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Gamma-ray spectroscopy is the usual method to identify detected radioactive hot-spots. Clas-
sical Gamma spectroscopy involves many phases, longer analysis and usually an expert to reach
an identification result. Thus, developing and upgrading the identification systems available has
been a challenge for security and defence organisations such as Departments of Homeland Security,
Emergency Response Teams, Customs and Border Control.

This work proposes an approach using machine learning techniques that is intended to be im-
plemented as an easy to use identification system, meaning that it can be used by anyone without
experience in the field. The proposed solution makes use of artificial neural networks to produce a
classification to a given spectrum obtained with a CZT sensor. The system is trained using simu-
lated data and is then tested with real acquisition spectra. Single and multiple isotope identification
on each sample is explored, highlighting the benefits of an implementation of this kind as well as

possible improvements.

Additionally, an example of a portable application is suggested using a Raspberry Pi. It is
noteworthy that the artificial neural networks developed could be implemented in other devices
such as a mobile phone with a connection to a detector. This kind of standalone and portable
system could be used on site by humans or even by unmanned vehicles such as drones.

I. INTRODUCTION

The majority of the people around the world is con-
stantly exposed to radiation arising from their phones,
microwaves, routers, communication antennas, high ex-
posure to the sun. More often than not, this kind of ex-
posure is not harmful to living beings, however not every
type of radiation is equal. Radiation with higher energy
is usually referred to as ionising radiation. These ener-
getic beams represent a real threat to our well being since
they are energetic enough to modify the DNA structure
in human cells, causing damage to tissues and organs.
For that matter, it is of high importance to detect and
identify possible radioactive sources.

There has been a growing concern on this matter of
radiation control especially due to the raise of aware-
ness among people, fuelled by disasters like Chernobyl
and Fukushima. Nuclear activated components can be
found in a variety of different scenarios such as reactor
outages, laboratory test facilities, storage areas for con-
taminated fusion and fission remains and even particular
equipment used, for instance, in health care. Criminal
and unauthorised acts related to nuclear and other ra-
dioactive material such as illegal dropout of activated
substances in remote locations and terrorism are also
to be taken into consideration. Naturally-Occurring Ra-
dioactive Materials (NORM) [1] is a term used to specify
all naturally occurring radioactive materials which occur
naturally or where human activities have increased the
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potential for exposure compared with an unaltered situ-
ation. These materials potentially include all radioactive
elements found in the environment such as uranium, tho-
rium and potassium. Any of their decay products also
represent a serious threat. Moreover, with the current
rates of using nuclear reactions, namely for electricity
production, the possibility of nuclear accidents cannot be
neglected, thus control and monitoring must be enhanced
and improved. Not only detecting but also identifying the
detected radioactive sources is important. Identifying an
unknown source is usually relevant since this information
might hint the cause for such radiation detection and also
define how to mitigate its risks.

Artificial Intelligence (AI) applications have been in-
creasing in the scientific and even commercial areas in
the past few years. Following this huge dissemination
of AT methods such as artificial neural networks (ANN)
and Deep Learning, it was figured out that there could
be some room to explore this recent developments in this
area and establish a connection between Al and gamma-
ray spectroscopy, contributing to the improvement of cur-
rent Gamma-ray analysis applications.

II. RADIOACTIVITY

Atoms found in nature are either stable or unstable.
The instability of an atom’s nucleus may result from an
excess of either neutrons or protons, or even excessive
energy. A radioactive atom will attempt to reach stability
by ejecting nucleons (protons or neutrons), as well as
other particles, or by releasing energy in other forms [2]
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This process of attempting to reach a more stable form
for the atom is denominated radioactive decay. Depend-
ing on the type of process itself, this decay can be sorted
out in different categories: Alpha, Beta and Gamma.

An Alpha decay consists in the transformation of the
atom nucleus (parent) into a new nucleus (daughter) by
the emission of an alpha particle. Similarly, a beta decay
consists in the emission of a beta particle (electron or
positron) from the parent nucleus.

In a gamma decay the nucleus simply transitions from
a higher energy state to a lower energy state releasing en-
ergy by means of the emission of electromagnetic radia-
tion (gamma ray). Following a a or 8 decay, the daughter
nucleus may be left in one of these high energetic states,
progressing to a more stable state via a supplementary
gamma decay. Since gamma-ray carries no charge nor
does it have an associated mass, there is no change in
the element as a result of emission of a gamma rays.

A. Interaction of Gamma Radiation with matter

The majority of gamma ray interactions with matter
can be described by 3 main processes: Photoelectric ef-
fect, Compton scattering and Pair production [3] .

In the photoelectric effect the incident photon gives all
of its energy to a bound electron in an atom, leading to
the ejection of the specific electron with kinetic energy
(E.) equal to the difference between the incident photon
energy (E,) and the binding energy (Ej) of such electron.

E.=E,-E, (1)

This process allows the detector to accurately measure
the energy that the incident photon transferred to the
electron, corresponding to a well defined energy peak in
the spectrum. These peaks are denominated Full-Energy
Photopeaks (FEP).

Compton scattering occurs when an incident photon
transfers part of its energy to a free or loosely bound elec-
tron via collision process. The amount of energy trans-
ferred is dependant on the angle between the direction
of the incident photon and the direction of the scattered
photon. The scattered photon leaves the detector and the
detected energy is the kinetic energy of the electron. The
energies of the scattered photon and electron are given
by:

— By
E’Y' ~ 14+Ep(1—cos0)

. @)

Ee=Ey—Ey =Ey — TE0 )
where E, is the incident gamma ray energy, E,. is the
scattered photon energy, E. is the electron energy, Fy is

meC2 and 6 represents the scattering angle for the scat-
tered photon.
Pair production consists in the creation of a positron-

electron pair when the gamma ray is travelling through

matter, usually in the vicinity of an atomic nucleus. To
make this process possible, the incident gamma ray must
have at least 1.022 MeV of energy which corresponds
to the combined rest mass of those two particles. The
positron is unstable causing it to lose its kinetic energy
and find an available electron to annihilate. During this
annihilation, two gamma photons with the energy of 511
KeV are created in opposite directions.

III. GAMMA-RAY SPECTROSCOPY

Gamma-ray spectroscopy is an analytical technique
that can be used to identify various properties of the
radioactive isotopes present in a sample of a specific ra-
dioactive substance. The energy of incident gamma-rays
produced by the sample are acquired and measured by
a detector, being then compared to the known energy
of gamma-rays produced by radioisotopes and determin-
ing the identity of the emitter. This technique has many
applications, such as in material analysis, geological ex-
ploration or even computer tomography.

In order to analyse the sources of radiation, the de-
tected gamma emissions are measured and used to pro-
duce an energy spectrum. A detailed analysis of this
spectrum is useful to determine the identity and quan-
tity of gamma emitters present in a sample.

A. Gamma-ray Spectrum Components

Gamma ray spectrum is basically an histogram that
represents the number of occurrences detected by the
spectrometer system for a certain energy. Each individ-
ual radionuclide has a different decay scheme and conse-
quently a distinct spectrum that is used to identify them.
Gamma rays entering the detector can undergo any of
the possible interaction processes described in Section II.
These processes are responsible for the several features
that can be encountered in the spectrum. Relevant spec-
trum features include: Full Energy Photopeaks (FEP),
Compton Edge and Continuum, Backscaterring peaks,
X-ray peaks, Annihilations peaks and escape peaks (see
Fig. 1).
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Figure 1: Example of Cesium-137 spectrum [4].



IV. STATE OF THE ART METHODOLOGY

After understanding the several features that may be
present in a gamma spectrum it is important to under-
stand the methodology used in order to apply that knowl-
edge in a way that enables the user to identify the ra-
dionuclide in question. Approaches to radionuclide iden-
tification can be divided in two wide-ranging categories:
peak search and template matching.

A. Peak search identification methods

The most commonly used algorithm to perform a peak
search is called derivative search [5]. This procedure con-
sists in applying the first and second derivatives to the
entire spectrum and identify possible peaks by the signal
variation of such derivatives.

If all spectra were a smooth and continuous curve, a
derivative peak search could be immediately applied to
the raw spectrum. Unfortunately, this is not the case
of real acquisitions which contain undesired noise that
must be filtered/smoothed. Several different smoothing
techniques may be applied for gamma-ray spectroscopy
[6]. From simple moving average to far more intricate
and complex polynomial approaches such as B-splines [7]
or Savitzky-Golay filter [8]. Fourier transforms [9] have
been utilised for this matter as well as some more recent
procedures such as wavelet analysis [10][11].

Another possible alternative to derivative peak search
is to use "deconvolution” methods. Deconvolution is an
algorithmic approach that tries to reverse the effects that
a physical detection system has on the original theoretical
source spectrum. Some examples of deconvolution tech-
niques include Maximum Likelihood Expectation Maxi-
mization (ML-EM), Maximum Entropy Method (MEM)
and linear regularization [12].

The final classification procedure consists in gathering
all the data obtained in the previous steps and matching
it against a known nuclide library in order to possibly
identify the radionuclides present in the sample. Classi-
fier algorithms that have been applied to radionuclide
identification include [6]: Expert systems (essentially
hard coded decision trees) [13], Naive Bayes [14][15][16],
Nearest neighbour [17][18] and also Support vector ma-
chines [19][20].

B. Template Matching identification methods

Template matching requires a separate type of algo-
rithms that can search the space of possible radionuclides
in order to find the correct mixture that contributes to
the a certain spectrum. These types of algorithms fall
into two broad categories [6]: Heuristic and Systematic.

Heuristic algorithms involve a strategy based approach
that compares the sampled spectrum with a huge number
of possible spectra. One solution is to start from the full

set of possible radionuclides and sequentially eliminate
them on the way to a solution (strip down) [21][22].

Differently from heuristic ones, systematic algorithms
consider multiple possible solutions at each decision node,
therefore decreasing the problem of path dependence in
heuristic methods [6].

C. Artificial Neural Networks previous
implementations

The majority of the aforementioned algorithms re-
quire specific data pre-processing in order to be properly
utilised. Some of them inclusively require special tuning
of parameters, making those types of approaches unsuit-
able for being used by non expert users. This kind of
problems can be overcame by making use of artificial in-
telligence algorithms such as ANNs. Although ANN im-
plementation can be extremely consuming both time and
resource wise due to training and the usual need for high
performance computers, all of these difficulties are con-
densed in the development stage. After development, the
algorithm requires a relatively low computational power
to be used (this heavily depends on the purpose of the
ANN) and more importantly, presents a far more user
friendly experience since the user provides the input and
receives an output without any additional parameters
to tune. Additionally, the successful implementation of
ANNSs in other complex areas such as computer vision
and image classification [23], further enhances the signif-
icance of exploring such approach.

ANN approaches have already been applied in several
previous works using low to medium energy resolution
detector systems (scintillator detectors) [24][25][26][27].
Since the input for the ANN is the entire spectrum, there
is no need for more complex pre-processing procedures,
such as transformations or filters, making this applica-
tions easy to operate by the end user. To the best of my
knowledge, no work was found on ANN development for
radionuclide identification using high resolution detectors
such as Cadmium zinc telluride (CZT) ones. Taking this
into consideration, the goal of this thesis is to further ex-
plore the possibilities of using ANNs to analyse gamma-
ray spectra from a CZT sensor and identify radioactive
isotopes.

V. PROPOSED SOLUTION

In this work an ANN approach is proposed as a possi-
ble solution to perform isotope identification on samples
acquired with a CZT detector.

Artificial Neural Networks are one of the most widely
used tools of Machine Learning today. As the “neural”
part of their name suggests, the way they work is inspired
in the human brain as they are intended to replicate the
way that we (humans) learn.



A simple ANN is composed by an input layer with as
many neurons as there are input signals, at least one
hidden layer and an output layer with as many neurons
as output signals.

Each neuron-neuron interaction can be described by
receiving the input signals, multiplying them by each re-
spective weight and sending these values to an activation
function that delivers a final output signal. These weights
are the constants that we get from the training/learning
procedures. These functions, also known as transfer func-
tions, act as thresholds for the signal usually outputting
values between 0 and 1 or -1 and 1.

During the training process, the weights of the ANN
are updated with the intention of minimising the error in
relation to the expected output for each of the train-
ing data examples. This error can be evaluated and
measured by what is called a loss function. Commonly
used loss functions include Mean Squared Error (MSE),
Mean Absolute Error (MAE) normally used for regres-
sion problems or even Hinge Loss or Cross Entropy that
are usually applied to classification problems [28]. This
process of minimisation of a function with respect to a
set of parameters (in this case the loss function in re-
spect to the weights) is at the root of many computer
science issues [29] and can be carried out by optimisation
algorithms like Gradient-based learning. Popular algo-
rithms include Stochastic Gradient Descend (SGD), Mo-
mentum based GD, Nesterov Accelerated Gradient De-
scent (NAG), RMSprop and Adaptive Moment Estima-
tion (ADAM), every single one of them being some vari-
ant of the classical Gradient Descent Algorithm. ADAM
which is a combination of RMSprop and Momentum is
considered to be current state of the art [30].

VI. SOLUTION IMPLEMENTATION
A. Training Data Generation

Since obtaining a data-set composed of real spectra was
not possible, the selected approach was to resort to simu-
lated data and use them as training samples. In order to
obtain such material, a simulator was used: GADRAS-
DRF from Nuclear Energy Agency [31].

In this work, the idea is to develop an ANN that can
identify the data acquired with a specific CZT detector.
Thus, the detector dimensions were given a fixed set of
values that were obtained by looking at the data-sheets
[32] of the detector in use.

Both energy resolution and energy calibration param-
eters of the simulated detector were defined using data
provided by [33] where they performed an analysis of the
CZT detector used in this work. The channel number was
set to 1024, since this analysis used this configuration.

A range of values were chosen for each relevant param-
eter of the simulator in order to obtain a more complete
data-set. A more detailed description of each of the pa-
rameters used for the simulation of the data-set can be

found in the complete thesis document.

The final list of selected radionuclides used for learning
is:

o 2Ng, 000 13705 152Fy 241 Ap,. 226Rq 228 Ac,
23577 407~ 133 222 57 54 20477 7
U, K, **’Ba, “**Rn, °"Co, >**Mn, “°*TI, "Be
- 15 Isotopes

The following step was to define the simulation param-
eters namely: acquisition time, distance from source to
detector, activity of the source and background noise. A
combination of an activity of 1 uC and an acquisition
time of 3600 real seconds was chosen, this choice being
based on characteristics of previous experimental acqui-
sitions. Distance to the source was set to 10 cm, height
was set to 100 cm and Poisson statistics were applied.

Taking into consideration that the ANN should be able
to identify the radionuclides regardless of the location
and background noise, a set of possible background values
were picked for the simulations.

An independent spectrum was produced for each iso-
tope for all the different detector configurations and
simulation parameters previously described, scaling the
number of single isotope spectrum samples to a total of
10 935 samples. The same process was performed for
multiple radionuclide simulations, where a combination
of up to 3 isotopes were simulated in a single sample. In
this case all radinuclides were simulated as having equal
activity in the combination, since having different combi-
nations of activity would lead to an enviable huge number
of samples. A total of 76 545 and 331 695 samples
were simulated for dual and triple isotope combinations
respectively.

B. ANN Structure Development

The idea for this implementation is to receive the
full acquired spectrum after a maximum normalisation,
hence the size of the input layer must be equal to the
number of channels of the detector itself (1024).

Regarding the output of the ANN, the chosen approach
was to have an output neuron for each of the possible
identifiable radionuclides, totalling 15 neurons. For the
case of single-isotope identification (multi-class classifi-
cation) the activation of choice was Softmax since we
want to predict the most probable radionuclide in the
sample. When trying to identify more than one radionu-
clide in the same sample (multi-label classification) the
approach must be distinct. For this case the activation
function chosen was Sigmoid.

In this work, three different hidden layers structures
were tested for each of the desired classification options
(single and multi radionuclide identification). Each inde-
pendent approach used one, two or three hidden layers.
The base model is shown in Fig. 2.
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Figure 2: Base model for the artificial neural network structure.

ReLu activation was chosen for every neuron belonging
to the hidden layers.

Tensorflow [34] and Keras API [35] were used for the
implementation of the mentioned ANNs.

C. ANN Training

For this particular implementation, binary cross-
entropy loss function was used for Sigmoid activation and
categorical cross-entropy for Softmax activation. The
learning algorithm chosen was ADAM optimiser.

The regularisation mechanisms that were analysed
consisted in L1 and L2 regularisation. In addition, fea-
tures such as batch size and number of epochs were stud-
ied in order to obtain better results.

The starting point for stopping mechanism imple-
mented consisted in evaluating the training loss value and
stop the learning process when this value did not reduce
at least 10=* over 10 consecutive iterations. Regarding
the batch size, common values include 32, 64, 128, 256
[36]. The value of 128 was chosen as a first approach.

VII. PERFORMANCE ANALYSIS CRITERIA

The performance of the resulting ANNs was evalu-
ated using a set of real spectra acquired in 3 different
scenarios with the CZT detector previously introduced.
The 3 groups of samples can be categorised as Single or
Multi radionuclide acquisitions and include the radionu-
clide samples mentioned in Table I.

Set Name Radionuclides Sample Name Aquisition Time Background sample?
0Co S581.60Co 30 min Yes
. ifer SS1_137Cs#1 30 min Yes
Slng;;gf; #1 B0 SS1_137Cs#2 30 min Yes
152 By SS1_152Eu 30 min Yes
*Na SS1_22Na 30 min Yes
. 0Co SS2_60Co#1 90 min Yes
S'“gzes’ssze; #2 0Co §52.60C0#2 90 min Yes
24 Am SS2.241Am 90 min Yes
226 Ra, 4P, 211 B; * MS1_#1 30 min Yes
Multi_Set #1 |?2°Ra, 24 Pb, 2*4Bi * MS1_#2 30 min Yes
(MS1) 226 Ra, 1P, 211 B; * MS1_#3 30 min Yes
226 Ra, 21 pb, 211 B; * MS1_#4 30 min No

Table I: Data-sets used for evaluating the performance of the ANNs.
* Expected radionuclides.

S5S1 and SS2 were acquired at the Lab using sources
with well-known identities, meaning that the radionu-
clides attributed to each of the samples are correct. For
MS1 data-set the spectra were acquired in a real sce-
nario of an old ore mine, so the attributed radionuclides
to each sample correspond to the expected identities ob-
tained with other analysis.

Before classification, each spectrum was normalised
and subject to a background subtraction procedure con-
sisting in taking the original spectrum and subtracting
the entirety of the background noise acquisition (propor-
tional to acquisition time of each sample).

When evaluating the performance of a resulting ANN
trained for classification, the usual approach is to run
the algorithm to analyse a specific set of ”problems” and
attribute an evaluation of correct (if the classification was
correct) or incorrect (otherwise) to each of the processed
examples. At the end, the Accuracy of a given algorithm
is obtained based on the ratio of right guesses against the
total number of ”problems” that were analysed from that
specific test set. Additionally to this accuracy metric,
Precision and Recall [37] are commonly used to analyse
the performance of multi-label classification algorithms.

Finally, another interesting metric to analyse is the
F1-score which essentially combines precision and recall
values in order to obtain a final score.

VIII. SINGLE RADIONUCLIDE
CLASSIFICATION RESULTS

In order to obtain an optimal identification system,
several steps of optimisation procedures must be taken.
Only the final ANN results are shown in the extended
abstract. A more detailed description of the relevant op-
timisation phases is presented in the complete thesis doc-
ument. The following results are obtained using SoMz1
configuration which uses only one hidden layer fo 1024
neurons, for a batch size of 128 and L1 and L2 regular-
ization of 0.001.

A. Background Subtraction effect

Background subtraction is a mechanism that intends to
filter some of the noise present in the spectra of the sam-
ples. This process consist basically in acquiring a sample
spectrum of the area where little to none radioactivity
from the source under analysis is detected and subtract-
ing it from the acquired spectra. Background noise sam-
ple acquisition is not always possible, making it relevant
to analyse the performance of the ANN when classifying
samples without background subtraction.

Table II reveals the classification output for each sam-
ple with and without background subtraction. Note that
not having background subtraction affects especially the
isotopes with lower activity counts or with acquisitions
made farther from the source, where the ratio between



source and background counts is lower. This might be
the case of samples SS1_60Co and SS1_137Cs#2 which
show significantly better results when background sub-
traction is applied. Unexpectedly, the confidence value
for §S1_22Na increased without background subtraction,
despite it being the sample with lower activity.

Background

Subtraction Yes No
) ; *Na — 53%
$S1_60Co ‘ 0Co —91% 405 41%?
§S1_187Cs#1|'*"Cs — 100%| "*7C's — 99%
*Na —18%

137 _ 790

§81.137Cs#2| "*TCs —T2%| a0ipy _ e
8S1_152FBu | "?Eu—99%| **Bu — 99%
881.22Na | **Na—42%| **Na—96%
852_60Co#1 | “°Co—99%| *°Co—91%
882.60Co#2 | °°Co—55%| “Co—56%
" 22Na —15%| **Na —15%
S22 1AM 201 g0 65% |21 Am — 65%

Precision 0.88 0.75

Recall 1.00 0.55

Fl-score | 0.94 | 0.63

Table II: SoMx1 classification results with and without background
subtraction. Regularisation of L1 : 0.001 and L2 : 0.001

Based on these results, background subtraction should
be performed whenever possible since it led to an overall
better classification.

B. Acquisition Time effect

The Acquisition time for a given sample has an impact
on the form of the spectrum, since some features might
take longer to be defined. It is then relevant to examine
how the acquisition time of each sample spectrum would
affect the classification output provided by the ANN. For
this matter, the spectrum of each sample was classified
every 3 minutes, creating a graph that represents the
ANN output in function of acquisition time.
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Figure 3: Classification of each sample along acquisition time.

Fig. 3 reveals that the majority of the samples take be-
tween 3 and 9 minutes of acquisition time to reach their
final classification confidence levels. Sample SS1_60Co,
SS1_137#2 and SS1_22Na are the ones that exhibit no-
ticeable fluctuations until reaching the final classification.
This can possibly be explained by the fact that these
spectra present higher background noise than the other
samples, hindering the classification of the ANN.

Overall, this analysis suggest that the designed ANN is
suitable for quick isotope identification with subjectively
sufficient confidence levels.

C. False Positives Analysis

In order to test the possibility of obtaining False Pos-
itive outputs when using the resulting ANN, a data-set
containing 4 new isotopes was created. These isotopes
were: %5Zn, 243 Am, 233U and '°°Cd. The new data-set
was generated equally to the training set, totalling 729
samples for each isotope. None of these samples was fed
to the ANN during training, so the expected classification
output would be to get no identification at all.

Ideally there should be a class that represents ”none
of the above”. Unfortunately, a class like this does not
always make sense or is even achievable. In this par-
ticular case, creating a class like this would require the
simulation of a large number of samples consisting of all
the other possible radionuclides. If we were to simulate a
data-set like this one, it would make more sense to label
all these extra samples and define new classes for them.
Since a class of this kind is not possible, the ideal way of
solving this problem is to establish some thresholds for
the confidence levels output by the ANN.

The perfect output for "none of the above” cases would
be to have the probability distributed over the total
classes. In this case, each output neuron should give a
value of 6.66%. A usual threshold for classification is the
50% value.



Isotopes False Positives Total

65 571 WOp
Zn ‘114 60co| 985
109 241
Cd |415 Am| 415
By 729 228 Ac| 729
27 2ZNgq
0 Am ‘216 222pp, | 243

Table III: False positives results for SoMz! using a threshold of
50%

Looking at Table IIT it is possible to notice that the re-
sults for each of the tested isotopes present a high number
of false positives relatively to the total 729 samples. This
can be elucidated by the fact that an ANN with Softmax
activation function in the output layer will always try to
provide a classification result.

These results can actually be explained by the form
of each spectrum. For example, the ANN classifies all
28 samples as being 228 Ac since they have two highly
relevant peaks in the same energy range Fig.4. All the
remaining results could be explained similarly.

Gamma Spectra of Simulated 238U Gamma Spectra of Simulated 228Ac
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(a) Spectrum of 238U, (b) Spectrum of 22® Ac.
Figure 4: Comparison between Simulated spectra from 233U and
228 Ac ([0,250] Channels). The number of counts is normalised to
the maximum value.
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In order to avoid this kind of problem, a possible so-
lution would be to either train the ANN with more data
or develop different ANN that can identify specific ra-
dionuclides. The ANN should always be trained with all
the isotopes that we want to identify and should only be
used when radioactivity has been previously detected for
example by a Geiger-Muller counter, in order to avoid
false positives when analysing background noise only.

D. Final ANN Results

The ANN that provided better results for single ra-
dionuclide identification was SoMz1, obtaining very in-
teresting F1-score values for the utilised evaluating data-
set. Additionally, it is interesting to analyse more closely
the classification of each of the 8 samples that are part
of the evaluating data-set. Each final output produces a
graph containing the final acquisition spectra and high-
lighting the expected peaks from each of the identified
isotopes.

S8S51.60Co sample in particular is difficult to classify
even for an expert since the resulting spectrum contains
a large amount of background noise (see Fig. 5).

Gamma Spectrum of sample SS1_60Co

©Co-91%

0.8

m

0.6

Counts
S

=

0.4
.

|
il W( WAL ...

o 125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875
Energy [KeV]

o

Figure 5: SS1_Co60 spectra with classification peaks.

It is difficult to describe exactly how the ANN classi-
fies a specific sample, since it simply receives an input
and gives an output. However, in this case the correct
classification of the isotope is possibly due to the network
being able to identify the photo-peaks present in the 1173
keV and 1332 keV areas. If the photo-peaks were from
a lower energetic area, they could be more difficult do
distinct from the noise.

Signalling relevant peaks from the identified radionu-
clides in the spectra provides relevant information that
may help to visually confirm the classification obtained
by the ANN.

The spectrum of SS1_137Cs#1 and SS1_-137Cs#2
samples were acquired in similar conditions, so a dis-
crepancy in the classification output is something that
should be explained. The correct classification of sample
S§S51_137Cs#1 is observed among almost all the analysed
ANN structures. In fact, the only relevant difference in
the measurements of these two sources was the distance
between the detector and the source.

Gamma Spectrum of sample SS1_137Cs#1

1¥7cs - 100%

0.8 ‘
0.6
/\}x

I
W i M
M Wi
0od | Moottt
[ 125 250 375 500 625 750 875 1000 1125 1250 1375 1500 1625 1750 1875

Energy [KeV]

Counts

0.4

02

N

Figure 6: SS1_137Cs#1 spectra with classification peaks.

Gamma Spectrum of sample SS1_137Cs#2
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Figure 7: SS1-137Cs#2 spectra with classification peaks.

Sample SS51_137Cs#1 was acquired much closer to the
source, revealing a much more consistent classification
result. Being further form the source causes the ratio be-
tween actual source counts and background noise counts



to be lower, making it more difficult for the ANN to
correctly classify the spectrum. Although a good back-
ground subtraction procedure can attenuate this prob-
lem, we can clearly observe that sample SS1_137Cs#2
(7) is much noisier and consequently has a lower confi-
dence level output than sample SS1_137Cs#1 (6) .

Similarly to S51_137Cs#1, the SS1_152Fu sample was
correctly identified by almost every ANN configuration.
This can be explained by the fact that the acquired spec-
trum is quite similar to the training '®?Eu spectrum,
having well defined photopeaks.

The final ANN struggles to correctly identify the 2’ Na
radionuclide present in the SS1_22Na sample. From Fig.
8 it is possible to observe that the identifying peaks are
quite difficult to distinct from the noise.

Gamma Spectrum of sample SS1_22Na
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Figure 8: SS1_22Na spectra with classification peaks.

This difficulty is probably the reason for the lower con-
fidence level of only 42%. Although the 1274 keV photo
peak is extremely difficult to recognise, the annihilation
peak of 511 keV is quite visible.

Regarding the samples of 552, all of the acquisitions
were made equally, meaning that the disparity between
the classification results for samples SS2_60Co#1 and
S52_60Co#2 must be analysed.

Gamma Spectrum of S52_60Co#1
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Figure 9: SS2_60Co#1 spectra with classification peaks.
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Figure 10: SS2_.60Co#2 spectra with classification peaks.

From Fig. 9 and Fig. 10 we can see that the spectrum
from sample SS2_60Co#2 contains a peak in the 70-80
keV region. This is the characteristic X-Ray peak from
the lead casing that is covering the source. It is possible
that this extra peak can cause some confusion to the
ANN, leading to a worst classification confidence in the
sample that is encased in lead.

Finally, the classification result for sample SS2_251Am
is correct but with a relatively low confidence.

Gamma Spectrum of S52_241Am
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Figure 11: SS52_2/1Am spectra with classification peaks.

This spectrum is really well defined so a possible rea-
son for this confidence value is related with the fact that
the photo peaks of 24! Am are encountered in the lower
energetic region of the spectra. Peaks in this area can
be mistakenly considered as noise by the ANN. Conse-
quently, the ANN might try to identify another isotope in
the sample. This is likely the case of misidentification of
22Na in this sample, since its photo peaks are far away
from any relevant structure in the spectrum as seen in
Fig. 11.

In this case, signalling relevant peaks enables us to
quickly discard 22 Na from the possible isotopes by visu-
ally understanding that it is most likely not present.

IX. MULTI RADIONUCLIDE CLASSIFICATION
RESULTS

For multi radionuclide classification the same princi-
ples used in the previous section can be applied. One of
the major difficulties in this case is dealing with such a
huge number of data samples (more than 400 thousand).
With the intention of reducing the implementation and
optimisation process, it was assumed that the same ANN
structure analysis made for single isotope could be ap-
plied to the multi radionuclide ANN.

A. ANN Results and Discussion

The parameters chosen for regularisation and early
stopping criteria were the same as the final ANN for the
previous section.

Based on the results of the previous section, the pre-
ferred ANN structure was using only one or two hidden
layers. Softmax activation function can no longer be used
for this classification since more than one isotope can be



identified, meaning that the output values of the ANN
do not sum up to 1.

Both Sig1 and Sig2 were trained using the whole single
and multi data-set for batch sizes of 32, 64 and 128.

Similarly to single isotope identification, evaluating the
resulting ANN using the training data set resulted in
a perfect score, obtaining an Fl-score value equal to 1.
However, this was not expected and hints that the ANN
might be over-fitting.

The performance analysis on the evaluation data-set
started with only the single isotope samples, since a multi
isotope classification solution should perform adequately
with single identification as well.

Metrics by ANN and batch size
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Sig1_bs32

Sig1_bs64 Sigl_bs128 Sig2_bs32
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Figure 12: Precision, Recall and Fl-score values for each ANN
configuration using single isotope evaluation data-set.

The results shown on Fig. 12 present a low Fl-score
value for every ANN structure tested. Note that the
precision metric shows an overall high number, suggest-
ing that the ANN is capable of identifying the present
radionuclides. However, the recall values are low due to
the huge number of FPs that the networks output. These
results might be related to how the expected output is
fed to the ANN during training.

The expected output fed to the network is an array
containing Os and 1s. The 0 value indicates that the iso-
tope is not present in the spectra and the 1 value indicates
that the isotope is present. While in single identifica-
tion this is an adequate approach, it was concluded that
for multi isotope identification, representing the existing
radionuclides with a simple 1 value might not be ideal.
The problem arises when one of the present isotopes con-
tributes with many more counts than the other, making
the second isotope almost unnoticeable. When this hap-
pens, a spectrum with only the more active radionuclide
might look nearly identical to a spectrum containing both
radionuclides.

Defining the expected output containing equal confi-
dence values for both isotopes can possibly lead the ANN
to output more false positives, since the ANN is supposed
to learn something that is not as noticeable. This makes
the network look for smaller variations in the spectra,
possibly mistaking noise for a radionuclide and leading
to incorrect classifications.

Additionally, for multi isotope identification, the train-
ing data labels should take into account the relative con-

tribution of each of the present radionuclides in the sam-
ple. A similar approach can be found in [25], where the
number of counts that each radionuclide contributes to
the spectra is controlled and taken into consideration.
Another possibility would be to normalise each individ-
ual spectra and then sum the normalised counts of each
one, creating a new spectra with well defined features
from each of the desired radionuclides.

X. FINAL REMARKS

The work presented in this thesis provide a preliminary
indication that ANN might be a promising solution for
radionuclide identification. Although there is a need for
further analysis and testing, especially due to the dimen-
sions of the relatively small evaluation data-set available,
the results provide a positive insight on this subject re-
vealing some potential. Both the flexibility, as well as
the accessibility of use by non expert users of the ANN
makes this type of solution particularly interesting. All
in all, radionuclide identification based on machine learn-
ing algorithms such as artificial neural networks should
be further explored.

The following contributions were provided by this
work:

e Creation of an ANN capable of identifying single
isotope spectrum samples with relative high degree
of confidence. This ANN was tested using real data
acquisitions. The results show the ANN provides
fine classification outputs even for small acquisi-
tions times and could be possibly applied to real-
time identification systems.

e It was shown that using Softmax activation func-
tion in the output layer resulted in a better classifi-
cation as opposed to Sigmoid activation which pre-
sented worse results. The best performing network
was the one containing a single hidden layer, since
fewer hidden layers also resulted in better classifi-
cation outputs.

e Despite providing relevant outputs for single iso-
tope samples, the results for multi isotope classifi-
cation were not so conclusive and additional works
is required. It was possible to understand the im-
portance of data-set labelling since this is the possi-
ble reason for such results. More samples need to be
acquired since even if results were better, it would
be difficult to correctly validate the performance of
the ANN due to the lack of real data samples for
multi isotopes.

e A proof-of-concept was developed using a Rasp-
berry Pi and CZT detector. This real world ap-
plication presented high portability and flexibility,
being perfect for real-time acquisitions either on
foot or using unmanned vehicles.



e Development of detailed data-set generation expla-
nation using GADRAS-DRF software. This de-
scription can be used to create different data-sets
for other detectors, making this approach easily
scalable.

XI. FUTURE WORK

Several possible enhancements and upgrades came up

while making this thesis. Some future ideas include:

[
[2

3

e Explore the labelling of the training samples
for multi radionuclide identification applications.
Training data labels should take into account the
relative contribution of each of the present radionu-
clides in the sample. The same could be applied to
generate more samples with various types of back-
ground contribution.

10

e Merge existing algorithms with this application.
Using filtering techniques to filter some of the noise
of the acquired spectrum could enhance the classifi-
cation capabilities of the developed ANN. Nonethe-
less, it is worth mentioning that for a real time anal-
ysis, the pre-processing of the data should always
be simple enough to be implemented in real time.

e Acquiring more real data would be ideal for up-
grading the performance evaluation of the ANN
and even contribute to possible optimisations. If
big enough, some of the real data-set could be used
to train the ANN.

e False positive occurrences should also be further
analysed. Possibility of more complex threshold
systems or even other ANN structures can be ex-
plored.
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