
Cuffless Blood Pressure Estimation for Continuous 24/7
Patient Monitoring

Maria Margarida Almeirão Brites
mariambrites@tecnico.ulisboa.pt
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Abstract

Blood pressure (BP) is an important factor in the monitoring of patients admitted to the general ward, which is
the focus of the Wireless Assessment of Respiratory and Circulatory Distress (WARD) clinical support system.
Current practice relies on intermittent cuff based measurements, based on the oscillometric method. This method
has major drawbacks such as the low frequency of evaluation and discomfort for the patients. Continuous cuffless
blood pressure estimation methods have been explored in the literature as solutions for these problems. This
master thesis aims at addressing cuffless blood pressure estimation using a data-driven method based on a
machine learning algorithm (Random Forest).

Several morphological features and pulse arrival time features were extracted from the photopletymogram
(PPG) waveform, its derivative and second derivative and from the ECG waveform. The set of features was used
to train two Random Forest Regression models to estimate systolic blood pressure (SBP) and diastolic blood
pressure (DBP), respectively. The BP estimation algorithm was fist trained and tested on data publicly available
at the Multi-Parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database. On a second stage, the
solution was applied to data from the WARD project.

Although signal quality created difficulties in achieving results that compare to those in the literature, in a
small subset of high quality data from the MIMIC II database, it was possible to obtain SBP and DBP estimations
with a mean error of 5.20± 5.13mmHg and 1.70± 7.98mmHg, respectively. The results obtained in the WARD
data suggest the signal pre-processing and cleaning pipeline should be improved to meet the clinical standards.
Despite the limitations, a machine learning method based on PPG and ECG features shows potential for the
estimation of blood pressure without a cuff.

Keywords: Blood Pressure, Cuffless, Patient monitoring, Photoplethysmography, Electrocardiogram, Random
Forest

1. Introduction

Blood pressure is a key hemodynamic variable, since
subtle changes of its values, together with changes in
other biosignals, are early signs of clinical deteriora-
tion eventually leading to adverse events [10]. Blood
pressure is often monitored continuously in critically ill
patients. It is common procedure to monitor arterial
blood pressure (ABP) by means of an arterial catheter
during high-risk surgery, in the postoperative and in
the intensive care unit (ICU). The advantages of this
monitoring technique include instantaneous detection
of pressure changes and accuracy [15], as this is the
gold standard method to monitor BP [17]. However,
this procedure is invasive, and may lead to complica-
tions so it is not suitable for general ward. Alterna-
tively, blood pressure is often monitored using auscul-
tation or oscillometry methods, which are non-invasive
methods that employ an inflatable cuff [17].

Blood pressure is one of the biosignals being mon-
itored in the Wireless Accessment of Respiratory and

Circulatory Distress (WARD) project. The WARD
project is a collaboration between the Technological
University of Denmark (DTU), Rigshospitalet and Bis-
pebjerg hospital. It aims at conducting a continuous
fully automatic assessment of vital signal being moni-
tored in high-risk patients and concerns general ward
patients. In this project, signals are continuously mea-
sured from inpatients in the post operative period af-
ter major surgery and by patients admitted due to
chronic obstructive pulmonary disease (COPD) exac-
erbation, using wear and forget devices. At this point,
500 patients in the first situation and 200 in the lat-
ter have been monitored, meaning that a large data
set is now available as a basis for algorithm devel-
opment. The biosignals acquired include electrocar-
diogram (ECG), photopletysmogram (PPG) and blood
pressure, among others.

Currently in the WARD project, systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) are
measured every 30 or 15 min during daytime and
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every hour or half hour from 10PM to 7AM using a
cuff-based ambulatory blood pressure monitor. How-
ever, these measurements may cause discomfort to
the patients and are disruptive during sleeping. A cuf-
fless system for blood pressure estimation would allow
unobtrusive and continuous measurements, providing
more information about blood pressure variation.

Several systems have been proposed for continu-
ous and cuffless blood pressure estimation. Many rely
on pulse transit time (PTT) or pulse arrival time mea-
sures (PAT), which consist of time differences obtained
from two simultaneously acquired pulse signals repre-
senting the activity of the heart [17]. The electrocar-
diogram and photopletismogram waveforms acquired
in the scope of the WARD project are commonly used
to obtain such measures.

Other systems which rely on features from the ECG
and PPG waveforms separately have also been pro-
posed. However, integration into clinical practice has
not yet been achieved, possibly because the methods
proposed either lack accuracy or validation over a suf-
ficiently large population [7] [22]. Therefore, it is impor-
tant to further improve and test these blood pressure
estimation methods.

The main aim of the project is to investigate a
method to estimate systolic and diastolic BP based on
biosignals acquired in the scope of the WARD project,
in a continuous or semi-continuous and unobtrusive
manner.

2. State of the art on cuffless BP estimation
Cuffless blood pressure estimation has been exten-
sively studied over the last years. The classical BP
estimation models consist of mapping indicators that
can reveal the BP changes, such as PTT and PAT to
the BP values [22]. Several approaches have been at-
tempted to model the relationship between BP indica-
tor variables and BP and they can be roughly divided
in two groups. One of the possible approaches con-
sists of using theory-based mathematical models to
map the relationship between these indicators and the
BP, requiring expert knowledge of the underlying phys-
iologically processes. The alternative are data-driven
approaches, based on machine learning techniques.

2.1. Model-Based Methods
Early studies such as those by Chen et al. and Poon
et al., two of the most cited works in the field, de-
veloped PTT models for BP estimation based on the
Moens-Korteweg equation. This equation correlates
pulse wave velocity (PWV), the velocity at which an
arterial pressure wave propagates along the walls of
the arterial tree, with the modulus of elasticity of the
arterial wall [22]. Although their results demonstrated
that PTT is able to track BP, both models have short-
comings such as limited accuracy and short calibra-
tion intervals [13]. More recently in 2015, the photo-
plethysmogram intensity ratio (PIR) was proposed as
a new indicator for BP estimation in a study by Ding et

al. [4]. The inclusion of this parameter, which can be
affected by changes in the arterial diameter, improved
the estimation when compared to BP models based
only on PTT.

The theory-driven model-based methods have the
advantages of being generalizable and interpretable.
However, the relationship between BP indicators has
been demonstrated to be more complicated than a
simple linear or nonlinear regression model. In the
case of PTT, it has been shown to have distinct corre-
lation with BP among different individuals [22]. There
are many factors affecting blood pressure, such as
age, temperature, mental stress, and different be-
haviour pattern, which are not reflected in this indica-
tor.

2.2. Data-driven Methods
Machine learning methods are particularly valuable for
cuffless BP estimation due to their ability to constantly
learn from data. Also, machine learning techniques
allow the use of multiple indicators for the estimation,
which would be difficult to integrate in a physiological
mathematical model, and may prevent BP prediction
from being affected by confounding factors or noise in
a single indicator [18].

One of the first to study this approach was Monte-
Moreno, who combined a set of features describing
several PPG characteristics in several machine learn-
ing techniques to predict continuous SBP [18]. Ridge
linear regression, a multilayer perceptron neural net-
work, support vector machines and random forests
where tested, and the best performance was obtained
with the Random Forest Tree method, which has re-
sulted in a coefficient of determination between the
reference and the prediction of 0.91 and 0.89 for SBP
and DBP, respectively [22].

Later, in a study by Ruiz-Rodriguez [19], a neural
network based method based on PPG features was
studied on patients undergoing continuous invasive
BP measurement with an arterial catheter. The vali-
dation group included 47 patients and the results ob-
tained were not satisfactory to allow clinical applica-
tion [19].

In 2013, Kurylyak et al. also used an Artificial Neu-
ral Network and a set of 21 features extracted from the
PPG waveform to estimate SBP and DBP. Training and
test data were extracted from the MIMIC database and
the estimation results presented a mean absolute er-
ror of 3.80±3.46mmHg for SBP and 2.21±2.09mmHg
for DBP. However, no information is given on the
amount of subjects in which it was tested [11].

Recently, more and more researchers have at-
tempted machine learning methods for cuffless BP es-
timation. For instance, Kachuee et al. extracted multi-
ple physiological parameters from ECG and PPG sig-
nals and used several regression algorithms to esti-
mate BP [9]. Also, Xing et al. developed a method to
measure blood pressure without calibration and based
only on the PPG signal and height, using a random
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forest algorithm [25].
With recent developments in machine learning,

more advanced methods such as Deep Neural Net-
works have also been used to model the nonlin-
ear relationship between the BP predictors and BP
measurements. Temporal dependencies between the
raw input signals and blood pressure have also been
model using recurrent neural networks [22].

3. Methodology
3.1. Dataset
The data used are from the Multi-Parameter Intelligent
Monitoring for Intensive Care II (MIMIC II) database.
MIMIC II is a freely available database that contains
data from more than 25000 ICU patients who stayed
in critical care units of the Beth Israel Deaconess Med-
ical Center in Boston, Massachusetts. Data were col-
lected over a seven year period, beginning in 2001 [2].
The database contains both clinical data stored in a
relational database and waveform data recorded by
the bedside monitors. The waveform data (MIMIC-II
Waveform Database) contains records from a subset
of patients and includes physiological signals such as
electrocardiogram (ECG), photopletysmogram (PPG)
and intra-arterial blood pressure (ABP) [2].

The particular version of the database used
(MIMIC II Waveform Database Matched Sub-
set, version 3.1, which can be found at
https://archive.physionet.org/physiobank/database/
mimic2wdb/matched/) contains 4,897 waveform
records and 5,266 numerics records matched with
2,809 MIMIC II Clinical Database records. Not all
signals are available for all of the subjects in this
subset. Therefore, records containing simultaneous
PPG, ABP and ECG lead II waveforms were selected.
Abnormal (low quality) signal identified in a previous
work by Liang et al. [12] were also excluded from
the present analysis. The records selected are from
a total of 146 patients and have durations from 10
minutes to 1 hour. The distribution of systolic and
diastolic blood pressure records is shown in figure 1.

The steps implemented to estimate blood pressure
from the data extracted from the MIMIC II database
are described in figure 2, and will be described in de-
tail in the following sections.

Figure 1: Distribution of parameters in the records selected from
the MIMIC II database: systolic blood pressure (SBP) and diastolic
blood pressure (DBP)

3.1.1 State of the art method implementation

To establish a basis for comparison, the method by
Kachuee et al. [9] was implemented. This method
was selected based on the possibility to apply it to the
particular biosignals collected in the WARD project as
well as on performance results, number of subjects
in which it was evaluated and in the absence of cali-
bration. This paper suggests two different implemen-
tations. In the first, features extracted from the PPG
and ECG signals are based on physiological parame-
ters. On the alternative, a whole-based representation
of vital signals is used. The first was chosen since it
yielded better BP estimation results. The model was
trained and tested on the MIMIC II data described in
the previous section. The Random Forest Regression
was the algorithm selected, as it led to the best esti-
mation results in the paper, and feature vector used as
input contained the features described in figure 4 and
table 1.

Figure 4: PPG and ECG features. The features are further de-
scribed in table 1. Adapted from [9]

3.1.2 Pre-processing

In the method developed, the ABP, PPG and ECG sig-
nals are first resampled from 125 Hz to 1000Hz us-
ing linear interpolation. The PPG and ECG signals
are then filtered and denoised using discrete wavelet
transform (DWT), following a similar method to [9].
The signal is decomposed to level 10 using DWT with
the Daubechies 8 (db8) mother wavelet. Both low fre-
quencies (from 0 to 0.98Hz) and high frequencies
(from 250 to 500 Hz) are removed by zeroing the re-
spective decomposition coefficients. Wavelet denois-
ing is then performed on the remaining coefficients us-
ing MATLAB function wdenoise.

BP signal cleaning Systolic blood pressure (SBP)
and diastolic blood pressure (DBP) are computed for
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Figure 2: Block diagram of the proposed cuffless BP estimation method, where SBP and DBP features used as label are extracted from
the ABP signal. The steps in blocks (a), (b) and (c) are described in sections 5.3, 5.4 and 5.5, respectively.

Figure 3: Feature extraction process, corresponding to step (b) in the block diagram in figure 2

Table 1: Features computed from the PPG and ECG for each heart
cycle. AI-Augmentation Index; LASI-Large Artery Stiffness Index

Feature Description

PATf time interval between the ECG R-peak
and the PPG foot

PATd time interval between the ECG R-peak
and the PPG derivative maximum

PATp time interval between the ECG R-peak
and the PPG systolic peak

RR interval Time interval between consecutive
ECG R peaks

AI
ratio of the height of the diastolic peak
(x) to the systolic upeak (y) in the pulse
AI = x

y

LASI time delay between the systolic peak
and the point of inflection

S1 Area under the curve (AUC) from start
of cycle to max derivative point

S2 AUC from max derivative point to
systolic peak

S3 AUC from systolic peak to diastolic rise
S4 AUC from diastolic rise to end of cycle

each heart cycle. Abnormal SBP and DBP values are
discarded, using a method based on the signal abnor-
mality index (SAI) proposed by Sun et al [24]. The BP
data exclusion criteria are shown in table 2. The mean
arterial pressure (MAP) is defined as:

MAP =
2DBP + SBP

3
(1)

Table 2: Features computed from the ABP signal and respective
abnormality criteria. Adapted from Sun et al.[24]

Feature Description Abnormality Criteria
SBP Systolic blood pressure SBP > 300mmHg
DBP Diastolic blood pressure DBP < 20mmHg
PP Pulse pressure PP < 20mmHg

MAP Mean arterial pressure MAP < 30mmHg or
MAP > 200mmHg

T Duration of each beat
f Heart rate (60/T) f < 20 or f > 200bpm

∆SBP SBP [k]− SBP [k − 1] |∆SBP | > 20mmHg
∆DBP DBP [k]−DBP [k − 1] |∆DBP | > 20mmHg

∆T T [k]− T [k − 1] |∆T | > 2/3sec

PPG Signal Cleaning The PPG signal quality is
evaluated based on a signal quality index proposed

by Elgendi [6]. Elgendi compared eight different sig-
nal quality indices, and for lengths of PPG waveforms
between 2 s and 30 s, the skewness Signal Quality In-
dex (sSQI) method demonstrated better performance
than others. Skewness is a measure of the symmetry
of a probability distribution and sSQI is defined as:

SSQI = 1/N

N∑
i=i

[xi − µ̂x/σ]
3 (2)

where µ̂x/ and σ are the empirical estimate of the
mean and standard deviation of xi, respectively, and
N is the number of samples in the PPG signal [6]. Us-
ing this method, the classifications of excellent wave-
forms versus acceptable or unfit were best when 5s
was used as the window of the PPG waveform seg-
ment. Therefore, the sSQI is computed for each 5
second segment of the PPG signal. Segments with a
value below zero are discarded. Flat segments where
no signal is present are also removed.

3.1.3 Feature Extraction

The methodology followed to estimate blood pressure
relies on the extraction of several features from the
ECG and PPG signals, which have been used in pre-
vious studies with the same goal. All the features are
described in tables 1 and 3, and in figures 4, 5a and
5b. While many of these parameters are proposed in
literature without explicit meaning, others have physi-
ological meanings which have been described.

Pulse arrival time (PAT) corresponds to the time de-
lay between the electrical activity of the heart and
a peripheral pulse measured in a peripheral point in
the arterial tree. [22]. It indirectly approximates the
PWV, which reflects the properties of the arterial wall,
namely arterial stiffness [22]. The PAT features are
defined in table 1 and figure 4.

Large artery stiffness index (LASI) is related to the
transit time of pressure waves from the root of the sub-
clavian artery to the apparent site of reflection and
back to the subclavian artery [5]. This metric is com-
puted as the time difference between systolic peak
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(a)

(b)
Figure 5: (a) PPG signal (top), PPG signal derivative (middle) and PPG signal second derivative (bottom) with features identified: f5 -
Systolic time; f6 – dPPGHeight; f7 – dPPGWidth; f8 – ppgSecondDeriHeight; f9 – sdPPGPeakHeight; f10 – sdPPGFootHeight; f11 –
sdPPGWidth; f11 – sdPPGDeriWidth; f12 – PIR; f13 - Diastolic time, adapted from [14]; (b) Waves in the PPG signal second derivative
(sdPPG), namely a-wave (early systolic positive wave), b-wave (early systolic negative wave), c-wave (late systolic reincreasing wave),
d-wave (late systolic redecreasing wave) and e-wave (early diastolic positive wave). The e-wave represents the dicrotic notch [5]

and inflection point, as defined in table 1 and figure
4.

The augmentation pressure, measured by the aug-
mentation index (AI), is the measure of the contribu-
tion that the wave reflection makes to the SBP, and it
is obtained by measuring the reflected wave coming
from the arterial tree periphery to the centre [5]. This
metric is computed as the amplitude ratio of the inflec-
tion point to the systolic peak, as defined in table 1
and figure 4.

Systolic time, which is also known as crest time, has
been proved useful for cardiovascular disease classi-
fication [5]. It is computed as the time difference be-
tween systolic peak and the PPG foot, as defined in
table 3 and figure 5a. The PPG characteristic value
(PPGk) in table 3 is defined as

PPGk =
pm − pf
ps − pf

(3)

where pm = 1
T

∫
ptdt and pt gives the values of one

cycle of the PPG signal as a function of time t, T is
the duration of the cycle, ps is the value at the systolic
peak and pf is the value at the foot of the waveform.
PPGk was found to be a relevant feature for BP esti-
mation by Miao et al. [14].

The second derivative of the PPG signal (sdPPG),
an indicator of the acceleration of the blood in the
finger, also contains commonly used features. The
sdPPG signal is characterized by several peaks and
valleys respectively designated as a-wave (early sys-
tolic positive wave), b-wave (early systolic negative
wave), c-wave (late systolic reincreasing wave), d-
wave (late systolic redecreasing wave) and e-wave
(early diastolic positive wave) [5]. The e-wave repre-
sents the dicrotic notch [5]. Analysis is usually per-
formed in terms of the amplitudes of the b-, c-, d-, and
e-waves with respect to the a-wave amplitude, illus-
trated in figure 5b. The ratios computed are described
in table 3.

The feature extraction process requires several sub-

Table 3: Features computed from the PPG for each heart cycle
Feature Description

Systolic time Ascending time from PPG foot to
PPG peak

dPPGHeight Intensity of the first derivate of the
PPG waveform

dPPGWidth Time width of the first derivate of the
PPG waveform

sdPPGHeight Total intensity of the second derivate
of the PPG waveform

sdPPGPeakHeight Peak intensity of the second derivate
of the PPG waveform

sdPPGFootHeight Foot intensity of the second derivate
PPG waveform

ppgSecondDeriWidth Time width of the second derivate
of the PPG waveform

PIR Ratio of PPG peak intensity to PPG
bottom intensity

Diastolic time Descending time from PPG peak to
PPG foot

PPGk PPG characteristic value

b/a
ratio of the b-wave to the a-wave in
the PPG second derivative (sdPPG)

c/a
ratio of the c-wave to the a-wave in
the sdPPG signal

d/a
ratio of the d-wave to the a-wave in
the sdPPG signal

e/a
ratio of the e-wave to the a-wave in
the sdPPG signal

steps, as illustrated in figure 3, which will be described
next.

Beats Identification Systolic peaks are first com-
puted using an automatic multiscale-based peak de-
tection (AMPD) algorithm [20]. The next step is to
identify the points that mark the beginning of the PPG
cycle (PPG foot), which are defined as the minimum
value between two consecutive systolic peaks.

Beats Selection Since some parts of the signal may
contain low quality PPG cycles, a method to detect
and remove them is necessary.

For this process, the signal is divided in 1 min seg-
ments, and the following steps are followed:
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• Template creation: a template is computed as av-
erage of 30 seconds of beats (T1); The beats of
that 30 seconds window that have a correlation
coefficient lower than 0.85 with the template are
excluded

– If more than 1
4 of the beats are excluded, the

template is not used (If a previous template
is available it is used instead; Else, a new
one is computed from the next 30 seconds)

– Otherwise, a new template is computed with
the remaining beats (T2);

• Template comparison: All the beats in the 1
minute window are compared to the template and
if the correlation coefficient is lower than 0.95 they
are excluded

Computing features To compute the features de-
scribed above, several fiducial points need to be com-
puted from the ECG, PPG, PPG derivative (dPPG)
and sdPPG signals. These include the R peaks in
the ECG, peaks in the ECG, which are detected us-
ing the Pan-Thompkins algorithm, the PPG foot, the
systolic peaks, the max derivative points (dPPG max-
imum) and inflection points in the PPG signal.

The max derivative point is defined as the time value
with greater gradient between the cycle start and the
systolic peak.

The inflection point is defined as the largest peak
in the PPG gradient between the systolic peak and
the start of the next cycle. An example of the points
computed is shown in figure 6.

Finally, to avoid the effects of noise, all features are
averaged over 10 seconds segments, including blood
pressure labels, so that only one value of each sys-
tolic blood pressure (SBP) and diastolic blood pres-
sure (DBP) is estimated for each segment.

3.2. Regression algorithm
Random Forest Random forests are an ensemble
method which can be used for both classification and
regression problems. The algorithm is based on a col-
lection of decision trees [8].

In order to split the data, simple decision rules are
learned from the data features. A tree is trained by
choosing the best feature to split each node, starting
from the root. The best feature to split node m is de-
fined as the one that maximizes the impurity drop of
the children nodes, with respect to node m. Several
impurity measures are available, such as entropy and
Gini index. The one used in this work is the Gini index,
according to which the impurity of node m is defined
as:

i(m) = −
K∑

k=1

P (k|m)(1− P (k|m)) (4)

where P (k|m) is the proportion of class k observations
in node m [8].

Figure 6: Example of PPG, ECG and ABP points identification. In
ABP the systolic (SBP) and diastolic (DBP) BP values are identified.
In the ECG signal, the R peaks are identified and in the PPG signal,
the PPG foot, Systolic Peak, maximum of the first derivative (Max
Derivative point) and Inflection point are identified. In the PPG first
derivative signal, the points identified to detect the maximum of the
first derivative (Max Derivative point) and Inflection point in the PPG
signal are also shown.

In random forests, each tree in the ensemble is built
from a sample of the training set generated by boot-
strap, that is, by sampling the training set with replace-
ment. If k decision trees are generated, the random
forest predictor is then formed by taking the average
over k of the trees [1]. When splitting each node dur-
ing the construction of a tree, the best split is found
from a random subset of features. In this implemen-
tation, the number of features in the random subset
is equal to one third of the total number of features.
The purpose of these two sources of randomness is
to decrease the variance of the forest estimator, since
individual decision trees typically exhibit high variance
and tend to overfit. The randomness injected should
create decision trees with prediction errors that can be
cancelled out by taking an average of the respective
predictions.

The Random Forest Regression algorithm was cho-
sen for this implementation due to its robustness to
noisy features and outliers. In addition, it has yielded
better results than other regression algorithms in stud-
ies which implemented several methods for compari-
son, such as those by Kachuee et al. [9] and Monte-
Moreno [16]. Two estimation models were generated,
by setting the training targets as SBP and DBP sep-
arately. A bagged regression tree algorithm was then
used to generate a model, with the min leaf size set to
10 and the number of predictors to 100.
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3.3. Model Evaluation
Since the amount of data used is limited, a 7-fold split
was performed to evaluate the model. This is a trade-
off between the typical test and train set split and a
leave-one-subject-out (LOSO) experiment. The latter
consists of, in each of n iterations (n = the number of
subjects), using the data of n-1 subjects for training,
while the data of the left out subject is reserved for
testing [21]. The advantages of this method is that the
results should not depend on the split choice, which
may lead to particularly optimistic or pessimistic re-
sults [21]. On the other hand, it highly increases com-
putational complexity. Therefore, the data was instead
separated in 7 groups, ensuring that data from each
subject was only present in one of the groups. The
model was then trained with 6 of the groups created
and tested on the remaining group. This procedure is
repeated 7 times, allowing all the data to be used for
testing.

The agreement of estimated BP with the reference
BP was evaluated using Bland–Altman plots, com-
monly used metrics such as the mean error, mean
absolute error and root mean square error and blood
pressure measurement standards.

Bland-Altman plots The Bland-Altman plot de-
scribes the agreement between two quantitative mea-
surements, which in this case correspond to the true
and estimated blood pressure measurements. It con-
sists of a scatter plot where the difference of the two
measurements is plotted against their mean value. Its
analysis allows the quantification of the agreement be-
tween two measurements by studying the mean differ-
ence and constructing an agreement interval, within
which 95% of the differences between the estimated
and true blood pressure measurements fall.

Metrics The mean error (ME), mean absolute error
(MAE) and root mean square error (RMSE) are re-
spectively defined as:

ME =
1

n

n∑
i=1

y − y∗ (5)

MAE =
1

n

n∑
i=1

|y − y∗| (6)

RMSE =

√√√√ 1

n

n∑
i=1

(y − y∗)2 (7)

where n is the number of instances, y the true BP
value and y∗ is the estimated value.

Blood pressure measurement standards Perfor-
mance was also evaluated based on the Advancement
of Medical Instrumentation (AAMI) Standard, which
requires BP measurement devices to have ME and

standard deviation (STD) values lower than 5 and 8
mmHg, respectively [23]. It additionally requires de-
vices to be evaluated on a statistical population of at
least 85 subjects.

4. Results
4.1. State of the art method implementation
The results of implementing the state of the art method
by [9] showed a performance inferior to that obtained
in such study, as observed in table 5. In this method,
146 subjects from the MIMIC-II database were used
for training. For DBP the mean error obtained was
−1.35 ± 10.72mmHg compared to 0.36 ± 5.70mmHg
and for SBP it was 2.82 ± 21.96mmHg compared to
−0.06 ± 9.88mmHg in the original paper. The main
reason behind this is the lack of reliability in the fea-
ture extraction process for signals with abnormal mor-
phologies. This study does not disclaim how the un-
suitable signals are removed, so in the version im-
plemented, all the data described obtained from the
MIMIC database were used. It also does not describe
any method to reject noisy parts of the signals in which
attempting to extract features will lead to abnormal val-
ues.

Table 5: Results of implementing the state of the art method for
cufless BP estimation by Kachuee et al. [9]

ME STD Subjects
(mmHg) (mmHg)

Kachuee [9] DBP 0.36 5.70 942
SBP -0.06 9.88 942

Implemented DBP -1.3519 10.7213 98
Version SBP 2.8224 21.9617 98

4.2. MIMIC II database Total dataset
The regression model was trained and tested on the
total data extracted from 146 subjects from the MIMIC
database using the 7-fold cross validation process de-
scribed in the previous section. The data was first
trained using only the 10 features described in [9] and
in table 1 and figure 4. On a second stage, additional
features inspired by other literature studies and phys-
iological parameters that can be extracted from the
PPG signal were included, namely those described in
table 3. All the results are presented in table 4 and fig-
ure 7. All the performance metrics except the RMSE
slighly decreased (ME, STD and MAE), pointing that
including these extra features improves the algorithm
performance.

When comparing the STD value for DBP in table
4 (13.35 mmHg) to that in the implemented version
of the algorithm by Kachuee et al., in table 5 (10.72
mmHg), an increase deviation is observed, which is
due to the fact that in the original algorithm, only DBP
values in the range 60mmHg ≥ DBP ≥ 130mmHg
are considered, which is a limitation.

4.3. MIMIC II database Good Quality Subset
Although the method developed is able to identify
noisy sections of signals, it does not identify the PPG
signal portions which do not have the typical shape,
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Table 4: Results of implementing the blood pressure estimation method developed using the data obtained from the MIMIC II database
ME STD MAE RMSE

(mmHg) (mmHg) (mmHg) (mmHg)

Total Dataset

10 features DBP 0.76 13.35 10.92 13.52
(table 1) SBP 1.22 19.92 16.52 20.30
24 features DBP 0.48 12.76 10.81 13.55
(tables 1 and 3) SBP 1.13 19.53 16.63 20.32

Good Quality Subset

10 features DBP 11.55 6.34 15.03 16.18
(table 1) SBP 0.51 9.27 20.58 22.44
24 features DBP 5.20 5.13 10.61 11.82
(tables 1 and 3) SBP 1.70 7.98 17.38 19.18

Figure 7: Bland-Altman plot for SBP and DBP estimation using the
24-features model on 146 subjects data from the MIMIC II database

and the second wave and dichrotic notch are not de-
tectable. This typically occurs in older patients, due
to the increased artery stiffness, which are commonly
monitored in the general ward. An example of this type
of PPG signal is shown if figure 10b. It can be ob-
served that there is no prominent maximum between
two consecutive Max derivative points in the dPPG
signal in figure 10b. Therefore, a substudy was con-
ducted by training and testing the model on a small
subset of data from 21 subjects, in which the sinals
were visually considered to have good quality for fea-
ture extraction, as the one shown in figure 10a. The
distribution of parameters in this subset is shown in
figure 8. The model was trained using the LOSO ap-
proach previously described, due to the reduced num-
ber of subjects present in the subset.

The model was trained with the initial 10 features
in table 1 and with both those features added to the
ones in table 3 (the 24 feature model used for the to-
tal dataset). The results obtained are shown in table
4 and the Bland-Altman plots in figure 9 for the best
performing method, with 24 features.

Figure 8: Distribution of parameters for 21 subjects: systolic blood
pressure (SBP) and diastolic blood pressure (DBP)

Figure 9: Bland-Altman plot for SBP and DBP estimation using the
24-features model on 21 subjects data from the MIMIC II database

4.4. WARD data
Similar steps to those described in section 3 were
also applied to WARD project data. Since invasive
ABP measurements are not recorded in the context
of the WARD project, standard cuff-based blood pres-
sure measurements are used instead as label for the
blood pressure estimation algorithm. There were two
sets of PPG data available. The first, corresponding to
231 subjects, was acquired with 8-bit ADC, whereas
the second, corresponding to other 108, was acquired
with 12-bit ADC.

As in the total MIMIC II dataset, the STDs of the es-
timation errors did not comply with the AAMI sandard
for SBP and DBP estimation. However, the PPG data
with higher resolution (12 bit ADC) allowed improved
results compared to the PPG data with lower resolu-
tion (8 bit ADC), as expected. In addition, the applica-
tion to the WARD data of the data selection and clean-
ing procedures described resulted in a large decrease
in the number of measurements available for training
and testing the BP estimation algorithm. This was less
accentuated in the higher resolution dataset.

5. Discussion
5.1. Available data
Data from the MIMIC database has the advantage of
having invasive ABP waveforms available, from which
SBP and DBP values can be extracted with high pre-
cision given that it is the standard for validation of new
BP measurement technologies. However, this data is
mainly obtained from critically ill patients, having pos-
sible medical conditions that alter the PPG waveform,
making the extraction process of a number of features
less accurate. In particular, for people with arterial
stiffness or stage III hypertension as may occur in the
older population, the PPG waveform may lose some
important features such as its dicrotic notches, mak-
ing the estimation less precise [25]. As observed in
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Figure 10: Patient records containing a segment of PPG signal and the respective first derivative (dPPG). The first derivative of the PPG
signal shows the peaks corresponding to the Inflection point and Max derivative point, the maximum of the first derivative in each PPG
cycle; (a) good quality segment, in which the dichrotic notch in the PPG signal is easily detected. (b) abnormal record, in which the
dichrotic notch in the PPG signal is not easily distinguished.

figure 10, this prevents an accurate detection of the
inflection points and features based on these will be
unreliable. Many elderly patients are also monitored
by the WARD system. Therefore these features show
little potential for continuous SBP and DBP estimation
in the scope of the WARD project, unless an alterna-
tive way to estimate the dicrotic notch is developed.

On the other hand, there are few measurements
with low or high blood pressure values, as observed
in the histogram in figure 1, making it difficult to obtain
accurate measurements in the limits of the physiolog-
ical range. In particular, the ABP data do not provide
values above 180 mmHg. Another problem that af-
fects the performance of the BP estimation model is
that the ECG and PPG signals are often not synchro-
nized, making the PAT features inaccurate.

5.2. Data pre-processing and shut down algorithm

The use of a clinical database implies some difficulties
such as a high presence of noise and motion artifacts,
and the possibility that not all of the signals are avail-
able for the whole duration of the records. This cre-
ated the need for several data pre-processing steps.
The aim was to maintain only the PPG cycles that are
not influenced by motion artifacts and other conditions
that change the typical shape of the cycles. It was
observed that when features are computed after sSQI
selection and template cleaning, less outliers are ob-
tained.

5.3. Comparison with State of the Art Studies
In table 6, a comparison between this work and some
state of the art methods is shown. It is generally diffi-
cult to compare results from the various state of the
art studies, due to different evaluation metrics and
varied datasets whose characteristics are often not
specified. In addition, it should be taken into ac-
count that the methods requiring calibration gener-
ally have lower errors. Particularly, the Ding method
shows a error of only −0.40± 7.11mmHg for DBP and
1.17 ± 5.72mmHg, being the only method of those
stated that complies with the AAMI standard regard-
ing STD. However, one of the problems of calibration
is that its accuracy may deteriorate over time, and the
intervals at which a new calibration is necessary are
not studied.

Lower errors are also observed in small selected
subsets of data while work including large scale data
has larger errors, which was also observed in this
project. This highlights the difficulty of creating a ro-
bust general model on a large dataset, possibly con-
taining subjects with varied characteristics. Another
reason for this problem, pointed by Slapnicar et al.[21],
is that the large MIMIC II dataset may as well contain
data from different PPG and ABP measurement de-
vices.

All the results obtained in this project meet the AAMI
standard regarding mean error (ME) except DBP for
the good quality subset in the MIMIC II database. In
this particular case ME was 5.20mmH which is only
slightly above the limit of the standard (5mmHg). This
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Table 6: Comparison with state of the art methods.
DBP SBP Number

ME ± STD
(mmHg)

MAE
(mmHg)

RMSE
(mmHg)

ME ± STD
(mmHg)

MAE
(mmHg)

RMSE
(mmHg)

of test
subjects

Salpnicar et al.
[21] - 13.62 - - 18.34 - 510

Xing et al.
[25] 2.6± 9.3 - - 5.5± 15.5 - - 1532

Ding et al.
[3] 0.40± 7.11 - - 1.17± 5.72 - - 33

Kachuee et al.
[9] 0.36± 5.70 - - −0.06± 9.88 - - 942

Kachuee et al.
implemented version −1.35± 10.72 5.83 - 2.82± 21.96 11.80 - 942

MIMIC II
data 5.20 ± 5.13 10,61 11.82 1.70 ± 7.98 17.38 19.18 21

MIMIC II
data 0.48 ± 12,76 10,81 13,55 1.13 ± 19,53 16,63 20,32 146

AAMI
standard ≤ 5± 8 - - ≤ 5± 8 - - 85

could be due to the distribution of DBP measurement
values, observed in figure 8. As for standard deviation
(STD), only in the small subset the values are inferior
to the AAMI standard of 8mmHg.

6. Conclusions
It was found that there are many recent developments
in the field of cuffless blood pressure estimation al-
though the ones validated in a sufficiently large num-
ber of subjects do not yet meet the standards for clin-
ical application. In addition, the methods achieving
better performances often include a calibration proce-
dure requiring a variation in the subject’s blood pres-
sure. This is not feasible in cases such as the one
studied in this project, in which the subjects are hospi-
talized. The most relevant studies were therefore se-
lected based on performance results, number of sub-
jects in which they were evaluated and the absence of
calibration.

Although the state of the art methods for cuffless
blood pressure estimation methods based on physio-
logical models relating PAT or PTT features to BP have
shown promising performance, the implementation of
any of these was not feasible due to lack of synchro-
nization between ECG and PPG signals. The main im-
provements to the current methods implemented and
tested were the extra features extracted from the PPG
morphology and the steps of data preprocessing al-
lowing to obtain only clean sections of the PPG sig-
nal, which lead to an improvement in the estimation
performance.

Having a method that allows blood pressure esti-
mation would extremely be valuable, particularly in
the setting of the WARD project, in which patients
need to have blood pressure evaluated often. The
research conducted shows potential for estimation of
BP without a cuff based device. However, the event
classes requiring BP measurements, namely hypoten-
sion, circulatory failure and hypertension are defined
based on SBP in the limits of the physiological ranges,
where the estimation algorithm shows decreased per-

formance. Therefore, it is necessary to ensure the ac-
curacy of the method, particularly in the extreme val-
ues of blood pressure before this algorithm is to be
applied to the WARD system

6.1. Future Work
One of the crucial points in the development of an ac-
curate algorithm for the estimation of blood pressure,
is to have an effective shut down algorithm. Artifacts
are one of the weaknesses in using the PPG for di-
agnosis, since the noise can limit the reliability and
practical implementation of real-time monitoring appli-
cations [6]. Artifacts can result in loss of data, inaccu-
rate readings, and false alarms, affecting the accuracy
of pulse oximetry.

In the context of blood pressure estimation, it is
important to identify and reject noisy and low qual-
ity PPG segments to prevent inaccurate BP estima-
tion. Although random forest regression is robust to
noisy features, it is important to decrease their occur-
rence since it affects the performance of the trained
model. Other metrics such as kurtosis and perfusion
have been proposed for the estimation of signal qual-
ity in the PPG signal [6]. Therefore, a combination of
these metrics could be a way to improve the detection
of low quality segments. It is also important to tune the
thresholds of the metrics used to separate good qual-
ity and low quality PPG, for which a dataset of PPG
segments labeled by experts would be necessary.

Another point to be improved is the automatic de-
tection of PPG fiductial points. The systolic peaks are
detected with the AMPD algorithm, which is robust to
artifacts. However, the determination of the remaining
fiductial points would be more accurate if more robust
methods were used.
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nation of calibration intervals required for accu-
rately tracking blood pressure using pulse transit

time algorithms. Journal of Human Hypertension,
27(12):744–750, 2013.

[14] F. Miao, N. Fu, Y. T. Zhang, X. R. Ding, X. Hong,
Q. He, and Y. Li. A novel continuous blood pres-
sure estimation approach based on data min-
ing techniques. IEEE Journal of Biomedical and
Health Informatics, 21(6):1730–1740, 2017.

[15] F. Michard, D. I. Sessler, and B. Saugel. Non-
invasive arterial pressure monitoring revisited. In-
tensive Care Medicine, 44(12):2213–2215, 2018.

[16] E. Monte-Moreno. Non-invasive estimate of
blood glucose and blood pressure from a pho-
toplethysmograph by means of machine learn-
ing techniques. Artificial Intelligence in Medicine,
53(2):127–138, 2011.

[17] R. Mukkamala, J. O. Hahn, O. T. Inan, L. K.
Mestha, C. S. Kim, H. Toreyin, and S. Kyal.
Toward Ubiquitous Blood Pressure Monitoring
via Pulse Transit Time: Theory and Practice.
IEEE Transactions on Biomedical Engineering,
62(8):1879–1901, 2015.

[18] M. Radha, K. De Groot, N. Rajani, C. C. Wong,
N. Kobold, V. Vos, P. Fonseca, N. Mastellos, P. A.
Wark, N. Velthoven, R. Haakma, and R. M. Aarts.
Estimating blood pressure trends and the noctur-
nal dip from photoplethysmography. Physiologi-
cal Measurement, 40(2):1–20, 2019.

[19] J. C. Ruiz-Rodrı́guez, A. Ruiz-Sanmartı́n,
V. Ribas, J. Caballero, A. Garcı́a-Roche, J. Riera,
X. Nuvials, M. De Nadal, O. De Sola-Morales,
J. Serra, and J. Rello. Innovative continuous
non-invasive cuffless blood pressure monitoring
based on photoplethysmography technology.
Intensive Care Medicine, 39(9):1618–1625,
2013.

[20] F. Scholkmann, J. Boss, and M. Wolf. An efficient
algorithm for automatic peak detection in noisy
periodic and quasi-periodic signals. Algorithms,
5(4):588–603, 2012.

[21] G. Slapni Č Ar, N. Mlakar, and M. Luštrek. Blood
pressure estimation from photoplethysmogram
using a spectro-temporal deep neural network.
Sensors (Switzerland), 19(15), 2019.
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