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ABSTRACT
First-order methods for stochastic optimization gained un-
deniable relevance, in particular due to their pivotal role
in machine learning. These methods blindly accept noisy
gradients provided by an oracle, which may be inconsistent
with structural properties of the underlying objective func-
tion. We exploit gradient co-coercivity of 𝐿-smooth convex
objective functions to obtainmore accurate gradient estimates.
The method introduced in this thesis is then coined as the
co-coercivity (COCO) denoiser.

Our denoiser is a joint Maximum Likelihood (ML) estima-
tor for the gradients, constrained by pairwise co-coercivity
conditions. AlthoughML leads to aQuadraticallyConstrained
Quadratic Problem, we introduce an efficient first-order al-
gorithm forCOCO,which is based on the Fast Dual Proximal
Gradient method. For the denoiser that deals with a single
pair of gradients, we derive the closed-form solution for the
ML problem, which is relevant in practice, since our exper-
iments have shown that even this simple scenario leads to
variance reduction gains in stochastic optimization.

We carry out a theoretical analysis that provides insight
into parameter tuning and estimator results, showing in par-
ticular why COCO necessarily improves with respect to the
noisy oracle. The experimental analysis corroborates these
results and shows that the COCO estimator, although not
unbiased, leads to a reduction of the mean squared error of
the function gradients. To illustrate the impact in stochas-
tic optimization, we use both synthetic data and a real on-
line learning task. Our experiments show that COCO leads
to improvements in variance reduction with respect to base-
line algorithms.
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1 INTRODUCTION
Nowadays, mathematical optimization [1] is recognized as a pivotal
tool not only for phenomena description in science but also when
rationalizing the process of decision making. In this thesis, we focus
on convex optimization problems, given their strong theoretical
guarantees and wide range of applications. A common approach
to solve these problems are the first-order algorithms, which can
be defined as iterative methods which only use first-order deriva-
tives (in the multivariate case, gradients), requiring then that the
objective function must be differentiable. In spite of exhibiting
slower convergence rate to the optimal solution, these algorithms

present a much cheaper cost per iteration when compared to al-
ternative approaches. For this reason, the first-order algorithms
are the usual choice when addressing high-dimensional convex
optimization problems, scenario which is common in, for example,
machine learning or signal and image processing.

Typically, there are two different settings through which the gra-
dient estimates are provided: the deterministic (e.g., in the Gradient
Descent (GD) algorithm), where that estimate corresponds to the
true gradient of the objective function at that point, and the stochas-
tic (e.g., in the Stochastic Gradient Descent (SGD) algorithm), where
we only have access to a noisy version of the true gradient. Our
goal in this thesis is to evaluate the possibility of further improv-
ing the performance of the state-of-the-art stochastic optimization
algorithms by providing them cleaner gradient estimates. These
gradient estimates will be obtained by exploiting properties of con-
vex functions that, although widely used for convex optimization
algorithm analysis, have been left out of algorithm design.

Two typical structural properties of many convex functions are
the 𝐿-smoothness and (`-)strong convexity. The relevance of strong
convexity and 𝐿-smoothness is clear: while strong convexity im-
poses that in every point there is at least some curvature of the
function, 𝐿-smoothness grants that that curvature can not be ar-
bitrarily high. These properties have shown to be very useful for
the analysis of convex optimization algorithms without excessively
restricting the convex settings in which they can be verified, as they
are still very general [2]. However, to the best of our knowledge,
existing algorithms for stochastic convex optimization do not make
explicit use of this kind of restrictions to the function curvature,
naively accepting the noisy gradients provided by the oracle. This
motivated us to exploit 𝐿-smoothness (usually considered an even
weaker assumption than strong convexity [3]) and mere convexity
(which can be seen as a relaxation of strong-convexity to ` = 0) to
constrain function gradients. It has been shown that 𝐿-smoothness
and convexity can be merged into one single condition, usually
referred to as gradient co-coercivity [4], which suggested coining
our method as the COCO denoiser.

We formulate the denoising problem as the joint ML estima-
tion of a set of function gradients, constrained by the co-coercivity
conditions, from their noisy observations provided by the oracle,
where, as often done, the noise is assumed to be zero mean white
Gaussian. Our workflow for stochastic optimization, schematically
represented in Figure 1, consists in using COCO as a “plug-in" de-
noiser, i.e., in feeding the denoised gradients to a baseline algorithm
rather that letting it consult directly the oracle.

The ML estimation in the COCO denoiser leads to a particular
convex optimization problem known as Quadratically Constrained
Quadratic Problem (QCQP). This problem can be solved by us-
ing available convex optimization packages, such as the popular
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Figure 1: Our workflow for stochastic optimization with first-order algo-
rithms. The approach can be interpreted as using a “new oracle", composed
by the original one coupled with the proposed COCO denoiser.

CVX [5], but its complexity may turn out prohibitive. For this
reason, we exploit the particular structure of the ML estimation
problem to derive an original first-order algorithm, based on the
so-called Fast Dual Proximal Gradient (FDPG) method [6], which
succeeds in providing an approximate solution in reasonable time.

In spite of the efficiency of the proposed algorithm, the number
of co-coercivity constraints grows quadratically with the number of
points simultaneously processed by COCO. Thus, although cleaner
gradient estimates are obtained by processing simultaneously the
ever growing number of points visited, i.e., points 𝑥0, . . . , 𝑥𝑖 , in Fig-
ure 1, we also consider performing the denoising using just a fixed
number 𝐾 of last visited points, i.e., 𝑥𝑖−𝐾+1, . . . , 𝑥𝑖 . For shortness
of reference, we call this denoiser COCO𝐾 (naturally, the globally
optimal denoiser is then COCO𝑖+1). This point deserves particular
attention because our experiments have shown that convergence
gains in stochastic optimization are obtained with values of 𝐾 as
small as 2 andwe are able to find the closed-form solution for COCO2.

By theoretically analysing COCO, we are able to provide insight
regarding the estimator results, showing in particular why COCO
necessarily improves with respect to the noisy oracle. We also eval-
uate the probability of the co-coercive constraints being “active",
which enables interpreting the impact of the chosen Lipschitz con-
stant 𝐿 in our approach. Our experimental analysis corroborates
these results and show that the COCO estimator, although not un-
biased, leads to a reduction of the MSE of the function gradients,
as desired.

In the context of stochastic optimization, to evaluate the impact
of using the proposed COCO denoiser, we consider two scenarios.
Firstly, using synthetic data that follow the assumptions underlying
the design of the denoiser. Secondly, using an online learning task
(logistic regression [3]), in which the noise affecting the gradients
falls out of those assumptions. Our experiments have shown that
COCO leads to improvements in variance reduction with respect
to baseline algorithms such as SGD and Adam.

We emphasize the following aspects as original contributions of
the work in the thesis:

• Exploration of𝐿-smoothness and convexity (i.e., co-coercivity)
in the context of theMaximum Likelihood estimation of func-
tion gradients from noisy observations, leading to the COCO
denoiser;

• Efficient first-order solution method for COCO (FDPG);
• Closed-form solution for COCO2;
• Analytic study of COCO, providing insights into parameter
tuning and expected error reduction;

• Experimental analysis of COCO, regarding estimator bias
and mean squared error;

• Framework for stochastic optimization using first-order al-
gorithms with the COCO denoiser;

• Experiments illustrating variance reduction in convex sto-
chastic optimization using COCO.

The bibliographic review presented in the thesis also deserves men-
tion, in particular due to the summary of asymptotically optimal
convergence rates, which is not conveyed in such condensed form
even in recent surveys. The main original results of this work will
also appear in [7, 8].

2 OVERVIEW OF CURRENT APPROACHES
The problem we motivated in the previous section lives in the field
of stochastic optimization. Although the machine learning frenzy
of the last few years has strongly contributed to the development
and enhancement of algorithms like SGD, the first approaches to
stochastic optimization date back to the fifties of the last century [9].
Here, we single out results that inspire the methods proposed in
the thesis. The scenario is simply described: the objective function
𝑓 is unknown but can be accessed through queries to a first-order
oracle, i.e., an unit that takes as input a vector 𝑥 and outputs the
gradient ∇𝑓 (𝑥)[10]. While GD uses an exact oracle, SGD has to
deal with an inexact one.

Unlike with GD, a fixed step size for SGD does not make it
converge to the optimal solution, even in the convex setting. In fact,
the convergence of SGD can be analyzed considering two terms: (i)
the bias term, which represents the dependence of the convergence
on the initial distance to the optimum (e.g., ∥ 𝑓 (𝑥0) − 𝑓 (𝑥∗)∥), and
(ii) the variance term, which represents the dependence of the
convergence on the noise of the oracle itself. Although the bias
term vanishes under a convenient selection of a fixed step size, that
does not happen to the variance one. For this reason, the algorithm
gets stuck when the bias term has vanished, originating random
iterates within a certain "ball of uncertainty".

This problem in the stochastic setting can be solved by using
a diminishing step size, i.e,, by selecting at iteration 𝑖 a step size
𝛾𝑖 = 𝐶/𝑖 , where 𝐶 is constant. Basically, this strategy progressively
reduces the referred ball of uncertainty, enabling convergence. It can
be shown that the convergence rates obtained using this approach
are asymptotically optimal when the expected value of the oracle
equals the true gradient (e.g., whenever the noise affecting the
gradients is additive and zero mean) [11, 12]. In spite of this, further
significant improvements were achieved through online averaging
(the so-called Polyak-Ruppert averaging [13]) and adaptive step
size techniques, e.g., Adam [14]. Naturally, these improvements
in constants on the convergence rate are of utmost importance in
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practice, where one necessarily deals with a finite horizon in terms
of number of iterations.

In the last decade, a new direction has driven the research com-
munity to a paradigm that enhances the aforementioned asymptotic
bounds. For objectives that can be decomposed as a finite sum of
functions, which is precisely the case of many machine learning
problems, the so-called variance reduction (VR) techniques signifi-
cantly improve the performance of the optimization algorithms. In
fact, the rise of algorithms such as the Stochastic Average Gradient
(SAG) [15] made it possible to close the gap that existed between
the asymptotic convergence rate gap of the deterministic GD and
the ones of all the stochastic oracle counterparts.

Nevertheless, in the deterministic scenario, it is also known
that GD is sub-optimal among the methods that perform each
step still using only gradient information but obtained at more
than one point [2]. In fact, considering the class of algorithms
that generate each iterate using a linear combination of the gra-
dients of all previously visited locations, i.e., such that 𝑥𝑖 ∈ 𝑥0 +
span{∇𝑓 (𝑥0), . . . ,∇𝑓 (𝑥𝑖−1)}, the work developed by Polyak, with
its heavy-ball method [16], then refined by Nesterov [17], lead to
the so-called Nesterov Accelerated Gradient (NAG) descent algo-
rithm, which achieves the optimal rate. In the stochastic scenario,
the optimal rates were naturally shown to be worse [18, 19] and
are attained by a family of stochastic accelerated algorithms, first
introduced by the reference [20].

Table 1 summarizes the different asymptotically optimal conver-
gence rates for each family of algorithms mentioned throughout
this section.

Table 1: Asymptotic optimal convergence rates (E[𝑓 (𝑥𝑖 ) − 𝑓 (𝑥∗) ]) for
algorithmsGD, NAG, SGD (which includes averaging and adaptivemethods),
VR (only for finite sums) and ACC (only for finite sums), under different
assumptions on the objective function, 𝑓 . See thesis for the meaning of
constants 𝑘 , 𝑘max, and 𝑛.

Deterministic Stochastic

Assumption(s) GD NAG SGD VR ACC

Convexity 𝑂

(
1√
𝑖

)
𝑂

(
1√
𝑖

)
𝑂

(
1√
𝑖

)
𝑂

(
1√
𝑖

)
𝑂

(
1√
𝑖

)
+ L-Smoothness 𝑂

(
1
𝑖

)
𝑂

(
1
𝑖2

)
𝑂

(
1√
𝑖

)
𝑂

(
1
𝑖

)
𝑂

(
1
𝑖2

)
+ Strong Convexity 𝑂

(
𝑒−

𝑖
𝑘

)
𝑂

(
𝑒
− 𝑖√

𝑘

)
𝑂

(
1
𝑖

)
𝑂

(
𝑒
− 𝑖
𝑘max+𝑛

)
𝑂

(
𝑒
− 𝑖√

𝑛𝑘max+𝑛

)

3 COCO DENOISER
In this section, we describe our approach. First, we formulate COCO
as a Maximum Likelihood estimator constrained by co-coercivity
conditions; then, we propose efficient methods to compute its solu-
tion. Finally, we study theoretical properties of the estimator.

3.1 Maximum Likelihood Estimation
Let 𝑓 : R𝑑 → R be a convex and 𝐿-smooth function (the reader
might remind that the definition of 𝐿-smoothness does not assume
convexity). A standard result in convex analysis is that the gradient

of 𝑓 is co-coercive [1], i.e.,:

∀𝑥,𝑦 ∈ R𝑛, 𝐿 ∈ R+ :
1
𝐿
∥∇𝑓 (𝑦) − ∇𝑓 (𝑥)∥2 ≤ ⟨∇𝑓 (𝑦) − ∇𝑓 (𝑥), 𝑦 − 𝑥⟩ .

(1)

Note that Equation (1) is stronger than the inequality in 𝐿-
smoothness definition, since the inequality in that definition follows
from Equation (1). This fact can be easily observed by applying the
Cauchy-Schwartz inequality on the right-hand side of Equation (1).

In our approach, despite not knowing the objective function 𝑓 ,
we assume the following:

Assumption 3.1. We know a Lipschitz constant of its gradient, 𝐿.

This assumption is commonly adopted in stochastic optimiza-
tion methods as a result of its usefulness in the analysis of those
algorithms, without narrowing excessively the universe of possible
applications. This imposition prevents the gradients from changing
arbitrarily fast from one point to another. Moreover, 𝐿-smoothness
is usually considered a weaker assumption than strong convex-
ity [3]. In fact, as a consequence of their high-dimensionality, typi-
cal machine learning problems have correlated variables, yielding
non-strongly convex objective functions (i.e., ` ≈ 0) [21]. By addi-
tionally considering that estimating 𝐿 is often easier than estimating
`, we emphasize the pertinence of this assumption.

Assumption 3.2. We have access to an oracle which, given an input
𝑥 ∈ R𝑑 , outputs a noisy version of the gradient of 𝑓 at 𝑥 ; specifically,
we assume that the oracle outputs 𝑔(𝑥 ;𝑤) = ∇𝑓 (𝑥) + 𝑤 , where
𝑤 ∈ R𝑑 is a sample of a Gaussian distribution with zero mean, i.e.,
𝑤 ∼ N(0, Σ), where the covariance matrix Σ is assumed to be known.
Moreover, we assume the noise samples are independent across the
oracle consultations.

The motivation for the noise model comes, naturally, from the
simplicity that it provides to our method. Moreover, the Central
Limit Theorem states that the sum (or mean) of a given number
of independent and identically distributed random variables with
finite variances will tend to a normal distribution as the number
of variables grows. Note that in machine learning, the mini-batch
scheme is a common procedure to obtain gradient estimates at a
point and its gradient estimator is defined as a mean of independent
random variables. This reasoning reinforces the relevance of this
assumption.

We assume that the oracle was consulted at the input points
𝑥1, . . . , 𝑥𝐾 , and returned the outputs 𝑔1, . . . , 𝑔𝐾 . This is our avail-
able data, whichwe arrange in the vector𝑔 = [𝑔1, . . . , 𝑔𝐾 ]𝑇 ∈ R𝐾𝑑 .
We address the problem of estimating the gradients ∇𝑓 (𝑥1), . . . ,
∇𝑓 (𝑥𝐾 ) from the available data. Thus, the parameter we’re inter-
ested in estimating is \ = [\1, . . . , \𝐾 ]𝑇 ∈ R𝐾𝑑 , where \𝑘 =

∇𝑓 (𝑥𝑘 ) ∈ R𝑑 .
From Assumption 3.2, the available data 𝑔 is related to the pa-

rameter of interest \ by the observation model

𝑔 = \ +𝑤, (2)

where𝑤 = [𝑤1, . . . , 𝑤𝐾 ]𝑇 ∈ R𝐾𝑑 is distributed as𝑤 ∼ N(0, Σ𝑤).
Note that Σ𝑤 is a block-diagonal matrix, each block being Σ.
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We also have the following information about the parameter \ ,
which comes from the co-coercivity condition (Equation (1)):

\ ∈ Θ = {(\1, . . . , \𝐾 ) :
1
𝐿
∥\𝑚 − \𝑙 ∥2 ≤ ⟨\𝑚 − \𝑙 , 𝑥𝑚 − 𝑥𝑙 ⟩,

1 ≤ 𝑚 < 𝑙 ≤ 𝐾} .

The Maximum Likelihood (ML) estimate of \ is

\̂ = argmax
\ ∈Θ

𝑝 (𝑔|\ ) ,

where, in accordance to our observation model in Equation (2),

𝑝 (𝑔|\ ) = 1√
(2𝜋)𝑛 |Σ|

𝑒−
1
2 (𝑔−\ )

𝑇 Σ−1𝑤 (𝑔−\ ) .

Consequently, it is immediate that computing our solution \̂
corresponds to solving the following optimization problem:

minimize
\1,...,\𝐾

𝐾∑
𝑘=1

(𝑔𝑘 − \𝑘 )𝑇 Σ−1 (𝑔𝑘 − \𝑘 )

subject to
1
𝐿
∥\𝑚 − \𝑙 ∥2 ≤ ⟨\𝑚 − \𝑙 , 𝑥𝑚 − 𝑥𝑙 ⟩,

1 ≤ 𝑚 < 𝑙 ≤ 𝐾.

(3)

In fact, this instantiation of the convex optimization problem
can be classified as a QCQP [1], since both the objective and the
constraints are quadratic functions. In this type of problem, the
objective function (quadratic) is minimized over a feasible region
that results from the intersection of ellipsoids. Despite their ubiquity
in many engineering and scientific applications, solving a generic
nonconvexQCQP problem is NP-hard [22]. Nevertheless, for convex
instances of those problems, it is possible to explore the structure of
the problem and attain a tractable solution method. This is the case
of the problem considered and the methods proposed are discussed
below.

The main idea supporting our approach is the observation that
all the methodsmentioned in Section 2, even though often assuming
the 𝐿-smoothness of the objective function for their analyses, do not
take advantage of it in their methodology. In fact, after taking this
assumption into consideration, it is unsatisfactory to blindly accept
the gradients that the oracle is outputting. It is on the demand of
making those observations coherent with this assumption that our
approach is based on. Since the co-coercivity constraints play the
pivotal role of merging two important conditions (convexity and
𝐿-smoothness of the objective function) into only one expression,
we call our method the COCO denoiser.

The number of constraints in this approach scales quadratically
with𝐾 , the number of consulted points. More precisely, the number
of constraints is given by𝐾 (𝐾 − 1)/2, as each constraint is imposed
between every two points from the ones considered. This drawback
motivates a simplification of the original COCO denoiser: instead
of considering all the consulted points across all the 𝑖 iterations, we
fix a given number of points, 𝐾 (1 ≤ 𝐾 ≤ 𝑖), and only consider the
information belonging to the last 𝐾 points to denoise the consulted
gradients. For example, if we fix 𝐾 = 2, the denoise is performed
only considering 𝑥𝑖 , 𝑥𝑖−1, 𝑔𝑖 and 𝑔𝑖−1. To this denoiser using a
fixed window of length 𝐾 , we call COCO𝐾 .

3.2 Efficient Solutions for COCO𝐾
In this section, a solution method is proposed for the QCQP raised
by COCO𝐾 . We start by providing closed-form solutions for 𝐾 = 1
and 𝐾 = 2 and then propose an iterative algorithm which yields an
approximate solution for arbitrary 𝐾 .

The closed-form solutions for 𝐾 = 1 and 𝐾 = 2 can be achieved
by instantiating the well-known KKT conditions for the QCQP
we formulated. These results are provided in Theorem 3.1 and
Theorem 3.2.

Theorem 3.1. The solution to Equation (3) for 𝐾 = 1 is given by:

\̂1 = 𝑔1 . (4)

Note that the result for Theorem 3.1 is for a generic Σ, while for
Theorem 3.2 the result is specified under Assumption 3.3:

Assumption 3.3. The covariance matrix of the multivariate Gauss-
ian distribution of noise is multiple of the identity matrix, i.e., Σ = 𝜎2𝐼 .

Theorem 3.2. Under Assumption 3.3, the solution to Equation (3)
for 𝐾 = 1 and 𝐾 = 2 is given by:

If ∥𝑔1 − 𝑔2∥ ≤ 𝐿 ⟨𝑔1 − 𝑔2, 𝑥1 − 𝑥2⟩:{
\̂1 = 𝑔1
\̂2 = 𝑔2 .

If ∥𝑔1 − 𝑔2∥ > 𝐿 ⟨𝑔1 − 𝑔2, 𝑥1 − 𝑥2⟩:
\̂1 =

𝑔1+𝑔2+ 𝐿2 (𝑥1−𝑥2)
2 + ∥ 𝐿4 (𝑥1 − 𝑥2)∥

𝑔1−𝑔2− 𝐿2 (𝑥1−𝑥2)𝑔1−𝑔2− 𝐿2 (𝑥1−𝑥2)
\̂2 =

𝑔1+𝑔2− 𝐿2 (𝑥1−𝑥2)
2 − ∥ 𝐿4 (𝑥1 − 𝑥2)∥

𝑔1−𝑔2− 𝐿2 (𝑥1−𝑥2)𝑔1−𝑔2− 𝐿2 (𝑥1−𝑥2) .
The two cases in which we decompose the closed-form solu-

tion for COCO2 have an intuitive explanation supporting them:
when the two observed gradients are co-coercive (∥𝑔1 − 𝑔2∥2 ≤
𝐿⟨𝑔1 − 𝑔2, 𝑥1 − 𝑥2⟩), they are on the feasible set of the problem,
so, they are also the estimated gradients; when the two observed
gradients are not co-coercive (∥𝑔1 − 𝑔2∥2 > 𝐿⟨𝑔1 − 𝑔2, 𝑥1 − 𝑥2⟩),
their difference is orthogonally projected onto its feasible set (which
is a ball). This projection is achieved through the expression ob-
tained for each of the estimated gradients in Theorem 3.2. This
closed-form solution is of the utmost relevance, since the experi-
ments described in the following section show that COCO leads to
significant improvements in stochastic optimization, even for the
simple case that considers only two gradients.

Since the closed-form solution for COCO𝐾 for 𝐾 ≥ 3 could not
be found (even with the help of symbolic manipulation packages
of Matlab and Mathematica), a straightforward procedure to solve
the QCQP in Equation (3) is its implementation onto CVX [5]. This
tool is designed in such a way that it can be used as black-box,
in the sense that the user does not need to understand how the
problem can be solved, as far as that problem is presented in the
format required by the software. As a consequence of its generality,
this tool resorts to higher order methods (e.g., second-order cone
programming methods) which ensure high precision but neces-
sarily end up being slower than methods which are specifically
tailored for a given problem. This fact combined with the quadratic
growth of the number of constraints with the 𝐾 motivates an alter-
native approach. Therefore, a first-order algorithm which explores
the particular structure of the QCQP is presented. In particular,
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under Assumption 3.3 and considering the duality principle for op-
timization problems, this QCQP can be rewritten in the following
form:

minimize
𝑠

1
2
∥ −𝐴𝑇 𝑠 ∥2︸        ︷︷        ︸
𝑝∗ (−𝐴𝑇 𝑠)

+

∑
1≤𝑚<𝑙≤𝐾

𝑟𝑚𝑙 ∥𝑠𝑚𝑙 ∥ − 𝑠𝑇𝑚𝑙𝑐𝑚𝑙︸                                 ︷︷                                 ︸
𝑞∗ (𝑠)

,
(5)

where 𝑠 is the dual variable of the original QCQP and consists of the
stacked vector from the different 𝑠𝑚𝑙 , 𝐴 is a structured matrix, and
𝑟𝑚𝑙 and 𝑐𝑚𝑙 can be obtained through simple computations from the
constraints of the QCQP.

The first term from Equation (5), 𝑝∗ (−𝐴𝑇 𝑠), is differentiable and
a proximity operator can be efficiently computed for the second
one, 𝑞∗ (𝑠). Hence, we are in conditions of applying the Fast Dual
Proximal Gradient (FDPG) method [6]. This approach consists of
applying the Fast Iterative Shrinkage-Thresholding Algorithms
(FISTA) to the a dual problem. Therefore, since FDPG is a first-order
method (thus, with a very low cost per iteration), we obtain an
efficient solution method for COCO. The FDPG instantiation for
the COCO denoiser is represented below:

Algorithm .1: FDPG (applied to COCO Denoiser)
Input: Initial Point: 𝑠0; Number of steps: 𝑇 ; 𝐿-Smoothness

Constant: 𝐿; Momentum Auxiliary Iterate: 𝑦0 = 𝑠0;
Initial Momentum Constant: 𝑡0 = 1

for 𝑖 = 1, . . . ,𝑇 do
𝑠𝑖 = prox 1

𝐿
𝑞∗ ( 𝑦𝑖−1 −

1
𝐿
∇𝑝∗ (−𝐴𝑇𝑦𝑖−1) )

𝑡𝑖 =
1+

√
1+4𝑡2

𝑖−1
2

𝑦𝑖 = 𝑠𝑖 + 𝑡𝑖−1−1
𝑡𝑖

(𝑠𝑖 − 𝑠𝑖−1)
Output: Final Point: 𝑠𝑇

Through FDPG, it is possible to find an approximate solution
of the dual problem, 𝑠∗, from which we easily recover the primal
solution, \̂ , to the QCQP.

3.3 Properties of the Estimator
Regarding properties of the COCO estimator, we can attain a easily
interpretable relation that relates the sum of the noisy gradients
(COCO input) to the sum of the denoised ones (COCO output). It is
expressed by the following theorem.

Theorem 3.3. The gradients estimated by the COCO𝐾 denoiser,
\̂1, . . . , \̂𝐾 , verify the following relation with its raw inputs,𝑔1, . . . , 𝑔𝐾 :

𝐾∑
𝑖=1

\̂𝑖 =

𝐾∑
𝑖=1

𝑔𝑖 .

Note that this property holds for generic Σ and not only for
Σ = 𝜎2𝐼 , contrarily to the proof of Theorem 3.2. Moreover, by
multiplying both sides of the equality from Theorem 3.3 by 1/𝐾 ,

we obtain:
1
𝐾

𝐾∑
𝑖=1

\̂𝑖 =
1
𝐾

𝐾∑
𝑖=1

𝑔𝑖 ,

showing that the centroid of the estimated and consulted gradients
is the same, reinforcing the interpretability of this relation.

We are also able to ensure that the COCO estimator outperforms
the oracle in terms of gradient estimation, through Theorem 3.4.
Note that the Mean Squared Error (MSE) is a well-known perfor-
mance metric for estimators (the smaller, the better).

Theorem 3.4. From Equation (3) and under Assumption 3.3, the
following inequality holds:

MSE(\̂ ) ≤ MSE(𝑔), (6)

where \̂ denotes the stacked vector of the different \̂𝑘 outputted from
the COCO𝐾 denoiser and 𝑔 denotes the stacked vector of the different
𝑔𝑘 outputted from the oracle.

Every constraint included in the COCO𝐾 denoiser problem in-
volves a pair of estimated gradients. Every time that two gradient
observations, 𝑔𝑖 and 𝑔 𝑗 are not co-coercive between them (note that
to conclude that, it is required to also know 𝑥𝑖 and 𝑥 𝑗 ), the solution
will have to output two estimated gradients, \̂𝑖 and \̂ 𝑗 which re-
spect that condition and, thus, necessarily different from 𝑔𝑖 and 𝑔 𝑗 .
Noting that 𝑔𝑖 and 𝑔 𝑗 are random variables, an important question
to answer is: how often are the observed gradients incoherent with
the co-coercivity constraint?

In order to find a reasonable answer to this problem, the follow-
ing setup is proposed: for the sake of simplicity, our focus remains
on the one-dimensional situation (𝑑 = 1) where we have access to
two different points, 𝑥1 and 𝑥2. Without loss of generality, let us
assume 𝑥1 > 𝑥2. The true gradients on those points are ∇𝑓 (𝑥1) and
∇𝑓 (𝑥2), whose noisy versions (provided by the oracle) are 𝑔1 and
𝑔2. Therefore, 𝑔1 ⊥⊥ 𝑔21 and Σ = 𝜎2, which is as general as possible
for the one-dimensional case. We obtain the following result for
the probability of 𝑔1 and 𝑔2 being co-coercive, 𝑝𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 :

𝑝𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 = Φ

(
𝐿Δ𝑥 − Δ∇𝑓√

2𝜎

)
− Φ

(−Δ∇𝑓√
2𝜎

)
, (7)

where Δ𝑥 = 𝑥1 − 𝑥2 and Δ∇𝑓 = ∇𝑓 (𝑥1) − ∇𝑓 (𝑥2).
From this expression, it is possible to analyse how the co-coercivity

constraint becomes “looser" with the increase of the distance be-
tween 𝑥1 and 𝑥2, with the overestimation of the Lipschitz constant
𝐿 and with the decrease in the variance of the oracle, 𝜎2.

4 EXPERIMENTS
4.1 Properties of the Estimator
Theorem 3.4 provides an upper bound ensuring that the gradient
estimation using COCO is preferable than the raw oracle. Given
this, an interesting problem is to study to what extent the former
outperforms the latter. Moreover, from Section 3 it was possible to
obtain for the one-dimensional case, an expression which relates
the constraint tightness probability as a function of the distance
between the two points from which we sample the noisy gradient
estimates. Therefore, noting that, in the case in which the constraint

1The notation ⊥⊥ denotes independence between random variables.
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is not active, the COCO denoiser outputs the result provided by the
oracle, and, in the case in which the constraint is active, the denoiser
filters the output of the oracle, MSE(\̂ ) is expected to be a function of
the constraint tightness and, as a consequence, implicitly a function
of the distance between points.

Taking this reasoning into consideration, the experiment repre-
sented in Figure 2 recovers experimentally the theoretical results
obtained in Section 3. Therefore, an one-dimensional quadratic
function, 𝑓 (𝑥) = 1/2 𝑥2 was considered, thus with 𝐿real = 1, where
two points were considered: one fixed at 𝑥1 = 0 and a variable
point at 𝑥2 = Δ𝑥 . The oracle consultations provided gradient es-
timates with additive Gaussian noise with Σ = 𝜎2 = 100. In this
conditions, the probability of the constraint between the considered
gradients being active, 𝑝𝑎𝑐𝑡𝑖𝑣𝑒 (= 1 − 𝑝𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ), and the MSE(\̂ )
for each Δ𝑥 were estimated through Monte Carlo simulations. It is
possible to obtain a closed-form result for the MSE(𝑔) for a general
number of points considered,𝐾 , a general dimension 𝑑 and Σ = 𝜎2𝐼 :
MSE(𝑔) = 𝐾𝑑𝜎2. Hence, in this case, we have MSE(𝑔) = 200.

Figure 2: Top: Experimental plot for 𝑝active as a function of Δ𝑥 for different
values of Δ𝐿 . Bottom: Computed MSE(\̂ ) ; the dashed line denotes the
(theoretical) value for the oracle. Number of Monte-Carlo simulations (for
both plots): 𝑁 = 10000.

Regarding the MSE(\̂ ), it can be observed that (i) for the cases in
which the 𝐿 is underestimated (Δ𝐿 < 0), the MSE(\̂ ) is not guaran-
teed to be lower than MSE(𝑔). Nevertheless, note that there still is
a range of Δ𝑥 where MSE(\̂ ) ≤ MSE(𝑔). The more underestimated
𝐿 is, the smaller this region becomes. This observation not only
recalls that the result from Theorem 3.4 only holds for Δ𝐿 ≥ 0, but
also reinforces the importance of ensuring that the 𝐿 considered
for COCO denoiser is an upper bound for 𝐿real; (ii) For the case in
which the 𝐿 is perfectly estimated (Δ𝐿 = 0), just as the 𝑝active tends
to an intermediate value, so it happens with MSE(\̂ ). This is the
ideal situation, as MSE(\̂ ) is minimal for every Δ𝐿 . Moreover, note
that when the 𝑝active curve stabilizes, the MSE(\̂ ) also stabilizes,
reinforcing the expected relation between those curves. (iii) For
the cases in which the 𝐿 is overestimated (Δ𝐿 > 0), just as 𝑝active

tends to 0, the MSE(\̂ ) also tend to the MSE(𝑔) reference curve.
Moreover, it is possible to see that when 𝑝active stabilizes around 0,
so it happens to MSE(\̂ ) around the oracle’s curve. This is easily
explained, again, by the fact that when the constraints are loose, the
COCO denoiser outputs the oracle results without any “filtering".

This analysis was performed for a metric which combines the
information from every point considered. In particular, in order
to have a better insight about what happens at each point, it is
preferable to look at the MSE at each point, i.e., for 𝑥𝑘 , MSE(\̂𝑘 ) =
𝐸 [∥\̂𝑘 − ∇𝑓 (𝑥𝑘 )∥2] and MSE(𝑔𝑘 ) = 𝐸 [∥𝑔𝑘 − ∇𝑓 (𝑥𝑘 )∥2] = 𝜎2𝑑 =

100.
These results are represented in Figure 3 and they suggest that

the MSE(\̂ ) divides itself equally by the two points. It also presents
empirical evidence on the following result: if Δ𝐿 > 0, then 𝐸 [∥\̂𝑘 −
∇𝑓 (𝑥𝑘 )∥2] ≤ 𝐸 [∥𝑔𝑘 − ∇𝑓 (𝑥𝑘 )∥2]. Note that this inequality is
stronger than the one from Theorem 3.4, as the former imposes
each term on the left-hand side from the latter to be smaller or
equal than the respective term on its right-hand side.

Figure 3: Experimental plot for MSE(\̂𝑘 ) as a function of Δ𝑥 , for different
Δ𝐿 ; the dashed line denotes the (theoretical) value for the oracle. Number
of Monte-Carlo simulations: 𝑁 = 10000.

In order to further reinforce this result, we investigate the possi-
bility of generalizing the statement 𝐸 [∥\̂𝑘 − ∇𝑓 (𝑥𝑘 )∥2] ≤ 𝐸 [∥𝑔𝑘 −
∇𝑓 (𝑥𝑘 )∥2] for arbitrary dimension, 𝑑 , and number of points con-
sidered, 𝐾 . We find empirical evidence that, as conjectured with
only two points, closer iterates allow lower MSE, even for higher
number of points and dimension. Moreover, when the distance is
sufficiently high, the COCO denoiser approximates its behaviour
from the oracle; in particular, we observe that 𝐸 [∥\̂𝑘 −∇𝑓 (𝑥𝑘 )∥2] =
MSE(\̂𝑘 ) ≤ 𝐸 [∥𝑔𝑘−∇𝑓 (𝑥𝑘 )∥2] = MSE(𝑔𝑘 ) for every point in every
tested setting, reinforcing the empirical evidence on that sense; this
result allows us to conclude that Var(\̂𝑘 ) ≤ Var(𝑔𝑘 ), making the in-
tended variance reduction via COCO explicit. Moreover, contrarily
to what was supposed for the case in which 𝐾 = 2, we verify that
the MSE(\̂ ) does not distribute evenly among the different points
(i.e., MSE(\̂𝑘 ) varies from point to point when 𝐾 > 2). In fact, that
is a consequence of the symmetry from the COCO2 closed-form
solution, property which does not hold for higher 𝐾 solutions. In
particular, points which have other points closer, present lower
MSE(\̂𝑘 ).

We also study the MSE(\̂𝑘 ) for different numbers of points con-
sidered, 𝐾 . In particular, in this case, 1 ≤ 𝐾 ≤ 10 and the different
iterates are generated randomly following an uniform distribu-
tion inside a cube centered at the origin with edge length of 10
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(𝑥𝑘 ∈ [−5, 5] × [−5, 5] × [−5, 5]). Moreover, we consider a three-
dimensional space (𝑑 = 3), an anisotropic Hessian with eigenvalues
linearly spaced between 1 and 1/3 and 𝑁 = 1000. Note that this
choice for the size of the cube is not inadequate having in mind that
the first-order algorithms in which this scheme will be applied, as,
for example, for GD, its optimal step size is 𝛾 = 1/𝐿 = 1. The results
obtained are shown in Figure 4. We recover the known result for
the oracle: MSE(𝑔𝑘 ) = 𝑑𝜎2, which in this plot is represented by a
line of zero intercept and slope 𝑑 . Surprisingly, the correspondent
results for COCO𝐾 suggested that those results could as well be
approximated by a line with zero intercept (when there is no noise,
the noisy gradients correspond to the real ones, then no error is
expected for both estimators).

Figure 4:MSE(𝑔𝑘 ) (top) andMSE(\̂𝑘 ) (bottom), estimated viaMonte-Carlo
method, as functions of the noise variance 𝜎2, for several numbers 𝐾 of
points considered. The dashed-dotted red lines result from linear regressions
with intercept fixed at 0. Number of Monte-Carlo simulations: 𝑁 = 1000.
For each simulation, a different set of points is randomly generated from an
uniform distribution in a cube centered at the origin with edge length 10.

These results suggest the slope of MSE(\̂𝑘 ) to be𝑂 (1/𝐾), while,
for MSE(𝑔𝑘 ), it remains constant (independently of K). This re-
sult for MSE(\̂𝑘 ) is remarkable, as this is the usual result for the
common averaging of normally distributed variables. In this case,

that averaging would require that at each iterate 𝑥𝑘 , 𝐾 gradient
estimates of the oracle were required. With COCO𝐾 , it is possible
to achieve the same MSE(\̂𝑘 ) without having to be stuck on the
same position. Therefore, 𝐶𝑂𝐶𝑂𝐾 can be interpreted as an exten-
sion to that procedure in the sense that it allows to integrate more
information for more precise gradient estimates without having to
stop the iterate progression.

Regarding the bias of the these gradient estimators, the oracle
whose noise follows the additive and normally distributed model
is unbiased. We are interested in also having some characteriza-
tion of \̂𝑘 at this respect. In order to test the bias of the COCO
denoiser estimator, we estimate ∥𝐵𝑖𝑎𝑠 (\̂𝑘 )∥ (note that if it is an
unbiased estimator, then ∥𝐵𝑖𝑎𝑠 (\̂𝑘 )∥ = 0) via Monte-Carlo simu-
lations. Therefore, considering this estimator in the same setup
used to obtain Figure 2 and Figure 3, the results in Figure 5 were
achieved.

Figure 5: Bias as a function of the distance between the points considered,
for the setup of Figure 2.

The conclusions to take from Figure 5 are consistent to the ones
in the previous section: for Δ𝐿 < 0, the bias of this estimator
seems to grow linearly with Δ𝑥 ; the smaller the Δ𝐿 , the higher the
slope of that linear relation. For Δ𝐿 = 0, the estimator is biased
as well; that bias grows until a stabilization which happens at the
Δ𝑥 that it happened with 𝑝active. For Δ𝐿 > 0, the estimator is also
biased. As the COCO estimator outputs become more similar to
the ones of the oracle, its bias decreases. Moreover, the higher the
Δ𝐿 , the lower the bias (as the constraints are less restrictive). In all
cases, for Δ𝑥 = 0, the COCO estimator is unbiased since it consists
of the averaging estimator (see Theorem 3.2). Generically, these
observations suggest that if the constraint between two gradient
estimates is active (except for Δ𝑥 = 0), then it imposes bias on the
COCO estimator. On the other hand, when the constraint is inactive,
the COCO estimator outputs the oracle consultations, which are
known to be unbiased.
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4.2 Stochastic Optimization with COCO
By coupling a baseline algorithm with COCO𝐾 , note that, at itera-
tion 𝑖 , only the oldest gradient (𝑔𝑖−𝐾 ) is forgotten and a new one
(𝑔𝑖 ) is kept in memory. Thus, it is reasonable to think of taking
advantage from the COCO𝐾 solution obtained for the previous
iterate to obtain a new solution faster. We suggest a warm-starting
procedure for the COCO𝐾 solution method (FDPG) which enables
this utilization of past information. In particular, we achieve it by a
careful initialization of the dual variable, 𝑠 . In fact, 𝑠 is the vector
that results from stacking the different 𝑠𝑚𝑙 , where each 𝑠𝑚𝑙 ad-
dresses the co-coercivity constraint between the COCO estimates
for gradient𝑚, \̂𝑚 , and for gradient 𝑙 , \̂𝑙 . Since we expect the esti-
mates for old gradients to only have small relative variations among
them on the new iterate as they have been “filtered" at least once,
we initialize these 𝑠𝑚𝑙 to the values obtained for the correspondent
dual variables in the previous COCO𝐾 solution. For the multiple
𝑠𝑚𝑙 concerning the new gradient, we do not have any informa-
tion yet, thereby being initialized to the default value (zero). This
warm-starting procedure allows the iterative method to start with a
much better guess of 𝑠∗, thereby achieving satisfactory approximate
solutions faster.

We assess the usefulness of COCO𝐾 in a scenario whose setup
perfectly matches the assumptions under which the denoiser was
proposed (synthetic dataset). In this case, the objective function is
a 10-dimensional (𝑑 = 10) quadratic function, 𝑓 (𝑥) = 1/2 𝑥𝑇𝐴𝑥 ,
where the matrix 𝐴 is the Hessian of the objective function. We
consider an anisotropic Hessian, with eigenvalues linearly sepa-
rated between 1 and 1/3, with the minimum at 𝑥∗ = (0, 0, . . . , 0)𝑇 .
Moreover, the first-order oracle provides a gradient estimate whose
noise is additive and normally distributed, with Σ = 100 𝐼 . The
initial iterate was kept the same through all the simulations, 𝑥0 =
(100, 100, . . . , 100)𝑇 .

Considering the setup described above, the COCO𝐾 denoiser
is coupled both to SGD and Adam, where the latter is picked as a
representative of the class in which it is inserted (adaptive step size
algorithms). Note that algorithms that address finite sum objectives
are not here tested, as the setup considered falls out of their scope.
In both cases, the COCO𝐾 hyperparameters are correctly set: 𝐿 = 1,
Σ = 100 𝐼 . Given that we are in a stochastic setting, the quantity
that we are interested in following across iterations is 𝐸 [∥𝑥𝑖 −𝑥∗∥],
which is again estimated via Monte-Carlo method. We depict these
results in Figure 6.

From this figure, it is possible to recall that there is an initial
bias regime, where all the algorithms seem to converge linearly (see
Table 1; we are in an 𝐿-smooth and strongly convex setting, where
GD is known to converge linearly and the stochastic algorithms are
able to keep up with it initially); across iterations that convergence
is successively slowed down and eventually leads to a stagnation
to which we call variance regime. In fact, from Figure 6, we can
observe that a higher 𝐾 in COCO𝐾 leads to improved performance
at least in terms of the variance regime (without compromising the
bias one). Moreover, it can be shown that the “level" at which SGD
stops converging is directly dependent on the (uncentered) variance
of the oracle. This reinforces the variance reduction achieved by
coupling COCO𝐾 to a baseline algorithm.

Figure 6: Results of stochastic optimization with the proposed COCO de-
noiser, when used with baselines SGD (top) and Adam (down). The perfor-
mance is measured in terms of 𝐸 [ ∥𝑥𝑖 − 𝑥∗ ∥ ] (the performance of GD is
also depicted for reference; the lines for “Adam + COCO16" and “Adam +
COCO" are superimposed). Number of Monte-Carlo simulations: 𝑁 = 100.

Further analysis of the COCO plug-in in this setup is carried out
for an observation of its gains in variance, as well as the expected
performance deterioration caused by the wrong choice of the 𝐿
considered by COCO. Another interesting property from typical
averaging algorithms is also explored in this context: the COCO
plug-in is able to stabilize the baseline algorithm for larger step
sizes. This result reinforces the interpretation of COCO estimator
as an extension of the averaging estimator, but which allows the
integration of (gradient) information coming from different points.

We also test this coupling in a real context by applying it to read-
ily available datasets. In particular, we analyse the performance of
coupling COCO𝐾 to SGD, Adam, and SAG in Tikhonov regular-
ized logistic regression problems based on the “fourclass" (smaller
dataset, with 𝑛 = 862 and 𝑑 = 2) and “mushrooms" (bigger dataset,
with 𝑛 = 8124 and 𝑑 = 112) datasets [23].

From the first two plots in Figure 7, it is possible to observe
the improvements brought by the COCO plug-in in the “fourclass"
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dataset, namely on the variance regime of these algorithms. Con-
trarily to the SGD case, there is no delay in the bias regime for the
COCO𝐾 coupled Adam cases, since it adapts the step size accord-
ingly to the magnitude of the gradient provided. On the other hand,
from the last plot in Figure 7, it is possible to conclude that the naive
COCO𝐾 coupling to SAG does not bring any benefit. It halts the
linear convergence which characterizes this method. Nevertheless,
taking into consideration that SAG is specifically designed for finite
sum objectives, this failure is understandable. In fact, this setup
falls out of the assumptions of COCO𝐾 since the different gradi-
ents sampled are not completely independent samples (at least the
ones coming from the same example in the dataset) and the oracle
noise does not follow an additive and normally distributed model
(even though, by resorting to mini-batches to compute the gradient
estimate, its distribution approximates itself from a Gaussian by
the Central Limit Theorem).

These results are transposable to the “mushrooms" dataset.

5 CONCLUSION
This chapter summarizes our work and suggests possible extensions
and future research directions.

5.1 Summary
This thesis introduced the COCOdenoiser, which exploits co-coercivity
of convex and 𝐿-smooth objective functions to denoise gradient
estimates provided by a stochastic oracle. Our denoiser is based
on the joint ML estimation of the gradients, constrained by the
co-coercivity conditions. Our theoretical analysis enables finding
an interpretable relation between the observations and COCO esti-
mates.

By assuming a noise model with covariance proportional to
the identity, we proved that the estimates provided by COCO are
necessarily more accurate than the oracle, in what respects to MSE.
For this case, we introduced an efficient first-order solution to
COCO, based on the FDPG method. By considering the simpler
scenario of optimizing a function of a single variable, we conclude
that the MSE deteriorates with the distance between the points
where the gradients are observed and with the model mismatch in
what regards to the Lipschitz constant 𝐿.

Our computational experiments corroborate the theoretical re-
sults above and have also shown that the elementwise MSE de-
creases with the rate of 𝑂 (1/𝐾), where 𝐾 is the number of gradi-
ents simultaneously estimated from sufficiently close points. This
is the same rate obtained for a gradient averaging estimator that
had access to 𝐾 observations of the gradient at the same point,
which supports interpreting the COCO denoiser as an extension
that allows incorporating information from different points.

In stochastic optimization, our experiments with synthetic data
have shown that current first-order methods coupled with COCO𝐾
lead to variance reduction, an increase in performance that is no-
ticed even for the case in which only two points are considered.
This is particularly relevant because we derived the closed-form
solution for COCO2.

To illustrate the usefulness of COCO in a real online learning task,
we solve a logistic regression problem. Although algorithms such as
SAG, which exploits the finite sum decomposition of the objective

function, do not gain by using COCO estimates, our experiments
show that more general baseline algorithms, such as SGD or Adam,
clearly exhibit variance reduction.

5.2 Future Work
A simple task that deserves attention in the immediate future is the
experimental exploration of the limits of COCO in what respects
to dealing with situations that do not fully match the design as-
sumptions. For example, even for problems requiring the (local)
minimization of a non-convex function (e.g., deep learning), there
is hope for improvement of baseline first-orders methods when
coupled with COCO, since the objective function is often locally
convex.

First-order algorithms for stochastic optimization can be consid-
ered to also estimate (in a non-explicit way) the function gradient
(SGD estimates it as the noisy observation itself, while others, e.g.,
Adam or SAG, have their own operations on the noisy gradient).
This observation motivates the possibility of using COCO for sto-
chastic optimization in a slightly different way that the one explored
in the thesis: instead of feeding baseline algorithms with the output
of COCO, why not feed COCOwith the gradient estimates provided
by the baseline algorithms? The standard gradient descent steps
would then use directly the output of COCO.

Naturally, our theoretical analysis of COCO can be extended.
It would be interesting to demonstrate the universality of the evi-
dence provided by our experiments, namely in what respects to the
estimator bias and variance (at least for COCO2, for which there is
closed-form solution) and the decrease with 𝐾 of the elementwise
MSE of COCO𝐾 . Regarding the usage of COCO as a plug-in for
stochastic optimization, it would be important to study conver-
gence guarantees (which, naturally, also depend on the baseline
algorithm) and to quantify the gains in variance reduction.

Aspects of computational efficiency can also motivate future
work. For example, the extension of the proposed FDPG efficient
method for COCO to deal with more general noise covariance
matrices. This would certainly bring robustness to the denoiser,
which, despite the predictable higher computational cost, could
widen the range of application scenarios. Another interesting line of
thought concerns dealing with the quadratic scaling of the number
of constraints with the number of points simultaneously considered.
In fact, our analysis showed that the larger gains in denoising come
from close-by points, which could motivate strategies to reduce
(maybe to a linear dependence) the number of constraints that could
effectively be considered without compromising the results.

More exploratory lines of research would address the possibility
of denoising gradients using different assumptions on the underly-
ing objective function. For example, strong convexity, which has
lead to better convergence rates for stochastic optimization algo-
rithms, or the finite sum decomposition that is omnipresent in ma-
chine learning applications. Even in the non-convex setting, it could
be interesting to consider the single assumption of 𝐿-smoothness,
since, just as in the convex case, it would prevent arbitrarily fast
changes of the gradient, thereby promising denoising capabilities.

Finally, our insights relative to the influence of the location of
the query points may motivate strategies for active learning, i.e.,
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Figure 7: Top: Performance results obtained for SGD and its coupling with
COCO𝐾 in the “fourclass" dataset [23]. Note the performance improvement
with the increase of 𝐾 . Middle: Same as the plot above, now for baseline
algorithm Adam. Bottom: Same as the plots above, now for baseline algo-
rithm SAG. In this case, no improvements are observed with the increase in
𝐾 and the linear convergence of SAG is even compromised by COCO.

for actively selecting those points, rather than passively using only
the past iterates.
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