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Resumo

Nesta dissertagao, foi desenvolvido um algoritmo computacional para aplicar derivadas de ordem
fracionaria ao processamento de imagens de satélite de alta definicao.

Um dos objetivos deste trabalho foi avaliar a performance de métodos de detecéao de contornos, uti-
lizando derivadas fracionarias. Para isso, seis métodos de detecao em escala de cinza foram utilizados.
Todos os métodos implementados foram também adaptados para executarem detegao usando imagens
de cor. Por fim, foi testada uma possivel solucao com parametros fixos que permitam a segmentacao
automatica de costas nas mais variadas imagens de satélite.

O estado da arte nesta area conclui que os métodos que usam derivadas fraccionarias melhoram
os resultados ao nivel de dete¢ao de contornos e aumentam os nives de imunidade ao ruido do pro-
cessamento de imagem. Também afirma que os métodos que utilizam imagens de cor sdo melhores.
Contudo, nas aplicagdes ja existentes houve sempre dificuldade em perceber quais os parametros que
optimizam a detecgao dos contornos pretendidos.

Todos os detectores implementados revelaram boa performance na segmentacao pretendida, tendo
amascara de derivadas fracionarias obtido melhor desempenho geral. Os métodos fracionarios igualaram
ou melhoraram a performance dos métodos convencionais inteiros. As versdes de cor dos detectores
apresentaram em geral igual ou melhor desempenho do que os métodos em escala de cinza.

Por fim, foram descobertos pares de parametros que permitem a deteccdo de costas automatica
com uma média de desempenho acima de 90%, ligeiramente inferior a melhor solugao com parametros

variados.

Palavras-chave:
Satélite

Derivada Fracionaria
Detecao Automatica
Detecao Baseada em Cor
Detecao em Escala de Cinza

Processamento Fracionario
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Abstract

In this dissertation, a computational algorithm was developed in order to apply fractional derivative
image processing to high definition Satellite Images.

One objective of this work was to evaluate the use of fractional derivatives on edge detection in the
aforementioned scope. For that, six grey-scale fractional detection detectors were used. All implemented
methods were also adapted to perform color-based detection. Finally, a search for fixed parameters
that allow the automatic detection of coasts in the broad range of types of satellite images was also
performed.

The state of the art on this matter concludes that the fractional methods enhance the results of
contour detection and improve immunity to noise in image processing. It also states that color based
processing can achieve better results. However, in the already existent applications there is a difficulty
in achieving fixed parameters that optimize the performance in edge detection.

All the implemented detectors presented good performance in the desired segmentation. The Frac-
tional Derivative operator revealed the best overall performance. The fractional methods matched or
enhanced the functioning of the conventional integer ones. The color-based versions of the detectors
worked in general as well or better than the grey-scale ones.

Lastly, pairs of parameters were found which allow the automatic detection of coasts with an average

performance above 90%, slightly inferior than the best solution with varying parameters.

Palavras-chave:
Satellite

Fractional Derivative
Automatic Detection
Color-Based Detection
Grey-Scale Detection

Fractional Processing
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Chapter 1

Introduction

This first chapter briefly describes the contents of the present dissertation. It includes a small text
explaining the relevance of studying fractional image processing and applying it to the aeronautic field,

an overview of what will be the studied topics, the objectives and its structure.

1.1 Motivation

Throughout the years, image processing has been an essential tool in the field of aerospace engi-
neering, from inspection of aircraft parts until the navigation of these ships. In order to overcome bad
weather’s lack of visibility, pilots use processed images to know where they are and where to go. Also,

the processed images taken by satellites allow to extract relevant information in different fields such as

[l
* land monitoring;
* routine mapping;
+ surveillance of the marine environment, including oil-spill monitoring;
+ ship detection for maritime security;
* mapping to support humanitarian aid and crisis situations.

This list goes on, and everyday appears a new application for this type of images.

Tiago Bento [2] and José Gongalves [3] already applied fractional edge detection to medical images
and arrived to conclusions that show its great potential. It is now relevant to apply this fractional pro-
cessing to other matters. In this dissertation, this knowledge is applied to the aerospace field by using
satellite images acquired from Copernicus Open Access Hub [4]. Being Prof. Rui Melicio part of IN-
FANTE project [5], it is interesting to apply this knowledge to the aerospace field. INFANTE project is an
R&D project for the development and in-orbit demonstration of technology for a small satellite, precursor
for Earth observation constellations. Thus, this dissertation also aims to help the project with insights

that may benefit and enhance current investigations regarding satellite technology.



1.2 Objectives

The objectives of this work are the application of fractional derivatives to image processing in the

aeronautical field to:

« Verify if fractional algorithms reveal the same potential in the processing of images outside of the

medical area, namely satellite images;
» Compare grey-scale algorithms against color based methods;

» Check if it is possible to identify sets of parameters that allow an automatic treatment of the images,

since that revealed impossible in medical applications.

1.3 Thesis Outline

This thesis is composed of five chapters and four appendices:

» Chapter 1 is the present chapter and it is the introduction, where the objectives, motivation, outline

and innovation of the investigation are presented.

 In Chapter 2 the state of the art in the subject is handed over. This means that the theoretical
formulations needed to understand the experiments performed are exposed as well as all the

accomplishments in the matter so far.

» Chapter 3 is where all the experimental implementation is explained. In this case, the work is com-

putational so the implementations are the algorithms developed as well as a few considerations.

+ In Chapter 4 the results of the algorithms’ testing are briefly presented and analysed. Extended

results are presented in the appendices under the form of tables and plots.

+ Finally Chapter 5 presents conclusions on the results and objectives proposed in the introduction.

1.4 Contribution

In this work, the application of fractional processing of images is carried on [2, 3], only this time, the
fractional derivatives are applied to satellite images. This means these are images with a much greater
resolution (10980X10980p) which makes their processing much more heavy computationally, but, at the
same time, due to this, edge gradients are very well defined. In order to detect coasts in the images,
conventional integer algorithms are integrated with fractional derivatives’ formulations.

Besides conventional grey-scale fractional processing, recent algorithms perform edge detection us-
ing color images. An already existent algorithm will be used in this work. Furthermore, its mathematical
formulations will be the base to adapt other detectors to receive as input a color image. A different novel
approach is also tested to adapt a zero-crossing fractional edge detector to color-based edge detection.

This study intends to check if color based processing is useful in the application in question.



Finally, it is of great interest the automatic detection of coasts for a large and heterogeneous data
set. The search for parameters that may present high performance in the detection of coasts in satellite
images is also carried out in this work. A high performance solution with fixed parameters that almost
matches results with varying parameters is presented. This result allows the algorithm to automatically

detect coasts in different images without having to tune parameters.






Chapter 2

State of the Art

In this section, the state of the art relevant for this study is presented. The topics covered here are:
+ Satellite Image Processing: section 2.1

+ Fractional Derivatives: section 2.2

» Image Processing: section 2.3

» Edge Detection Methods: section 2.4

2.1 Satellite Image Processing

Satellite images are taken in digital form by artificial satellites. These images are then processed
by computers to extract information. Statistical methods are applied to them and after processing pixel
values are evaluated.

As mentioned in the introduction, the information retrieved by this processing has many different
applications such as land monitoring or support humanitarian aid and crisis situations. Therefore this
theme has been deeply studied and developed recently.

According to [6], satellite image processing is a kind of remote sensing which works on pixel resolu-
tions to collect coherent information about the earth surface.

There are four types of resolutions related to satellite imagery [7]:

+ Spatial resolution: it is determined by the sensors Instantaneous Field of View (IFoV) and is
defined as the pixel size of an image that is visible to the human eye being measured on the

ground;

» Spectral resolution: measures the wavelength internal size and determines the number of wave-

length intervals that the sensor measures;
» Temporal resolution: defined as the time that passes between various imagery cloud periods;

+ Radiometric resolution: provides the actual characteristics of the image. It gives the effective bit

depth and records the various levels of brightness of the image.



On October 24, 1946, the first photo from space was taken. This grainy, black-and-white photo shown

in Figure 2.1 was taken from an altitude of 105 kilometers by a 35-millimeter motion picture camera riding

on a V-2 missile.

Figure 2.1: First Photo taken from Space [8]

Since the 60s, the earth observation field evolved significantly. A film sensitive to wavelengths was
developed. This feature could be used to differentiate for example different types of vegetation.

TIROS 1, the first weather satellite, was put in orbit in 1960 [9]. It supplied the US Weather Bureau
with daily images of cloud formation and represented a milestone in weather forecasting.

Non-photographic remote sensing technology grew rapidly after the first mapping satellite, Landsat
1, was sent into orbit in 1972 [10]. It was geared with a new type of sensor known as a multi spectral
scanner (MSS). With this new technology, data was generated in the form of digital matrices enabling
substantial advances in image processing. Today the scanner is a very important tool in remote sensing.
It is used on land, in aircraft and on board satellites.

Another important tool used nowadays is the radar sensor [11]. A radar sensor system emits the
radiation that it ultimately records and is therefore classified as an active sensor. In simple terms, the
radar sensor releases pulses of energy down towards the surface of the Earth. A fraction of the energy is
reflected and returns as an ’echo’ signal. The power of the returned signal will depend on the roughness
and moisture content of the surface and the degree and orientation of sloping in relation to the radar
beam. The delay of the ’echo’ reveals the distance to the reflecting surface. Radar sensors use energy
emitted at longer wavelengths which can infiltrate clouds and haze effectively, and can therefore acquire
imagery at night. This provides a significant lead over passive satellites that are hampered by clouds

and require sunlight to acquire detailed imagery.



2.1.1 Sentinel-2

In this dissertation, images from the Copernicus Sentinel-2 mission are used [1]. This mission com-
prises two polar-orbiting satellites placed in the same sun-synchronous orbit, phased at 180° in relation
to each other. It aims at monitoring variability in land surface conditions, and its wide swath width (290
km) and high revisit frequency will support monitoring of Earth’s surface changes.

Each of the Sentinel-2 satellites weights approximately 1200 kilograms. Both have been put into
orbit with the European launcher VEGA. The satellite lifespan is approximately 7 years. Batteries and
propellants have been provided to accommodate 12 years of operations, including end of life de-orbiting

operations.

View on North Pole View on Equator

Figure 2.2: Sentinel-2 Satellites [1]

The mission objectives are the following [1]:

 systematic acquisitions of high-resolution, multi spectral images allied to a high revisit frequency;

« continuity of multi spectral imagery provided by the SPOT series of satellites and the USGS LAND-
SAT Thematic Mapper instrument;

 observation data for the next generation of operational products, such as land-cover maps, land-

change detection maps and geophysical variables.

These high-level objectives will ensure that Sentinel-2 makes a significant contribution to Copernicus

themes, such as climate change, land monitoring, emergency management, and security.

2.2 Fractional Derivatives

In this section, theoretical formulations regarding fractional Derivatives will be demonstrated.



2.2.1 Historic Background

Fractional calculus constitutes an augmentation of the conventional integer calculus that exists for
over than three hundred years. lIts study was launched by Leibniz and L‘Hospital as a conclusion of a
written conversation by letters in 1695 [12]. They wondered what would be the derivative if the order
was one half rather than an integer order. That year is considered the birth year of fractional calculus.

The subject introduced by these two gentlemen was object of study during the following decades.
There are reports from Euler (1730), Lagrange (1772), Laplace (1812), Lacroix (1819), Fourier (1822),
Liouville (1832), Riemann (1847), Green (1859), Holmgren (1865), Grunwald (1867), Letnikov (1868),
Sonini (1869), Laurent (1884), Nekrassov (1888), Krug (1890), Weyl (1919), among others.

In 1819 Lacroix [13], answered the problem raised by Leibnitz and LHospital for the first time. He
said that % was 24/z /7. In [13], Lacroix developed (2.1) for the fractional derivative of y = z# with

fractional order « :

'B+1) 5
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where I" denotes the gamma function which is defined for z > 0 by:
I'(z) = / e T dx (2.2)
0

Substituting « = 1/2 and g = 1 in (2.1) Lacroix’s result (21/x/7) is obtained.

Using the linearity of fractional derivatives, this method may be applied to polynomials and series.
However, this class of functions is small in order for the method to be considered a general rule. Never-
theless, this was a first development for practical applications on fractional calculus.

In 1823, Abel presented an application for the subject applying fractional calculus to the resolution of
an integral equation of the tautochrone problem [14]. The tautochrone problem is the determination of
a curve in the (z, y) plane such that the time needed for a particle to go down the curve until its lowest
point under the force of gravity is independent of its initial position (z,, y,) on the curve.

The most relevant advances in the fractional calculus field occurred around 1832 when Joseph Liou-
ville began to study fractional calculus after analysing Abel’'s solution and managed to apply his inves-
tigation to potential theory [14]. Liouville proposed two formulas for the fractional derivatives. However,
these formulas were not accepted as general formulas for the same reason as Lacroix’s formula. Their
scope was a narrow group of functions.

One of the most useful breakthroughs in the history of fractional calculus might be due to an investi-
gation paper written by Bernhard Riemann [15]. While attempting to generalize a Taylor series, Riemann
obtained the expression that is the most-widely used modern definition of fractional integral.

The formulation that is now called the Riemann-Liouville definition is derived using the Cauchy’s
integral formula as a starting point. Laurent [16] used a contour given as an open circuit (known as

Laurent loop) and arrived to today’s definition.



At the same time, Griinwald and Letnikov suggested another definition of fractional derivative which
is also frequently used today. Grinwald [17] (1867) adopted the definition of a derivative as the limit
of a difference quotient. He arrived at definite-integral formulations for ordinary derivatives, proved
that Riemann’s integral had to have a finite lower limit and also that Liouville’s definition had a —co
limit. Letnikov also showed that Grinwald-Letnikov (GL) definition coincides, under certain relatively
soft conditions, with the Riemann-Louville definition. Nowadays, the GL definition is mainly used for
derivation of many numerical methods.

Significant modern advances in fractional calculus were made by Caputo in 1967 [18]. One of the
main disadvantages of the Riemann-Liouville definition was that unpractical initial conditions were re-
quired. Caputo reformulated this classical definition in order to use classical initial conditions, the same
as integer order differential equations. GL, RL and Caputo definitions will be explored in the next sub-
sections.

Fractional calculus has been deeply explored during the last three decades. With the theoretical
formulations developed before, new applications to engineering and science problems were created
using fractional derivatives. Applications such as fractional conservation of mass [19], tuning of PID
controllers [20], groundwater flow problem [21], ultrasonic wave propagation in human cancellous bone
modelling [22], modeling contaminant flow in heterogenous porous media [23], fractional dynamics in
the trajectory control of redundant manipulators [20], time-space fractional diffusion equation modelling
[24], heat diffusion [20], structural damping models [25] or even a variable-order fractional Schrédinger

equation [26].

2.2.2 Griunwald-Letnikov Definition

The first order derivative of a function is given by (2.3):

le(!E) — lim f(x—l—h)—f(x)

h—0 h (23)

lterating, it is possible to arrive to the n*" derivative of a function. (2.4) can be deduced by induction:

h—0
m=0

(;)Wdiw (2.5)

The Griinwald-Letnikov derivative is a generalization of the derivative in (2.4). The idea behind is

D" f(z) = lim A" 3 (=)™ ( " ) f(z —mh) (2.4)

where,

that h should approach 0 as n approaches infinity. But before going there, to extend this expression,
binomial coefficients must cope with real numbers. For that, the Euler gamma function is used, instead

of the factorials in (2.5):
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Combining (2.4) with (2.6) it is provided the main justification for the following extension (2.7) of the
integer-order derivative to any real order « > 0 which was proposed independently by Grinwald [17]
and Letnikov [27]:

Jj=0

GLDaf(t) — ,liﬂ%h_a > (_1)k ( : ) f(t—kh), teR (2.7)

For practical reasons, a truncation of the expression above was introduced. With an initial value c,
the truncated version of the derivative is often preferred since it can be applied to functions that are not

defined (in the interval from -co to ¢):

N
(DEF() = lim A=Y (—1)k ( “ ) flt—kh), N= VhCJ L t>ec (2.8)
k

h—0
k=0

Expression (2.8) constitutes the formulation that is going to be applied to the different edge detectors

in order to perform fractional image processing.

2.2.3 Riemann-Liouville Definition

The Riemmann-Liouville fractional definition was obtained computing the direct generalization of

Cauchy'’s formula for a n*" order integral:

/:da:l /: dasg.../:nlf(mn)dmn _ (nil)! /: e f(tt))lndt (2.9)

Since, (n — 1)! = T'(n), Riemann realized that (2.9) could have a meaning even when n took values

that were not integers. So, by generalization, the Riemann-Liouville fractional integral of order o was

derived:

1% f(2) == — / (xf(tt))ladt (2.10)

Due to the properties of this operator, the Riemann-Louville’s fractional derivative can be defined as
in (2.11) [28]:
N % f)dt, ifaeR-
Dy f(x) = f(@), ifor =0 (2.11)
diel pe-lelt),  ifaeR*

dzlol %
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2.2.4 Caputo’s Definition

The Caputo derivative is important to model phenomena using classical initial conditions which are

more practical than the initial conditions required by other definitions . It is stated in (2.12):

Crapp L () .
Dif(t) = )/0( d (2.12)

I'n-—« t—7)atl-n

With o > 0. If needed, an inferior limit for the derivative may be added:

Crapp L ARG
«DEf(t) = /a( dr (2.13)

I'(n—a) t—r)atl-n
In contrast with the Riemann-Liouville’s derivative, Caputo’s derivative of a constant is equal to zero.

Caputo’s definition for all the R domain (2.14) can be found in [28]:

SIS f(r)dr, ifaeR™

c

D f(t) = f(t), ifa=0 (2.14)
DTS (1), faeRY

2.3 Image Processing

Image processing is a method in which one carries out some operations on an image, in order to
get an enhanced image or to obtain some useful information from it. It is a type of signal processing in
which input is a picture and output may be a picture or relevant information regarding that image.

But what is an image? In the context of the present dissertation, an image is considered a two-
dimensional function f(x,y), where x and y are the coordinates of the pixels within the area (N x M)
of the picture. The value of f is the intensity of pixel (x,y). Computationally speaking, an image is a 2D

array organized in rows and columns given by:

fn f(1,2) f(L,N)
fM, 1) f(M,2) -+ f(M,N)

The applications of image processing range from medicine to entertainment, passing by geological
processing and the main application for this work: remote sensing.

The processing of digital images can be divided into four categories:
+ image enhancement

* image restoration

* image analysis

* image compression

11



2.3.1 Image Processing Historic Background

One of the first applications in image processing appeared in the early 1920s in the newspapers

industry: the Bartlane System.

The name of the system comes from its two inventors, Bartholomew and Macfarlane, both from the
Daily Mirror newspaper. This way of transmitting images within long ranges was invented in 1920 and
the first trans-Atlantic cable picture was transmitted in 1921, between London and Halifax [29]. The
cable system employs the telegraphic typewriter to convert the picture values into those that will fit the

standard forms of communication. Figure 2.3 shows a picture transmitted with the Bartlane System [29].

Figure 2.3: Picture Transmitted and Reproduced by the Bartlane System [29].

The following years along the decade of the 20s were spent improving the Bartlane System. At the
end of the decade, the system retrieved higher quality images. New reproduction processes based on
photographic techniques were introduced and the number of tones reproduced in the images increased.

The following image presents a 15 tone digital image retrieved from the system at the end of the decade:

Figure 2.4: Barltlane System’s image at the end of the 1920s(15 tones) [30].

In the 1960s , enhancements in computing technology and the space race led to a great development
of digital image processing. In 1964, image processing techniques were used to improve the quality of
images of the moon taken by the Ranger 7 probe. Later these techniques were continuously used in
other space missions.

In the 70s, the processing of images started to be used in medical applications and in 1979 the
tomography was invented. This invention allowed Sir Godfrey N. Hounsfield and Prof. Allan M. Cormack

to win a shared Nobel Prize in medicine.

Since then, digital image processing has exploded and today is used in many different areas.

12



2.3.2 Image Processing Steps
The processing of digital images can be divided in eleven steps (Figure 2.5) [31]:
» Image Acquisition: It is simply capturing the image. This step may include pre-processing;

+ Image Enhancement: Procedure of filtering image to improve quality (e.g. noise removal, contrast

increase);

» Image Restoration:Process of enhancing appearance of an image by mathematical or probabilis-

tic models (e.g. deblurring);
» Color Image Processing: Usage of colors of an image to extract features of interest;

+ Wavelets and Multi-Resolution Processing: Representation of the image in different degrees of

resolution;

« Compression: Technique to reduce storage needed to save an image or the bandwidth required

to transmit it;

* Morphological Processing: Methods to extract image features that are useful in the representa-

tion and description of shape;

+ Segmentation: Process to divide image components and isolate them. The more accurate the

segmentation, the more likely recognition is to succeed.;

* Representation and Description: It involves representing an image in different ways:

— Boundary Representation: it focuses on the external shape characteristics such as corners

and inflections;
— Regional Representation: it centers on internal properties such as texture and skeletal shape;

— Description: it is also known as Feature Selection and helps extracting relevant information.

* Recognition: Process of allocating labels to an object rooted on its description;

+ Knowledge Base: Detailing regions of an image where the relevant information is known to be

located, therefore limiting the search that has to be performed in seeking that figures.
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Figure 2.5: Fundamental Steps of Digital Image Processing [32].

2.3.3 Convolution with Masks

Convolution is the procedure of summing each element of an image to its local neighbors, weighted
by a kernel or mask.

The convolution of an image can be represented by:

g(z,y) = h(z,y) * f(z,y) (2.16)

where f(z,y) and h(z, y) are respectively the image and the kernel. Note that due to the commutative
property these two can be swapped in (2.16).

The mask can be represented by a two-dimensional matrix, generally 1x1, 3x3, 5x5 or 7x7. Note that
the mask has usually odd dimensions. That is due to the fact that being odd, the center of the mask can
be found. This is important because normally the center corresponds to the target pixel that is assigned
with the result of the convolution.

Convolution is composed of the following steps (Figure 2.6):

1. For each pixel in the input image, the mask is placed on top of the image with its origin lying on

that pixel;

2. the values of each pixel under the mask are multiplied by the values of the corresponding kernel

weights;

3. the results are summed to yield a single output value that is placed in the output image at the

location of the pixel being processed on the input.

14
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Figure 2.6: Convolution with masks (Adapted from [33]).

2.3.4 Derivative Filters

Derivative filters supply a quantitative measurement for the rate of change in pixel value within a
digital figure. When this kind of filters are used, the result can be used to enhance contrast, detect edges
and boundaries and to measure feature orientation. In this work, edge detection will be performed, thus
these filters are of relevant matter.

Convolution of the specimen image with derivative filters is known as derivative filtering operation.
In most of the times, there is a filter to each direction so convolution is performed twice. Using two

dimensions, a gradient can be measured from the combination of the convolutions in = and y:

(2.17)

- [

oz’ dy
The gradient presented above points in the direction of most rapid increase in intensity. The magni-

tude (2.18) and orientation (2.19) of this gradient are frequently used to combine the two convolutions in

the processing of images with edges with different orientations.

IVfIl = \/(gif + (25)2 (2.18)

of 0
f = tan"! (%%) (2.19)

2.3.5 Image Segmentation

According to [34], Image segmentation is the process of partitioning an image into multiple seg-
ments”. It is used in image processing to locate objects and boundaries in images. Processing an
entire image can be computationally heavy. Nevertheless, image segmentation may help identifying the
regions of interest.

Image segmentation creates a pixel-wise mask for each object in the image. This technique gives us

a deep understanding of the object(s) present in the scene.
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There are two types of segmentation:

+ Semantic Segmentation

+ Instance Segmentation

To understand the difference between these two, let one take a look at Figure 2.7 and Figure 2.8:

Figure 2.7: Semantic Segmentation [35]. Figure 2.8: Instance Segmentation [35].

In Figure 2.7, every pixel belongs to one class of the two existent. All the pixels belonging to a
particular class are represented by the same color. This is an example of Semantic Segmentation.

In Figure 2.8 each person is identified individually so the algorithm assigns a unique color for each
individual. This is an example of Instance Segmentation.

One simple way to segment different objects is to use their pixel values. The pixel values will be
different for the objects and the image’s background if there is a sharp contrast between them. In this

case it can be used a technique called thresholding.

2.3.6 Thresholding

In many image processing applications, it is helpful to be able to split the regions of the image
corresponding to objects in which one is interested, from the regions that correspond to the background.
Thresholding frequently provides a simple and appropriate way of performing this segmentation based
on the different intensities of pixels in the foreground and background of an image.

The input of a thresholding operation is typically a gray-scale or color image. In the simplest im-
plementation, the output is a binary image. Usually, black pixels correspond to background and white
pixels correspond to foreground. In elementary applications, the segmentation is determined by a single
parameter known as the intensity threshold. Each pixel in the image is compared with this threshold. If
the pixel’s intensity is higher than the threshold, the pixel is set to white in the output. If it is less than the
threshold, it is set to black.

Therefore, an image f(x,y) that is an output of a thresholding operation is defined mathematically
by (2.20):

flz,y) =

0, ixel < threshold
{ P (2.20)

1, pixel > threshold
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2.3.6.1 Otsu Threshold

Otsu’s thresholding method requires iterating through all the possible threshold values and computing
a measure of spread for the pixel levels in each side of the threshold. This means that the pixels that
either fall within two classes: the foreground or the background. The goal of this method is to discover
the threshold value where the sum of foreground and background spreads is at its minimum.

First, the method computes the histogram for the values of the pixels in the input image. Then it

iterates the threshold value in order to find the optimal one. The metrics used to find it are:

« Within-class variance;

+ Between-class variance.

From the following mathematical equation, variance (o) can be explained as the distribution of the

data. The higher the value of variance, the more dispersed the data is:

N 2
o2 — >im (]f; — ) (2.21)

For two classes, within-class variance is given by the following expression:

Vi = Wi x 0] + Wa % 03 (2.22)

where W; is the number of pixels of class i over the total of pixels.

In terms of the above mentioned metric (V,,), the lower the value of V,, is, the less dispersed the data
in each class is (background and foreground). In order to get the optimal threshold value one needs to
find the minimal value of V,,.

As it stands, between-class variance is the variance between two classes. In the case of two classes,

this metric is given by:

(Vo) = WilWa (p1 — p2)? (2.23)

To get the suitable threshold value one shall find the maximal value of V. It is clear that this metric

is computationally faster since it does not require the computation of the variance [36].

Figure 2.9: Otsu’s Thresholding [36].
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2.4 Edge Detection Methods

Edge detection is an image processing technique that aims to find the limits of objects within images.
It works by detecting discontinuities in pixels intensities. It is a crucial tool in segmentation and other
areas of image processing.

An edge consists in a set of pixels with high intensity variations in their neighbourhood. These
variations can be used to resolve the depth, size orientation and surface properties of a digital image.

There are two types of edge detection: Gradient based and Laplacian based.

In the gradient based methods, edges are detected by taking the first order derivative of the image
and computing the gradient as explained in subsection 2.3.4. The gradient magnitude (2.18) is used to
calculate a measure of edge strength. Gradient orientation (2.19) helps to identify local edge orientation.
Sobel, Canny, Prewitt and Roberts are examples of edge detection algorithms that use the gradient.

In the laplacian based methods, the second order derivative of the image which may have zero-
crossings is computed. Generally, edges are found by searching zero-crossings of a non-linear differ-
ential expression. Usually, a Gaussian smoothing is performed before using this type of method. This
is due to the fact that the 2" derivative is very sensitive to noise. The smoothing operation filters noise
and allows better edge detection. The most relevant relevant second order derivative based detector is
the Laplacian of Gaussian (LoG).

In the following subsections, the above mentioned algorithms for edge detection will be detailed.

2.4.1 Integer Edge Detection Methods
2.4.1.1 Gradient Based operators
2.4.1.1.1 Sobel operator

The Sobel operator performs a 2-D spatial gradient measurement on an image and so it highlights
regions where there are sudden increases of pixel intensity which correspond to edges.

The operator consists of two masks: one for the gradient in = direction (G) and other for the gradient
in y direction (G,). Note that G,, is nothing more than G, rotated 90 degrees [37].

-1 0 | +1 +1 ] +2 | +1

2| 0 [+2 0|0 ]| O

-1 0 [ +1 -1 ]-2 |1
Gx Gy

Figure 2.10: Sobel convolution masks [37].

These kernels are planned to respond maximally to edges that are vertical and horizontal relatively
to the pixel grid, one kernel for each of the two perpendicular orientations. The masks can be applied
separately to the input image, in order to produce different measurements of the gradient component
in each orientation (G, and G, ). These can then be combined together to find the magnitude of the

gradient at each point and the orientation of that gradient with respectively (2.18) and (2.19).
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2.4.1.1.2 Roberts Cross operator

The Roberts Cross operator [38] performs a simpler, quick way to compute, 2-D spatial gradient
measurement on an image. It also summits regions with great variations in pixel intensity that correspond
to edges. The input and output of the operator are grey-scale images. Pixel values at each point in the
output represent the estimated absolute magnitude of the spatial gradient of the input image at that
point.

The Roberts operator consists of a pair of 2x2 masks, again one for each direction. Here, the mask to
compute one direction’s gradient is the other one rotated 90 degrees as one can observe in Figure 2.11
[37].

+1| 0 0 | +1

Figure 2.11: Roberts convolution masks [37].

The combination of the two gradients in order to find the magnitude and orientation is once more

performed using the above mentioned expressions.

2.4.1.1.3 Prewitt operator

Prewitt operator is used for edge detection in order to find two types of edges: Horizontal and Vertical

Detection of edges is performed by using the difference between corresponding pixel intensities of an
image. For this, again, a derivative mask is used. Two 3x3 operators, one for each direction (Figure 2.12)
[39].

=1 0 | +1 +1 | +1 | +1

=110 | +1 0010

-1 0 | +1 -1 -1 -1
Gx Gy

Figure 2.12: Prewitt convolution masks [39].

When these masks are applied individually on a image it outputs only the horizontal or vertical edges.
As the center column/row is zero, it does not include the original values of an image but rather it cal-
culates the difference of right and left pixel values around that edge. This increases the edge pixels’
intensity and it becomes enhanced comparatively to the original image. Once more these two masks

may be combined in order to try to detect all edges in one image.
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2.4.1.1.4 Canny operator

The Canny edge detector is a very popular edge detection algorithm. It was developed in 1986 by

John F. Canny [40]. The algorithm is composed of the following steps:

1. Noise Reduction;
2. Gradient Calculation;
3. Non-maximum Suppression;

4. Hysteresis Thresholding.

The first step of the Canny algorithm is Noise Reduction. Since image processing is always vulner-
able to noise, it is important before processing to remove or reduce it. This is possible convolving the
image with a Gaussian Filter. Then, a simple 2-D first derivative operator (in the case of the algorithm
used in this work is the derivative of the Gaussian function used to smooth the image) is applied to the
smoothed image to highlight regions of the image with high first spatial derivatives (2.24) and (2.25).

Vy(z,y) = V(G(z,y,0) * f(z,y)) = V(G(z,y,0) * f(z,y) (2.24)
B = 80 o) By =P ) (2.25)

This step of the process is called Gradient Calculation. In (2.24) and (2.25), E, and E, are the

gradients in each direction and G(z, y, o) the Gaussian filter defined as:

2,2
G(z,y,0) = ! exp(—x tY ) (2.26)

2mo? 202

After computing gradient magnitude and orientation with (2.18) and (2.19) , a full scan is performed
in order to remove any unwanted pixels which may not constitute edges (Non-maximum Suppression).
In order to do this, for every pixel, it is checked if the point is a local maximum in its neighborhood, in the

direction of the gradient. Let one check the following example in Figure 2.13 [41, 42].

= A B = A B
— & o > @ o>
Gradient Gradient
Direction Direction
yedge edge

Figure 2.13: Canny’s Non Maximum Supression [41].
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Observing Figure 2.13, one can see that point A is on the edge (vertical edge). Gradient orientation
is perpendicular to the edge. Points B and C are in the gradient direction. So the value for the pixel
in point A is compared with the values from points B and C to see if it forms a local maximum. If so,
it is considered for next stage, otherwise, it is suppressed (put to zero). Therefore, in this case all the
points in the direction of A are suppressed, including C and B. In conclusion, the result obtained from
this phase is an intensity image with edges with a thickness of one pixel.

The final step of the algorithm is the Hysteresis Thresholding. In this phase, the algorithm decides
which edges are suitable for the output image. Each edge has an intensity proportional to the magnitude
of the gradient. For this, two threshold values are defined, the minimum and maximum values. All
gradients higher than the maximum threshold are considered "sure-edges”. In contrast, the gradients
that are lower than the minimum threshold are considered "non-edges”. For the gradients that are

between the two values two instances may occur [43]:

« if the pixels in question are connected to “sure-edge” pixels, they are considered to be part of

edges;

+ otherwise, these pixels are also discarded and considered non-edges.

Edge for sure

High Threshold

Edge only if connected to

NotanEdge a already determined edge
r

Low Threshold

Not an Edge for sure

Figure 2.14: Canny’s Hysteresis Thresholding [42].

This stage also removes small pixels noises on the assumption that edges are long lines. After this,
the algorithm retrieves an output image with the edges identified by the detector.

The effect of the Canny operator is determined mostly by two parameters [44]: the width of the
Gaussian kernel used in the smoothing phase (o), and the upper and lower thresholds used in the
hysteresis thresholding phase. Augmenting the width of the Gaussian kernel reduces the detector’s
sensitivity to noise, at the expense of losing some of the finer detail in the image. Usually, the maximum
threshold can be set quite high, and the lower threshold quite low for good results. Setting the lower
threshold too high can cause important edges not to be detected. Setting the maximum threshold too
low can lead to detection of edges that are actually residual noise that were not eliminated with the

smoothing operation.
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2.4.1.2 Laplacian Based operators

2.4.1.2.1 Laplacian of Gaussian operator

In image processing, the Laplacian is a measure of the 2" spatial derivative of an image. It allows the
identification of regions with a rapid change of pixels intensity and is thus often used for edge detection.
The Laplacian is frequently used in an image that has first been smoothed with a Gaussian smoothing
filter in order to reduce noise intensity. The operator generally takes a single grey-scale image as input
and produces another grey-level image as output. The Laplacian of a 2D Image is given by the following

expression:

o1 o1

Liz,y) = 55 + 052 (2.27)

Since the image is a representation of discrete pixels, we have to find a discrete convolution mask
that can approximate the second derivatives in the formulation of the Laplacian. In the discrete domain,

the simplest approximation to the continuous Laplacian is to compute the difference of slopes along

each axis:
0% f - o o
gpz = J6d+1) = 2f(5) + f(i,5 = 1) (2.28)
0% f . . . ‘ ‘
aTJg:f(ZJrla])*Qf(%J)JFf(Z*L]) (2.29)

Substituting (2.28) and (2.29) in (2.27), the first kernel of (2.30) is obtained. The second, a non-
separable eight-neighbor Laplacian defined by the gain-normalized impulse response array, was sug-

gested by Prewitt. The mask on the right is a separable eight-neighbor version of the Laplacian [45].

ol 1]of [1]1]1]]|-1]2]-1
1| —4|1||1]-8]1 2 | -4 2 (2.30)
ol 1 ]of [1]1]1]|-1]2]-1

Using one of these three kernels, the Laplacian can be calculated convolving them with the image.
Since these kernels are approximating a second derivative on the image, they are very sensitive to
noise. To tackle this, the image is Gaussian smoothed before applying the Laplacian filter reducing high
frequency noise.

The smoothing filter can also be convolved first with the Laplacian kernel and only then convolve the

result with the input image. This process presents two main advantages:

+ since both the Gaussian and the Laplacian kernels are normally smaller than the input image, this

method usually requires less arithmetic operations;

» The LoG kernel can be pre-calculated in advance so only one convolution needs to be performed

saving time in processing.
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The Laplacian of Gaussian operator of a 2D Image is defined by (2.31) and is illustrated in Figure 2.15
[37]:

1 22 4+ y?] 22
LoG(z,y) = i { 5,2 | € 202 (2.31)
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Figure 2.15: 2-D Laplacian of Gaussian operator [37].

2.4.2 Fractional Edge Detection Methods
2.4.2.1 Fractional Roberts Operator

Nowadays, fractional calculus attracts as much attention as the integer-order differential algorithms.
As for the definition of fractional derivatives, there are a few. Three of the most popular definitions are
detailed in section 2.2: G-L, R-L and Caputo’s definitions.

The authors of [46] present the application of Grinwald-Letnikov definition to the integer Roberts
edge detector and arrive to a kernel for a fractional order operator. It is known that the Roberts expres-

sion for the gradients stands:

[N

9(z,y) = |Vf(z,y)| = { [fzy+1) = flz+ 1L+ [fz+1,y+1) — flz,y)]? } (2.32)
Combining (2.8) with (2.6) the authors arrived at expressions for the gradient’s components:

PIED)  fla,y) + (~a) flz — 1,y) + CRGH £ —2,y)

ARG (2.33)
+ ot ey (2 = 1Y)
% zf(x’y)—‘,—(—a)f(.r,y—1)+%Jc(gjay—2) (2 34)

D" 'T(a+1
+~~~+%‘f(z,y7ﬂ)

n—
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Referring to (2.33) and (2.34), the 3x3 fractional differential mask can be constructed in the eight cen-
tral symmetric directions, which are negative x-coordinate, negative y-coordinate, positive x-coordinate,
positive y-coordinate, left downward diagonal, right upward diagonal, left upward diagonal, and right

downward diagonal. The sum of the eight directional masks yields:

a2—a+2 a2—oz+2 a2—a+2
2 2 2

et | e e (2.35)

a?—a+2 a?—a+2 a?—a+2
2 2 2

Note that the mask in (2.35) with o = 1 corresponds to the center Laplacian mask in (2.30).
Combining the fractional mask to the Roberts operator defined by (2.32), the authors arrived at a
solution for edge detection in which the texture of the image is enhanced and small edges are also

detected. (2.36), (2.37) and (2.38) represent the mathematical formulation for this combination:

Daw@zw]zf%ggiy)+5”g§3” (2.36)

P4t~ gla,y) + (—a)gle — 1y) + EUG g 2,y)
1)" T (a+1)
+oot WQ(

(
[fla,y+1) — fla+1,1)2 §+
+flx+1Ly+1)— flz,y)?

(—a) [f(x - Ly+1)— f(z, y)]2 i (2.37)
+[f(177y =+ 1) - f($ - 17y)}2

(a)(2a+1){ [flz=2,y+1) = f(z - Ly)]? }2+.“+

- n,Yy)

+[f($_17y+1)_f(x_2vy)}2

(=)™ 'T(a41) [f(.]? —n,y+ 1) - f(x -n+1, y)]2
CEDTE N @ —n+ Ly +1) - @ —ny)?

P9w)  gla,y) + (—a)g(z,y — 1) + EXLCH gy — 2)

Oy™
(—1)"~'I(a+1)
ot e 9 Y — 1)

ey - ey |
+[f(l’+ 17y+ 1) - f(ﬂ?,]J)F

L) Ve = ty=DE L (2.38)
+[f(x+ 17y) - f(xay_ 1)]2

Cajcary | H@y—=1)—fl@+1ly-2)?
+Hfx+1ly—1)— flz,y—2)*}* +-- -+

1

(=" 'T(a+1) { [f(337y—n+1)—f(3;+1’y_n)}2 }2
]2

_|_

n—T(a—n+2
GO @+ Ly —n+1) — f(z,y —n)

where f(z,y) is the the original image, and g(z, y) is the processed image using an integer Roberts

operator.
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From the experimental results in [46], it was concluded that the improved algorithm has the advan-
tages of Roberts, that is, obtaining thinner edges, besides allowing edge enhancement as one can

observe in Figure 2.16.

(g)Original flower (h) Roberts (1) mroved (v=0.5)

Figure 2.16: Roberts operator combination with fractional operator [46].

2.4.2.2 Fractional Sobel Operator

Following the same line of thought, Charles Yaacoub [47] presented a fractional Sobel operator.
Sobel’s approximations to the first order numerical derivative applied in two-dimensional space re-
sult in the filter masks shown in Figure 2.10. Thus, the resulting image gradient components can be

expressed as:

+flea+lLy—D+2f(x+1L,y)+ flz+1,y+1)

(2.39)

Gy:—f(x—1,y—1)—2f(m,y—1)—f(m+1,y—1)

+fl@-Ly+1)+2f(z,y+1)+ fz+1y+1)

(2.40)

By applying the G-L definition (2.8) to G, expressed in (2.39), the fractional a-th order derivative of

G, yields:
DG, =0TV e gy 1) 2 4y + fl Ay 4 1)
+ 20 8y 1) b 27 - 8) 4 fa -8y 1)]
# |5 - E TR - 2y - )4 25 - 2+ S 2 1)
21 1? (2.41)
+ -5 - ] - 1 D 2 1)+ e - Ly 1)
- U@y =D +2f(@.y) + f(x,y+1)]
+ %[f(x-kl,y—1)+2f(m+1,y)+f(x+17y+1)]

The gradient in (2.41) can be obtained by convolving the image f(x,y) with the filter mask presented
in (2.42):
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a(—a+1)(—a+2) a(—a+1)(—a+2) a(—a+1)(—a+2)
12 6 12
a(—a+1) a(—a+1) a(—a+1)
4 2 4
a a(—a+1)(—a+2) o — a(—a+1)(—a+2) a a(—a+1)(—a+2)
2 12 6 2 12 (242)
_1_ alzatl) 1 alzotl) _1_ alzatl)
2 4 2 2 4
3 “a 5
1 1
3 ! 3

Since the mask has an even number of rows, the origin is not centered. In the mask above the origin
is considered to be located on the 5 row and 2" column.

A similar reasoning can be applied to the y-direction and the conclusion that the mask in y is the
mask in x transposed can be withdrawn.

According to the authors, the proposed edge detector was able to reduce the number of false edge

pixels while presenting thinner edges, compared to the conventional Sobel-based edge detection.

2.4.2.3 Fractional LoG Operator

In 2014, the authors of [48] presented a fractional adaptation for the first operator in (2.30) (using the
symetric mask).

In a discrete function (f), the operator corresponds to the approximation in (2.43):

G(f)=—flz—1y) = flz,y—1) +4f(z,y) — f(z,y +1) = f(z + 1,y) (2.43)
Decomposing and noting that for this case h = 1, (2.44) may be derived:
_Of(x,y) | Of(xy) Of(zy+1) Of(x+ly)  Pflat+ly) flzy+]1)
G = Ox + oy Oy B Ox T Ox2 B Oy? (2.44)

By generalizing the order from integer to fractional, a fractional-order differential form of the Laplacian

operator can be obtained:

0% f(z,y+1)
oy™

0% f(x+1,y) 3

e (2.45)

G(f) = -

Using the G-L definition for the fractional order derivative as it was used for the other operators, one

may arrive to (2.46):

K- 1 K—1
x+1—ky)— Z fle,y+1—k)—
k:0 k=0

012704
{ r+1,y) —af(z,y) + 5 f(x—l,y)—!—...—l—(—l)K10}1(_1f(1;+2_K7y)} (2.46)

2 _
[ xy+1aﬂxw+6¥2aﬂmyD+~-+(UK10%4ﬂLy+2Kﬂ
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With the definition above, the mask that performs the calculation of the fractional laplacian may be

constructed:
0 0 (=1)C%_, | O
0 ... 0 (a — a2) /21 0 (2.47)
(—D)CE_y | ... | (a—a?) /2 201 -1
0 0 -1 0

Experiments with (2.47) show that, the larger the order of differentiation is the better the image

feature is preserved, but the more noise appears too.

2.4.2.4 CRONE Operator

In 2002, Benoit Mathieu wanted to prove that an edge detector based on fractional differentiation
could improve edge detection and detection selectivity in the case of parabolic luminance transitions.

He started by analysing the detection power of fractional differentiation. To do so, a fractional deriva-
tive was applied to a step type parabolic transition and the abscissa of its maximum compared to the

inflexion point of the transition (Figure 2.17) [49].
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Figure 2.17: Parabolic Step-type transition and its derivative [49].

The analysis comprises two intervals for the derivative order: initially values between 0 and 1, and
then between 1 and 2. This division is relevant because each of these intervals defines a different shape
for the derivatives of the transition curve.

For a €]0, 1], there is a shift between the inflexion point of the function and its derivative. The closer
« is from zero, the greater the shift is (Figure 2.18) [49]. This means the maximum of the derivative for

these orders is always on the right of the inflexion point.
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Figure 2.18: Normalized modulus of f™ (z) for a €]0, 1[ [49].

For o €]1,2[, the abscissa of the derivative’s maximum corresponds to the inflexion point of the
parabolic step curve. It is also noted that there is an infinite slope to the right of the inflexion point. This
allows not only the detection of the transition inflexion point but also high selectivity.

With the aim of achieving better detection selectivity, an operator which presents an infinite slope in
both sides of the inflexion point was developed. This was achieved by using the derivative with orders of

a €]1,2[. The solution steps are the following:

1. take the opposite of the derivative function calculated with decreasing = (Figure 2.19b);

2. add the derivative function calculated with increasing = (Figure 2.19a).

(b /‘I.\

(8]

=¥

Figure 2.19: (a) obtained ™ (x) for increasing =, (b) inverted f") (x) for decreasing =, (c) obtained
) (x) for decreasing x [49].

The spatial operator which defines CRONE ("Contour Robuste d’Ordre Non Entier”), therefore sub-
tracts f(™ () calculated using decreasing z, from f(")(zx) calculated using increasing =. The operator is
written as (Qj and is illustrated in Figure 2.20 [49].
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Figure 2.20: (a) obtained f™ (x) for increasing =, (b) inverted f™ (x) for decreasing =, (c) CRONE

detector [49].

2.4.2.4.1 Mathematical formulation of g"

The first derivative of a function f(x), calculated with increasing « can be defined by:

and with decreasing x:

being A infinitely small.

It is relevant to introduce a shift operator ¢ which is defined by:

af(z) = f(z+h)
g f(z) = f(z —h)
Using the shift operator on the directional derivative yields:

1—q_1

1—g¢q

1

1—q
b= h

_1l—-gq
Q_ h

Generalizing to a order n, l_)>” and Q" can be defined as:

n 17(]71”
z- ()

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)



As explained before, the bidirectional detector can be constructed by a composition of the two unidi-

rectional operators using the following expression:

pr=pr-p=pla-a)-a-or (2.55)

Expanding (1 — ¢~1)"™ and (1 — ¢)™ using Newton’s binomial formula, the expression above can be

rewritten:

e nn—1)--(n—k+1)
n :7 (_l)k
&7 kz:% kil (2.56)
x (¢7" = ")

Applying the operator to a function, for example the transition studied before:

D)= 2 S e~ kh) — [+ b)) 257)
k=0

ar = (~1)F ( " )
k (2.58)

k!
In order to detect edges on images, the formulated detector must be designed in two dimensions.

where

It must be considered then a vectorial operator consisting in two independent components, = and .
Each of the components is a truncated single dimension CRONE detector. The horizontal and vertical

component masks are shown respectively in (2.59) and (2.60).

Yam - 4a; 0 —ay e am (2.59)
o
+aq

0 (2.60)

—ay

—Q,

The detector was experimented in artificial and real images and performance compared with Prewitt

operator’s. In all cases CRONE detector showed better immunity to noise.
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2.4.3 Color-Based Edge Detection

Nowadays, the methods using grey-scale images yet described are the ones most often used in edge
detection. Nevertheless, detectors that use as input the color information of images also exist. The main
difference between coloured images and gray-level images is that, in a colour image, a vector (which
generally consists of the three components of the RGB space) is assigned to a pixel, while a scalar
grey-level magnitude is assigned to a pixel of a grey-level image. This means that in color-based image
processing, the image functions are measured as vectors instead of scalar values.

The techniques used in color-based edge detection can be subdivided on the basis of their principle

procedures into two classes [50]:

* Monochromatic-based techniques: treat values from the color channels first separately and then

combine them together;

» Vector-valued techniques: treat the color information as color vectors in a vector space provided

with a vector norm.

Until now, the majority of the existent color edge detection methods are monochromatic-based tech-
niques, which produce, in general, better results than grey-level edge detection [51].

While in grey-level images a great variation in the intensity is considered as an edge, the term “color
edge” has not been permanently defined for color images. Throughout the years few definitions have
been proposed. One of the elder ones is that an edge exists precisely in the color image if the intensity
image contains an edge [52]. However, this definition ignores that discontinuities in the hue and satura-
tion channels may occur. For example, the edges of objects that are next to each other and that have
the same value but different colors (Hue) might not be recognized using this definition. A second defini-
tion for a color edge states that it exists if at least one of the color components contains an edge. But
merging the edge detection results from the different color components may lead to some localization
inaccuracies of edges in the individual color channels. A third monochromatic-based definition for color
edges is rooted on the computation of the sum of absolute values of the gradients for the three channel
components. According to this definition, a color edge exists if the summation of the magnitudes of the
gradients exceeds a threshold value .

All definitions ignore the relationship between vector components. Since a color image represents
a vector-valued function, a discontinuity of chromatic information can and should also be defined in
a vector-valued way [51]. In subsection 2.4.3.1, an adaptation of the Canny algorithm to color image

processing using a vector-valued technique is presented.

2.4.3.1 Canny operator using Color image processing

In 1987, Kanade introduced an extension of the Canny operator [53] for color edge detection. The
operator is based on the same steps as the conventional Canny but the computations are now vector
based. This means that the algorithm determines the first partial derivatives of the smoothed image in

both z and y directions.
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A three-component color image is represented by a function that maps a point in the image plane to
a three-dimensional (3-D) vector in the color space. In the RGB space, the function is C = (R, G, B). It
is possible now to define the Jacobian, which is the matrix that contains the first partial derivatives for

each component of the color vector:

R, R,
J=1 a6, G, | =(Cs,Cp) (2.61)
B, B,

The indexes x and y represent the partial derivatives:

_oR oR

R, 5 and R, = — (2.62)

The direction in the image along which the largest variation in the chromatic image function occurs

is represented by the eigenvector of .J7.J corresponding to the largest eigenvalue.

J’E J.’E'l
JTy=1( Y (2.63)
Ty Jy

J.=R:+G2+ B2
2 2 2
Jy =R, + G, + By (2.64)
Joy = Jyz = RyRy + GGy + B, B,

In order to calculate the magnitude one has to compute det(J?J — AI) = 0 which yields:

Ty To k(4 T = 4T, = J2,)

A= 5 (2.65)
The orientation 6 of a color edge is determined in an image by:
2. .
tan(20) = 2 = Gy (2.66)
1C]I” = ICy |

After the magnitude is determined for each edge, non-maximum suppression is used, based on a
threshold value in order to eliminate broad edges.
According to experiments in Carnegie Mellon University [51], the color edges describe object geom-

etry in the scene better than the intensity edges, although over 90% of the edges are identical.
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Chapter 3

Implementation

In this chapter, the implementation of the algorithms for edge detection in satellite images is pre-
sented. This work was developed in a Windows environment using MATLAB as programming workspace
and Excel as data analysis assistant. The detectors implemented for grey-scale edge detection were
Fractional Canny, Roberts, Sobel, LoG, CRONE and the Fractional Derivatives Mask in (2.35) . Versions
of each operator using color-based image processing were also implemented. All the detectors were
introduced in the same code that loads the images, performs pre and post-processing and performance
analysis. MATLAB custom functions were used, as well as functions adapted from colleagues’ work in

medical images [2] [3].

3.1 Introduction

In order to check fractional derivatives’ power in the processing of satellite images, more specifi-
cally the identification of coasts in satellite images, the conventional edge detectors were adapted to
p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>