4.2: Figure number 18 to be evaluated with corresponding ground truth.

(a) Coast D(27) (b) Ground Truth defined for Coast D(27)

Figure 4.3: Figure number 27 to be evaluated with corresponding ground truth.
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(a) Coast D(38) (b) Ground Truth defined for Coast D(38)

Figure 4.4: Figure number 38 to be evaluated with corresponding ground truth.

4.2.1 Canny vs Fractional Canny

The parameters that may influence the performance in the Canny algorithm are the order of the

derivative of the gaussian function (α) and its standard deviation (σ).

Alpha was ranged initially between -2 and 2 because the literature states that values outside this

interval may lead to unstable results. However, after a first analysis it was checked that high performance

was obtained near the upper limit order. Thus, the range was extended to -2 up to 3 with a step of 0.1.

The sigma values were tested in the interval from 0.2 until 2 with a step of 0.2.

The best performances for the selected figures are presented in Table 4.1, The first four lines for each

image correspond to the result which presented the highest value for each performance metric. The fifth

line represents the best overall result, corresponding to the processing parameters that achieved the

highest mean regarding the four performance metrics. The last line corresponds to the same as in the

fifth but for the conventional integer algorithm using the original edge function.

From Figure 4.5 and Table 4.1 it is possible to draw some conclusions. Fractional Canny shows major

immunity to the high level of noise in the water (mainly in the top left corner) which allows it to present

higher specificity. However, the fractional algorithm shows some difficulties in closing the coast, in

contrast with the integer one. Nevertheless, the fractional algorithm showed slightly better performance.

In the 18th image of the database, the global performance of the two types of Canny is approximately

the same. The Sensitivity is lower and the Specificity higher in the fractional algorithm such as in the

previous selected image. The performance here is low due to the blueish tones (check Figure 4.2) in the

coast that are set to black by the color filter in the post-processing.

Both algorithms present exceptional performance in the identification of the coast in figure 27. The

fractional one presents slightly higher overall measures.

It is clear from Table 4.1 and Figure 4.8 that the fractional detector improved the detection in image

38. The Jaccard, Dice and sensitivity measures increased significantly. Smooth areas of land in this

image make it hard for the detectors to find edges in these areas. Fractional Canny adaptation improves

the identification but it is still not optimal. It still identifies areas of water as land and the opposite.
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Image # σ α J D Sensitivity Specificity

12

Best J 1.4 2.2 0.8885 0.9410 0.9945 0.9804
Best D 1.4 2.2 0.8885 0.9410 0.9945 0.9804
Best Sens 0.8 1.2 0.6116 0.7590 0.9996 0.8956
Best Spec 1.8 2.3 0.8791 0.9357 0.9705 0.9829
Best Overall 1.4 2.2 0.8885 0.9410 0.9945 0.9804
Best Integer 2.0 - 0.8685 0.9296 0.9960 0.9758

18

Best J 1.8 -0.1 0.6600 0.7952 0.6741 0.9928
Best D 1.8 -0.1 0.6600 0.7952 0.6741 0.9928
Best Sens 0.6 1.2 0.6592 0.7946 0.6772 0.9909
Best Spec 2.0 -1.2 0.6597 0.7949 0.6725 0.9935
Best Overall 1.8 -0.1 0.6600 0.7952 0.6741 0.9928
Best Integer 1.6 - 0.6598 0.7950 0.6767 0.9914

27

Best J 0.6 2.6 0.9956 0.9978 0.9984 0.9943
Best D 0.6 2.6 0.9956 0.9978 0.9984 0.9943
Best Sens 1.4 2.0 0.9954 0.9977 0.9984 0.9937
Best Spec 1.0 2.4 0.9955 0.9978 0.9981 0.9946
Best Overall 0.6 2.6 0.9956 0.9978 0.9984 0.9943
Best Integer 0.8 - 0.9952 0.9976 0.9986 0.9932

38

Best J 0.6 2.4 0.7356 0.8477 0.7600 0.7359
Best D 0.6 2.4 0.7356 0.8477 0.7600 0.7359
Best Sens 0.6 2.4 0.7356 0.8477 0.7600 0.7359
Best Spec 1.4 2.6 0.2826 0.4406 0.2904 0.7780
Best Overall 0.6 2.4 0.7356 0.8477 0.7600 0.7359
Best Integer 0.2 - 0.5180 0.6825 0.5365 0.7167

Table 4.1: Table with best performance results using Canny edge detectors on selected images

(a) Best Integer Canny result (σ = 2) (b) Best Fract. Canny result (σ = 1.4 and α = 2.2)

Figure 4.5: Best results for Figure 12 processed using Canny algorithms.
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(a) Best Integer Canny result (σ = 1.6) (b) Best Fract. Canny result (σ = 1.8 and α = −0.1)

Figure 4.6: Best results for Figure 18 processed using Canny algorithms.

(a) Best Integer Canny result (σ = 0.8) (b) Best Fract. Canny result (σ = 0.6 and α = 2.6)

Figure 4.7: Best results for Figure 27 processed using Canny algorithms.

(a) Best Integer Canny result (σ = 0.2) (b) Best Fract. Canny result (σ = 0.6 and α = 2.4)

Figure 4.8: Best results for Figure 38 processed using Canny algorithms.
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4.2.2 Sobel vs Fractional Sobel

The Sobel Fractional mask formulated in subsection 2.4.2.2 does not depend only on the order of

the derivative (α) that one wants to apply. The threshold used to select the gradients that present edges

also influences the performance of this method.

The value of alpha was varied between -2 and 3 with a step of 0.1. The threshold values were tested

in the interval from 0.1 until 0.9 with a step of 0.2.

The best performances for the selected figures are shown in Table 4.2.

Image # threshold α J D Sensitivity Specificity

12

Best J 0.9 0.7 0.5620 0.7196 0.9999 0.8717
Best D 0.9 0.7 0.5620 0.7196 0.9999 0.8717
Best Sens 0.7 3.0 0.5618 0.7194 1.0000 0.8716
Best Spec 0.3 1.0 0.0004 0.0008 0.0004 0.9999
Best Overall 0.9 0.7 0.5620 0.7196 0.9999 0.8717
Best Integer 0.1 - 0.5043 0.6705 0.5104 0.9758

18

Best J 0.9 0.6 0.6584 0.7940 0.6774 0.9903
Best D 0.9 0.6 0.6584 0.7940 0.6774 0.9903
Best Sens 0.9 0.6 0.6584 0.7940 0.6774 0.9903
Best Spec 0.9 0.6 0.6584 0.7940 0.6774 0.9903
Best Overall 0.9 0.6 0.6600 0.7952 0.6741 0.9928
Best Integer 0.1 - 0.1419 0.2486 0.1445 0.9940

27

Best J 0.9 1.4 0.9948 0.9974 0.9987 0.9919
Best D 0.9 1.4 0.9948 0.9974 0.9987 0.9919
Best Sens 0.1 -2.0 0.9936 0.9968 0.9989 0.9891
Best Spec 0.9 1.4 0.9948 0.9974 0.9987 0.9919
Best Overall 0.9 1.4 0.9948 0.9974 0.9987 0.9919
Best Integer 0.1 - 0.8435 0.9151 0.8440 0.9988

38

Best J 0.9 0.5 0.9600 0.9796 0.9997 0.6710
Best D 0.9 0.5 0.9600 0.9796 0.9997 0.6710
Best Sens 0.1 -2.0 0.9582 0.9786 0.9999 0.6529
Best Spec 0.9 0.5 0.9600 0.9796 0.9997 0.6710
Best Overall 0.9 0.5 0.9600 0.9796 0.9997 0.6710
Best Integer 0.1 - 0.0768 0.1427 0.0775 0.9271

Table 4.2: Table with best performance results using Sobel edge detectors on selected images

From Table 4.2 and Figure 4.9 it is possible to conclude that the methods present very different

results for figure 12. Fractional Sobel could not deal with the great noise in the top left corner. It is

also clear that the coast line was not well defined by this operator. The integer algorithm shows some

difficulties in closing the coast in spite of the fact that it eliminates the high level of noise. None of these

two presents a decent solution for the problem at hand.

The fractional algorithm clearly outperforms the integer method for image 18 (Figure 4.10) since it

is more sensitive to gradients. The noise in the bottom right corner is not mitigated by any of the two

processing algorithms.

As one can observe in Figure 4.11, the fractional algorithm can successfully close the contours of

the coast that the integer algorithm struggles to identify. This is confirmed by the performance metrics

in Table 4.2.
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(a) Best Integer Sobel result (th = 0.1) (b) Best Fract. Sobel result (th = 0.9 and α = 0.7)

Figure 4.9: Best results for Figure 12 processed using Sobel algorithms.

(a) Best Integer Sobel result (th = 0.1) (b) Best Fract. Sobel result (th = 0.9 and α = 0.6)

Figure 4.10: Best results for Figure 18 processed using Sobel algorithms.

(a) Best Integer Sobel result (th = 0.1) (b) Best Fract. Sobel result (th = 0.9 and α = 1.4)

Figure 4.11: Best results for Figure 27 processed using Sobel algorithms.
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(a) Best Integer Sobel result (th = 0.1) (b) Best Fract. Sobel result (th = 0.9 and α = 0.5)

Figure 4.12: Best results for Figure 38 processed using Sobel algorithms.

In figure 38, the integer algorithm does not have the sensitivity once more to identify all the gradients

that constitute land. The fractional algorithm presents very good performance except for Specificity

(Table 4.2). This low value is explained by the fact that the algorithm identifies a different tone of blue in

the water as land.

4.2.3 Roberts vs Fractional Roberts

The Roberts Fractional mask formulated in subsection 2.4.2.1 works as the Sobel one. It depends

on the order of the derivative (α) that one wants to use and the threshold used to select the strongest

gradients.

The values of α and th were tested with the same values used before.

It is clear that the fractional Roberts algorithm enhances the performance of edge detection in figure

12. Integer Roberts has difficulties in closing the land due to lack of sensitivity. The fractional method

increases sensitivity without compromising specificity (Figure 4.13).

It can be seen in Table 4.3 and Figure 4.14 that the fractional processing greatly improves the per-

formance of the edge detection algorithm. The higher Jaccard coefficient improved 50%, the Dice co-

efficient 52 % and the sensitivity 51% without a great decrease in specificity. Note that the threshold

parameter for the best performance is the same so only order is affecting the result. It can be also con-

cluded that in this image, the algorithm finds it difficult once more to detect inner land gradients which is

making it impossible to close the contours. The level of noise in the right bottom corner is the same in

both integer and fractional methods. The global performance again does not climb over the 70% mark

because of the blueish tone of the coast in some areas.

Regarding picture 27 (Figure 4.15), the fractional Roberts operator allows the algorithm to close the

contours almost perfectly while the integer one struggles to do it. This presents again evidence that the

fractional Roberts achieves greater sensitivity.

The integer algorithm struggles once more to find inner edges in figure 38 and the fractional contin-

ued to identify regions of water as land (Figure 4.16).
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Image # threshold α J D Sensitivity Specificity

12

Best J 0.1 0.8 0.9245 0.9608 0.9595 0.9938
Best D 0.1 0.8 0.9245 0.9608 0.9595 0.9938
Best Sens 0.1 -1.9 0.5622 0.7197 1.0000 0.8718
Best Spec 0.7 1.5 0.0002 0.0003 0.0002 1.0000
Best Overall 0.1 0.8 0.9245 0.9608 0.9595 0.9938
Best Integer 0.1 - 0.4440 0.6149 0.4486 0.9983

18

Best J 0.1 -0.3 0.6588 0.7943 0.6771 0.9907
Best D 0.1 -0.3 0.6588 0.7943 0.6771 0.9907
Best Sens 0.1 -1.9 0.6584 0.7940 0.6774 0.9903
Best Spec 0.9 -0.3 0.0008 0.0015 0.0008 1.0000
Best Overall 0.1 -0.3 0.6588 0.7943 0.6771 0.9907
Best Integer 0.1 - 0.1589 0.2742 0.1619 0.9934

27

Best J 0.1 2.4 0.9952 0.9976 0.9981 0.9940
Best D 0.1 2.4 0.9952 0.9976 0.9981 0.9940
Best Sens 0.1 -1.9 0.9948 0.9974 0.9986 0.9920
Best Spec 0.9 -1.6 0.0078 0.0155 0.0078 1.0000
Best Overall 0.1 2.4 0.9952 0.9976 0.9981 0.9940
Best Integer 0.1 - 0.8614 0.9255 0.8618 0.9990

38

Best J 0.1 -1.7 0.9613 0.9803 0.9990 0.6877
Best D 0.1 -1.7 0.9613 0.9803 0.9990 0.6877
Best Sens 0.1 -1.9 0.9610 0.9801 0.9993 0.6827
Best Spec 0.9 2.8 0.0001 0.0002 0.0001 1.0000
Best Overall 0.1 -1.7 0.9613 0.9803 0.9990 0.6877
Best Integer 0.1 - 0.0618 0.1163 0.0622 0.9451

Table 4.3: Table with best performance results using Roberts edge detectors on selected images

(a) Best Integer Roberts result (th = 0.1) (b) Best Fract. Roberts result (th = 0.1 & α = 0.8)

Figure 4.13: Best results for Figure 12 processed using Roberts algorithms.
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(a) Best Integer Roberts result (th = 0.1) (b) Best Fract. Roberts result (th = 0.1 & α = −0.3)

Figure 4.14: Best results for Figure 18 processed using Roberts algorithms.

(a) Best Integer Roberts result (th = 0.1) (b) Best Fract. Roberts result (th = 0.1 & α = 2.4)

Figure 4.15: Best results for Figure 27 processed using Roberts algorithms.

(a) Best Integer Roberts result (th = 0.1) (b) Best Fract. Roberts result (th = 0.1 & α = −1.7)

Figure 4.16: Best results for Figure 38 processed using Roberts algorithms.
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4.2.4 LoG vs Fractional LoG

The Laplacian of Gaussian mask formulated in subsection 2.4.2.3 was also tested. It depends on

the order (α) and the threshold used to select the strongest gradients.

The same values of α as in the Roberts and Sobel operators were tested. For the integer LoG the

values from 0.1 to 0.9 did not work for any image so a th between 0.01 and 0.09 was adopted with a

step of 0.01. The best results for the selected images are shown in Table 4.4:

Image # threshold α J D Sensitivity Specificity

12

Best J 0.3 -2.0 0.9480 0.9733 0.9718 0.9959
Best D 0.3 -2.0 0.9480 0.9733 0.9718 0.9959
Best Sens 0.1 3.0 0.5629 0.7203 0.9999 0.8722
Best Spec 0.9 -1.1 0.0001 0.0002 0.0001 1.0000
Best Overall 0.3 -2.0 0.9480 0.9733 0.9718 0.9959
Best Integer 0.01 - 0.5737 0.7291 0.5820 0.9976

18

Best J 0.3 3.0 0.6594 0.7948 0.6771 0.9910
Best D 0.3 3.0 0.6594 0.7948 0.6771 0.9910
Best Sens 0.1 2.8 0.6591 0.7945 0.6774 0.9907
Best Spec 0.9 -1.0 0.0010 0.0020 0.0010 1.0000
Best Overall 0.3 3.0 0.6594 0.7948 0.6771 0.9910
Best Integer 0.01 - 0.1051 0.1902 0.1065 0.9957

27

Best J 0.1 -1.2 0.9957 0.9978 0.9982 0.9950
Best D 0.1 -1.2 0.9957 0.9978 0.9982 0.9950
Best Sens 0.1 3.0 0.9947 0.9974 0.9987 0.9919
Best Spec 0.9 -1.8 0.0274 0.0533 0.0274 1.0000
Best Overall 0.1 -1.2 0.9957 0.9978 0.9982 0.9950
Best Integer 0.01 - 0.8321 0.9084 0.8326 0.9988

38

Best J 0.1 1.8 0.9637 0.9815 0.9994 0.7046
Best D 0.1 1.8 0.9637 0.9815 0.9994 0.7046
Best Sens 0.1 3.0 0.9585 0.9788 0.9999 0.6562
Best Spec 0.5 -0.7 0.0002 0.0004 0.0002 1.0000
Best Overall 0.1 1.8 0.9637 0.9815 0.9994 0.7046
Best Integer 0.01 - 0.0887 0.1630 0.0898 0.9076

Table 4.4: Table with best performance results using LoG edge detectors on selected images

In figure 12, the fractional method presented better performance. One may note that despite the

method being fractional, the best order was integer (-2). Nevertheless, it can be concluded that the

fractional mask obtained using the GL definition of fractional derivative presents best sensitivity.

The fractional algorithm continues to perform better in the sensitivity of inner land gradients in picture

18. However, the best order was again an integer one (3) and the noise in the right bottom corner is

more pronounced when the fractional LoG mask was used (Figure 4.18).

The integer processing of image 27 presents, once more, acceptable results. However, the fractional

algorithm with an α of -1.2 and a th of 0.1 shows a major improvement of 16%. This can be seen in

Figure 4.19 where the integer algorithm was not able to close the contour of the coast.

The fractional algorithm closes almost perfectly the coast and presents a Jaccard coefficient of

99.57%. Note that until now, this is the first selected figure in which the LoG fractional algorithm presents

better performance with non integer order.
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(a) Best Integer LoG result (th = 0.01) (b) Best Fract. LoG result (th = 0.3 and α = −2)

Figure 4.17: Best results for Figure 12 processed using LoG algorithms.

(a) Best Integer LoG result (th = 0.01) (b) Best Fract. LoG result (th = 0.3 and α = 3)

Figure 4.18: Best results for Figure 18 processed using LoG algorithms.

(a) Best Integer LoG result (th = 0.01) (b) Best Fract. LoG result (th = 0.1 and α = −1.2)

Figure 4.19: Best results for Figure 27 processed using LoG algorithms.
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(a) Best Integer LoG result (th = 0.01) (b) Best Fract. LoG result (th = 0.1 and α = 1.8)

Figure 4.20: Best results for Figure 38 processed using LoG algorithms.

As observed for previous detectors, the integer LoG algorithm does not have enough sensitivity to de-

tect smooth gradients that figure 38 presents(Figure 4.20). However, the fractional algorithm reached an

impressive Jaccard coefficient of 96.37% (Table 4.4). The fractional algorithm due to its high sensitivity

is unable to present immunity to clear tones in the water so the specificity decreases.

4.3 Performance Analysis of other Non-integer Algorithms

Besides the algorithms already analysed above, a CRONE and a Fractional Derivative mask were

implemented. These detectors do not present integer alternative, thus it is impossible to perform any

performance comparison. Nevertheless, in this section, the results of these algorithms’ testing will be

displayed. The same figures were selected to perform the analysis.

4.3.1 CRONE Detector Performance Analysis

The CRONE mask (subsection 2.4.2.4.1) depends on the order (α) and size (k).

The same values of α were tested. The size of the Crone Mask was iterated between 1 and 5 pixels.

The best testing results are presented in Table 4.5 and figures 4.21, 4.22, 4.23 and 4.24.

Figure 4.21: Best result for Figure 12 processed using CRONE algorithm (k = 5 and α = −1.2).

53



Figure 4.22: Best result for Figure 18 processed using CRONE algorithm (k = 1 and α = 1.1).

Figure 4.23: Best result for Figure 27 processed using CRONE algorithm (k = 5 and α = 3).

Figure 4.24: Best result for Figure 38 processed using CRONE algorithm (k = 2 and α = 3).

54



Image # k α J D Sensitivity Specificity

12

Best J 5.0 -1.2 0.8138 0.8974 0.9977 0.9628
Best D 5.0 -1.2 0.8138 0.8974 0.9977 0.9628
Best Sens 2.0 2.7 0.5619 0.7195 1.0000 0.8716
Best Spec 5.0 -1.2 0.8138 0.8974 0.9977 0.9628
Best Overall 5.0 -1.2 0.8138 0.8974 0.9977 0.9628

18

Best J 1.0 1.1 0.6585 0.7941 0.6773 0.9905
Best D 1.0 1.1 0.6585 0.7941 0.6773 0.9905
Best Sens 5.0 1.6 0.6583 0.7939 0.6774 0.9903
Best Spec 5.0 -1.6 0.1143 0.2051 0.1150 0.9979
Best Overall 1.0 1.1 0.6585 0.7941 0.6773 0.9905

27

Best J 5.0 3.0 0.9951 0.9975 0.9985 0.9930
Best D 5.0 3.0 0.9951 0.9975 0.9985 0.9930
Best Sens 2.0 0.7 0.9948 0.9974 0.9987 0.9921
Best Spec 5.0 3.0 0.9951 0.9975 0.9985 0.9930
Best Overall 5.0 3.0 0.9951 0.9975 0.9985 0.9930

38

Best J 2.0 3.0 0.9612 0.9802 0.9995 0.6818
Best D 2.0 3.0 0.9612 0.9802 0.9995 0.6818
Best Sens 2.0 0.7 0.9588 0.9790 0.9999 0.6582
Best Spec 5.0 3.0 0.3704 0.5405 0.3838 0.7120
Best Overall 2.0 3.0 0.9612 0.9802 0.9995 0.6818

Table 4.5: Table with best performance results using CRONE edge detectors on selected images

4.3.2 Fractional Mask Performance Analysis

It is interesting now to evaluate the processing of the images in the database convolving them directly

with the fractional derivative mask in Equation 2.35. Like the Roberts detector, the parameters here are

the threshold th and the order α. The same values of α and th were used in the testing.

The following pages contain the results of the experimentation performed in the selected images.

From the results it is clear that Figure 12 presented great performance using this mask (Table 4.6).

The top left corner high level of noise was almost completely vanished and the land perfectly identified

(Figure 4.25).

All the other selected figures presented results similar to other detectors’ results.

Figure 4.25: Best result for Figure 12 processed using a Fractional Derivative Mask (th = 0.9 and
α = 0.8).
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Figure 4.26: Best result for Figure 18 processed using a Fractional Derivative Mask (th = 0.5 and
α = 1.7).

Figure 4.27: Best result for Figure 27 processed using a Fractional Derivative Mask (th = 0.9 and
α = 0.8).

Figure 4.28: Best result for Figure 38 processed using a Fractional Derivative Mask (th = 0.9 and
α = 2.3).
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Image # threshold α J D Sensitivity Specificity

12

Best J 0.9 0.8 0.9828 0.9913 0.9960 0.9978
Best D 0.9 0.8 0.9828 0.9913 0.9960 0.9978
Best Sens 0.3 2.0 0.5618 0.7195 1.0000 0.8716
Best Spec 0.3 1.0 0.0002 0.0005 0.0002 0.9999
Best Overall 0.9 0.8 0.9828 0.9913 0.9960 0.9978

18

Best J 0.5 1.7 0.6594 0.7947 0.6762 0.9915
Best D 0.5 1.7 0.6594 0.7947 0.6762 0.9915
Best Sens 0.1:0.9 -2:0.2 0.6581 0.7938 0.6774 0.9902
Best Spec 0.3 1.0 0.0067 0.0133 0.0067 0.9998
Best Overall 0.5 1.7 0.6594 0.7947 0.6762 0.9915

27

Best J 0.7 0.9 0.9958 0.9979 0.9977 0.9962
Best D 0.7 0.9 0.9958 0.9979 0.9977 0.9962
Best Sens 0.1:0.9 -2:0.5 0.9936 0.9968 0.9989 0.9891
Best Spec 0.9 1.2 0.0573 0.1084 0.0573 1.0000
Best Overall 0.7 0.9 0.9958 0.9979 0.9977 0.9962

38

Best J 0.9 2.3 0.9625 0.9809 0.9995 0.6936
Best D 0.9 2.3 0.9625 0.9809 0.9995 0.6936
Best Sens 0.1:0.9 -2:0.5 0.9582 0.9786 0.9999 0.6529
Best Spec 0.9 1.3 0.0024 0.0047 0.0024 0.9998
Best Overall 0.9 2.3 0.9625 0.9809 0.9995 0.6936

Table 4.6: Table with best performance results using Fractional Mask edge detectors on selected images

4.4 Grey-Scale Edge Detectors vs Color Based Edge Detectors

As explained before, color edge detection algorithms were also implemented and tested to the whole

data set due to their good results in other applications. All the six methods were adapted and applied in

the main algorithm in order to perform color-based edge detection. The best results of the performance

assessment for this versions of the algorithms are presented above and are compared with the corre-

sponding best grey-scale result. Appendix A also includes plots of the performance of the color versions

for all the detectors studied before.

Note that until here all the metrics were used to evaluate performance. From the results it was

clear that the Jaccard Coefficient is a good global indicator of performance since the maximum Jaccard

Coefficient’s processing corresponded always to the best overall result. Thus, from now on, only this

coefficient will be used to conduct experimentation analysis.

Due to scale issues, many of the results that are close to zero in the following histograms are difficult

to access if the difference in performance is positive or negative. In order to identify these easily, the y-

axis values which corresponded to ∆J were transformed to 10∆J . The resulting histograms are displayed

in Appendix B.

4.4.1 Grey-Scale vs Color Canny Algorithm

The color based algorithm, after being implemented, was run for the same interval of parameters

and the results treated in an Excel file. Excel allowed to compare the best color-based results with the

best Grey-Scale Canny outcomes already analysed before.
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Figure 4.29 presents the differences in performance between the best color and best grey-scale

results for each of all images in the data set.

Figure 4.29: Performance comparison between grey-scale and color based Canny (Whole Data Set).

The greatest difference in performance between the two algorithms was observed in picture 38.

(a) Best Gray-Scale Canny result (σ = 0.6 and α = 2.4) (b) Best color Canny result (th = 0.6 and α = 2.4)

Figure 4.30: Best results for Figure 38 processed using different types of Canny algorithms.

The Jaccard Coefficient rose from 73.53% to 96.32% which presents an enormous increase. In

Figure 4.30 it can be observed that the grey-scale algorithm struggles to close inner-land areas. The

fact that the color algorithm can identify these areas may be an evidence that color-based detection

allows to find gradients that grey-scale detection cannot.

58



4.4.2 Grey-Scale vs Color Sobel Algorithm

The process was repeated using the Color adaptation of the Sobel algorithm. Once more, Excel

allowed to compare the best results of the color algorithm against the grey-scale version ones.

Figure 4.31 presents the differences in performance between the best color-based and best grey-

scale Sobel results for all images.

Figure 4.31: Performance comparison between grey-scale and color based Sobel (Whole Data Set).

In most images, the algorithms present similar performances. There are some relevant cases where

the Jaccard coefficient rose significantly. However, there are two cases where the performance de-

creased more than 5%. The greatest differences in performance between the two algorithms were

observed in images 12, 14 and 28.

In image number 12, the Jaccard Coefficient rose from 56.20% to 88.27% which presents an enor-

mous increase of 32.07%. In Figure 4.32 it can be observed that the grey-scale algorithm cannot deal

with the high level of noise in the image. The color-based algorithm is able to define the coast and

presents high immunity to noise. The same conclusions can be drawn looking at the results obtained for

image 14 (Figure 4.33).

In contrast, Figure 4.34 shows that in image 28 the result of the color-based algorithm presents

higher level of noise (pixels incorrectly identified as land) than the grey-scale method’s one. This results

in a decrease of almost 20% in performance.
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(a) Best GS Sobel result (th = 0.9 and α = 0.7) (b) Best color Sobel result (th = 0.2 and α = 2.9)

Figure 4.32: Best results for Figure 12 processed using different types of Sobel algorithms.

(a) Best GS Sobel result (th = 0.1 and α = −1.7) (b) Best color Sobel result (th = 0.3 and α = −1.3)

Figure 4.33: Best results for Figure 14 processed using different types of Sobel algorithms.

(a) Best GS Sobel result (th = 0.9 and α = 2.7) (b) Best color Sobel result (th = 0.1 and α = −1.3)

Figure 4.34: Best results for Figure 28 processed using different types of Sobel algorithms.
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4.4.3 Grey-Scale vs Color Roberts Algorithm

The same comparison was performed for the versions of the Roberts detector. Figure 4.35 illustrates

the differences in performance between Roberts’ best color and best grey-scale methods’ results .

Figure 4.35: Performance comparison between grey-scale and color based Roberts (Whole Data Set).

In most images, the color-based algorithm presents similar or increased performance. The greatest

variation was observed in image 28. In that figure, the Jaccard Coefficient rose from 68.80% to 86.25%

which means an increase of 17.45%. In Figure 4.36 it can be observed that the grey-scale algorithm

does not have the sensitivity to find all the gradients belonging to the inner land. The color-based

algorithm defines the coast better in spite of the fact that it presents reduce immunity to noise in the

water.

(a) Best GS Roberts result (th = 0.1 and α = −1.9) (b) Best color Roberts result (th = 0.1 and α = −1.8)

Figure 4.36: Best results for Figure 28 processed using different types of Roberts algorithms.
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4.4.4 Grey-Scale vs Color LoG Algorithm

After adapting the conventional Laplacian of Gaussian detector to find zero-crossings in at least one

of the three channels of the RGB color space, the main algorithm was also tested using this method.

Figure 4.37 plots the comparison in performance between the Laplacian of Gaussian best color and

best grey-scale methods’ results for all images.

Figure 4.37: Performance comparison between grey-scale and color based LoG (Whole Data Set).

In most images, both types of algorithms perform identically. The variation does not exceed the 5%

mark. Actually, the greatest difference in performance between the two algorithms was observed in

image 14 with a decrease of 4.49%.

In conclusion, the color-based algorithm performs slightly better in the majority of the photos but in

none of them the improvement is higher than 4%.

4.4.5 Grey-Scale vs Color CRONE Algorithm

The color based CRONE detector, after being adapted from the grey-scale one was tested for the

same range of parameters and the results exported to an Excel file. Then the values were compared

with the grey-scale CRONE already analysed before.

Figure 4.38 shows the differences in performance encountered between color-based Crone and

grey-scale CRONE algorithms.

It is clear that the difference between the performance of the two algorithms is small in the majority of

the cases. However, in most cases, the color based algorithm equaled or outperformed the grey-scale

one. The greatest variation in performance happened in figure 12 with a 4% increase.
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Figure 4.38: Performance comparison between grey-scale and color based CRONE (Whole Data Set).

4.4.6 Grey-Scale vs Color Fractional Derivative Mask Algorithm

The color-based Fractional Derivative operator was also tested for the same range of parameters

and its results analysed against the grey-scale version.

Figure 4.39 shows the differences in performance encountered between color-based best Fractional

Mask algorithm results and grey-scale algorithm ones.

Figure 4.39: Performance comparison between grey-scale and color based Fractional Derivative Mask
(Whole Data Set).
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It is clear that the difference between the performance of the two algorithms is once more small in

most cases. However, in this operator, the color based method performs worse in the majority of the

images. The greatest variation in performance happened in figure 14 with a 3.5% decrease.

4.5 Overall Performance Analysis

After studying each of the algorithms independently, it is interesting to compare the different detectors

and understand if there are substantial differences in performance between them.

First and for each algorithm, the best results for all images were obtained. Then, for each image

the method with best Jaccard Coefficient was identified. The results of this analysis are shown in Fig-

ure 4.40.

Figure 4.40: Dispersion of absolute best results by method for all images in the data set.

Note that no Sobel operator is not present in the pie chart. This happens because no processed

figure showed best performance coefficients for this operator.

To further analyse the performance of the different detectors, the mean of the best results for each

edge detection operator was computed. The results are shown in Table 4.7.

Detector J

Fractional Derivative Op. 0.9623
Color Fractional Derivative Op. 0.9596
Color Laplacian of Gaussian 0.9554
Color Roberts 0.9537
Laplacian of Gaussian 0.9531
Color Sobel 0.9478
Roberts 0.9474
Color CRONE 0.9461
Color Canny 0.9448
CRONE 0.9447
Canny 0.9342
Sobel 0.9282

Table 4.7: Ranking of the best results average for all images.
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From Figure 4.40 and Table 4.7 some conclusions can be drawn:

• The two versions of the Fractional Derivative mask and the Laplacian of Gaussian operator are the

most successful detectors. Together they represent more than 80% of the best results;

• Color versions of the algorithms performed generally better. The only detector that presents de-

creased average performance for its color version is the Fractional derivative operator;

• Sobel operator, despite its grey-scale version being the worst detector, presents higher perfor-

mance for the color version exceeding the same versions of Canny and CRONE detectors.

The absolute best results using varying parameters for each image using the different operators are

presented extensively in Appendix C.

4.6 Parameter Estimation for Automatic Image Processing

The above sections analysed from different perspectives the algorithm and the performance that it

can reach in an edge detection identification problem.

However, it was noticed that the performance of the algorithm is deeply influenced by the chosen

parameters, such as the order of the derivative used (α), the standard deviation (σ) of the Gaussian

smoothing operation performed in some algorithms, the threshold or even the size of the mask of con-

volution (k).

One important objective of this work is to access if it is possible to find and easily tune parameters so

that the fractional algorithm receives images as input and is able, in an automatic way, to process them

with high performance and reliability. In the medical images works [2, 3] this was an issue.

Thus, in this section, a search for optimal parameters that allow a good detection performance for

the whole data set will be conducted.

At first, it will be considered for this demand, the highest performance operator which is the grey-

scale Fractional Derivative mask, as proven in section 4.5. The parameters that influence performance

in this method are the threshold and α. The frequency histograms of the parameters in the best results

for this operator are shown in Figure 4.41 and Figure 4.42.

Figure 4.41: Absolute frequency of the threshold parameter for the best results using the fractional mask.
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Figure 4.42: Absolute frequency of the α parameter for the best results using the fractional mask.

The most frequent parameters are threshold = 0.9 and α = 0.7. These values revealed good

performances in a high number of images. But can one use them together to process any image?

The results using this parameters were gathered. A comparison of these results with the best per-

formances using the fractional mask detector might be an excellent way of understanding if the above

mentioned parameters may be isolated. This comparison is shown in Figure 4.43.

Figure 4.43: Best Results vs Best Results fixing parameters (threshold = 0.9 and α = 0.7).

Figure 4.43 shows that despite having a few peaks that coincide with the best results, fixing the α

parameter in 0.7 leads to a lot of performance flaws. Actually the mean performance decreased from

96.23% to 86.32%, almost 10%.

Observing again Figure 4.42, an interesting peak at α = 2.2 was identified. This parameter performed

optimally less times than 0.6 or 0.8, but it is much different than the value already tested which shows

high potential of performing better. In order to seek a good overall response, the value of 2.2 for α was

analysed.

Figure 4.44 shows that fixing the parameters with threshold = 0.9 and α = 2.2 lead to overall better

results despite having some images with low performance that correspond to a maximum of approxi-

mately 20% decrease. The mean performance of all images for these fixed parameters is 93.70% which

corresponds to a decrease of less than 3% comparing with the variable parameters’ best results.
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Figure 4.44: Best Results vs Best Results fixing parameters (threshold = 0.9 and α = 2.2).

In order to further analyse the fixation of parameters in the main algorithm, an analysis using the

whole image database (full-volume) was conducted in order to find the pair of parameters and detector

that achieves the highest mean global performance. All the results from the full volume fixed-parameters

analysis can be consulted in Appendix D under the form of global mean performance plots. Table 4.8

presents the best fixing parameters results for each detector.

Detector threshold k σ α J

Color Fractional Derivative Op. 0.9 - - 0.8 0.9436
Fractional Derivative Op. 0.7 - - 0.8 0.9428
Color CRONE - 5 - 0.9 0.9328
CRONE - 5 - 1.1 0.9261
Color Canny - - 0.7 1.7 0.9193
Color Roberts 0.1 - - 1.4 0.9174
Color Sobel 0.3 - - -0.2 0.9153
Sobel 0.9 - - 0.2 0.9111
Color Laplacian of Gaussian 0.1 - - -0.9 0.9108
Roberts 0.1 - - -1.3 0.9076
Laplacian of Gaussian 0.1 - - -1.4 0.9028
Canny - - 0.6 0 0.9011

Table 4.8: Ranking of the best results average using fixed parameters for all images.

Regarding the best results using fixed parameters presented above, one can conclude that:

• All detectors achieved an average score of at least 90% which means that any of the studied

methods fits the purpose of this work which is identifying land and water in satellite images;

• All color-based versions of the detectors outperformed the respective gray-scale ones. This in-

cludes the color Fractional Derivative operator which had shown poorer results in comparison to

the correspondent gray-scale detector with varying parameters.
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• Both of the Laplacian of Gaussian versions which proved to be part of the best operators for the

varying parameters results, present here a low score;

• The grey-scale Sobel presents better relative results with fixed parameters.
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Chapter 5

Conclusions

In this section the analysis conducted in the previous chapter will be summarized and the final con-

clusions presented as well as future work that may be performed in the matter.

5.1 Performance of Fractional VS Integer methods

As explained before, the images withdrawn randomly from the Copernicus database were first used

to obtain the ground truth for coast identification. This ground truth was then used to access the perfor-

mance of the algorithm by comparing it to the processed images.

To have a global view of the performance for all of the eight detectors used, Appendix A presents the

graphs of performance for the selected images in section 4.2 with varying parameters in the intervals

defined in chapter 3. The extended results are available in [57].

The data presented in Appendix A and in section 4.2 allows to conclude that the use of fractional

derivatives in edge detection for this application matched or improved, in most cases, the performance

of the conventional integer methods.

The graphs presented in Appendix A show that it is difficult to find a single derivative order that

outperforms all the others for different images. However, for this application, the performance graphics

are well defined and therefore it is possible to use them to find ranges of values for the parameters that

present optimal performance.

5.2 Performance of Grey-Scale VS Color based methods

In section 4.4 the results of fractional color edge detection are compared with the fractional ones

using grey-scale images.

In one hand, the data in this section allows to conclude that, in the majority of cases, using the

color based detector improves the performance of the algorithm. The color based Canny algorithm, for

example, increased more than 20% the processing of image 38.

On the other hand, for most images in this database, the increase in performance that the color

based algorithm provides is not higher than 1%. The high resolution of the satellite images may explain
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these results, since the conversion of pixels values in grey-scale may be better defined than a low quality

figure. This means that the grey-scale identification already performs very well for this application which

leaves a small margin for improvements in general.

In conclusion, the color based algorithms allowed to equal or improve the performance of grey-scale

methods in most cases. However, often the increase in performance is low in percentage. Nevertheless,

and since we are dealing with images that are composed of more than 120 million pixels, a percentage

of 1% increase corresponds to more than 1 million pixels correctly identified. The color based detector

is also heavier computationally since it usually requires more than one convolution (at least one for each

color channel). The use of this type of operators in the context of this thesis may be useful if one is not

satisfied with the results of grey-scale identification.

5.3 Overall Performance

In section 4.5, the results presented in Figure 4.40 and Table 4.7 allow to conclude that the direct use

of the Fractional Derivative Mask in Equation 2.35 as a grey-scale detector, presents the highest mean

Jaccard coefficient for all figures (J = 0.9623).

The analysis shows that the use of fractional derivatives presents promising results in edge detection.

However, the means presented are computed through the best results for each image using diverse

parameters. This wide range of optimal parameters may be hard to reach in an automatic solution.

5.4 Fixed Parameters for Automatic Detection

In section 4.6, optimal parameters for the grey-scale version of the Fractional Derivative mask were

sought. Fixing the threshold in 0.7 and the order of the derivative (α) in 0.8 allowed to reach a maximum

mean Jaccard coefficient for all images of 94.28%. This presents a solution with fixed parameters that

performs very similarly as the best results with varying parameters.

In contrast with the varying parameters analysis, the fixation of parameters revealed that all the color

versions of the operators performed better than the grey-scale ones. This said, the color version of

the Fractional Mask Operator presents the best mean for the Jaccard coefficient in the results using

fixed parameters for all images. This operator presents a mean performance coefficient of 94.36% with

α = 0.8 and threshold = 0.9. Thus, the color-based operator increased performance in 0.08%. Once

more this may seem a reduced percentage but it means that the color-based algorithm detects correctly

almost 100 thousand more pixels than the gray-scale’s best fixing parameters result.

In conclusion, the solution using the color-based algorithm presented above achieved the best mean

performance. Fixing the parameters in the given values meant a decrease in performance of less than

2% comparing it to the best result with varying constants. This implies that the proposed parameters

work in the automatic identification of coasts in high definition satellite images.
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5.5 Final Considerations

The initial goal of finding if the use of fractional derivatives in the processing of high quality satellite

images enhances performance was tested in an identification problem where one desires to segment

image in land and water.

It was proved that generalizing the conventional integer method adding fractional orders using Grünwald-

Letnikov definition often increases the possibility of achieving a better detection performance.

In most cases, the implementation of color-based detectors matched or improved the performance

of the algorithm. However, the improvements for this application are often small in percentage and

the required computational power very high. This may happen due to the high resolution that satellite

images possess which allows grey-scale detection to be already an optimal result. Thus, the color-

based detector is seen as an exceptional alternative if the grey-scale processing does not achieve high

performance standards.

The best detector tested in this research was the color-based version of the Fractional Derivative

mask. Fixing parameters using this operator in the main algorithm provided great results. The chosen

parameters are threshold = 0.9 and α = 0.8 which present great potential in automatic shore identifica-

tion in satellite images.

5.6 Future Work

The initial objective of this dissertation was to evaluate the usage of fractional derivatives in the pro-

cessing of satellite images namely in the detection of coasts. This goal was achieved and it was possible

to further investigate whether color detection improved results and if it is possible to fix parameters of

detection in order to perform automatic detection.

Besides all this investigation, as always, it is possible to think of ways of further investigate and

optimize the knowledge in this matter. Seeing as the scope of the project on which this thesis is inserted

the fractional processing of satellite images, the following points represent some of the ideas on how to

further investigate the matter and/or optimize the present one:

• Find ways to optimize the main algorithm present in this thesis. The presented method includes

morphological operations that require the construction of structuring elements. These elements

were chosen iteratively in order to maximize performance. Nevertheless, some images still have

contours that the algorithm struggles to close so it may be possible to find structuring elements

that operate better and make the algorithm achieve higher performance;

• Work on the optimization of detection parameters. As one can check in Appendix A, the graphs of

the variation in parameters are well defined.Thus, optimization algorithms could be used to create

an iterative algorithm that chooses the final parameters for an image based on performance. This

could be a solution in which a different pair of parameters would be used in each image. However,

the algorithm would be probably computationally massively heavy.
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• Color-base edge detection methods showed once more excellent potential. The use of this de-

tectors together with fractional derivative orders may be subject of further investigation. Other

types of images may be used in a different study to corroborate the idea that color-based fractional

processing of images work better than grey-scale conventional ones.

• In this work six detectors were implemented and analysed. Of course, other detectors exist that

can equally detect edges efficiently and may be matter of further investigation. Some of them are

Prewitt [39] and Deriche [58] operators or even Cumani’s [59] color-based operator;

• Regarding INFANTE project, it was discussed with Prof. Paulo Gordo the possibility of adapting

the current algorithm to detection of crude stains in satellite images which can be subject of further

investigation and a new application to the developed method.
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Appendix A

Parameter Variation Illustration for all

detection methods

In this appendix, all the results of the variation of parameters are shown in the form of 3D plots.

Parameters which happen to cause computational problems and yield zero performance were ig-

nored in order not to have this results influencing the plots’ scale. The orders ignored are α = 1 for

the Sobel and LoG, α = 0 for CRONE and α = {−2,−1} for the Fractional Derivative operator and the

Roberts Operator.

Since it would be impossible to present graphs for all methods and images, the four selected images

in section 4.2 were also chosen to have their graphs of parameter variation represented here.

A.1 Grey-Scale Methods

A.1.1 Grey-scale Canny

(a) Coast(12) (b) Coast(18)

Figure A.1: Algorithm Performance using grey-scale Canny detector (1).
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(a) Coast(27) (b) Coast(38)

Figure A.2: Algorithm Performance using grey-scale Canny detector (2).

A.1.2 Grey-scale Sobel

(a) Coast(12) (b) Coast(18)

Figure A.3: Algorithm Performance using grey-scale Sobel detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.4: Algorithm Performance using grey-scale Sobel detector (2).
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A.1.3 Grey-scale Roberts

(a) Coast(12) (b) Coast(18)

Figure A.5: Algorithm Performance using grey-scale Roberts detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.6: Algorithm Performance using grey-scale Roberts detector (2).

A.1.4 Grey-scale Laplacian of Gaussian

(a) Coast(12) (b) Coast(18)

Figure A.7: Algorithm Performance using grey-scale LoG detector (1).
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(a) Coast(27) (b) Coast(38)

Figure A.8: Algorithm Performance using grey-scale LoG detector (2).

A.1.5 Grey-scale CRONE

(a) Coast(12) (b) Coast(18)

Figure A.9: Algorithm Performance using grey-scale CRONE detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.10: Algorithm Performance using grey-scale CRONE detector (2).

A.1.6 Grey-scale Fractional Derivative Operator
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(a) Coast(12) (b) Coast(18)

Figure A.11: Algorithm Performance using grey-scale Fractional Derivative detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.12: Algorithm Performance using grey-scale Fractional Derivative detector (2).

A.2 Color-based Methods

A.2.1 Color-based Canny

(a) Coast(12) (b) Coast(18)

Figure A.13: Algorithm Performance using color-based Canny detector (1).

83



(a) Coast(27) (b) Coast(38)

Figure A.14: Algorithm Performance using color-based Canny detector (2).

A.2.2 Color-based Sobel

(a) Coast(12) (b) Coast(18)

Figure A.15: Algorithm Performance using color-based Sobel detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.16: Algorithm Performance using color-based Sobel detector (2).

A.2.3 Color-based Roberts
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(a) Coast(12) (b) Coast(18)

Figure A.17: Algorithm Performance using color-based Roberts detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.18: Algorithm Performance using color-based Roberts detector (2).

A.2.4 Color-based Laplacian of Gaussian

(a) Coast(12) (b) Coast(18)

Figure A.19: Algorithm Performance using color-based LoG detector (1).
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(a) Coast(27) (b) Coast(38)

Figure A.20: Algorithm Performance using color-based LoG detector (2).

A.2.5 Color-based CRONE

(a) Coast(12) (b) Coast(18)

Figure A.21: Algorithm Performance using color-based CRONE detector (1).

(a) Coast(27) (b) Coast(38)

Figure A.22: Algorithm Performance using color-based CRONE detector (2).
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A.2.6 Color-based Fractional Derivative Operator

(a) Coast(12) (b) Coast(18)

Figure A.23: Algorithm Performance using color-based Fractional Derivative detector (1).

(a) Coast(27) (b) Coast(18)

Figure A.24: Algorithm Performance using color-based Fractional Derivative detector (2).
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Appendix B

Grey-scale VS Color-based Best

Results’ Exponential Graphs

The graphs in section 4.4 are essential to know the exact values of the greatest variations in per-

formance between different versions of edge detectors. However, this graphs’ scale does not let one

understand if the difference in images that present reduced variation is in fact positive or negative. In

order to further analyse this cases, the variation in Jaccard coefficient (∆J) was transformed according

to Equation B.1

y = 10∆J (B.1)

In this appendix, the histograms that compare best grey-scale against color-based results were con-

verted to exponential graphs. Note that are considered even, variations in performance lower than

1× 10−4.
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B.1 Grey-Scale vs Color Canny Algorithm

Figure B.1: Analysis of performance comparison between grey-scale and color based Canny (Exponen-
tial Version).

B.2 Grey-Scale vs Color Sobel Algorithm

Figure B.2: Analysis of performance comparison between grey-scale and color based Sobel (Exponen-
tial Version).
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B.3 Grey-Scale vs Color Roberts Algorithm

Figure B.3: Analysis of performance comparison between grey-scale and color based Roberts (Expo-
nential Version).

B.4 Grey-Scale vs Color Laplacian of Gaussian Algorithm

Figure B.4: Analysis of performance comparison between grey-scale and color based LoG (Exponential
Version).
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B.5 Grey-Scale vs Color CRONE Algorithm

Figure B.5: Analysis of performance comparison between grey-scale and color based CRONE (Expo-
nential Version).

B.6 Grey-Scale vs Color Fractional Derivative Operator Algorithm

Figure B.6: Analysis of performance comparison between grey-scale and color based Fractional Deriva-
tive Operator (Exponential Version).
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Appendix C

Absolute Best Results with Varying

Parameters

In this appendix, the absolute best results are presented. For each operator, Table C.1 and Table C.2

show the best performances and used parameters in all detectors. It is also presented the mean varying

parameters performance value for each detector.
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Appendix D

Parameter Fixation Mean Performance

graphs

In this appendix, the mean performance of all detectors obtained by fixing all combinations of param-

eters are extensively presented under the form of 3D plots.

(a) Grey-Scale Canny (b) Color-Based Canny

Figure D.1: Mean Performance of Canny algorithms graphs using same parameters for all images.
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(a) Grey-Scale Sobel (b) Color-Based Sobel

Figure D.2: Mean Performance of Sobel algorithms graphs using same parameters for all images.

(a) Grey-Scale Roberts (b) Color-Based Roberts

Figure D.3: Mean Performance of Roberts algorithms graphs using same parameters for all images.

(a) Grey-Scale LoG (b) Color-Based LoG

Figure D.4: Mean Performance of LoG algorithms graphs using same parameters for all images.
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(a) Grey-Scale CRONE (b) Color-Based CRONE

Figure D.5: Mean Performance of CRONE algorithms graphs using same parameters for all images.

(a) Grey-Scale Frac. Deriv. Op. (b) Color-Based Frac.Deriv. Op.

Figure D.6: Mean Performance of Fractional Derivative Mask algorithms graphs using same parameters
for all images.
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